LT1961 [Linear]

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN; 4A , 2MHz的双相升压型DC / DC转换器采用3mm 3mm DFN封装
LT1961
型号: LT1961
厂家: Linear    Linear
描述:

4A, 2MHz Dual Phase Step-Up DC/DC Converter in 3mm 3mm DFN
4A , 2MHz的双相升压型DC / DC转换器采用3mm 3mm DFN封装

转换器
文件: 总12页 (文件大小:214K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3428  
4A, 2MHz Dual Phase  
Step-Up DC/DC Converter  
in 3mm × 3mm DFN  
U
FEATURES  
DESCRIPTIO  
The LTC®3428 is a 2-phase, current mode boost con-  
verter, capable of supplying 2A at 5V from a 3.3V input.  
Two 93m, 2A N-channel MOSFET switches allow the  
LTC3428 to deliver high efficiency from input voltages as  
low as 1.6V.  
High Efficiency: Up to 92%  
2-Phase Control Reduces Output Voltage Ripple  
5V at 2A from 3.3V Input  
3.3V at 1.5A from 1.8V Input  
1.6V to 5.25V Adjustable Output Voltage  
1.6V to 4.5V Input Range  
External parts count and size are minimized by a 1MHz  
switching frequency and a 2-phase design. Two phase  
operation significantly reduces peak inductor currents  
andcapacitorripplecurrent,doubling theeffectiveswitch-  
ing frequency and minimizing inductor and capacitor size.  
Externalcompensationallowsthefeedbackloopresponse  
to be optimized for a particular application.  
Internal Soft-Start Operation  
Low Shutdown Current: <1µA  
Uses Small Surface Mount Components  
10-Pin 3mm × 3Umm DFN Package  
APPLICATIO S  
Networking Equipment  
Other features include: an active low shutdown pin re-  
duces supply current to below 1µA, internal soft-start,  
antiringing control and thermal shutdown. The LTC3428  
is available in a low profile (0.75mm) 10-lead (3mm ×  
3mm) DFN package.  
Handheld Instruments  
Digital Cameras  
Distributed Power  
Local 3.3V to 5V Conversion  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Efficiency vs Load Current  
3.3V to 5V at 2A Converter  
95  
90  
85  
80  
V
IN  
3.3V  
2.2µH*  
2.2µH*  
4.7µF***  
V
75  
70  
65  
60  
55  
50  
45  
OUT  
5V/2A  
V
V
OUT  
IN  
**  
OFF ON  
22pF  
SHDN  
SWA  
SWB  
FB  
383k  
**  
LTC3428  
V
C
10k  
AGND  
PGNDA  
PGNDB  
1000pF  
121k  
V
V
= 3.3V  
= 5V  
22µF****  
IN  
OUT  
L = 2.2µH  
3428 TA01  
* TOKO FDV06302R2  
** PHILIPS PMEG1020  
*** TAIYO YUDEN X5R JMK212BJ475MD  
**** TAIYO YUDEN X5R JMK316BJ226ML  
0.1  
1
2
LOAD CURRENT (A)  
3428 TA02  
3428f  
1
LTC3428  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
VIN, VOUT, SWA, SWB Voltage ....................... 0.3 to 6V  
SWA, SWB Voltage, Pulsed, <100ns ......................... 7V  
SHDN, VC Voltage ......................................... 0.3 to 6V  
FB Voltage ................................... 0.3 to (VOUT + 0.3V)  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
PGNDA  
SWA  
1
2
3
4
5
10 PGNDB  
9
8
7
6
SWB  
LTC3428EDD  
11  
V
V
IN  
OUT  
SHDN  
AGND  
FB  
V
C
DD PART  
MARKING  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
EXPOSED PAD MUST BE SOLDERED  
TO GROUND PLANE ON PCB  
LBBG  
TJMAX = 125°C, θJA = 45°C/W,  
θJC = 3°C/W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Startup Voltage  
1.5  
1.6  
V
Quiescent Current, V  
Quiescent Current, V  
SHDN = V  
SHDN = V  
100  
1.3  
200  
2.0  
µA  
mA  
OUT  
IN  
IN  
IN  
Shutdown Current  
SHDN = 0V  
Per Phase  
1
1.2  
µA  
MHz  
V
Switching Frequency  
0.8  
1.0  
1.243  
1
FB Regulated Voltage  
FB Input Current  
1.219  
1.268  
50  
V
= 1.24V  
nA  
µS  
V
FB  
Error Amp Transconductance  
Output Adjust Voltage  
NMOS Switch Leakage  
NMOS Switch On Resistance  
NMOS Current Limit  
170  
1.6  
5.25  
2.5  
V
V
, V  
= 5.5V, Per Phase  
0.1  
0.093  
2.5  
µA  
SWA SWB  
= 5V, Per Phase  
OUT  
Per Phase  
2
A
SHDN Input Threshold  
SHDN Input Current  
0.4  
0.8  
1.5  
1
V
0.01  
87  
µA  
%
Maximum Duty Cycle  
Minimum Duty Cycle  
Current Limit Delay to Output  
80  
0
%
(Note 3)  
40  
ns  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 3: Specification is guaranteed by design and not 100% tested in  
production.  
Note 2: The LTC3428E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 4: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
3428f  
2
LTC3428  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
All characteristic curves at TA = 25°C unless otherwise noted.  
SW Pin and Inductor Current in  
Discontinuous Mode, Demonstrating  
Anti-Ring Circuit Operation  
Transient Response, 0.5A to 1.5A  
SWA, SWB Switching Waveforms  
100mV/DIV  
500mA/DIV  
2V/DIV  
SWA  
5V/DIV  
SWB  
500mA/DIV  
500ns/DIV  
500ns/DIV  
100µs/DIV  
3428 G01  
3428 G02  
3428 G03  
Output Voltage Ripple with 22µF  
Ceramic Capacitor  
Converter Efficiency  
Switch RDS(ON) vs VOUT  
95  
90  
85  
80  
75  
70  
65  
60  
55  
108  
106  
104  
102  
100  
98  
3.3V TO 5V  
2.5V TO 3.3V  
2.5V TO 5V  
50mV/DIV  
96  
94  
92  
90  
88  
0.05  
0.1  
1
2
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
500ns/DIV  
LOAD CURRENT (A)  
OUTPUT VOLTAGE (V)  
3428 G04  
3428 G05  
3428 G06  
SWA, SWB Rise Time, I = 2A  
Switch RDS(ON) vs Temperature  
Feedback Voltage vs Temperature  
1.27  
1.26  
1.25  
1.24  
1.23  
1.22  
120  
110  
100  
90  
1V/DIV  
80  
70  
60  
35  
TEMPERATURE (°C)  
35  
TEMPERATURE (°C)  
–45 –25 –5 15  
55 75 95 115  
–45 –25 –5 15  
55 75 95 115  
10ns/DIV  
3428 G07  
3428 G08  
3428 G09  
3428f  
3
LTC3428  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Peak Current Limit vs  
Temperature  
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
35  
TEMPERATURE (°C)  
–45 –25 –5  
15  
55  
75  
95  
3428 G10  
U
U
U
PI FU CTIO S  
PGNDA, PGNDB (Pins 1, 10, 11 (Exposed Pad)): Power  
VC (Pin 5): Error Amp Output. A frequency compensation  
network is connected to this pin to compensate the boost  
converter loop.  
Ground for the IC. Tie directly to local ground plane.  
SWB (Pin 2), SWA (Pin 9): Phase B and Phase A Switch  
Pins. The inductor and Schottky diodes for each phase are  
connected to these pins. Minimize trace length to reduce  
EMI.  
FB (Pin 6): Feedback Pin. A resistor divider from VOUT is  
connected here to set the output voltage according to  
VOUT = 1.243 • (1 + R1 / R2)  
VOUT (Pin 3): Power Supply Output and Bootstrapped  
Power Source for the IC. Connect low ESR output filter  
capacitors from this pin to the ground plane.  
AGND(Pin7):SignalGroundfortheIC.Connecttoground  
plane near feedback resistor divider.  
VIN (Pin 8): Input Supply Pin. Bypass VIN with a low ESR  
ceramic capacitor of at least 4.7µF. X5R and X7R dielec-  
trics are preferred for their superior voltage and tempera-  
ture characteristics.  
SHDN (Pin 4): Shutdown Pin. Grounding this pin shuts  
down the IC. Connect to a voltage greater than 1.5V to  
enable.  
3428f  
4
LTC3428  
W
BLOCK DIAGRA  
FB  
FB  
ERROR AMPLIFIER/SOFT-START  
V
IN  
V
C
1.243V  
+
V
OUT  
I
SENB  
CURRENT  
LIMIT  
SWB  
I
SENB  
+
PWM  
COMP  
RAMP/  
SLOPE COMP  
PWM  
LOGIC  
PGNDB  
DRIVER  
CLK B  
CHANNEL B  
CHANNEL A  
TSD  
OSCILLATOR  
CLK A  
SWA  
PWM  
LOGIC  
RAMP/  
+
SLOPE COMP  
PWM  
COMP  
PGNDA  
DRIVER  
I
SENA  
SHDN  
SHUTDOWN  
I
SENA  
CURRENT  
LIMIT  
V
C
3428 BD  
5pF  
AGND  
3428f  
5
LTC3428  
U
W U U  
APPLICATIO S I FOR ATIO  
Anti-Ringing Control: The antiringing control places an  
impedance across the inductor of each phase to damp the  
high frequency ringing on the SWA, SWB pins during  
discontinuous mode operation. The LC ringing on the  
switch pin due to the inductor and switch pin capacitance  
is low energy, but can cause EMI radiation.  
DETAILED DESCRIPTION  
The LTC3428 provides high efficiency, low noise power  
for high current boost applications. A current mode archi-  
tecture with adaptive slope compensation provides both  
simple loop compensation as well as excellent transient  
response. The low RDS(ON) switches provide the pulse  
width modulation control at high efficiency.  
2-Phase Operation  
Oscillator:Theperphaseswitchingfrequencyisinternally  
The LTC3428 uses a two-phase architecture, rather than  
the conventional single phase architecture used in most  
other boost converters. The two phases are spaced 180°  
apart. Two phase operation doubles the output ripple  
frequency and provides a significant reduction in output  
ripple current, minimizing the stress on the output capaci-  
tor. Inductor (input) peak and ripple currents are also  
reduced, allowing for the use of smaller, lower cost  
inductors. The greatly reduced output ripple current also  
minimizestheoutputcapacitancerequirement.Thehigher  
frequency output ripple is easier to filter for lower noise  
applications.  
set to a nominal value of 1MHz.  
Current Sensing: Lossless current sensing converts the  
peak current signal to a voltage which is summed with the  
internal slope compensation. This summed signal is then  
comparedwiththeerroramplifieroutputtoprovideapeak  
current command for the PWM. Slope compensation is  
internal to the IC and adapts to changes to the input  
voltage, allowing the converter to provide the necessary  
degree of slope compensation without causing a loss in  
phase margin in the loop characteristic.  
Error Amplifier: The error amplifier is a transconductance  
amplifier with a transconductance (gm) = 1/7.5k. A  
simplecompensationnetworkisplacedfromVC toground.  
The internal 5pF capacitor between VC and ground will  
often simplify the external network to a simple R-C com-  
bination. The internal 1.243V reference voltage is com-  
paredtothevoltageonFBtogenerateanerrorsignalatthe  
output of the error amplifier (VC). A voltage divider from  
VOUT to ground programs the output voltage from 1.6V to  
5.25V using the equation:  
Input and output current comparisons for single and  
2-phase converters are illustrated in Figures 1 and 2.  
For the example illustrated in Figure 2, peak-to-peak  
output ripple current was reduced by 85%, from 4.34A, to  
0.64A, and peak inductor current was reduced by 53%,  
from 4.34A to 2.02A. These reductions enable the use of  
low profile, smaller valued inductors and output capaci-  
tors as compared to a single-phase design.  
4.4  
VOUT = 1.243V • ( 1+ R1/R2)  
1 PHASE  
CONVERTER  
4.3  
Soft-Start: An internal soft-start of approximately 1.5ms  
is provided. This is a ramp signal that limits the peak  
current until the internal soft-start voltage is greater than  
the internal current limit voltage. The internal soft-start  
capacitor is automatically discharged when the part is in  
shutdown mode.  
4.2  
2 PHASE  
4.1  
4.0  
3.9  
3.8  
3.7  
3.6  
CONVERTER  
Current Limit: The current limit comparator in each phase  
will shut off the N-channel MOSFET switches once the  
current exceeds the current limit threshold, nominally  
2.5A. The current limit delay to output is typically 50ns.  
The current signal leading edge is blanked for 50ns to  
enhance noise rejection.  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (µs)  
3428 F01  
Figure 1. Input Ripple Current Comparison  
Between Single Phase and Two-Phase Boost  
Converters with a 2A Load and 50% Duty Cycle  
3428f  
6
LTC3428  
W U U  
APPLICATIO S I FOR ATIO  
U
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Sumida CDRH4D22C/LD or CDRH5D28 series, Toko  
FDV0630 or D62CB series.  
1 PHASE  
CONVERTER  
Table 1. Inductor Vendor Information  
Supplier Phone  
Fax  
Website  
2 PHASE  
CONVERTER  
Coilcraft (847) 639-6400 (847) 639-1469 www.coilcraft.com  
Murata  
USA:  
(814) 238-1431 (814) 238-0490  
Sumida USA: USA:  
(847) 956-6666 (847) 956-0702  
Japan: Japan:  
81-3-3607-5111 81-3-3607-5144  
USA:  
www.murata.com  
www.sumida.com  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (µs)  
TDK  
(847) 803-6100 (847) 803-6296 www.component.tdk.com  
(847) 299-0070 (847) 699-7864 www.toko.com  
3428 F02  
Toko  
Wurth  
(201)785-8800 (201)785-8810  
www.we-online.com  
Figure 2. Output Ripple Current Comparison  
Between Single Phase and Two Phase Boost  
Converters with a 2A Load and 50% Duty Cycle  
Output Capacitor Selection  
The minimum value of the capacitor is set to reduce the  
output ripple voltage due to charging and discharging the  
capacitor each cycle. The steady state ripple due to this  
charging is given by:  
COMPONENT SELECTION  
Inductor Selection  
The high frequency operation of the LTC3428 allows for  
the use of small surface mount inductors. The inductor  
ripple current is typically set to between 20% and 40% of  
the maximum inductor current. For a given set of condi-  
tions, the inductance is given as follows:  
IPEAK (VOUT – V  
)
1
2
IN(MIN)  
VRIPPLE(C)  
=
COUT VOUT • f  
where: IPEAK = Peak inductor current (A)  
The equivalent series resistance (ESR) of the output  
capacitor will contribute another term to output voltage  
ripple. Ripple voltage due to capacitor ESR is:  
VRIPPLE(ESR) = IPEAK RESR(C)  
V
IN(MIN) (VOUT – V  
)
IN(MIN)  
L ≥  
, L > 2µH  
R•VOUT  
where:  
where:  
R = Allowable inductor current ripple (Amps P-P)  
VIN(MIN) = Minimum input voltage (V)  
VOUT = Output voltage (V)  
RESR(C) = Capacitor ESR  
The ESL (Equivalent Series Inductance) is another  
capacitor characteristic that needs to be minimized. ESL  
will be minimized by using small surface mount ceramic  
capacitors, placed as close to the VOUT pin as possible.  
For high efficiency, the inductor should have a high  
frequency core material, such as ferrite, to reduce core  
losses. The inductor should have a low ESR (equivalent  
series resistance) to reduce I2R losses and must be able  
to handle the peak inductor current without saturating.  
Use of a toroid, pot core, or shielded bobbin inductor will  
minimize radiated noise. See Table 1 for a list of inductor  
manufacturers. Some example inductor part types are:  
Coilcraft 1608 and 3316 series, Murata LQH55D series,  
Input Capacitor Selection  
Since the VIN pin directly powers most of the internal  
circuitry, it is recommended to place at least a 4.7µF, low  
ESR bypass capacitor between VIN and AGND, as close to  
the IC as possible. See Table 2 for a list of capacitor  
manufacturers.  
3428f  
7
LTC3428  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 2. Capacitor Vendor Information  
If the junction temperature gets too high, the LTC3428 will  
stop all switching until the junction temperature drops to  
safe levels. The typical over temperature threshold is  
150°C.  
Supplier  
AVX  
Phone  
Fax  
Website  
(803) 448-9411 (803) 448-1943 www.avxcorp.com  
(619) 661-9322 (619) 661-1055 www.sanyovideo.com  
(847) 803-6100 (847) 803-6296 www.component.tdk.com  
(814) 237-1431 (814) 238-0490 www.murata.com  
Sanyo  
TDK  
Closing the Feedback Loop  
Murata  
The LTC3428 uses current mode control with internal,  
adaptiveslopecompensation.Currentmodecontrolelimi-  
nates the 2nd order pole in the loop response of voltage  
modeconvertersduetotheinductorandoutputcapacitor,  
simplifying it to a single pole response. The product of the  
modulator control to output DC gain and the error amp  
open-loop gain equals the DC gain of the system.  
Taiyo Yuden (408) 573-4150 (408) 573-4159 www.t-yuden.com  
Output Diode Selection  
For high efficiency, a fast switching diode with low reverse  
leakageandalowforwarddropisrequired.Schottky diodes  
are recommended for their low forward drop and fast  
switching times. When selecting a diode, it is important to  
remember that the average diode current in a boost  
converter is equal to the average load current: ID = ILOAD  
VREF  
GDC = GCONTROL •GEA  
VOUT  
When selecting a diode, make sure that the peak  
forward current and average power dissipation ratings  
meet the application requirements. See Table 3 for a list  
of Schottky diode manufacturers. Example diodes are  
Philips PMEG1020, PMEG2010, On-Semi MBRA210, IR  
10BQ015, Microsemi UPS120E, UPS315.  
2•V  
IOUT  
IN  
GCONTROL  
=
GEA 100  
The output filter pole is given by:  
Table 3. Diode Vendor Information  
IOUT  
π VOUT COUT  
fPOLE  
=
Hz  
Supplier  
Philips  
Phone  
Fax  
Website  
+31 40 27 24825  
www.philips.com  
where COUT is the output filter capacitor value. The output  
filter zero is given by:  
Microsemi (949) 221-7100 (949)756-0308 www.microsemi.com  
On-Semi (602) 244-6600 www.onsemi.com  
International (310) 469-2161 (310) 322-3332 www.irf.com  
Rectifier  
1
fZERO  
=
Hz  
2• π RESR COUT  
Thermal Considerations  
where RESR is the output capacitor equivalent series  
resistance.  
To deliver maximum power, it is necessary to provide a  
good thermal path to dissipate the heat generated within  
the LTC3428’s package. The large thermal pad on the IC  
underside can accomplish this requirement. Use multiple  
PC board vias to conduct heat from the IC and to a copper  
plane that has as much area as possible.  
A complication of the boost converter topology is the right  
half plane (RHP) zero and is given by:  
V
2 RO  
IN  
fRHP  
=
2 Hz  
2• π L•VO  
3428f  
8
LTC3428  
W U U  
APPLICATIO S I FOR ATIO  
U
This zero causes a gain increase with phase lag. With  
heavy loads, this can occur at a relatively low frequency.  
For this reason, loop gain is typically rolled off below the  
RHP zero frequency.  
V
OUT  
+
1.243V  
FB  
R1  
R2  
AtypicalerrorampcompensationisshowninFigure3and  
in the Typical Application section.  
V
C
The equations for the loop dynamics are as follow:  
R
Z
C
5pF  
C2  
C
C1  
1
3428 F03  
fPOLE1  
fZERO1  
fZERO2  
2• π 400e6•CC1  
1
Figure 3.  
2• π RZ CC1  
1
2• π RZ (CC2 + 5pF)  
3428f  
9
LTC3428  
U
TYPICAL APPLICATIO S  
2.5V to 3.3V at 2.5A Converter  
2.5V  
IN  
4.7µH*  
4.7µH*  
LTC3428  
8
4
5
7
1
3
V
OUT  
V
V
IN  
OUT  
3.3V, 2.5A  
**  
**  
2
SHUTDOWN  
10k  
SHDN  
SWA  
SWB  
FB  
205k  
9
V
C
6
22pF  
AGND  
10  
4.7µF***  
4×  
PGNDA  
PGNDB  
121k  
1000pF  
4.7µF  
3428 TA03  
*
TOKO DC53LC  
**  
MICROSEMI UPS120E  
***  
TAIYO YUDEN X5R JMK212BJ475MD  
3428f  
10  
LTC3428  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3428f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3428  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
90% Efficiency, V : 0.9V to 10V, V  
LT1613  
550mA (I ), 1.4MHz, High Efficiency Step-Up  
= 34V, I = 3mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converter  
I
<1µA, ThinSOT Package  
SD  
LT1615/LT1615-1  
LT1618  
300mA/80mA (I ), High Efficiency Step-Up  
DC/DC Converters  
V : 1V to 15V, V  
= 34V, I = 20µA,  
SW  
IN  
OUT(MAX) Q  
I
<1µA, ThinSOT Package  
SD  
1.5A (I ), 1.25MHz, High Efficiency Step-Up  
90% Efficiency, V : 1.6V to 18V, V  
= 35V, I = 1.8mA,  
SW  
IN  
OUT(MAX)  
Q
DC/DC Converter  
I
<1µA, MS Package  
SD  
LT1930/LT1930A  
LT1946/LT1946A  
LT1961  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
DC/DC Converters  
High Efficiency, V : 2.6V to 16V, V  
I = 4.2mA/5.5mA, I <1µA, ThinSOT Package  
Q SD  
= 34V,  
SW  
IN  
OUT(MAX)  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up  
High Efficiency, V : 2.45V to 16V, V  
= 34V, I = 3.2mA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converters  
I
<1µA, MS8 Package  
SD  
1.5A (I ), 1.25MHz, High Efficiency Step-Up  
90% Efficiency, V : 3V to 25V, V  
= 35V, I = 0.9mA,  
SW  
IN  
OUT(MAX) Q  
DC/DC Converter  
I
6µA, MS8E Package  
SD  
LTC3400/LTC3400B  
LTC3401  
600mA (I ), 1.2MHz, Synchronous Step-Up  
DC/DC Converter  
92% Efficiency, V : 0.85V to 5V, V  
= 5V, I = 19µA/300µA,  
SW  
IN  
OUT(MAX) Q  
I
<1µA, ThinSOT Package  
SD  
1A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V, I = 38µA,  
Q
SW  
IN  
OUT(MAX)  
I
<1µA, MS Package  
SD  
LTC3402  
2A (I ), 3MHz, Synchronous Step-Up DC/DC Converter  
97% Efficiency, V : 0.5V to 5V, V  
= 5.5V, I = 38µA,  
Q
SW  
IN  
OUT(MAX)  
I
<1µA, MS Package  
SD  
LTC3421  
3A, 3MHz Synchronous Boost Converter  
with Output Disconnect  
96% Efficiency, V : 0.5V to 4.5V, V  
= 5.5V, I = 12µA,  
Q
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
I
<1µA, QFN-24 Package  
SD  
LTC3425  
5A (I ), 8MHz, 4-Phase Synchronous Step-Up  
95% Efficiency, V : 0.5V to 4.5V, V  
= 5.25V, I = 12µA,  
Q
SW  
IN  
DC/DC Converter  
I
<1µA, QFN-32 Package  
SD  
LTC3429  
600mA, 500kHz Synchronous Boost Converter  
with Output Disconnect  
96% Efficiency, V : 0.5V to 4.4V, V  
= 5.5V, I = 20µA,  
Q
IN  
I
<1µA, ThinSOT Package  
SD  
LTC3436  
3A (I ), 1MHz, 34V Step-Up DC/DC Converter  
V : 3V to 25V, V  
= 34V, I = 0.9mA,  
SW  
IN  
OUT(MAX) Q  
I
<6µA, TSSOP-16E Package  
SD  
LTC3459  
10V Micropower Synchronous Boost Converter  
85% Efficiency, V : 1.5V to 5.5V, V  
= 10V, I = 10µA,  
OUT(MAX) Q  
IN  
I
<1µA, ThinSOT Package  
SD  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter  
with Integrated Schottky and PNP Disconnect  
V : 2.3V to 10V, V  
= 34V, I = 25µA,  
SW  
IN  
OUT(MAX) Q  
I
<1µA, ThinSOT Package  
SD  
No RSENSE is a registered trademark of Linear Technology Corporation.  
3428f  
LT/TP 0804 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT1961EMS8E

1.5A, 1.25MHz Step-Up Switching Regulator
Linear

LT1961EMS8E#PBF

LT1961 - 1.5A, 1.25MHz Step-Up Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1961EMS8E#TR

LT1961 - 1.5A, 1.25MHz Step-Up Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1961EMS8E#TRPBF

LT1961 - 1.5A, 1.25MHz Step-Up Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1961EMS8EPBF

1.5A, 1.25MHz Step-Up Switching Regulator
Linear

LT1961EMS8ETR

1.5A, 1.25MHz Step-Up Switching Regulator
Linear

LT1961EMS8ETRPBF

1.5A, 1.25MHz Step-Up Switching Regulator
Linear

LT1961IMS8E

1.5A, 1.25MHz Step-Up Switching Regulator
Linear

LT1961IMS8E#PBF

LT1961 - 1.5A, 1.25MHz Step-Up Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1961IMS8E#TRPBF

LT1961 - 1.5A, 1.25MHz Step-Up Switching Regulator; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1961IMS8EPBF

1.5A, 1.25MHz Step-Up Switching Regulator
Linear

LT1961IMS8ETR

1.5A, 1.25MHz Step-Up Switching Regulator
Linear