LT1945IMS#TR [Linear]

IC 0.4 A DUAL SWITCHING CONTROLLER, PDSO8, PLASTIC, MSOP-10, Switching Regulator or Controller;
LT1945IMS#TR
型号: LT1945IMS#TR
厂家: Linear    Linear
描述:

IC 0.4 A DUAL SWITCHING CONTROLLER, PDSO8, PLASTIC, MSOP-10, Switching Regulator or Controller

转换器 稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总8页 (文件大小:144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1945  
Dual Micropower DC/DC  
Converter with Positive and  
Negative Outputs  
U
FEATURES  
DESCRIPTIO  
The LT®1945 is a dual micropower DC/DC converter in a  
10-pin MSOP package. Each converter is designed with a  
350mA current limit and an input voltage range of 1.2V to  
15V, making the LT1945 ideal for a wide variety of appli-  
cations. Both converters feature a quiescent current of  
only 20µA at no load, which further reduces to 0.5µA in  
shutdown.Acurrentlimited,fixedoff-timecontrolscheme  
conserves operating current, resulting in high efficiency  
over a broad range of load current. The 36V switch allows  
high voltage outputs up to ±34V to be easily generated  
without the use of costly transformers. The LT1945’s low  
off-time of 400ns permits the use of tiny, low profile  
inductors and capacitors to minimize footprint and cost in  
space-conscious portable applications.  
Generates Well-Regulated Positive and  
Negative Outputs  
Low Quiescent Current:  
20  
µ
A in Active Mode (per Converter)  
<1  
µA in Shutdown Mode  
Operates with VIN as Low as 1.2V  
Low VCESAT Switch: 250mV at 300mA  
Uses Small Surface Mount Components  
High Output Voltage: Up to ±34V  
Tiny 10-Pin MSOP Package  
U
APPLICATIO S  
Small TFT LCD Panels  
Handheld Computers  
Battery Backup  
Digital Cameras  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Dual Output (+12V, –20V) Converter  
C4  
0.1µF  
L1  
10µH  
D1  
V
IN  
–20V  
10mA  
Efficiency at VIN = 3.6V  
2.7V  
TO 5V  
8
10  
90  
100pF  
365k  
V
SW1  
IN  
85  
2
4
1
5
+12V OUTPUT  
SHDN1  
NFB1  
80  
C1  
4.7µF  
C2  
1µF  
LT1945  
D2  
–20V OUTPUT  
75  
70  
65  
60  
SHDN2  
FB2  
24.9k  
GND PGND PGND SW2  
3
7
9
6
115k  
55  
C3  
1µF  
4.7pF  
D3  
1M  
50  
L2  
10µH  
0.1  
1
10  
100  
12V  
20mA  
1945 TA01  
LOAD CURRENT (mA)  
1945 TA01a  
C1: TAIYO YUDEN JMK212BJ475  
C2, C3: TAIYO YUDEN TMK316BJ105  
C4: TAIYO YUDEN EMK107BJ104  
D1, D2, D3: ZETEX ZHCS400  
L1, L2: MURATA LQH3C100  
1945f  
1
LT1945  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
NUMBER  
TOP VIEW  
VIN, SHDN1, SHDN2 Voltage ................................... 15V  
SW1, SW2 Voltage .................................................. 36V  
NFB1 Voltage ........................................................... –3V  
FB2 Voltage ...............................................................VIN  
Current into NFB1 Pin ........................................... –1mA  
Current into FB2 Pin .............................................. 1mA  
Junction Temperature........................................... 125°C  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
NFB1  
SHDN1  
GND  
SHDN2  
FB2  
1
2
3
4
5
10 SW1  
9
8
7
6
PGND  
LT1945EMS  
V
IN  
PGND  
SW2  
MS PACKAGE  
10-LEAD PLASTIC MSOP  
MS PART MARKING  
LTTS  
TJMAX = 125°C, θJA = 160°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C. VIN = 1.2V, VSHDN = 1.2V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
Quiescent Current, (per Converter)  
1.2  
V
Not Switching  
20  
30  
1
µA  
µA  
V
= 0V  
SHDN  
NFB1 Comparator Trip Point  
–1.205  
1.205  
–1.23  
1.23  
8
–1.255  
1.255  
V
V
FB2 Comparator Trip Point  
FB Comparator Hysteresis  
mV  
%/V  
µA  
NFB1, FB2 Voltage Line Regulation  
NFB1 Pin Bias Current (Note 3)  
FB2 Pin Bias Current (Note 4)  
Switch Off Time, Switcher 1 (Note 5)  
Switch Off Time, Switcher 2 (Note 5)  
1.2V < V < 12V  
0.05  
2
0.1  
2.9  
80  
IN  
V
V
= –1.23V  
1.3  
NFB1  
= 1.23V  
30  
nA  
FB2  
400  
ns  
V
V
> 1V  
< 0.6V  
400  
1.5  
ns  
µs  
FB2  
FB2  
Switch V  
I
= 300mA  
SW  
250  
350  
350  
400  
mV  
mA  
CESAT  
Switch Current Limit  
SHDN Pin Current  
250  
0.9  
V
V
= 1.2V  
= 5V  
2
8
3
12  
µA  
µA  
SHDN  
SHDN  
SHDN Input Voltage High  
SHDN Input Voltage Low  
Switch Leakage Current  
V
V
0.25  
5
Switch Off, V = 5V  
0.01  
µA  
SW  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 2: The LT1945 is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the 40°C to 85°C operating  
Note 3: Bias current flows out of the NFB1 pin.  
Note 4: Bias current flows into the FB2 pin.  
Note 5: See Figure 1 for Switcher 1 and Switcher 2 locations.  
1945f  
2
LT1945  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Switch Saturation Voltage  
(VCESAT  
FB2 Pin Voltage and  
Bias Current  
NFB1 Pin Voltage and  
Bias Current  
)
0.60  
0.55  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
5
4
3
2
1
0
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
50  
40  
30  
20  
10  
0
–1.25  
–1.24  
–1.23  
–1.22  
–1.21  
–1.20  
VOLTAGE  
VOLTAGE  
CURRENT  
I
I
= 500mA  
= 300mA  
SWITCH  
SWITCH  
CURRENT  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1945 G03  
1945 G01  
1945 G02  
Switch Off Time  
Switch Current Limit  
Quiescent Current  
550  
500  
450  
400  
350  
300  
250  
400  
350  
300  
250  
200  
150  
100  
50  
25  
23  
21  
19  
17  
15  
V
= 12V  
IN  
V
= 1.23V  
FB  
NOT SWITCHING  
V
= 1.2V  
IN  
V
= 1.2V  
IN  
V
= 12V  
IN  
V
= 12V  
IN  
V
= 1.2V  
50  
IN  
0
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
50  
75  
100  
–50  
–25  
0
25  
75  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1945 G04  
1945 G05  
1945 G06  
U
U
U
PI FU CTIO S  
NFB1 (Pin 1): Feedback Pin for Switcher 1. Set the output  
SW2 (Pin 6): Switch Pin for Switcher 2. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
voltage by selecting values for R1 and R2.  
SHDN1 (Pin 2): Shutdown Pin for Switcher 1. Tie this pin  
to 0.9V or higher to enable device. Tie below 0.25V to turn  
it off.  
PGND (Pins 7, 9): Power Ground. Tie these pins directly  
to the local ground plane. Both pins must be tied.  
GND (Pin 3): Ground. Tie this pin directly to the local  
ground plane.  
VIN (Pin 8): Input Supply Pin. Bypass this pin with a  
capacitor as close to the device as possible.  
SHDN2 (Pin 4): Shutdown Pin for Switcher 2. Tie this pin  
to 0.9V or higher to enable device. Tie below 0.25V to turn  
it off.  
SW1 (Pin 10): Switch Pin for Switcher 1. This is the  
collector of the internal NPN power switch. Minimize the  
metal trace area connected to the pin to minimize EMI.  
FB2 (Pin 5): Feedback Pin for Switcher 2. Set the output  
voltage by selecting values for R1B and R2B.  
1945f  
3
LT1945  
W
BLOCK DIAGRA  
C3  
D2  
L1  
L2  
L3  
V
IN  
V
V
V
IN  
OUT1  
OUT2  
C4  
D1  
C2  
C1  
V
IN  
SHDN1  
SW1  
SW2  
SHDN2  
8
2
10  
6
4
V
IN  
R5  
80k  
R6  
80k  
R6B  
40k  
R5B  
40k  
A1  
A1B  
+
+
ENABLE  
ENABLE  
V
OUT2  
R1B  
Q1B  
(EXTERNAL)  
FB2  
Q1  
400ns  
400ns  
Q2  
Q2B  
X10  
5
Q3  
Q3B  
ONE-SHOT  
ONE-SHOT  
X10  
R2B  
(EXTERNAL)  
DRIVER  
DRIVER  
R3  
60k  
R3B  
30k  
RESET  
RESET  
+
+
R4  
280k  
R4B  
140k  
0.12  
0.12Ω  
V
OUT1  
42mV  
42mV  
A2  
A2B  
R1  
(EXTERNAL)  
NFB1  
SWITCHER 1  
SWITCHER 2  
1
R2  
PGND PGND  
GND  
3
9
7
(EXTERNAL)  
1945 BD  
Figure 1. LT1945 Block Diagram  
U
OPERATIO  
The LT1945 uses a constant off-time control scheme to  
provide high efficiencies over a wide range of output  
current. Operation can be best understood by referring to  
theblockdiagraminFigure1.Q1andQ2alongwithR3and  
R4 form a bandgap reference used to regulate the output  
voltage. When the voltage at the NFB1 pin is slightly below  
–1.23V, comparator A1 disables most of the internal  
circuitry. Output current is then provided by capacitor C2,  
which slowly discharges until the voltage at the NFB1 pin  
goes above the hysteresis point of A1 (typical hysteresis  
at the NFB1 pin is 8mV). A1 then enables the internal  
circuitry, turns on power switch Q3, and the current in  
inductors L1 and L2 begins ramping up. Once the switch  
current reaches 350mA, comparator A2 resets the one-  
shot, which turns off Q3 for 400ns. L2 continues to deliver  
current to the output while Q3 is off. Q3 turns on again and  
the inductor currents ramp back up to 350mA, then A2  
againresetstheone-shot. Thisswitchingactioncontinues  
until the output voltage is charged up (until the NFB1 pin  
reaches –1.23V), then A1 turns off the internal circuitry  
and the cycle repeats.  
The second switching regulator is a step-up converter  
(which generates a positive output) but the basic opera-  
tion is the same.The LT1945 contains additional circuitry  
to provide protection during start-up and under short-  
circuit conditions. When the FB2 pin voltage is less than  
approximately 600mV, the switch off-time is increased to  
1.5µs and the current limit is reduced to around 250mA  
(70% of its normal value). This reduces the average  
inductorcurrentandhelpsminimizethepowerdissipation  
in the power switch and in the external inductor and diode.  
1945f  
4
LT1945  
U
W U U  
APPLICATIO S I FOR ATIO  
Choosing an Inductor  
in the above equation. For most regulators with output  
voltages below 7V, a 4.7µH inductor is the best choice,  
even though the equation above might specify a smaller  
value. This is due to the inductor current overshoot that  
occurs when very small inductor values are used (see  
Current Limit Overshoot section).  
Several recommended inductors that work well with the  
LT1945arelistedinTable1,althoughtherearemanyother  
manufacturers and devices that can be used. Consult each  
manufacturer for more detailed information and for their  
entire selection of related parts. Many different sizes and  
shapesareavailable. Usetheequationsandrecommenda-  
tionsinthenextfewsectionstofindthecorrectinductance  
value for your design.  
For higher output voltages, the formula above will give  
large inductance values. For a 2V to 20V converter (typical  
LCD Bias application), a 21µH inductor is called for with  
the above equation, but a 10µH inductor could be used  
without excessive reduction in maximum output current.  
Table 1. Recommended Inductors  
PART  
VALUE (µH)  
MAX DCR (  
)
VENDOR  
LQH3C4R7  
LQH3C100  
LQH3C220  
4.7  
10  
22  
0.26  
0.30  
0.92  
Murata  
(714) 852-2001  
www.murata.com  
Inductor Selection—SEPIC Regulator  
The formula below calculates the approximate inductor  
value to be used for a SEPIC regulator using the LT1945.  
As for the boost inductor selection, a larger or smaller  
value can be used.  
CD43-4R7  
CD43-100  
CDRH4D18-4R7  
CDRH4D18-100  
4.7  
10  
4.7  
10  
0.11  
0.18  
0.16  
0.20  
Sumida  
(847) 956-0666  
www.sumida.com  
DO1608-472  
DO1608-103  
DO1608-223  
4.7  
10  
22  
0.09  
0.16  
0.37  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
VOUT + VD  
L = 2  
tOFF  
ILIM  
Inductor Selection—Boost Regulator  
Inductor Selection—Inverting Regulator  
The formula below calculates the appropriate inductor  
valuetobeusedforaboostregulatorusingtheLT1945(or  
at least provides a good starting point). This value pro-  
vides a good tradeoff in inductor size and system perfor-  
mance. Pick a standard inductor close to this value. A  
larger value can be used to slightly increase the available  
output current, but limit it to around twice the value  
calculated below, as too large of an inductance will in-  
crease the output voltage ripple without providing much  
additional output current. A smaller value can be used  
(especially for systems with output voltages greater than  
12V) to give a smaller physical size. Inductance can be  
calculated as:  
The formula below calculates the appropriate inductor  
value to be used for an inverting regulator using the  
LT1945 (or at least provides a good starting point). This  
value provides a good tradeoff in inductor size and system  
performance. Pick a standard inductor close to this value  
(both inductors should be the same value). A larger value  
can be used to slightly increase the available output  
current, but limit it to around twice the value calculated  
below, as too large of an inductance will increase the  
output voltage ripple without providing much additional  
output current. A smaller value can be used (especially for  
systems with output voltages greater than 12V) to give a  
smaller physical size. Inductance can be calculated as:  
V
OUT V  
) + VD  
IN MIN  
(
L =  
tOFF  
VOUT + VD  
ILIM  
L = 2  
tOFF  
ILIM  
where VD = 0.4V (Schottky diode voltage), ILIM = 350mA  
and tOFF = 400ns; for designs with varying VIN such as  
battery powered applications, use the minimum VIN value  
where VD = 0.4V (Schottky diode voltage), ILIM = 350mA  
and tOFF = 400ns.  
1945f  
5
LT1945  
U
W U U  
APPLICATIO S I FOR ATIO  
For higher output voltages, the formula above will give  
large inductance values. For a 2V to 20V converter (typical  
LCD bias application), a 47µH inductor is called for with  
the above equation, but a 10µH or 22µH inductor could be  
used without excessive reduction in maximum output  
current.  
high input voltages and smaller inductor values. This  
overshootcanbebeneficialasithelpsincreasetheamount  
of available output current for smaller inductor values.  
This will be the peak current seen by the inductor (and the  
diode) during normal operation. For designs using small  
inductance values (especially at input voltages greater  
than 5V), the current limit overshoot can be quite high.  
Although it is internally current limited to 350mA, the  
power switch of the LT1945 can handle larger currents  
without problem, but the overall efficiency will suffer. Best  
results will be obtained when IPEAK is kept below 700mA  
for the LT1945.  
Inductor Selection—Inverting Charge Pump Regulator  
For the inverting regulator, the voltage seen by the internal  
power switch is equal to the sum of the absolute value of  
the input and output voltages, so that generating high  
output voltages from a high input voltage source will often  
exceed the 36V maximum switch rating. For instance, a  
12V to 30V converter using the inverting topology would  
generate 42V on the SW pin, exceeding its maximum  
rating. For this application, an inverting charge pump is  
the best topology.  
Capacitor Selection  
LowESR(EquivalentSeriesResistance)capacitorsshould  
beusedattheoutputtominimizetheoutputripplevoltage.  
X5R or X7R multilayer ceramic capacitors are the best  
choice, as they have a very low ESR and are available in  
verysmallpackages.Y5Vceramicsarenotrecommended.  
Their small size makes them a good companion to the  
LT1945’s MS10 package. Solid tantalum capacitors (like  
the AVX TPS, Sprague 593D families) or OS-CON capaci-  
tors can be used, but they will occupy more board area  
than a ceramic and will have a higher ESR. Always use a  
capacitor with a sufficient voltage rating.  
The formula below calculates the approximate inductor  
value to be used for an inverting charge pump regulator  
using the LT1945. As for the boost inductor selection, a  
larger or smaller value can be used. For designs with  
varying VIN such as battery powered applications, use the  
minimum VIN value in the equation below.  
VOUT V  
) + VD  
IN MIN  
(
L =  
tOFF  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT1945. A 4.7µF input capacitor is suffi-  
cient for most applications. Table 2 shows a list of several  
capacitor manufacturers. Consult the manufacturers for  
more detailed information and for their entire selection of  
related parts.  
ILIM  
Current Limit Overshoot  
For the constant off-time control scheme of the LT1945,  
thepowerswitchisturnedoffonlyafterthe350mAcurrent  
limit is reached. There is a 100ns delay between the time  
when the current limit is reached and when the switch  
actually turns off. During this delay, the inductor current  
exceeds the current limit by a small amount. The peak  
inductor current can be calculated by:  
Table 2. Recommended Capacitors  
CAPACITOR TYPE  
VENDOR  
Ceramic  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
Ceramic  
Ceramic  
AVX  
V
IN(MAX) VSAT  
(803) 448-9411  
www.avxcorp.com  
IPEAK = ILIM  
+
100ns  
L
Murata  
(714) 852-2001  
www.murata.com  
Where VSAT = 0.25V (switch saturation voltage). The  
current overshoot will be most evident for regulators with  
1945f  
6
LT1945  
U
W U U  
APPLICATIO S I FOR ATIO  
Setting the Output Voltages  
fast switching speed, are the best match for the LT1945.  
TheMotorolaMBR0520,MBR0530,orMBR0540canalso  
be used. Many different manufacturers make equivalent  
parts, but make sure that the component is rated to handle  
at least 0.35A.  
Set the output voltage for Switcher 1 (negative output  
voltage ) by choosing the appropriate values for feedback  
resistors R1 and R2.  
VOUT –1.23V  
Lowering Output Voltage Ripple  
R1=  
Using low ESR capacitors will help minimize the output  
ripple voltage, but proper selection of the inductor and the  
output capacitor also plays a big role. The LT1945 pro-  
vides energy to the load in bursts by ramping up the  
inductor current, then delivering that current to the load.  
If too large of an inductor value or too small of a capacitor  
value is used, the output ripple voltage will increase  
because the capacitor will be slightly overcharged each  
burst cycle. To reduce the output ripple, increase the  
outputcapacitorvalueoradda4.7pFfeed-forwardcapaci-  
tor in the feedback network of the LT1945 (see the circuits  
in the Typical Applications section). Adding this small,  
inexpensive 4.7pF capacitor will greatly reduce the output  
voltage ripple.  
1.23V  
R2  
+ 2106  
(
)
Set the output voltage for Switcher 2 (positive output  
voltage) by choosing the appropriate values for feedback  
resistors R1B and R2B (see Figure 1).  
VOUT  
1.23V  
R1B = R2B  
1  
Diode Selection  
For most LT1945 applications, the Zetex ZHCS400 sur-  
face mount Schottky diode (0.4A, 40V) is an ideal choice.  
Schottky diodes, with their low forward voltage drop and  
U
PACKAGE DESCRIPTIO  
MS Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1661)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.889 ± 0.127  
(.035 ± .005)  
0.497 ± 0.076  
(.0196 ± .003)  
REF  
10 9  
8
7 6  
5.23  
(.206)  
MIN  
3.00 ± 0.102  
(.118 ± .004)  
NOTE 4  
3.2 – 3.45  
(.126 – .136)  
4.88 ± 0.10  
(.192 ± .004)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
1
2
3
4 5  
0.53 ± 0.01  
(.021 ± .006)  
RECOMMENDED SOLDER PAD LAYOUT  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
NOTE:  
0.17 – 0.27  
(.007 – .011)  
0.13 ± 0.05  
(.005 ± .002)  
MSOP (MS) 0402  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
0.50  
(.0197)  
TYP  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
1945f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LT1945  
U
TYPICAL APPLICATIO  
Dual Output (±32V) Converter  
C4  
0.1µF  
L1  
10µH  
D1  
V
IN  
–32V  
5mA  
2.7V  
Efficiency at VIN = 3.6V  
TO 5V  
8
10  
80  
75  
70  
65  
60  
55  
50  
100pF  
604k  
V
SW1  
IN  
2
4
1
5
+32V OUTPUT  
SHDN1  
NFB1  
C1  
4.7µF  
C2  
1µF  
LT1945  
D2  
–32V OUTPUT  
SHDN2  
FB2  
24.9k  
GND PGND PGND SW2  
3
7
9
6
80.6k  
C3  
4.7pF  
D3  
2M  
1µF  
L2  
10µH  
0.1  
1
10  
32V  
LOAD CURRENT (mA)  
5mA  
1945 TA02  
1945 TA02a  
C1: TAIYO YUDEN JMK212BJ475  
C2, C3: TAIYO YUDEN GMK316BJ105 (408)573-4150  
(408)573-4150  
C4: TAIYO YUDEN UMK212BJ104  
D1, D2, D3: ZETEX ZHCS400  
L1, L2: MURATA LQH3C100  
(408)573-4150  
(631)543-7100  
(814)237-1431  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
= 0.9V to 10V, V  
LT1613  
550mA I , 1.4MHz, High Efficiency Step-Up DC/DC Converter  
V
= 34V, I = 3mA, I = <1µA,  
Q SD  
SW  
IN  
OUT  
OUT  
ThinSOT Package  
LT1615/LT1615-1 300mA I , Constant Off-Time, High Efficiency  
V
= 1.2V to 15V, V  
= 34V, I = 20µA, I = <1µA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
ThinSOT Package  
LT1940  
LT1944  
LT1944-1  
Dual Output 1.4A (I ), Constant 1.1MHz, High Efficiency  
Step-Down DC/DC Converter  
V
= 3V to 25V, V  
= 1.2V, I = 2.5mA, I = <1µA,  
OUT Q SD  
OUT  
IN  
TSSOP-16E Package  
Dual Output 350mA I , Constant Off-Time, High Efficiency  
V
V
V
= 1.2V to 15V, V  
= 1.2V to 15V, V  
= 1.5V to 12V, V  
= 34V, I = 20µA, I = <1µA, MS Package  
Q SD  
SW  
IN  
IN  
IN  
OUT  
OUT  
OUT  
OUT  
Step-Up DC/DC Converter  
Dual Output 150mA I , Constant Off-Time, High Efficiency  
= 34V, I = 20µA, I = <1µA, MS Package  
Q SD  
SW  
Step-Up DC/DC Converter  
LT1949/LT1949-1 550mA I , 600kHz/1.1MHz, High Efficiency  
= 28V, I = 4.5mA, I = <25µA,  
Q SD  
SW  
Step-Up DC/DC Converter  
S8, MS8 Packages  
LTC3400/LTC3400B 600mA I , 1.2MHz, Synchronous Step-Up DC/DC Converter  
V
= 0.85V to 5V, V  
= 5V, I = 19µA/300µA, I = <1µA,  
Q SD  
SW  
IN  
ThinSOT Package  
LTC3401  
LTC3402  
LTC3423  
1A I , 3MHz, Synchronous Step-Up DC/DC Converter  
V
V
V
= 0.5V to 5V, V  
= 0.5V to 5V, V  
= 0.5V to 5V, V  
= 6V, I = 38µA, I = <1µA, MS Package  
Q SD  
SW  
IN  
IN  
IN  
OUT  
OUT  
OUT  
2A I , 3MHz, Synchronous Step-Up DC/DC Converter  
= 6V, I = 38µA, I = <1µA, MS Package  
Q SD  
SW  
1A I , 3MHz, Low V , Synchronous Step-Up  
= 6V, I = 38µA, I = <1µA, MS Package  
Q SD  
SW  
OUT  
DC/DC Converter  
LTC3424  
2A I , 3MHz, Low V , Synchronous Step-Up  
DC/DC Converter  
V
= 0.5V to 5V, V  
= 6V, I = 38µA, I = <1µA, MS Package  
OUT Q SD  
SW  
OUT  
IN  
1945f  
LT/TP 0802 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
LINEAR TECHNOLOGY CORPORATION 2001  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1945IMS#TRPBF

LT1945 - Dual Micropower DC/DC Converter with Positive and Negative Outputs; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946/LT1946A

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
Linear

LT1946A

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E

2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1946AEMS8E#PBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946AEMS8E#TR

暂无描述
Linear

LT1946AEMS8E#TRPBF

LT1946A - 2.7MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1946EMS8

1.2MHz Boost DC/DC Converter with 1.5A Switch and Soft-Start
Linear

LT1947

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS

Adjustable Output TFT-LCD Triple Switching Regulator
Linear

LT1947EMS#PBF

LT1947 - Adjustable Output TFT-LCD Triple Switching Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear