LT1945IMS#TRPBF [Linear]

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LT1945IMS#TRPBF
型号: LT1945IMS#TRPBF
厂家: Linear    Linear
描述:

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总8页 (文件大小:122K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1945  
Dual Micropower DC/DC  
Converter with Positive and  
Negative Outputs  
FEATURES  
DESCRIPTION  
The LT®1945 is a dual micropower DC/DC converter in a  
10-pin MSOP package. Each converter is designed with  
a 350mA current limit and an input voltage range of 1.2V  
to 15V, making the LT1945 ideal for a wide variety of ap-  
plications. Both converters feature a quiescent current of  
only 20μA at no load, which further reduces to 0.5μA in  
shutdown.Acurrentlimited,xedoff-timecontrolscheme  
conserves operating current, resulting in high efficiency  
over a broad range of load current. The 36V switch allows  
high voltage outputs up to 34V to be easily generated  
without the use of costly transformers. The LT1945’s  
low off-time of 400ns permits the use of tiny, low profile  
inductors and capacitors to minimize footprint and cost  
in space-conscious portable applications.  
n
Generates Well-Regulated Positive and  
Negative Outputs  
Low Quiescent Current:  
n
20μA in Active Mode (per Converter)  
<1μA in Shutdown Mode  
n
Operates with V as Low as 1.2V  
IN  
n
Low V  
Switch: 250mV at 300mA  
CESAT  
n
n
n
Uses Small Surface Mount Components  
High Output Voltage: Up to 34V  
Tiny 10-Pin MSOP Package  
APPLICATIONS  
n
Small TFT LCD Panels  
n
Handheld Computers  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Battery Backup  
Digital Cameras  
n
TYPICAL APPLICATION  
Dual Output (+12V, 20V) Converter  
Efficiency at VIN = 3.6V  
90  
C4  
L1  
0.1μF  
D1  
10μH  
V
IN  
85  
80  
75  
70  
65  
60  
55  
50  
–20V  
2.7V  
+12V OUTPUT  
–20V OUTPUT  
10mA  
TO 5V  
8
10  
SW1  
100pF  
365k  
V
IN  
2
4
1
5
SHDN1  
NFB1  
C1  
4.7μF  
C2  
1μF  
LT1945  
D2  
SHDN2  
FB2  
24.9k  
GND PGND PGND SW2  
3
7
9
6
115k  
1M  
0.1  
1
10  
100  
C3  
1μF  
LOAD CURRENT (mA)  
4.7pF  
D3  
1945 TA01a  
L2  
10μH  
12V  
20mA  
C1: TAIYO YUDEN JMK212BJ475  
1945 TA01  
C2, C3: TAIYO YUDEN TMK316BJ105  
C4: TAIYO YUDEN EMK107BJ104  
D1, D2, D3: ZETEX ZHCS400  
L1, L2: MURATA LQH3C100  
1945fa  
1
LT1945  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , SHDN1, SHDN2 Voltage.....................................15V  
IN  
NFB1  
SHDN1  
GND  
SHDN2  
FB2  
1
2
3
4
5
10 SW1  
9
8
7
6
PGND  
SW1, SW2 Voltage....................................................36V  
NFB1 Voltage ............................................................–3V  
FB2 Voltage............................................................... VIN  
Current into NFB1 Pin ............................................–1mA  
Current into FB2 Pin................................................1mA  
Junction Temperature ........................................... 125°C  
Operating Temperature Range (Note 2).... –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
V
IN  
PGND  
SW2  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
= 125°C, θ = 160°C/W  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LT1945EMS#PBF  
LT1945IMS#PBF  
LEAD BASED FINISH  
LT1945EMS  
TAPE AND REEL  
LT1945EMS#TRPBF  
LT1945IMS#TRPBF  
TAPE AND REEL  
LT1945EMS#TR  
LT1945IMS#TR  
PART MARKING*  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
PACKAGE DESCRIPTION  
10-Lead Plastic MSOP  
10-Lead Plastic MSOP  
TEMPERATURE RANGE  
–40°C to 85°C  
LTTS  
LTTS  
–40°C to 125°C  
PART MARKING*  
TEMPERATURE RANGE  
–40°C to 85°C  
LTTS  
LTTS  
LT1945IMS  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VSHDN = 1.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current, (per Converter)  
1.2  
V
Not Switching  
SHDN  
20  
30  
1
μA  
μA  
V
= 0V  
NFB1 Comparator Trip Point  
FB2 Comparator Trip Point  
–40°C < T < 85°C  
–1.205  
–1.195  
–1.23  
1.23  
–1.255  
1.255  
V
V
J
–40°C < T < 125°C  
J
–40°C < T < 85°C  
1.205  
1.195  
1.255  
1.255  
V
V
J
–40°C < T < 125°C  
J
FB Comparator Hysteresis  
8
0.05  
2
mV  
%/V  
μA  
NFB1, FB2 Voltage Line Regulation  
NFB1 Pin Bias Current (Note 3)  
FB2 Pin Bias Current (Note 4)  
1.2V < V < 12V  
0.1  
2.9  
IN  
l
V = –1.23V  
NFB1  
1.3  
–40°C < T < 85°C  
30  
80  
300  
nA  
nA  
J
–40°C < T < 125°C  
J
Switch Off Time, Switcher 1 (Note 5)  
Switch Off Time, Switcher 2 (Note 5)  
400  
ns  
V
FB2  
V
FB2  
> 1V  
< 0.6V  
400  
1.5  
ns  
μs  
Switch V  
I
SW  
= 300mA  
250  
350  
350  
400  
mV  
mA  
CESAT  
Switch Current Limit  
250  
1945fa  
2
LT1945  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VSHDN = 1.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SHDN Pin Current  
V
SHDN  
V
SHDN  
= 1.2V  
= 5V  
2
8
3
12  
μA  
μA  
SHDN Input Voltage High  
SHDN Input Voltage Low  
Switch Leakage Current  
0.9  
V
V
0.25  
5
Switch Off, V = 5V  
0.01  
μA  
SW  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings may  
cause permanent damage to the device. Exposure to any Absolute Maximum  
Rating condition for extended periods may affect device reliability and lifetime.  
characterization and correlation with statistical process controls. The  
LT1945I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 2: The LT1945E is guaranteed to meet performance specifications  
from 0°C to 70°C junction temperature. Specifications over the –40°C  
to 85°C operating junction temperature range are assured by design,  
Note 3: Bias current flows out of the NFB1 pin.  
Note 4: Bias current flows into the FB2 pin.  
Note 5: See Figure 1 for Switcher 1 and Switcher 2 locations.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Switch Saturation Voltage  
(VCESAT)  
FB2 Pin Voltage and  
Bias Current  
NFB1 Pin Voltage and  
Bias Current  
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
50  
40  
30  
20  
10  
0
5
4
3
2
1
0
–1.25  
–1.24  
–1.23  
–1.22  
–1.21  
–1.20  
VOLTAGE  
VOLTAGE  
CURRENT  
I
I
= 500mA  
= 300mA  
SWITCH  
SWITCH  
CURRENT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1945 G01  
1945 G02  
1945 G03  
Switch Off Time  
Switch Current Limit  
Quiescent Current  
550  
400  
25  
23  
21  
19  
17  
15  
V
= 12V  
IN  
V
= 1.23V  
FB  
350  
300  
250  
200  
150  
100  
50  
NOT SWITCHING  
500  
450  
400  
350  
300  
250  
V
= 1.2V  
IN  
V
= 1.2V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 1.2V  
50  
IN  
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1945 G04  
1945 G05  
1945 G06  
1945fa  
3
LT1945  
PIN FUNCTIONS  
NFB1 (Pin 1): Feedback Pin for Switcher 1. Set the output  
voltage by selecting values for R1 and R2.  
SW2 (Pin 6): Switch Pin for Switcher 2. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
SHDN1 (Pin 2): Shutdown Pin for Switcher 1. Tie this  
pin to 0.9V or higher to enable device. Tie below 0.25V  
to turn it off.  
PGND (Pins 7, 9): Power Ground. Tie these pins directly  
to the local ground plane. Both pins must be tied.  
GND (Pin 3): Ground. Tie this pin directly to the local  
ground plane.  
V
(Pin 8): Input Supply Pin. Bypass this pin with a  
IN  
capacitor as close to the device as possible.  
SHDN2 (Pin 4): Shutdown Pin for Switcher 2. Tie this  
pin to 0.9V or higher to enable device. Tie below 0.25V  
to turn it off.  
SW1 (Pin 10): Switch Pin for Switcher 1. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
FB2 (Pin 5): Feedback Pin for Switcher 2. Set the output  
voltage by selecting values for R1B and R2B.  
BLOCK DIAGRAM  
C3  
D2  
L1  
L2  
L3  
V
V
V
OUT2  
V
IN  
IN  
OUT1  
D1  
C2  
C1  
C4  
V
SHDN1  
SW1  
SW2  
SHDN2  
IN  
8
2
10  
6
4
V
IN  
R5  
80k  
R6  
80k  
R6B  
40k  
R5B  
40k  
A1  
A1B  
+
+
ENABLE  
ENABLE  
V
OUT2  
R1B  
Q1B  
(EXTERNAL)  
FB2  
Q1  
400ns  
400ns  
Q2  
X10  
Q2B  
X10  
5
Q3  
Q3B  
ONE-SHOT  
ONE-SHOT  
R2B  
(EXTERNAL)  
DRIVER  
DRIVER  
R3  
60k  
R3B  
30k  
RESET  
RESET  
+
+
R4  
280k  
R4B  
140k  
0.12Ω  
0.12Ω  
V
OUT1  
42mV  
42mV  
A2  
A2B  
R1  
(EXTERNAL)  
NFB1  
SWITCHER 1  
SWITCHER 2  
1
R2  
PGND PGND  
GND  
3
9
7
(EXTERNAL)  
1945 BD  
Figure 1. LT1945 Block Diagram  
OPERATION  
The LT1945 uses a constant off-time control scheme  
to provide high efficiencies over a wide range of output  
current. Operation can be best understood by referring  
to the block diagram in Figure 1. Q1 and Q2 along with  
R3 and R4 form a bandgap reference used to regulate  
the output voltage. When the voltage at the NFB1 pin is  
slightly below –1.23V, comparator A1 disables most of  
the internal circuitry. Output current is then provided by  
capacitor C2, which slowly discharges until the voltage  
at the NFB1 pin goes above the hysteresis point of A1  
(typicalhysteresisattheNFB1pinis8mV).A1thenenables  
the internal circuitry, turns on power switch Q3, and the  
1945fa  
4
LT1945  
OPERATION  
current in inductors L1 and L2 begins ramping up. Once  
the switch current reaches 350mA, comparator A2 resets  
the one-shot, which turns off Q3 for 400ns. L2 continues  
to deliver current to the output while Q3 is off. Q3 turns on  
again and the inductor currents ramp back up to 350mA,  
then A2 again resets the one-shot. This switching action  
continues until the output voltage is charged up (until the  
NFB1 pin reaches –1.23V), then A1 turns off the internal  
circuitry and the cycle repeats.  
The second switching regulator is a step-up converter  
(whichgeneratesapositiveoutput)butthebasicoperation  
is the same.The LT1945 contains additional circuitry to  
provide protection during start-up and under short-circuit  
conditions. When the FB2 pin voltage is less than approxi-  
mately 600mV, the switch off-time is increased to 1.5μs  
and the current limit is reduced to around 250mA (70%  
of its normal value). This reduces the average inductor  
current and helps minimize the power dissipation in the  
power switch and in the external inductor and diode.  
APPLICATIONS INFORMATION  
Choosing an Inductor  
A smaller value can be used (especially for systems with  
outputvoltagesgreaterthan12V)togiveasmallerphysical  
size. Inductance can be calculated as:  
Several recommended inductors that work well with the  
LT1945 are listed in Table 1, although there are many other  
manufacturersanddevicesthatcanbeused. Consulteach  
manufacturer for more detailed information and for their  
entire selection of related parts. Many different sizes and  
shapesareavailable. Usetheequationsandrecommenda-  
tionsinthenextfewsectionstondthecorrectinductance  
value for your design.  
VOUT VIN MIN) + VD  
(
L =  
tOFF  
ILIM  
where V = 0.4V (Schottky diode voltage), I = 350mA  
D
LIM  
and t  
= 400ns; for designs with varying V such as  
OFF  
IN  
battery powered applications, use the minimum V value  
IN  
in the above equation. For most regulators with output  
voltages below 7V, a 4.7μH inductor is the best choice,  
even though the equation above might specify a smaller  
value. This is due to the inductor current overshoot that  
occurs when very small inductor values are used (see  
Current Limit Overshoot section).  
Table 1. Recommended Inductors  
PART  
VALUE (μH)  
MAX DCR (Ω) VENDOR  
LQH3C4R7  
LQH3C100  
LQH3C220  
4.7  
10  
22  
0.26  
0.30  
0.92  
Murata  
(714) 852-2001  
www.murata.com  
CD43-4R7  
4.7  
10  
4.7  
10  
0.11  
0.18  
0.16  
0.20  
Sumida  
(847) 956-0666  
www.sumida.com  
CD43-100  
CDRH4D18-4R7  
CDRH4D18-100  
Forhigheroutputvoltages,theformulaabovewillgivelarge  
inductance values. For a 2V to 20V converter (typical LCD  
Bias application), a 21μH inductor is called for with the  
aboveequation,buta1Hinductorcouldbeusedwithout  
excessive reduction in maximum output current.  
DO1608-472  
DO1608-103  
DO1608-223  
4.7  
10  
22  
0.09  
0.16  
0.37  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
Inductor Selection—Boost Regulator  
Inductor Selection—SEPIC Regulator  
Theformulabelowcalculatestheappropriateinductorvalue  
to be used for a boost regulator using the LT1945 (or at  
least provides a good starting point). This value provides  
a good tradeoff in inductor size and system performance.  
Pick a standard inductor close to this value. A larger value  
canbeusedtoslightlyincreasetheavailableoutputcurrent,  
but limit it to around twice the value calculated below, as  
too large of an inductance will increase the output voltage  
ripple without providing much additional output current.  
The formula below calculates the approximate inductor  
value to be used for a SEPIC regulator using the LT1945.  
As for the boost inductor selection, a larger or smaller  
value can be used.  
VOUT + VD  
L = 2  
tOFF  
ILIM  
1945fa  
5
LT1945  
APPLICATIONS INFORMATION  
Inductor Selection—Inverting Regulator  
Current Limit Overshoot  
Theformulabelowcalculatestheappropriateinductorvalue  
to be used for an inverting regulator using the LT1945 (or  
atleastprovidesagoodstartingpoint).Thisvalueprovides  
a good tradeoff in inductor size and system performance.  
Pickastandardinductorclosetothisvalue(bothinductors  
should be the same value). A larger value can be used to  
slightly increase the available output current, but limit it to  
around twice the value calculated below, as too large of an  
inductance will increase the output voltage ripple without  
providing much additional output current. A smaller value  
can be used (especially for systems with output voltages  
greaterthan12V)togiveasmallerphysicalsize.Inductance  
can be calculated as:  
For the constant off-time control scheme of the LT1945,  
thepowerswitchisturnedoffonlyafterthe350mAcurrent  
limit is reached. There is a 100ns delay between the time  
when the current limit is reached and when the switch  
actually turns off. During this delay, the inductor current  
exceeds the current limit by a small amount. The peak  
inductor current can be calculated by:  
V
IN(MAX)VSAT  
IPEAK =ILIM  
+
100ns  
L
WhereV =0.25V(switchsaturationvoltage).Thecurrent  
SAT  
overshootwillbemostevidentforregulatorswithhighinput  
voltages and smaller inductor values. This overshoot can  
be beneficial as it helps increase the amount of available  
output current for smaller inductor values. This will be the  
peak current seen by the inductor (and the diode) during  
normaloperation.Fordesignsusingsmallinductancevalues  
(especially at input voltages greater than 5V), the current  
limit overshoot can be quite high. Although it is internally  
current limited to 350mA, the power switch of the LT1945  
can handle larger currents without problem, but the overall  
VOUT + VD  
L = 2  
t
OFF  
ILIM  
where V = 0.4V (Schottky diode voltage), I = 350mA  
D
LIM  
and t = 400ns.  
OFF  
For higher output voltages, the formula above will give  
large inductance values. For a 2V to 20V converter (typical  
LCD bias application), a 47μH inductor is called for with the  
above equation, but a 10μH or 22μH inductor could be used  
without excessive reduction in maximum output current.  
efficiencywillsuffer.BestresultswillbeobtainedwhenI  
is kept below 700mA for the LT1945.  
PEAK  
Capacitor Selection  
Inductor Selection—Inverting Charge Pump Regulator  
LowESR(EquivalentSeriesResistance)capacitorsshould  
beusedattheoutputtominimizetheoutputripplevoltage.  
X5R or X7R multilayer ceramic capacitors are the best  
choice, as they have a very low ESR and are available in  
verysmallpackages.Y5Vceramicsarenotrecommended.  
Their small size makes them a good companion to the  
LT1945’s MS10 package. Solid tantalum capacitors (like  
theAVXTPS,Sprague593Dfamilies)orOS-CONcapacitors  
can be used, but they will occupy more board area than a  
ceramicandwillhaveahigherESR.Alwaysuseacapacitor  
with a sufficient voltage rating.  
For the inverting regulator, the voltage seen by the internal  
power switch is equal to the sum of the absolute value of  
the input and output voltages, so that generating high output  
voltages from a high input voltage source will often exceed  
the 36V maximum switch rating. For instance, a 12V to –30V  
converter using the inverting topology would generate 42V  
on the SW pin, exceeding its maximum rating. For this ap-  
plication, an inverting charge pump is the best topology.  
The formula below calculates the approximate inductor  
value to be used for an inverting charge pump regulator  
using the LT1945. As for the boost inductor selection,  
a larger or smaller value can be used. For designs with  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close  
as possible to the LT1945. A 4.7μF input capacitor is  
sufficient for most applications. Table 2 shows a list of  
severalcapacitormanufacturers.Consultthemanufacturers  
varying V such as battery powered applications, use the  
IN  
minimum V value in the equation below.  
IN  
VOUT VIN MIN) + VD  
(
L =  
tOFF  
for more detailed information and for their entire selection  
ILIM  
1945fa  
6
LT1945  
APPLICATIONS INFORMATION  
of related parts.  
Diode Selection  
For most LT1945 applications, the Zetex ZHCS400 sur-  
face mount Schottky diode (0.4A, 40V) is an ideal choice.  
Schottky diodes, with their low forward voltage drop and  
fast switching speed, are the best match for the LT1945.  
TheMotorolaMBR0520,MBR0530,orMBR0540canalso  
be used. Many different manufacturers make equivalent  
parts, but make sure that the component is rated to handle  
at least 0.35A.  
Table 2. Recommended Capacitors  
CAPACITOR TYPE  
VENDOR  
Ceramic  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
Ceramic  
Ceramic  
AVX  
(803) 448-9411  
www.avxcorp.com  
Murata  
(714) 852-2001  
www.murata.com  
Lowering Output Voltage Ripple  
Setting the Output Voltages  
Using low ESR capacitors will help minimize the output  
ripple voltage, but proper selection of the inductor and the  
outputcapacitoralsoplaysabigrole.TheLT1945provides  
energy to the load in bursts by ramping up the inductor  
current, thendeliveringthatcurrenttotheload. Iftoolarge  
of an inductor value or too small of a capacitor value is  
used, the output ripple voltage will increase because the  
capacitor will be slightly overcharged each burst cycle.  
To reduce the output ripple, increase the output capacitor  
valueoradda4.7pFfeed-forwardcapacitorinthefeedback  
network of the LT1945 (see the circuits in the Typical Ap-  
plications section). Adding this small, inexpensive 4.7pF  
capacitor will greatly reduce the output voltage ripple.  
Set the output voltage for Switcher 1 (negative output  
voltage ) by choosing the appropriate values for feedback  
resistors R1 and R2.  
VOUT –1.23V  
R1=  
1.23V  
+ 2106  
(
)
R2  
Set the output voltage for Switcher 2 (positive output  
voltage) by choosing the appropriate values for feedback  
resistors R1B and R2B (see Figure 1).  
V
1.23  
R1=R2 OUT 1  
PACKAGE DESCRIPTION  
MS Package  
10-Lead Plastic MSOP  
3.00 p 0.102  
(.118 p .004)  
(NOTE 3)  
(Reference LTC DWG # 05-08-1661)  
0.889 p 0.127  
(.035 p .005)  
0.497 p 0.076  
(.0196 p .003)  
REF  
10 9  
8
7 6  
5.23  
3.00 p 0.102  
(.118 p .004)  
NOTE 4  
3.2 – 3.45  
(.206)  
4.88 p 0.10  
(.192 p .004)  
(.126 – .136)  
MIN  
DETAIL “A”  
0.254  
(.010)  
0o – 6o TYP  
GAUGE PLANE  
0.50  
(.0197)  
BSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
1
2
3
4 5  
0.53 p 0.01  
(.021 p .006)  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.17 – 0.27  
(.007 – .011)  
0.13 p 0.05  
(.005 p .002)  
MSOP (MS) 0402  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
TYP  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1945fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
7
LT1945  
TYPICAL APPLICATIONS  
Dual Output ( 32V) Converter  
Efficiency at VIN = 3.6V  
C4  
L1  
80  
75  
70  
65  
60  
55  
50  
0.1μF  
D1  
10μH  
V
IN  
–32V  
5mA  
+32V OUTPUT  
2.7V  
TO 5V  
8
10  
SW1  
100pF  
604k  
V
IN  
–32V OUTPUT  
2
4
1
5
SHDN1  
NFB1  
C1  
4.7μF  
C2  
1μF  
LT1945  
D2  
SHDN2  
FB2  
24.9k  
GND PGND PGND SW2  
3
7
9
6
80.6k  
2M  
0.1  
1
10  
C3  
1μF  
LOAD CURRENT (mA)  
4.7pF  
D3  
1945 TA02a  
L2  
10μH  
32V  
5mA  
1945 TA02  
C1: TAIYO YUDEN JMK212BJ475  
(408)573-4150  
C2, C3: TAIYO YUDEN GMK316BJ105 (408)573-4150  
C4: TAIYO YUDEN UMK212BJ104  
D1, D2, D3: ZETEX ZHCS400  
L1, L2: MURATA LQH3C100  
(408)573-4150  
(631)543-7100  
(814)237-1431  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
= 0.9V to 10V, V  
LT1613  
550mA I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V
= 34V, I = 3mA, I = <1μA,  
Q SD  
SW  
IN  
OUT  
OUT  
ThinSOT Package  
LT1615/LT1615-1  
LT1940  
300mA I , Constant Off-Time, High Efficiency  
V
= 1.2V to 15V, V  
= 34V, I = 20μA, I = <1μA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
ThinSOT Package  
Dual Output 1.4A (I ), Constant 1.1MHz, High Efficiency  
V
= 3V to 25V, V  
= 1.2V, I = 2.5mA, I = <1μA,  
OUT Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
TSSOP-16E Package  
LT1944  
Dual Output 350mA I , Constant Off-Time, High Efficiency  
V
V
V
= 1.2V to 15V, V  
= 34V, I = 20μA, I = <1μA, MS Package  
Q SD  
SW  
IN  
IN  
IN  
OUT  
Step-Up DC/DC Converter  
LT1944-1  
Dual Output 150mA I , Constant Off-Time, High Efficiency  
= 1.2V to 15V, V  
= 34V, I = 20μA, I = <1μA, MS Package  
Q SD  
SW  
OUT  
Step-Up DC/DC Converter  
LT1949/LT1949-1  
550mA I , 600kHz/1.1MHz, High Efficiency  
= 1.5V to 12V, V  
S8, MS8 Packages  
= 28V, I = 4.5mA, I = <25μA,  
OUT Q SD  
SW  
Step-Up DC/DC Converter  
LTC3400/LTC3400B 600mA I , 1.2MHz, Synchronous Step-Up DC/DC Converter  
V
= 0.85V to 5V, V  
= 5V, I = 19μA/300μA, I = <1μA,  
OUT Q SD  
SW  
IN  
ThinSOT Package  
LTC3401  
LTC3402  
LTC3423  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V
V
V
= 0.5V to 5V, V  
= 0.5V to 5V, V  
= 0.5V to 5V, V  
= 6V, I = 38μA, I = <1μA, MS Package  
Q SD  
SW  
IN  
IN  
IN  
OUT  
OUT  
OUT  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
= 6V, I = 38μA, I = <1μA, MS Package  
Q SD  
SW  
1A I , 3MHz, Low V , Synchronous Step-Up  
= 6V, I = 38μA, I = <1μA, MS Package  
Q SD  
SW  
OUT  
DC/DC Converter  
LTC3424  
2A I , 3MHz, Low V , Synchronous Step-Up  
V
= 0.5V to 5V, V  
= 6V, I = 38μA, I = <1μA, MS Package  
OUT Q SD  
SW  
OUT  
IN  
DC/DC Converter  
1945fa  
LT 1208 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
© LINEAR TECHNOLOGY CORPORATION 2001  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1946

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946/LT1946A

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LT1946A

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E#PBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946AEMS8E#TR

暂无描述
Linear

LT1946AEMS8E#TRPBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946EMS8

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1947

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS#PBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1947EMS#TRPBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear