LT1943_1 [Linear]

High Current Quad Output Regulator for TFT LCD Panels; 高电流四路输出稳压器,用于TFT LCD面板
LT1943_1
型号: LT1943_1
厂家: Linear    Linear
描述:

High Current Quad Output Regulator for TFT LCD Panels
高电流四路输出稳压器,用于TFT LCD面板

稳压器 CD
文件: 总20页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1943  
High Current Quad Output  
Regulator for TFT LCD Panels  
U
FEATURES  
DESCRIPTIO  
The LT®1943 quad output adjustable switching regulator  
provides power for large TFT LCD panels. The device,  
housed in a low profile 28 pin thermally enhanced TSSOP  
package, cangeneratea3.3Vor5Vlogicsupplyalongwith  
the triple output supply required for the TFT LCD panel.  
Operatingfromaninputrangeof4.5Vto22V, astep-down  
regulator provides a low voltage output VLOGIC with up to  
2A current. A high-power step-up converter, a lower-  
power step-up converter and an inverting converter pro-  
vide the three independent output voltages AVDD, VON and  
4 Integrated Switches: 2.4A Buck, 2.6A Boost,  
0.35A Boost, 0.35A Inverter (Guaranteed Minimum  
Current Limit)  
Fixed Frequency, Low Noise Outputs  
Soft-Start for all Outputs  
Externally Programmable VON Delay  
Integrated Schottky Diode for VON Output  
PGOOD Pin for AVDD Output Disconnect  
4.5V to 22V Input Voltage Range  
PanelProtectTM Circuitry Disables VON Upon Fault  
V
OFF required by the LCD panel. A high-side PNP provides  
Available in Thermally Enhanced 28-Lead TSSOP  
delayed turn-on of the VON signal and can handle up to  
30mA. Protection circuitry ensures that VON is disabled if  
any of the four outputs are more than 10% below the  
programmed voltage.  
U
APPLICATIO S  
Large TFT-LCD Desktop Monitors  
Flat Panel Televisions  
All switchers are synchronized to an internal 1.2MHz  
clock, allowing the use of low profile inductors and ce-  
ramic capacitors throughout. A current mode architecture  
provides excellent transient response. For best flexibility,  
all outputs are adjustable. Soft-start is included in all four  
channels. A PGOOD pin can drive an optional PMOS pass  
device to provide output disconnect for the AVDD output.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
PanelProtect is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
V
8V TO 20V  
IN,  
10µH  
V
AV  
DD  
12.2V  
OFF  
–5.5V  
50mA  
500mA  
1µF  
10µF  
0.47µF  
33µH  
10µH  
88.7k  
10.0k  
10µF  
2.2µF  
Startup Waveforms  
44.2k  
V
SW3  
IN  
SW4  
SW2  
FB2  
RUN-SS  
2V/DIV  
NFB4  
0.015µF  
0.015µF  
0.047µF  
V
RUN-SS  
SS-234  
LOGIC  
10.0k  
10pF  
10µH  
5V/DIV  
AV  
DD  
LT1943  
FB4  
C
T
10V/DIV  
BIAS  
BOOST  
PGOOD  
PGOOD  
V
ON  
V
OFF  
V
35V  
ON  
E3  
10V/DIV  
30mA  
0.22µF  
SW1  
FB1  
274k  
V
E3  
4.7µH  
20V/DIV  
16.2k  
FB3  
V
LOGIC  
3.3V  
2A  
V
ON  
GND  
SGND  
10.0k  
2.2µF  
50V/DIV  
V
C1  
10.0k  
22µF  
I
IN(AVG)  
1A/DIV  
V
V
V
C2  
C3  
C4  
5ms/DIV  
0.47µF  
18k  
100pF  
2.2nF  
13k  
6.8k  
27k  
100pF  
680pF  
100pF  
2.2nF  
100pF  
2.2nF  
1943 TA01  
Quad Output TFT-LCD Power Supply  
1943fa  
1
LT1943  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
VIN Voltage .............................................................. 25V  
BOOST Voltage ........................................................ 36V  
BOOST Voltage Above SW1..................................... 25V  
BIAS Pin Voltage ..................................................... 18V  
SW2, SW4 Pin Voltages .......................................... 40V  
SW3 Voltage ............................................................ 40V  
FB1, FB2, FB3, FB4 Voltages...................................... 4V  
NFB4 Voltage ................................................ +6V, –0.6V  
VC1, VC2, VC3, VC4 Pin Voltages.............................. 6V  
RUN-SS, SS-234 Pin Voltages................................... 6V  
PGOOD Pin Voltage ................................................. 36V  
E3 Pin Voltage ......................................................... 38V  
NUMBER  
GND  
VC1  
1
2
SW2  
SW2  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
LT1943EFE  
VC2  
3
V
ON  
FB1  
4
C
T
FB2  
5
E3  
FB3  
6
PGOOD  
BIAS  
NFB4  
FB4  
7
29  
8
SW3  
VC3  
9
GND  
VC4  
10  
11  
12  
13  
14  
SW4  
SGND  
BOOST  
SW1  
SW1  
RUN-SS  
SS-234  
FE PART MARKING  
1943E  
V
IN  
V
IN  
FE PACKAGE  
28-LEAD PLASTIC TSSOP  
EXPOSED PAD (PIN 29) IS GROUND  
(MUST BE SOLDERED TO PCB)  
V
ON Voltage ............................................................. 38V  
CT Pin Voltage ........................................................... 6V  
Junction Temperature........................................... 125°C  
Operating Temperature Range (Note 2) ...–40°C to 85°C  
Storage Temperature Range ..................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TJMAX = 125°C, θJA = 25°C/W, θJC = 7.5°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN-SS, SS-234 = 2.5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
4.5  
UNITS  
Minimum Input Voltage  
Maximum Input Voltage  
Quiescent Current  
V
V
22  
Not Switching  
RUN-SS = SS-234 = 0V  
10  
35  
14  
45  
mA  
µA  
RUN-SS, SS-234 Pin Current  
RUN-SS, SS-234 Threshold  
BIAS Pin Voltage to Begin SS-234 Charge  
BIAS Pin Current  
RUN-SS, SS-234 = 0.4V  
1.7  
0.8  
2.8  
10.5  
125  
20  
µA  
V
2.4  
3.15  
15  
V
BIAS = 3.1V, All Switches Off  
(Note 3)  
mA  
mV  
µA  
V
FB Threshold Offset to Begin C Charge  
90  
16  
160  
25  
T
C Pin Current Source  
T
All FB Pins = 1.5V  
All FB Pins = 1.5V  
C Threshold to Power V  
T
1.0  
1.1  
180  
60  
1.2  
240  
ON  
V
Switch Drop  
V
V
Current = 30mA  
= 30V  
mV  
mA  
mV  
µA  
µA  
ON  
ON  
E3  
Maximum V Current  
30  
90  
ON  
PGOOD Threshold Offset  
PGOOD Sink Current  
PGOOD Pin Leakage  
125  
160  
1
200  
V
= 36V  
PGOOD  
Master Oscillator Frequency  
1.1  
1.0  
1.2  
1.35  
1.46  
MHz  
MHz  
Foldback Switching Frequency  
Frequency Shift Threshold on FB  
All FB Pins = 0V  
250  
0.5  
kHz  
V
200kHz  
1943fa  
2
LT1943  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 12V, RUN-SS, SS-234 = 2.5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SWITCH 1 (2.4A BUCK)  
FB1 Voltage  
1.23  
1.22  
1.25  
1.27  
1.27  
V
V
FB1 Voltage Line Regulation  
FB1 Pin Bias Current  
4.5V < V < 22V  
0.01  
100  
200  
450  
3.2  
310  
0.1  
1.8  
30  
0.03  
600  
%/V  
nA  
IN  
(Note 4)  
Error Amplifier 1 Voltage Gain  
Error Amplifier 1 Transconductance  
Switch 1 Current Limit  
V/V  
µmhos  
A
I = 5µA  
Duty Cycle = 35% (Note 6)  
2.4  
82  
4.3  
470  
10  
Switch 1 V  
I
= 2A  
SW  
mV  
µA  
CESAT  
Switch 1 Leakage Current  
Minimum BOOST Voltage Above SW1 Pin  
BOOST Pin Current  
FB1 = 1.5V  
I
I
= 1.5A (Note 7)  
= 1.5A  
2.5  
50  
V
SW  
SW  
mA  
%
Maximum Duty Cycle (SW1)  
SWITCH 2 (2.6A BOOST)  
FB2 Voltage  
92  
1.23  
1.22  
1.25  
1.27  
1.27  
V
V
FB2 Voltage Line Regulation  
FB2 Pin Bias Current  
4.5V < V < 22V  
0.01  
220  
200  
450  
3.8  
360  
0.1  
45  
0.03  
%/V  
nA  
IN  
(Note 4)  
1000  
Error Amplifier 2 Voltage Gain  
Error Amplifier 2 Transconductance  
Switch 2 Current Limit  
V/V  
µmhos  
A
I = 5µA  
2.6  
85  
4.9  
540  
1
Switch 2 V  
I
= 2A  
SW2  
mV  
µA  
CESAT  
Switch 2 Leakage Current  
BIAS Pin Current  
FB2 = 1.5V  
= 2A  
I
mA  
%
SW2  
Maximum Duty Cycle (SW2)  
SWITCH 3 (350mA BOOST)  
FB3 Voltage  
92  
1.23  
1.22  
1.25  
1.27  
1.27  
V
V
FB3 Voltage Line Regulation  
FB3 Pin Bias Current  
4.5V < V < 22V  
0.01  
100  
200  
450  
0.5  
180  
0.1  
14  
0.03  
600  
%/V  
nA  
IN  
(Note 4)  
Error Amplifier 3 Voltage Gain  
Error Amplifier 3 Transconductance  
Switch 3 Current Limit  
V/V  
µmhos  
A
I = 5µA  
0.35  
0.7  
280  
1
Switch 3 V  
I
= 0.2A  
SW3  
mV  
CESAT  
Switch 3 Leakage Current  
BIAS Pin Current  
FB3 = 1.5V  
= 0.2A  
µA  
I
mA  
SW3  
Maximum Duty Cycle (SW3)  
84  
83  
88  
%
%
Schottky Diode Drop  
I = 170mA  
700  
mV  
1943fa  
3
LT1943  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. RUN-SS, SS-234 = 2.5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SWITCH 4 (350mA INVERTER)  
FB4 Voltage  
1.23  
1.22  
1.25  
1.27  
1.27  
V
V
FB4 Voltage Line Regulation  
FB4 Pin Bias Current  
4.5V < V < 22V  
0.01  
100  
0.03  
600  
%/V  
nA  
IN  
(Note 4)  
NFB4 Voltage (V -V  
)
1.215  
1.205  
1.245  
1.275  
1.275  
V
V
FB4 NFB4  
NFB4 Voltage Line Regulation  
NFB4 Pin Bias Current  
4.5V < V < 22V  
0.01  
100  
200  
450  
0.5  
260  
0.1  
15  
0.03  
600  
%/V  
nA  
IN  
(Note 5)  
Error Amplifier 4 Voltage Gain  
Error Amplifier 4 Transconductance  
Switch 4 Current Limit  
V/V  
µmhos  
A
I = 5µA  
0.35  
0.7  
390  
1
Switch 4 V  
I
= 0.3A  
SW4  
mV  
CESAT  
Switch 4 Leakage Current  
BIAS Pin Current due to SW4  
Maximum Duty Cycle (SW4)  
FB4 = 1.5V  
= 0.3A  
µA  
I
mA  
SW4  
84  
83  
88  
%
%
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Current flows into FB1, FB2, FB3 and FB4 pins.  
Note 5: Current flows out of NFB4 pin.  
Note 2: The LT1943E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization, and correlation  
with statistical process controls.  
Note 6: Current limit is guaranteed by design and/or correlation to static  
test. Slope compensation reduces current limit at high duty cycle.  
Note 7: This is the minimum voltage across the boost capacitor needed to  
guarantee full saturation of the internal power switch.  
Note 3: The C pin is held low until FB1, FB2, FB3 and FB4 all ramp above  
T
the FB threshold offset.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Maximum Output Current  
for VLOGIC = 3.3V  
SW1 Current Limit vs Duty Cycle  
SW1 Current Limit  
5
4
3
2
1
0
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
4.5  
4.0  
3.5  
3.0  
2.5  
T
= 25°C  
T
= 25°C  
A
A
L1 = 4.7µH  
L1 = 3.3µH  
TYPICAL  
MINIMUM  
10  
0
5
15  
20  
0
20  
40  
60  
80  
100  
–50  
0
25  
50  
75 100 125  
–25  
DUTY CYCLE (%)  
INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
1943 G01  
1943 G02  
1943 G03  
1943fa  
4
LT1943  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
MINIMUM Input Voltage to Start,  
VLOGIC = 3.3V  
BOOST Pin Current  
SW2 Current Limit  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
100  
80  
60  
40  
20  
0
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
T
A
= 25°C  
T
A
= 25°C  
0
1.0  
1.5  
2.0  
2.5  
3.0  
50  
0.5  
–50  
0
25  
75 100 125  
–25  
0
20  
40  
60  
80  
100  
SW1 CURRENT (A)  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
1943 G05  
1943 G06  
1943 G04  
SW3 Current Limit  
SW4 Current Limit  
SW1 VCESAT  
600  
500  
400  
300  
200  
100  
0
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
T
A
= 25°C  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
SW1 CURRENT (A)  
1943 G09  
1943 G07  
1943 G08  
SW3 VCESAT  
SW4 VCESAT  
SW2 VCESAT  
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
T
A
= 25°C  
T
A
= 25°C  
T = 25°C  
A
0.1  
0.2  
0.3  
0
0.1  
0.2  
0.3  
0
0.4  
0.4  
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
SW3 CURRENT (A)  
SW4 CURRENT (A)  
SW2 CURRENT (A)  
1943 G11  
1943 G12  
1943 G10  
1943fa  
5
LT1943  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VON Current Limit  
Frequency Foldback  
Oscillator Frequency  
100  
90  
80  
70  
60  
50  
40  
30  
1.4  
1.3  
1.2  
1.1  
1.0  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
T
= 25°C  
A
A
25  
35  
40  
5
10  
15  
20  
V
30  
–50  
0
25  
50  
75  
100 125  
0
0.4  
0.6  
0.8  
1.0  
1.2  
–25  
0.2  
TEMPERATURE (°C)  
FEEDBACK VOLTAGE (V)  
(V)  
ON  
1943 G13  
1943 G14  
1943 G15  
Reference Voltage  
Bias Pin Current  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
100  
80  
60  
40  
20  
0
I
I
I
= 1.5A  
= 0.2A  
= 0.3A  
SW2  
SW3  
SW4  
I
= I  
= I  
= 0A  
50  
SW2 SW3 SW4  
50  
100 125  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1943 G16  
1943 G17  
Efficiency, VLOGIC = 3.3V  
Efficiency, AVDD = 13V  
100  
90  
80  
70  
60  
50  
100  
90  
80  
70  
60  
50  
V
A
= 5V  
V
= 5V  
IN  
IN  
T
= 25°C  
T
= 25°C  
A
0
0.50 0.75 1.00  
LOAD CURRENT (A)  
1.25 1.50  
0.25  
0
0.1  
0.2  
0.3  
0.4  
0.5  
LOAD CURRENT (A)  
1943 G19  
1943 G18  
1943fa  
6
LT1943  
U
U
U
PI FU CTIO S  
GND (Pins 1, 20, Exposed Pad Pin 29): Ground. Tie both  
GND pins and the exposed pad directly to a local ground  
plane. The ground metal to the exposed pad should be as  
wide as possible for better heat dissipation. Multiple vias  
(to ground plane under the ground backplane) placed  
close to the exposed pad can further aid in reducing  
thermal resistance.  
VC4 (Pin 10): Switching Regulator 4 Error Amplifier  
Compensation. Connect a resistor/capacitor network in  
series with this pin.  
SGND (Pin 11): Signal Ground. Return ground trace from  
theFBresistornetworksandVC pincompensationcompo-  
nents directly to this pin and then tie to ground.  
BOOST (Pin 12): The BOOST pin is used to provide a drive  
voltage, higher than VIN, to the switch 1 drive circuit.  
VC1 (Pin 2): Switching Regulator 1 Error Amplifier Com-  
pensation. Connect a resistor/capacitor network in series  
with this pin.  
SW1 (Pins 13, 14): The SW1 pins are the emitter of the  
internal NPN bipolar power transistor for switching regu-  
lator 1. These pins must be tied together for proper  
operation. Connect these pins to the inductor, catch diode  
and boost capacitor.  
VC2(Pin3):ErrorAmplifierCompensationforSwitcher 2.  
Connect a resistor/capacitor network in series with this  
pin.  
FB1 (Pin 4): Switching Regulator 1 Feedback. Tie the  
resistor divider tap to this pin and set VLOGIC according to  
VLOGIC = 1.25 • (1 + R2/R1). Reference designators refer  
to Figure 1.  
VIN (Pins 15, 16): The VIN pins supply current to the  
LT1943’s internal regulator and to the internal power  
transistor for switch 1. These pins must be tied together  
and locally bypassed.  
FB2 (Pin 5): Feedback for Switch 2. Tie the resistor divider  
tap to this pin and set AVDD according to AVDD = 1.25 •  
(1 + R6/R5).  
SS-234 (Pin 17): This is the soft-start pin for switching  
regulators 2, 3 and 4. Place a soft-start capacitor here to  
limit start-up inrush current and output voltage ramp rate.  
When the BIAS pin reaches 2.8V, a 1.7µA current source  
beginschargingthecapacitor. Whenthecapacitorvoltage  
reaches 0.8V, switches 2, 3 and 4 turn on and begin  
switching. For slower start-up, use a larger capacitor.  
When this pin is pulled to ground, switches 2, 3 and 4 are  
disabled. For complete shutdown, tie RUN-SS to ground.  
FB3 (Pin 6): Switching Regulator 3 Feedback. Tie the  
resistor divider tap to this pin and set VON according to  
VON = 1.25 • (1 + R9/R8) – 150mV.  
NFB4 (Pin 7): Switching Regulator 4 Negative Feedback.  
Switcher 4 can be used to generate a positive or negative  
output. When regulating a negative output, tie the resistor  
divider tap to this pin. Negative output voltage can be set  
bytheequationVOFF =1.245(R3/R4)withR4setto10k.  
Tie the NFB4 pin to FB4 for positive output voltages.  
RUN-SS (Pin 18): This is the soft-start pin for switching  
regulator 1. Place a soft-start capacitor here to limit start-  
up inrush current and output voltage ramp rate. When  
power is applied to the VIN pin, a 1.7µA current source  
chargesthecapacitor.Whenthevoltageatthispinreaches  
0.8V, switch 1 turns on and begins switching. For slower  
start-up, use a larger capacitor. For complete shutdown,  
tie RUN-SS to ground.  
FB4 (Pin 8): Feedback for Switch 4. When generating a  
positive voltage from switch 4, tie the resistor divider tap  
to this pin. When generating a negative voltage, tie a 10k  
resistor between FB4 and NFB4 (R4).  
VC3 (Pin 9): Switching Regulator 3 Error Amplifier Com-  
pensation. Connect a resistor/capacitor network in series  
with this pin.  
SW4 (Pin 19): This is the collector of the internal NPN  
bipolar power transistor for switching regulator 4. Mini-  
mize metal trace area at this pin to keep EMI down.  
1943fa  
7
LT1943  
U
U
U
PI FU CTIO S  
resistor between the source and gate of the P-channel  
MOSFET keeps it off when switcher 2’s output is low.  
SW3 (Pin 21): This is the collector of the internal NPN  
bipolar power transistor for switching regulator 3. Mini-  
mize metal trace area at this pin to keep EMI down.  
E3 (Pin 24): This is switching regulator 3’s output and the  
emitter of the output disconnect PNP. Tie the output  
capacitor and resistor divider here.  
BIAS (Pin 22): The BIAS pin is used to improve efficiency  
when operating at higher input voltages. Connecting this  
pin to the output of switching regulator 1 forces most of  
the internal circuitry to draw its operating current from  
VLOGIC rather than VIN. The drivers of switches 2, 3 and 4  
are supplied by BIAS. Switches 2, 3 and 4 will not switch  
until the BIAS pin reaches approximately 2.8V. BIAS must  
CT (Pin 25): Timing Capacitor Pin. This is the input to the  
VON timer and programs the time delay from all four  
feedback pins reaching 1.125V to VON turning on. The CT  
capacitor value can be set using the equation C = (20µA •  
tDELAY)/1.1V.  
be tied to VLOGIC  
.
VON (Pin 26): This is the delayed output for switching  
regulator 3. VON reaches its programmed voltage after the  
internal CT timer times out. Protection circuitry ensures  
VON is disabled if any of the four outputs are more than  
10% below normal voltage.  
PGOOD (Pin 23): Power Good Comparator Output. This is  
the open collector output of the power good comparator  
andcanbeusedinconjunctionwithanexternalP-Channel  
MOSFET to provide output disconnect for AVDD as shown  
in the 5V Input, Quad Output TFT-LCD Power Supply on  
the last page of the data sheet. When switcher 2’s output  
reaches approximately 90% of its programmed voltage,  
PGOOD will be pulled to ground. This will pull down on the  
gate of the MOSFET, connecting AVDD. A 100k pull-up  
SW2 (Pins 27, 28): The SW2 pins are the collector of the  
internal NPN bipolar power transistor for switching regu-  
lator 2. These pins must be tied together. Minimize trace  
area at these pins to keep EMI down.  
1943fa  
8
LT1943  
W
BLOCK DIAGRA  
V
IN  
V
IN  
15  
16  
C1  
BOOST  
12  
D2  
MASTER  
OSCILLATOR  
1.2MHz  
SLOPE  
V
FOLDBACK  
OSCILLATOR  
COMPENSATION  
LOGIC  
+
Σ
C3  
V
LOGIC  
2.4A  
R2  
DRIVER  
FB1  
SW1  
14  
SWITCH  
L1  
4
13  
R1  
R
Q
D1  
C2  
PGOOD  
S
AV  
23  
DD  
R14  
V
C1  
R10  
C11  
gm  
2
3
+
C20  
+
1.25V  
1.12V  
V
C2  
R6  
R11  
C12  
FB2  
5
+
C21  
R5  
gm  
+
20µA  
BIAS  
22  
C
T
SW2  
1.25V  
L2  
25  
V
IN  
27 28  
C9  
R
2.6A  
SWITCH  
D5  
C16  
S
Q
DRIVER  
FOLDBACK  
OSCILLATOR  
+
AV  
DD  
L3  
C8  
1.125V  
Σ
SLOPE  
COMPENSATION  
FB4  
8
7
R4  
C24  
NFB4  
V
+
IN  
R3  
1.7µA  
1.7µA  
V
C4  
10  
C23  
INTERNAL  
REGULATOR  
AND  
R13  
C14  
RUN-SS  
18  
C5  
REFERENCE  
+
+
SW4  
19  
C7  
gm  
L4  
V
LOGIC  
SW2  
SW3  
SS-234  
17  
D6  
R
400mA  
SWITCH  
1.25V  
DRIVER  
S
Q
SW4  
V
OFF  
LOCKOUT  
C4  
D3  
C6  
FOLDBACK  
OSCILLATOR  
BIAS  
Σ
SLOPE  
COMPENSATION  
+
2.8V  
V
C3  
FB3  
R12  
C13  
R9  
9
V
E3  
6
+
C22  
gm  
R8  
+
SW3  
21  
L5  
1.25V  
V
IN  
V
ON  
R
400mA  
SWITCH  
V
ON  
26  
DRIVER  
S
Q
FOLDBACK  
OSCILLATOR  
C15  
+
E3  
24  
Σ
V
E3  
SLOPE  
1.1V  
C10  
COMPENSATION  
GND  
SGND  
GND  
GND  
1
11  
20  
29  
Figure 1. Block Diagram  
1943fa  
9
LT1943  
U
OPERATIO  
The LT1943 is a highly integrated power supply IC con-  
tainingfourseparateswitchingregulators. Allfourswitch-  
ing regulators have their own oscillator with frequency  
foldback and use current mode control. Switching regula-  
tor 1 consists of a step-down regulator with a switch  
current limit of 2.4A. Switching regulator 2 can be config-  
ured as a step-up or SEPIC converter and has a 2.6A  
switch. Switching regulator 3 consists of a step-up regu-  
lator with a 0.35A switch as well as an integrated Schottky  
diode. Switching regulator 4 has two feedback pins (FB4  
and NFB4) and can directly regulate positive or negative  
output voltages. The four regulators share common cir-  
cuitry including input source, voltage reference, and mas-  
ter oscillator. Operation can be best understood by refer-  
ring to the Block Diagram as shown in Figure 1.  
RUN-SS  
2V/DIV  
V
LOGIC  
5V/DIV  
I
L1  
1A/DIV  
SS-234  
2V/DIV  
AV  
DD  
20V/DIV  
I
L2+L3  
1A/DIV  
PGOOD  
20V/DIV  
1943 F03a  
5ms/DIV  
(2a)  
V
OFF  
10V/DIV  
If the RUN/SS pin is pulled to ground, the LT1943 is shut  
downanddraws35µAfromtheinputsourcetiedtoVIN.An  
internal 1.7µA current source charges the external soft-  
start capacitor, generating a voltage ramp at this pin. If the  
RUN/SS pin exceeds 0.6V, the internal bias circuits turn  
on,includingtheinternalregulator,reference,and1.1MHz  
master oscillator. The master oscillator generates four  
clock signals, one for each of the switching regulators.  
Switching regulator 1 will only begin to operate when the  
I
L4  
500mA/DIV  
V
E3  
20V/DIV  
I
L5  
500mA/DIV  
V
CT  
2V/DIV  
V
ON  
50V/DIV  
1943 F03b  
5ms/DIV  
RUN/SS pin reaches 0.8V. Switcher 1 generates VLOGIC  
,
which must be tied to the BIAS pin. When BIAS reaches  
2.8V, the NPN pulling down on the SS-234 pin turns off,  
allowing an internal 1.7µA current source to charge the  
externalcapacitortiedtotheSS-234pin.Whenthevoltage  
on the SS-234 pin reaches 0.8V, switchers 2, 3 and 4 are  
enabled. AVDD and VOFF will then begin rising at a ramp  
rate determined by the capacitor tied to the SS-234 pin.  
When all the outputs reach 90% of their programmed  
voltages, the NPN pulling down on the CT pin will turn off,  
and an internal 20µA current source will charge the exter-  
nal capacitor tied to the CT pin. When the CT pin reaches  
1.1V, the output disconnect PNP turns on, connecting  
VON. Intheeventofanyofthefouroutputsdroppingbelow  
10% of their programmed voltage, PanelProtect circuitry  
pulls the CT pin to GND, disabling VON.  
(2b)  
Figure 2. LT1943 Power-Up Sequence. (Traces From  
Both Photos are Synchronized to the Same Trigger)  
The output is an open collector transistor that is off when  
the output is out of regulation, allowing an external resis-  
tor to pull the pin high. This pin can be used with a  
P-channelMOSFETthatfunctionsasanoutputdisconnect  
for AVDD.  
Thefourswitchersarecurrentmoderegulators.Insteadof  
directly modulating the duty cycle of the power switch, the  
feedback loop controls the peak current in the switch  
during each cycle. Compared to voltage mode control,  
current mode control improves loop dynamics and pro-  
vides cycle-by-cycle current limit.  
A power good comparator monitors AVDD and turns on  
when the FB2 pin is at or above 90% of its regulated value.  
1943fa  
10  
LT1943  
U
OPERATIO  
The control loop for the four switchers is similar. A pulse  
from the slave oscillator sets the RS latch and turns on the  
internal NPN bipolar power switch. Current in the switch  
and the external inductor begins to increase. When this  
currentexceedsaleveldeterminedbythevoltageatVC,the  
currentcomparatorresetsthelatch,turningofftheswitch.  
The current in the inductor flows through the Schottky  
diodeandbeginstodecrease.Thecyclebeginsagainatthe  
next pulse from the oscillator. In this way, the voltage on  
the VC pin controls the current through the inductor to the  
output. The internal error amplifier regulates the output  
voltage by continually adjusting the VC pin voltage. The  
threshold for switching on the VC pin is 0.8V, and an active  
clamp of 1.8V limits the output current. The RUN/SS and  
SS-234 pins also clamp the VC pin voltage. As the internal  
current source charges the external soft-start capacitor,  
the current limit increases slowly.  
Input Voltage Range  
The minimum operating voltage of switcher 1 is deter-  
minedeitherbytheLT1943’sundervoltagelockoutof~4V,  
orbyitsmaximumdutycycle.Thedutycycleisthefraction  
of time that the internal switch is on and is determined by  
the input and output voltages:  
DC = (VOUT + VF)/(VIN – VSW + VF)  
where VF is the forward voltage drop of the catch diode  
(~0.4V) and VSW is the voltage drop of the internal switch  
(~0.3V at maximum load). This leads to a minimum input  
voltage of  
VIN(MIN) = (VOUT + VF)/DCMAX – VF + VSW  
with DCMAX = 0.82.  
Inductor Selection and Maximum Output Current  
A good first choice for the inductor value is:  
L = (VOUT + VF)/1.2  
Each switcher contains an extra, independent oscillator to  
perform frequency foldback during overload conditions.  
This slave oscillator is normally synchronized to the mas-  
ter oscillator. A comparator senses when VFB is less than  
0.5V and switches the regulator from the master oscillator  
to a slower slave oscillator. The VFB pin is less than 0.5V  
during startup, short-circuit, and overload conditions.  
Frequency foldback helps limit switch current and power  
dissipation under these conditions.  
whereVF isthevoltagedropofthecatchdiode(~0.4V)and  
L is in µH. The inductor’s RMS current rating must be  
greater than the maximum load current and its saturation  
current should be at least 30% higher. For highest effi-  
ciency, the series resistance (DCR) should be less than  
0.1. Table 1 lists several vendors and types that are  
suitable.  
TheswitchdriverforSW1operateseitherfromVIN orfrom  
the BOOST pin. An external capacitor and diode are used  
to generate a voltage at the BOOST pin that is higher than  
the input supply. This allows the driver to saturate the  
internal bipolar NPN power switch for efficient operation.  
The optimum inductor for a given application may differ  
from the one indicated by this simple design guide. A  
larger value inductor provides a higher maximum load  
current, and reduces the output voltage ripple. If your load  
is lower than the maximum load current, then you can  
relax the value of the inductor and operate with higher  
ripple current. This allows you to use a physically smaller  
inductor, or one with a lower DCR resulting in higher  
efficiency. Be aware that the maximum load current  
depends on input voltage. A graph in the Typical Perfor-  
mancesectionofthisdatasheetshowsthemaximumload  
current as a function of input voltage and inductor value  
for VOUT = 3.3V. In addition, low inductance may result in  
discontinuous mode operation, which further reduces  
STEP-DOWN CONSIDERATIONS  
FB Resistor Network  
The output voltage for switcher 1 is programmed with a  
resistor divider (refer to the Block Diagram) between the  
output and the FB pin. Choose the resistors according to:  
R2 = R1(VOUT/1.25V – 1)  
R1 should be 10kor less to avoid bias current errors.  
1943fa  
11  
LT1943  
U
OPERATIO  
these equations to check that the LT1943 will be able to  
deliver the required output current. Note again that these  
equations assume that the inductor current is continuous.  
Discontinuous operation occurs when IOUT is less than  
IL/2.  
maximum load current. For details of maximum output  
current and discontinuous mode operation, see Linear  
Technology’s Application Note AN44. Finally, for duty  
cycles greater than 50% (VOUT/VIN > 0.5), a minimum  
inductance is required to avoid subharmonic oscillations.  
See AN19.  
Table 1. Inductors.  
Part Number  
Sumida  
Value (µH)  
I
(A) DCR () Height (mm)  
RMS  
The current in the inductor is a triangle wave with an  
average value equal to the load current. The peak switch  
current is equal to the output current plus half the peak-to-  
peak inductor ripple current. The LT1943 limits its switch  
current in order to protect itself and the system from  
overload faults. Therefore, the maximum output current  
that the LT1943 will deliver depends on the switch current  
limit,theinductorvalue,andtheinputandoutputvoltages.  
CR43-1R4  
1.4  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
3.3  
4.7  
1.0  
2.2  
2.6  
2.52  
0.056  
0.071  
0.086  
0.109  
0.040  
0.050  
0.063  
0.049  
0.072  
0.035  
0.03  
3.5  
3.5  
3.5  
3.5  
1.8  
1.8  
1.8  
3.0  
3.0  
2.0  
2.5  
3.0  
CR43-2R2  
1.75  
1.44  
1.15  
1.55  
1.20  
1.10  
1.57  
1.32  
1.70  
2.50  
2.60  
CR43-3R3  
CR43-4R7  
CDRH3D16-1R5  
CDRH3D16-2R2  
CDRH3D16-3R3  
CDRH4D28-3R3  
CDRH4D28-4R7  
CDRH4D18-1R0  
CDC5D23-2R2  
CDRH5D28-2R6  
Coilcraft  
When the switch is off, the potential across the inductor is  
theoutputvoltageplusthecatchdiodedrop.Thisgivesthe  
peak-to-peak ripple current in the inductor:  
IL = (1 – DC)(VOUT + VF)/(L • f),  
where f is the switching frequency of the LT1943 and L is  
the value of the inductor. The peak inductor and switch  
current is  
0.013  
DO1606T-152  
DO1606T-222  
DO1606T-332  
DO1606T-472  
DO1608C-152  
DO1608C-222  
DO1608C-332  
DO1608C-472  
MOS6020-222  
MOS6020-332  
MOS6020-472  
D03314-222  
1.5  
2.2  
3.3  
4.7  
1.5  
2.2  
3.3  
4.7  
2.2  
3.3  
4.7  
2.2  
2.7  
2.10  
1.70  
1.30  
1.10  
2.60  
2.30  
2.00  
1.50  
2.15  
1.8  
0.060  
0.070  
0.100  
0.120  
0.050  
0.070  
0.080  
0.090  
0.035  
0.046  
0.050  
0.200  
0.140  
2.0  
2.0  
2.0  
2.0  
2.9  
2.9  
2.9  
2.9  
2.0  
2.0  
2.0  
1.4  
2.7  
ISWPK = ILPK = IOUT + IL/2  
To maintain output regulation, this peak current must be  
less than the LT1943’s switch current limit of ILIM. For  
SW1, ILIM is at least 2.4A at DC = 0.35 and decreases  
linearly to 1.6A at DC = 0.8, as shown in the Typical  
Performance Characteristics section. The maximum out-  
put current is a function of the chosen inductor value:  
IOUT(MAX) = ILIM IL/2  
= 3A • (1 – 0.57 • DC) – IL/2  
1.5  
1.6  
Choosing an inductor value so that the ripple current is  
smallwillallowamaximumoutputcurrentneartheswitch  
current limit.  
1008PS-272  
1.3  
Toko  
(D62F)847FY-2R4M  
(D73LF)817FY-2R2M  
2.4  
2.2  
2.5  
2.7  
0.037  
0.03  
2.7  
3.0  
One approach to choosing the inductor is to start with the  
simple rule given above, look at the available inductors,  
and choose one to meet cost or space goals. Then use  
1943fa  
12  
LT1943  
U
OPERATIO  
Output Capacitor Selection  
Because loop stability and transient response depend on  
the value of COUT, this loss may be unacceptable. Use X7R  
and X5R types.  
For 5V and 3.3V outputs, a 10µF 6.3V ceramic capacitor  
(X5R or X7R) at the output results in very low output  
voltage ripple and good transient response. Other types  
and values will also work; the following discussion ex-  
plores tradeoffs in output ripple and transient perfor-  
mance.  
Electrolytic capacitors are also an option. The ESRs of  
most aluminum electrolytic capacitors are too large to  
deliver low output ripple. Tantalum and newer, lower ESR  
organic electrolytic capacitors intended for power supply  
use are suitable, and the manufacturers will specify the  
ESR. Chose a capacitor with a low enough ESR for the  
required output ripple. Because the volume of the capaci-  
tor determines its ESR, both the size and the value will be  
larger than a ceramic capacitor that would give similar  
ripple performance. One benefit is that the larger capaci-  
tancemaygivebettertransientresponseforlargechanges  
in load current. Table 2 lists several capacitor vendors.  
The output capacitor filters the inductor current to gener-  
ate an output with low voltage ripple. It also stores energy  
in order satisfy transient loads and stabilizes the LT1943’s  
control loop. Because the LT1943 operates at a high  
frequency, minimal output capacitance is necessary. In  
addition, the control loop operates well with or without the  
presence of output capacitor series resistance (ESR).  
Ceramic capacitors, which achieve very low output ripple  
and small circuit size, are therefore an option.  
Table 2. Low ESR Surface Mount Capacitors  
Vendor  
Taiyo Yuden  
AVX  
Type  
Series  
You can estimate output ripple with the following  
equations:  
Ceramic  
X5R, X7R  
Ceramic  
Tantalum  
X5R, X7R  
TPS  
V
RIPPLE = IL/(8 • f • COUT) for ceramic capacitors, and  
Kemet  
Tantalum  
Ta Organic  
Al Organic  
T491, T494, T495  
T520  
VRIPPLE =IL ESRforelectrolyticcapacitors(tantalum  
and aluminum);  
A700  
Sanyo  
Ta or Al Organic  
Al Organic  
POSCAP  
SP CAP  
where IL is the peak-to-peak ripple current in the induc-  
tor. The RMS content of this ripple is very low so the RMS  
current rating of the output capacitor is usually not of  
concern. It can be estimated with the formula:  
Panasonic  
TDK  
Ceramic  
X5R, X7R  
Diode Selection  
IC(RMS)= IL/12  
The catch diode (D1 from Figure 1) conducts current only  
during switch off time. Average forward current in normal  
operation can be calculated from:  
Another constraint on the output capacitor is that it must  
havegreaterenergystoragethantheinductor;ifthestored  
energyintheinductortransferstotheoutput, theresulting  
voltage step should be small compared to the regulation  
voltage. For a 5% overshoot, this requirement indicates:  
ID(AVG) = IOUT (VIN – VOUT)/VIN  
The only reason to consider a diode with a larger current  
rating than necessary for nominal operation is for the  
worst-case condition of shorted output. The diode current  
will then increase to the typical peak switch current.  
2
C
OUT > 10 • L • (ILIM/VOUT)  
The low ESR and small size of ceramic capacitors make  
them the preferred type for LT1943 applications. Not all  
ceramic capacitors are the same, however. Many of the  
higher value capacitors use poor dielectrics with high  
temperature and voltage coefficients. In particular, Y5V  
and Z5U types lose a large fraction of their capacitance  
with applied voltage and at temperature extremes.  
Peak reverse voltage is equal to the regulator input volt-  
age. Use a diode with a reverse voltage rating greater than  
theinputvoltage. Table3listsseveralSchottkydiodesand  
their manufacturers.  
1943fa  
13  
LT1943  
U
OPERATIO  
Table 3. Schottky Diodes  
R4 should be 10kor less to avoid bias current errors. If  
switcher 4 is used to generate a positive output voltage,  
NFB4 should be tied to FB4.  
Part Number  
On Semiconductor  
MBRM120E  
MBRM140  
Diodes Inc.  
B120  
V
(V)  
I
(A) V at 1A (mV) V at 2A (mV)  
AVE F F  
R
20  
1
530  
550  
595  
V
OUT  
40  
1
R3  
FB4  
20  
30  
20  
30  
40  
1
1
2
2
2
500  
500  
B130  
NFB4  
R4  
B220  
500  
500  
500  
1943 A1  
B230  
B240  
Regulating Negative Output Voltages  
International Rectifier  
10BQ030  
30  
30  
1
2
420  
470  
470  
The LT1943 contains an inverting op amp with its non-  
inverting terminal tied to ground and its output connected  
totheFB4pin. UsethisopamptogenerateavoltageatFB4  
thatisproportionaltoVOUT4. Choosetheresistorsaccord-  
ing to:  
20BQ030  
Boost Pin Considerations  
The minimum operating voltage of an LT1943 application  
is limited by the undervoltage lockout ~4V and by the  
maximum duty cycle. The boost circuit also limits the  
minimum input voltage for proper start-up. If the input  
voltage ramps slowly, or the LT1943 turns on when the  
outputisalreadyinregulation,theboostcapacitormaynot  
be fully charged. Because the boost capacitor charges  
with the energy stored in the inductor, the circuit will rely  
on some minimum load current to get the boost circuit  
runningproperly. Thisminimumloadwilldependoninput  
and output voltages. The Typical Performance Character-  
istics section shows a plot of the minimum load current to  
start as a function of input voltage for a 3.3V output. The  
minimum load current generally goes to zero once the  
circuit has started. Even without an output load current, in  
many cases the discharged output capacitor will present  
a load to the switcher that will allow it to start.  
R5|V0UT  
1.245V  
|
R6 =  
–V  
OUT  
R6  
NFB4  
C1  
10pF  
R5  
10k  
FB4  
1943 A2  
Use 10k for R5. Tie 10pF in parallel with R5.  
Duty Cycle Range  
The maximum duty cycle (DC) of the LT1943 switching  
regulatoris85%forSW2,and 83%forSW3andSW4.The  
duty cycle for a given application using the step-up or  
charge pump topology is:  
INVERTER/STEP-UP CONSIDERATIONS  
Regulating Positive Output Voltages  
|VOUT | –V  
IN  
DC =  
The output voltage is programmed with a resistor divider  
between the output and the FB pin. Choose the resistors  
according to:  
|VOUT  
|
The duty cycle for a given application using the inverter or  
SEPIC topology is:  
R3 = R4(VOUT/1.25 – 1)  
1943fa  
14  
LT1943  
U
OPERATIO  
|VOUT  
V + |VOUT  
IN  
|
Output Capacitor Selection  
DC =  
|
Use low ESR (equivalent series resistance) capacitors at  
theoutputtominimizetheoutputripplevoltage.Multilayer  
ceramiccapacitorsareanexcellentchoice,astheyhavean  
extremely low ESR and are available in very small pack-  
ages. X7R dielectrics are preferred, followed by X5R, as  
these materials retain their capacitance over wide voltage  
and temperature ranges. A 10µF to 22µF output capacitor  
is sufficient for most LT1943 applications. Even less  
capacitance is required for outputs with |VOUT| > 20V or  
|IOUT|< 100mA. Solid tantalum or OS-CON capacitors will  
also work, but they will occupy more board area and will  
have a higher ESR than a ceramic capacitor. Always use a  
capacitor with a sufficient voltage rating.  
TheLT1943canstillbeusedinapplicationswheretheduty  
cycle, as calculated above, is above the maximum. How-  
ever, the part must be operated in discontinuous mode so  
that the actual duty cycle is reduced.  
Inductor Selection  
SeveralinductorsthatworkwellwiththeLT1943regulator  
are listed in Table 4. Besides these, many other inductors  
willwork.Consulteachmanufacturerfordetailedinforma-  
tion and for their entire selection of related parts. Use  
ferrite core inductors to obtain the best efficiency, as core  
losses at frequencies above 1MHz are much lower for  
ferritecoresthanforpowdered-ironunits. A10µHto22µH  
inductor will be the best choice for most LT1943 step-up  
and charge pump designs. Choose an inductor that can  
carry the entire switch current without saturating. For  
invertingandSEPICregulators, acoupledinductor, ortwo  
separate inductors is an option. When using coupled  
inductors, choose one that can handle at least the switch  
current without saturating. If using uncoupled inductors,  
each inductor need only handle approximately one-half of  
thetotalswitchcurrent. A4.7µHto15µHcoupledinductor  
or two 10µH to 22µH uncoupled inductors will usually be  
the best choice for most LT1943 inverting and SEPIC  
designs.  
Diode Selection  
ASchottkydiodeisrecommendedforusewiththeLT1943  
switcher2andswitcher4. TheSchottkydiodeforswitcher  
3 is integrated inside the LT1943. Choose diodes for  
switcher 2 and switcher 4 rated to handle an average  
current greater than the load current and rated to handle  
the maximum diode voltage. The average diode current in  
the step-up, SEPIC, and inverting configurations is equal  
to the load current. Each of the two diodes in the charge  
pump configurations carries an average diode current  
equal to the load current. The maximum diode voltage in  
the step-up and charge pump configurations is equal to  
|VOUT|. The maximum diode voltage in the SEPIC and  
inverting configurations is VIN + |VOUT|.  
Table 4. Inductors.  
Part Number  
Coiltronics  
TP3-4R7  
Value (µH)  
I
(A)  
DCR () Height (mm)  
RMS  
Input Capacitor Selection  
4.7  
10  
1.5  
0.181  
0.146  
2.2  
3.0  
Bypass the input of the LT1943 circuit with a 4.7µF or  
higherceramiccapacitorofX7RorX5Rtype.Alowervalue  
or a less expensive Y5V type will work if there is additional  
bypassingprovidedbybulkelectrolyticcapacitorsorifthe  
input source impedance is low. The following paragraphs  
describetheinputcapacitorconsiderationsinmoredetail.  
TP4-100  
1.5  
Sumida  
CD73-100  
10  
6.2  
10  
10  
1.44  
1.4  
1.3  
1.0  
0.080  
0.071  
0.048  
0.095  
3.5  
2.0  
3.0  
3.0  
CDRH5D18-6R2  
CDRH4D28-100  
CDRH4D28-100  
Coilcraft  
Step-down regulators draw current from the input supply  
in pulses with very fast rise and fall times. The input  
capacitor is required to reduce the resulting voltage ripple  
attheLT1943inputandtoforcethisswitchingcurrentinto  
a tight local loop, minimizing EMI. The input capacitor  
DO3314-103  
1008PS-103  
10  
10  
0.8  
0.520  
0.920  
1.4  
2.8  
0.78  
1943fa  
15  
LT1943  
U
OPERATIO  
solution is to either clamp the input voltage or dampen the  
tank circuit by adding a lossy capacitor (an electrolytic) in  
parallel with the ceramic capacitor. For details, see Appli-  
cation Note 88.  
musthavelowimpedanceattheswitchingfrequencytodo  
this effectively and it must have an adequate ripple current  
rating. The input capacitor RMS current can be calculated  
from the step-down output voltage and current, and the  
input voltage:  
Soft-Start and Shutdown  
The RUN/SS (Run/Soft-Start) pin is used to place the  
switching regulators and the internal bias circuits in shut-  
down mode. It also provides a soft-start function, along  
with SS-234. If the RUN/SS is pulled to ground, the  
LT1943 enters its shutdown mode with all regulators off  
and quiescent current reduced to ~35µA. An internal  
1.7µA current source pulls up on the RUN/SS and SS-234  
pins. If the RUN/SS pin reaches ~0.8V, the internal bias  
circuits start and the quiescent currents increase to their  
nominal levels.  
VOUT(V – V0UT  
)
IOUT  
2
IN  
CINRMS = IOUT  
<
V
IN  
and is largest when VIN = 2 VOUT (50% duty cycle). The  
ripple current contribution from the other channels will be  
minimal.Consideringthatthemaximumloadcurrentfrom  
switcher 1 is ~2.8A, RMS ripple current will always be less  
than 1.4A.  
The high frequency of the LT1943 reduces the energy  
storage requirements of the input capacitor, so that the  
capacitance required is less than 10µF. The combination  
of small size and low impedance (low equivalent series  
resistance or ESR) of ceramic capacitors makes them the  
preferred choice. The low ESR results in very low voltage  
ripple. Ceramic capacitors can handle larger magnitudes  
of ripple current than other capacitor types of the same  
value. Use X5R and X7R types.  
If a capacitor is tied from the RUN/SS or SS-234 pins to  
ground, then the internal pull-up current will generate a  
voltage ramp on these pins. This voltage clamps the VC  
pin, limiting the peak switch current and therefore input  
current during start-up. The RUN/SS pin clamps VC1, and  
the SS-234 pin clamps the VC2, VC3, and VC4 pins. A good  
value for the soft-start capacitors is COUT/10,000, where  
COUT is the value of the largest output capacitor.  
An alternative to a high value ceramic capacitor is a lower  
value along with a larger electrolytic capacitor, for ex-  
ample a 1µF ceramic capacitor in parallel with a low ESR  
tantalum capacitor. For the electrolytic capacitor, a value  
larger than 10µF will be required to meet the ESR and  
ripple current requirements. Because the input capacitor  
is likely to see high surge currents when the input source  
is applied, only consider a tantalum capacitor if it has the  
appropriate surge current rating. The manufacturer may  
also recommend operation below the rated voltage of the  
capacitor. Be sure to place the 1µF ceramic as close as  
possible to the VIN and GND pins on the IC for optimal  
noise immunity.  
To shut down SW2, SW3, and SW4, pull the SS-234 pin to  
ground with an open drain or collector.  
If the shutdown and soft-start features are not used, leave  
the RUN/SS and SS-234 pins floating.  
VON Pin Considerations  
The VON pin is the delayed output for switching regulator  
3. When the CT pin reaches 1.1V, the output disconnect  
PNPturnson,connectingVON toE3.TheVON piniscurrent  
limited, and will protect the LT1943 and input source from  
a shorted output. However, if the VON pin is charged to a  
high output voltage, and then shorted to ground through  
a long wire, unpredictable results can occur. The resonant  
tank circuit created by the inductance of the long wire and  
the capacitance at the VON pin can ring the VON pin several  
volts below ground. This can lead to large and potentially  
damaging currents internal to the LT1943. If the VON  
output may be shorted after being fully charged, there  
A final caution is in order regarding the use of ceramic  
capacitors at the input. A ceramic input capacitor can  
combine with stray inductance to form a resonant tank  
circuit. If power is applied quickly (for example by plug-  
gingthecircuitintoalivepowersource),thistankcanring,  
doubling the input voltage and damaging the LT1943. The  
1943fa  
16  
LT1943  
U
OPERATIO  
should be 5of resistance between the VON pin and its  
connection to the load, as shown on Figure 3. The resis-  
tancewilldampresonanttankcircuitcreatedbytheoutput  
short.AsthetransientontheVON pinduringashort-circuit  
condition will be highly dependent on the layout and the  
type of short, be sure to test the short condition and  
examine the voltage at the VON pin to check that it does not  
swing below ground.  
andinvertingregulators,theswitchedcurrentsflowthrough  
the power switch, the switching diode, and the tank  
capacitor. The loop formed by the components in the  
switched current path should be as small as possible.  
Place these components, along with the inductor and  
outputcapacitor,onthesamesideofthecircuitboard,and  
connectthemonthatlayer.Placealocal,unbrokenground  
plane below these components, and tie this ground plane  
to system ground at one location, ideally at the ground  
terminal of the output capacitor C2. Additionally, keep the  
SW and BOOST nodes as small as possible.  
V
ON  
R1  
5  
TO LOAD  
Thermal Considerations  
R1 IS ONLY NECESSARY  
C1  
0.47µF  
IF LOAD MAY HAVE TRANSIENT  
SHORT CONDITION. OTHERWISE,  
The PCB must provide heat sinking to keep the LT1943  
cool. The exposed pad on the bottom of the package must  
be soldered to a ground plane. This ground should be tied  
to other copper layers below with thermal vias; these  
layers will spread the heat dissipated by the LT1943. Place  
additional vias near the catch diodes. Adding more copper  
to the top and bottom layers and tying this copper to the  
internal planes with vias can reduce thermal resistance  
further. With these steps, the thermal resistance from die  
(or junction) to ambient can be reduced to θJA = 25°C or  
less. With 100LFPM airflow, this resistance can fall by  
another25%.Furtherincreasesinairflowwillleadtolower  
thermal resistance.  
CONNECT V PIN DIRECTLY TO LOAD  
ON  
1943 F03  
Figure 3. Transient Short Protection for VON Pin  
Printed Circuit Board Layout  
For proper operation and minimum EMI, care must be  
taken during printed circuit board (PCB) layout. Figure 4  
shows the high-current paths in the step down regulator  
circuit. Note that in the step-down regulators, large,  
switched currents flow in the power switch, the catch  
diode, and the input capacitor. In the step-up regulators,  
large, switched currents flow through the power switch,  
the switching diode, and the output capacitor. In SEPIC  
V
SW  
V
SW  
IN  
IN  
GND  
GND  
(a)  
(b)  
V
SW  
L1  
V
SW  
IN  
I
C1  
C1  
D1  
C2  
GND  
1943 F04  
(c)  
Figure 4. Subtracting the Current when the Switch is ON (a) From the Current when the Switch is OFF (b) Reveals the Path of  
the High Frequency Switching Current (c) Keep this Loop Small. The Voltage on the SW and BOOST Nodes will also be  
Switched; Keep these Nodes as Small as Possible. Finally, Make Sure the Circuit is Shielded with a Local Ground Plane  
1943fa  
17  
LT1943  
U
OPERATIO  
GND  
AV  
DD  
V
IN  
PLACE VIAS UNDER  
GROUND PAD TO  
GROUND PLANE FOR  
GOOD THERMAL  
CONDUCTIVITY  
V
OFF  
GND  
V
LOGIC  
1943 F05  
Figure 5. Top Side PCB Layout  
U
TYPICAL APPLICATIO S  
8V to 20V Input, Quad Output TFT-LCD Power Supply  
1µF  
25V  
X5R  
V
IN  
8V TO 20V  
ZHCS400  
B240A  
10µH  
AV  
V
DD  
OFF  
12.2V  
–5.5V  
50mA  
500mA  
10µF  
44.2k  
0.47µF  
16V  
10µF  
16V  
X5R  
33µH  
10µH  
2.2µF  
10V  
X5R  
25V  
X5R  
ZHCS400  
10pF  
X5R  
88.7k  
10.0k  
V
SW3  
IN  
SW4  
SW2  
FB2  
NFB4  
0.015µF  
0.015µF  
0.047µF  
RUN-SS  
SS-234  
10.0k  
10µH  
LT1943  
FB4  
C
T
BIAS  
BOOST  
PGOOD  
PGOOD  
V
ON  
V
35V  
ON  
E3  
0.22µF  
10V X5R  
30mA  
CMDSH-3  
SW1  
FB1  
274k  
4.7µH  
B230A  
16.2k  
FB3  
V
LOGIC  
3.3V  
2A  
GND  
10.0k  
SGND  
V
C4  
V
10.0k  
C1  
V
V
C2  
C3  
22µF  
6.3V  
X5R  
2.2µF  
50V  
X5R  
18k  
0.47µF  
50V  
X5R  
27k  
100pF  
680pF  
13k  
100pF  
2.2nF  
6.8k  
100pF  
2.2nF  
100pF  
2.2nF  
1943 TA02  
1943fa  
18  
LT1943  
U
PACKAGE DESCRIPTIO  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 2726 25 24 23 22 21 20 19 18 1716 15  
6.60 ±0.10  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
4.50 ±0.10  
SEE NOTE 4  
6.40  
2.74  
(.252)  
(.108)  
BSC  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9
10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE28 (EB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
1943fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LT1943  
U
TYPICAL APPLICATIO  
5V Input, Quad Output TFT-LCD Power Supply  
0.47µF  
16V  
X5R  
V
IN  
4.5V TO 8V  
ZHCS400  
B240A  
4.7µH  
V
OFF  
–10V  
10µH  
50mA  
10µF  
10V  
X5R  
10µF  
16V  
80.6k  
ZHCS400  
68µH  
2.2µF  
10V  
X5R  
X5R  
100k  
95.3k  
V
SW3  
IN  
SW4  
SW2  
FB2  
10.0k  
NFB4  
Si2343DS  
0.015µF  
RUN-SS  
SS-234  
10pF  
10.0k  
0.015µF  
0.047µF  
AV  
DD  
LT1943  
13V  
500mA  
FB4  
C
T
BIAS  
BOOST  
PGOOD  
V
ON  
V
30V  
ON  
E3  
0.22µF  
10V X5R  
20mA  
CMDSH-3  
SW1  
232k  
4.7µH  
B230A  
16.5k  
FB3  
V
LOGIC  
3.3V  
1.5A  
FB1  
GND  
10.0k  
SGND  
V
C4  
V
C1  
10.0k  
V
V
C2  
C3  
22µF  
10V  
X5R  
2.2µF  
35V  
X5R  
7.5k  
0.47µF  
35V  
X5R  
30k  
100pF  
1500pF  
13k  
100pF  
2.2nF  
4.7k  
100pF  
4700pF  
100pF  
2.7nF  
1943 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1615/LT1615-1  
300mA/80mA (I ), Constant Off-Time, High Efficiency  
Step-Up DC/DC Converters  
V : 1.2V to 15V, V  
: 34V, I : 20µA, I : <1µA,  
OUT(MAX) Q SD  
SW  
IN  
ThinSOTTM Package  
LT1940  
Dual Output 1.4A (I ), Constant 1.1MHz, High Efficiency  
Step-Down DC/DC Converter  
V : 3V to 25V, V  
TSSOP-16E Package  
: 1.2V, I : 2.5mA, I : <1µA,  
OUT  
IN  
OUT(MIN) Q SD  
LT1944/LT1944-1  
LT1945  
Dual Output 350mA (I ), Constant Off-Time, High Efficiency  
Step-Up DC/DC Converter  
V : 1.2V to 15V, V  
MS Package  
: 34V, I : 20µA, I : <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
Dual Output, Pos/Neg, 350mA (I ), Constant Off-Time,  
V : 1.2V to 15V, V  
: ±34V, I : 20µA, I : <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
High Efficiency Step-Up DC/DC Converter  
MS Package  
LT1946/LT1946A  
LT1947  
1.5mA (I ), 1.2MHz/2.7MHz, High Efficiency  
Step-Up DC/DC Converter  
V : 2.75V to 16V, V  
MS Package  
: 34V, I : 20µA, I : <1µA,  
SW  
IN  
OUT(MAX) Q SD  
1.1A, 3MHz, TFT-LCD Triple Output Switching Regulator  
V : 2.7V to 8V, V  
: 34V, I : 9.5mA, I : <1µA,  
IN  
OUT(MAX) Q SD  
MS Package  
LT3464  
85mA (I ), Constant Off-Time, High Efficiency Step-Up DC/DC V : 2.3V to 10V, V  
Converter with Integrated Schottky and Output Disconnect PNP ThinSOT Package  
: 34V, I : 25µA, I : <0.5µA,  
OUT(MAX) Q SD  
SW  
IN  
ThinSOT is a trademark of Linear Technology Corporation.  
1943fa  
LT/LT 0405 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2003  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1944

1.4A, 1.5MHz Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LT1944-1

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944-1EMS

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944-1EMS#PBF

LT1944-1 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS

Dual Micropower Step-Up DC/DC Converter
Linear

LT1944EMS#PBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TR

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1944EMS#TRPBF

LT1944 - Dual Micropower Step-Up DC/DC Converter; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS

Dual Micropower DC/DC Converter with Positive and Negative Outputs
Linear

LT1945EMS#PBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1945EMS#TR

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear