LT1970IFE#PBF [Linear]

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C;
LT1970IFE#PBF
型号: LT1970IFE#PBF
厂家: Linear    Linear
描述:

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40°C to 85°C

放大器 光电二极管
文件: 总24页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT1970  
500mA Power Op Amp with  
Adjustable Precision Current Limit  
U
FEATURES  
DESCRIPTIO  
The LT®1970 is a ± 500mA power op amp with precise  
externally controlled current limiting. Separate control  
voltages program the sourcing and sinking current limit  
sense thresholds with 2% accuracy. Output current may  
be boosted by adding external power transistors.  
±500mA Minimum Output Current  
Independent Adjustment of Source and  
Sink Current Limits  
2% Current Limit Accuracy  
Operates with Single or Split Supplies  
Shutdown/Enable Control Input  
Thecircuitoperateswithsingleorsplitpowersuppliesfrom  
5V to 36V total supply voltage. In normal operation, the  
inputstagesuppliesandtheoutputstagesuppliesarecon-  
nected (VCC to V+ and VEE to V). To reduce power dissi-  
pationitispossibletopowertheoutputstage(V+,V)from  
independent,lowervoltagerails.Theamplifierisunity-gain  
stable with a 3.6MHz gain bandwidth product and slews at  
1.6V/µs. The current limit circuits operate with a 2MHz re-  
sponse between the VCSRC or VCSNK control inputs and  
the amplifier output.  
Open Collector Status Flags:  
Sink Current Limit  
Source Current Limit  
Thermal Shutdown  
Fail Safe Current Limit and Thermal Shutdown  
1.6V/µs Slew Rate  
3.6MHz Gain Bandwidth Product  
Fast Current Limit Response: 2MHz Bandwidth  
Specified Temperature Range: 40°C to 85°C  
Available in a 20-Lead TSSOP Package  
Open collector status flags signal current limit circuit  
activation,aswellasthermalshutdownoftheamplifier.An  
enable logic input puts the amplifier into a low power, high  
impedance output state when pulled low. Thermal shut-  
down and a ±800mA fixed current limit protect the chip  
under fault conditions.  
U
APPLICATIO S  
Automatic Test Equipment  
Laboratory Power Supplies  
Motor Drivers  
Thermoelectric Cooler Driver  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
The LT1970 is packaged in a 20-lead TSSOP package with  
a thermally conductive copper bottom plate to facilitate  
heat sinking.  
U
TYPICAL APPLICATIO  
A = 2 Amplifier with Adjustable ±500mA Full-Scale  
V
Current Limit and Fault Indication  
Current Limited Sinewave Into 10Load  
V
LIMIT  
0V TO 5V  
15V  
15V  
3k  
V
LIMIT  
10 • R  
I
=
±
OUT(LIMIT)  
V
CC  
CS  
+
V
4V  
EN  
VC  
2V  
SRC  
VC  
V
+IN  
IN  
VLOAD  
SNK  
ISNK  
R
CS  
0V  
1  
I
ISRC  
OUT  
1/4W  
2V  
TSD  
+
LT1970  
OUT  
SENSE  
SENSE  
V
LOAD  
R1  
–IN  
COMMON  
V
EE  
10k  
VCSRC = 4V  
VCSNK = 2V  
RCS = 1  
20µs/DIV  
1970 TA02  
R2  
10k  
–15V  
1970 TA01  
1970fb  
1
LT1970  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
Supply Voltage (VCC to VEE).................................... 36V  
Positive High Current Supply (V+) .................. Vto VCC  
Negative High Current Supply(V) ................... VEE to V+  
Amplifier Output (OUT)..................................... Vto V+  
Current Sense Pins  
NUMBER  
V
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
V
V
EE  
EE  
+
V
21  
LT1970CFE  
LT1970IFE  
OUT  
3
TSD  
+
SENSE  
4
ISNK  
(SENSE+, SENSE, FILTER) .......................... Vto V+  
Logic Outputs (ISRC, ISNK, TSD)....... COMMON to VCC  
Input Voltage (–IN, +IN).......... VEE – 0.3V to VEE + 36V  
Input Current ....................................................... 10mA  
Current Control Inputs  
FILTER  
5
ISRC  
+
SENSE  
6
ENABLE  
COMMON  
V
7
CC  
–IN  
+IN  
8
VC  
SRC  
9
VC  
SNK  
V
10  
V
EE  
EE  
(VCSRC, VCSNK) .............COMMON to COMMON + 7V  
Enable Logic Input .............................. COMMON to VCC  
COMMON ..................................................... VEE to VCC  
Output Short-Circuit Duration......................... Indefinite  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Specified Temperature Range (Note 3)... 40°C to 85°C  
Maximum Junction Temperature ......................... 150°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
TJMAX = 150°C, θJA = 40°C/ W (NOTE 8)  
EXPOSED PAD (PIN 21) IS CONNECTED TO VEE  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are T = 25°C. See Test Circuit for standard test conditions.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Op Amp Characteristics  
V
Input Offset Voltage  
200  
600  
1000  
1300  
µV  
µV  
µV  
OS  
0°C < T < 70°C  
A
–40°C < T < 85°C  
A
Input Offset Voltage Drift (Note 4)  
Input Offset Current  
–10  
–100  
–600  
–4  
10  
µV/°C  
nA  
I
I
V
V
= 0V  
= 0V  
100  
OS  
CM  
CM  
Input Bias Current  
–160  
3
nA  
B
Input Noise Voltage  
0.1Hz to 10Hz  
1kHz  
µV  
P-P  
e
Input Noise Voltage Density  
Input Noise Current Density  
Input Resistance  
15  
3
nV/Hz  
pA/Hz  
n
i
1kHz  
n
R
Common Mode  
Differential Mode  
500  
100  
kΩ  
kΩ  
IN  
C
V
Input Capacitance  
Pin 8 and Pin 9 to Ground  
6
pF  
IN  
Input Voltage Range  
Typical  
Guaranteed by CMRR Test  
–14.5  
–12.0  
13.6  
12.0  
V
V
CM  
CMRR  
PSRR  
Common Mode Rejection Ratio  
Power Supply Rejection Ratio  
–12V < V < 12V  
92  
105  
dB  
CM  
+
V
V
V
V
= V = –5V, V = V = 3V to 30V  
90  
110  
90  
100  
130  
100  
130  
dB  
dB  
dB  
dB  
EE  
EE  
EE  
EE  
CC  
+
= V = –5V, V = 30V, V = 2.5V to 30V  
CC  
+
= V = –3V to 30V, V = V = 5V  
CC  
+
= –30V, V = –2.5V to –30V, V = V = 5V  
110  
CC  
1970fb  
2
LT1970  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are T = 25°C. See Test Circuit for standard test conditions.  
A
SYMBOL  
PARAMETER  
CONDITIONS  
R = 1k, –12.5V < V < 12.5V  
OUT  
MIN  
TYP  
MAX  
UNITS  
A
Large-Signal Voltage Gain  
100  
75  
150  
V/mV  
V/mV  
VOL  
L
R = 100, –12.5V < V  
< 12.5V  
80  
40  
120  
45  
V/mV  
V/mV  
L
OUT  
+
R = 10, –5V < V  
L
< 5V, V = V = 8V  
20  
5
V/mV  
V/mV  
OUT  
V
V
Output Sat Voltage Low  
Output Sat Voltage High  
Output Short-Circuit Current  
V
= V  
– V  
OUT  
OL  
OH  
OL  
+
R = 100, V = V = 15V, V = V = –15V  
1.9  
0.8  
2.5  
2.3  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = –V = 5V  
L
CC  
EE  
+
V
= V – V  
OUT  
OH  
+
R = 100, V = V = 15V, V = V = –15V  
1.7  
1.0  
V
V
L
CC  
EE  
+
R = 10, V = V = 15V, V = –V = 5V  
L
CC  
EE  
I
Output Low, R  
Output High, R  
= 0Ω  
SENSE  
SENSE  
500  
–1000  
800  
800  
1200  
500  
mA  
mA  
SC  
= 0Ω  
SR  
Slew Rate  
–10V < V  
< 10V, R = 1k  
0.7  
11  
1.6  
V/µs  
kHz  
MHz  
µs  
OUT  
L
FPBW  
GBW  
Full Power Bandwidth  
Gain Bandwidth Product  
Settling Time  
V
= 10V  
(Note 5)  
OUT  
PEAK  
f = 10kHz  
0.01%, V  
3.6  
8
t
= 0V to 10V, A = –1, R = 1k  
S
OUT  
V
L
Current Sense Characteristics  
V
Minimum Current Sense Voltage  
VC  
= VC  
= 0V  
0.1  
0.1  
4
7
10  
mV  
mV  
SENSE(MIN)  
SRC  
SNK  
V
V
V
Current Sense Voltage 4% of Full Scale  
Current Sense Voltage 10% of Full Scale  
VC  
VC  
= VC  
= VC  
= VC  
= 0.2V  
= 0.5V  
= 5V  
15  
45  
20  
50  
25  
55  
mV  
mV  
SENSE(4%)  
SENSE(10%)  
SENSE(FS)  
SRC  
SRC  
SRC  
SNK  
SNK  
SNK  
Current Sense Voltage 100% of Full Scale VC  
490  
480  
500  
500  
510  
520  
mV  
mV  
I
I
I
I
Current Limit Control Input Bias Current  
VC , VC Pins  
SNK  
–1  
–0.2  
0.1  
500  
500  
µA  
nA  
nA  
BI  
SENSE  
FILTER  
SRC  
SENSE Input Current  
0V < (VC , VC ) < 5V  
500  
500  
SRC  
SNK  
FILTER Input Current  
0V < (VC , VC ) < 5V  
SRC SNK  
+
+
SENSE Input Current  
VC = VC  
VC  
VC = 0V, VC  
VC  
= 0V  
–500  
200  
–300  
500  
300  
–200  
25  
nA  
µA  
µA  
µA  
SENSE  
SRC  
SRC  
SNK  
= 5V, VC  
= 0V  
= 5V  
250  
–250  
SNK  
SNK  
SRC  
= VC  
= 5V  
–25  
SRC  
SRC  
SRC  
SNK  
SNK  
SNK  
Current Sense Change with Output Voltage VC  
= VC  
= 5V, –12.5V < V  
< 12.5V  
±0.1  
%
OUT  
+
Current Sense Change with Supply Voltage VC  
= VC  
= 5V, 6V < (V , V ) < 18V  
±0.05  
±0.01  
±0.05  
±0.01  
%
%
%
%
CC  
+
2.5V < V < 18V, V = 18V  
–18V < (V , V ) < –2.5V  
–18V < V < –2.5V, V = –18V  
CC  
EE  
EE  
Current Sense Bandwidth  
2
MHz  
R
CSF  
Resistance FILTER to SENSE  
750  
1000  
1250  
Logic I/O Characteristics  
Logic Output Leakage ISRC, ISNK, TSD  
Logic Low Output Level  
V = 15V  
1
µA  
V
I = 5mA (Note 6)  
0.2  
25  
0.4  
Logic Output Current Limit  
Enable Logic Threshold  
mA  
V
V
0.8  
–1  
1.9  
2.5  
1
ENABLE  
I
Enable Pin Bias Current  
µA  
ENABLE  
1970fb  
3
LT1970  
ELECTRICAL CHARACTERISTICS  
The  
denotes specifications which apply over the full operating  
temperature range, otherwise specifications are T = 25°C. See Test Circuit for standard test conditions.  
A
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
7
MAX  
13  
UNITS  
mA  
mA  
mA  
µs  
+
I
I
I
t
t
Total Supply Current  
Supply Current  
V
V
V
, V and V , V Connected  
SUPPLY  
CC  
CC  
CC  
CC  
EE  
+
V
, V and V , V Separate  
3
7
CC  
EE  
+
Supply Current Disabled  
Turn-On Delay  
, V and V , V Connected, V 0.8V  
ENABLE  
0.6  
10  
10  
1.5  
CC(STBY)  
ON  
EE  
(Note 7)  
(Note 7)  
Turn-Off Delay  
µs  
OFF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT1970C is guaranteed functional over the operating  
temperature range of 40°C and 85°C.  
Note 4: This parameter is not 100% tested.  
Note 5: Full power bandwidth is calculated from slew rate measurements:  
FPBW = SR/(2 • π • V )  
P
Note 6: The logic low output level of pin TSD is guaranteed by correlating  
the output level of pin ISRC and pin ISNK over temperature.  
Note 7: Turn-on and turn-off delay are measured from V  
crossing  
ENABLE  
Note 3: The LT1970C is guaranteed to meet specified performance from  
0°C to 70°C. The LT1970C is designed, characterized and expected to  
meet specified performance from 40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LT1970I is guaranteed to meet  
specified performance from –40°C to 85°C.  
1.6V to the OUT pin at 90% of normal output voltage.  
Note 8: Thermal resistance varies depending upon the amount of PC board  
metal attached to the device. If the maximum dissipation of the package is  
exceeded, the device will go into thermal shutdown and be protected.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Total Supply Current  
vs Supply Voltage  
Warm-Up Drift V vs Time  
Input Bias Current vs V  
CM  
IO  
–100  
–120  
–140  
–160  
–180  
–200  
220  
–240  
–260  
14  
12  
10  
8
6
4
V
= ±15V  
S
+
I
+ I  
125°C  
25°C  
CC  
V
–I  
BIAS  
–55°C  
–55°C  
2
0
+I  
BIAS  
I
+ I  
EE  
V
–2  
–4  
–6  
–8  
–10  
–12  
–14  
0V  
25°C  
TIME (100ms/DIV)  
1970 G01  
125°C  
–15 –12 –9 –6 –3  
0
3
6
9
12 15  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (±V)  
COMMON MODE INPUT VOLTAGE (V)  
1970 G03  
1970 G02  
1970fb  
4
LT1970  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Open-Loop Gain and Phase  
Supply Current vs Supply Voltage  
vs Frequency  
Phase Margin vs Supply Voltage  
70  
60  
50  
40  
100  
90  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
60  
58  
56  
54  
52  
50  
48  
46  
44  
42  
40  
+
A
= –1  
V
I
V
R = R = 1k  
F
G
I
T
= 25°C  
V
A
80  
V
= V /2  
S
GAIN  
PHASE  
OUT  
70  
I
VCC  
30  
20  
60  
50  
I
VEE  
10  
0
40  
30  
20  
10  
0
–10  
–20  
–30  
T
= 25°C  
CC  
A
+
V
= V = –V = –V  
EE  
0
100  
1k  
10k 100k  
1M  
10M 100M  
2
4
6
8
10 12  
20  
0
4
8
12 16 20 24 28 32 36  
14 16 18  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
TOTAL SUPPLY VOLTAGE (V)  
1970 G05  
1870 G04  
1970 G06  
Gain Bandwidth vs Supply Voltage  
Gain vs Frequency  
Gain vs Frequency with C  
LOAD  
10  
0
10  
0
5
V
A
= ±15V  
= 1  
A
V
= 100  
A = 1  
V
S
V
30nF  
10nF  
4
3
1nF  
V
= ±15V  
S
–10  
–20  
–30  
–40  
–10  
V
= ±5V  
S
0nF  
–20  
–30  
–40  
2
1
0
10k  
100k  
1M  
10M  
0
4
8
12 16 20 24 28 32 36  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
TOTAL SUPPLY VOLTAGE (V)  
FREQUENCY (Hz)  
1970 G09  
1970 G08  
1970 G07  
Output Impedance  
Disabled Output Impedance  
Slew Rate vs Supply Voltage  
600k  
100k  
100  
10  
1.8  
V
V
= ±15V  
ENABLE  
V
S
= ±15V  
S
= 0.8V  
1.7  
1.6  
FALLING  
RISING  
A
= 100  
V
10k  
1k  
1.5  
1.4  
1.3  
1.2  
1.1  
1
A
= 10  
V
0.1  
A
V
= 1  
100  
10  
1
0.01  
0.001  
A
= –1  
V
F
R
= R = 1k  
G
T
A
= 25°C  
1.0  
1k  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
1M  
10M  
100M  
6
8
12  
14  
16  
18  
4
10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
SUPPLY VOLTAGE (±V)  
1970 G10  
1970 G11  
1970 G12  
1970fb  
5
LT1970  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Large-Signal Response, A = 1  
Slew Rate vs Temperature  
Large-Signal Response, A = 1  
V
V
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= ±15V  
S
FALLING  
10V  
0V  
10V  
RISING  
0V  
–10V  
–10V  
R
L = 1k  
20µs/DIV  
1970 G15  
RL = 1k  
20µs/DIV  
1970 G14  
CL = 1000pF  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
1970 G13  
Small-Signal Response, A = 1  
Small-Signal Response, A = 1  
Output Overdriven  
V
V
VOUT  
0V  
0V  
5V/DIV  
VIN  
5V/DIV  
VS = ±5V  
AV = 1  
200µs/DIV  
1970 G18  
RL = 1k  
500ns/DIV  
1970 G16  
RL = 1k  
CL = 1000pF  
2µs/DIV  
1970 G17  
Full Range Current Sense  
Transfer Curve  
Undistorted Output Swing  
vs Frequency  
% Overshoot vs C  
LOAD  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
500  
400  
V
S
= ±15V  
300  
SOURCING  
CURRENT  
A
= 1  
V
200  
100  
0
A
= –1  
V
–100  
–200  
–300  
–400  
–500  
SINKING  
CURRENT  
V
A
= ±15V  
S
V
= –5  
1% THD  
0
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
0
1
2
3
4
5
FREQUENCY (Hz)  
C
LOAD  
(pF)  
V
CSNK  
= V  
CSRC  
(V)  
1970 G20  
1970 G19  
1970 G21  
1970fb  
6
LT1970  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Low Level Current Sense  
Transfer Curve  
Logic Output Level  
Maximum Output Current  
vs Sink Current (Output Low)  
vs Temperature  
25  
20  
1.0  
0.9  
0.8  
0.7  
1600  
1400  
1200  
1000  
800  
600  
400  
200  
0
+
+
V
V
= 15V  
= –15V  
V
V
= 15V  
= –15V  
15  
SOURCING  
CURRENT  
10  
SOURCE  
SINK  
5
0.6  
0.5  
25°C  
0
125°C  
–5  
–10  
–15  
–20  
–25  
0.4  
0.3  
0.2  
0.1  
0
SINKING  
CURRENT  
–55°C  
0
25 50 75 100 125 150 175 200 225 250  
0.001  
0.01  
0.1  
1
10  
100  
–75 –50  
25 50  
–25  
0
75 100  
125  
V
CSNK  
= V  
CSRC  
(mV)  
SINK CURRENT (mA)  
TEMPERATURE (°C)  
1970 G23  
1970 G22  
1970 G24  
Output Stage Quiescent Current  
vs Supply Voltage  
Safe Operating Area  
1200  
1000  
800  
600  
400  
200  
0
10  
8
I
AT 10% DUTY CYCLE  
OUT  
+
125°C  
I
V
6
25°C  
4
–55°C  
2
0
I
V
–55°C  
–2  
–4  
–6  
–8  
–10  
25°C  
125°C  
25 30  
10 15 20  
SUPPLY VOLTAGE (V)  
0
5
35 40  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (±V)  
1970 G25  
1970 G26  
Control Stage Quiescent Current  
vs Supply Voltage  
Supply Current vs Supply Voltage  
in Shutdown  
5
4
800  
700  
600  
500  
400  
300  
200  
100  
0
V
= 0V  
I
ENABLE  
CC  
85°C  
125°C  
25°C  
–55°C  
3
25°C  
2
–55°C  
1
0
I
EE  
–1  
–2  
–3  
–4  
–5  
–55°C  
25°C  
125°C  
8
10  
0
2
4
6
12 14 16 18  
0
2
4
6
8
10 12 14 16 18  
SUPPLY VOLTAGE (±V)  
SUPPLY VOLTAGE (V)  
1970 G27  
1970 G28  
1970fb  
7
LT1970  
U
U
U
PI FU CTIO S  
VEE (Pins 1, 10, 11, 20, Package Base): Minus Supply  
Voltage. VEE connects to the substrate of the integrated  
circuitdie,andthereforemustalwaysbethemostnegative  
voltage applied to the part. Decouple VEE to ground with a  
low ESR capacitor. VEE may be a negative voltage or it may  
equal ground potential. Any or all of the VEE pins may be  
used. Unused VEE pins must remain open.  
V(Pin 2): Output Stage Negative Supply. Vmay equal  
VEE or may be smaller in magnitude. Only output stage  
current flows out of V, all other current flows out of VEE.  
Vmay be used to drive the base/gate of an external power  
device to boost the amplifier’s output current to levels  
above the rated 500mA of the on-chip output devices.  
Unless used to drive boost transistors, Vshould be  
decoupled to ground with a low ESR capacitor.  
FILTER (Pin 5): Current Sense Filter Pin. This pin is  
normallynotusedandshouldbeleftopenorshortedtothe  
SENSEpin. The FILTER pin can be used to adapt the  
response time of the current sense amplifiers with a 1nF  
to 100nF capacitor connected to the SENSEinput. An  
internal 1k resistor sets the filter time constant.  
SENSE(Pin 6): Negative Current Sense Pin. This pin is  
normally connected to the load end of the external sense  
resistor. Sourcing current limit operation is activated  
when the voltage VSENSE (VSENSE+ – VSENSE–) equals 1/  
10 of the programming control voltage at VCSRC (Pin 13).  
Sinking current limit operation is activated when the  
voltage VSENSE equals –1/10 of the programming control  
voltage at VCSNK (Pin 12).  
VCC (Pin 7): Positive Supply Voltage. All circuitry except  
the output transistors draw power from VCC. Total supply  
voltage from VCC to VEE must be between 3.5V and 36V.  
VCC mustalwaysbegreaterthanorequaltoV+. VCCshould  
always be decoupled to ground with a low ESR capacitor.  
OUT (Pin 3): Amplifier Output. The OUT pin provides the  
force function as part of a Kelvin sensed load connection.  
OUT is normally connected directly to an external load  
current sense resistor and the SENSE+ pin. Amplifier  
feedback is directly connected to the load and the other  
end of the current sense resistor. The load connection is  
also wired directly to the SENSEpin to monitor the load  
current.  
IN (Pin 8): Inverting Input of Amplifier. IN may be any  
voltage from VEE – 0.3V to VEE + 36V. IN and +IN remain  
highimpedanceatalltimestopreventcurrentflowintothe  
inputs when current limit mode is active. Care must be  
taken to insure that IN or +IN can never go to a voltage  
The OUT pin is current limited to ±800mA typical. This  
current limit protects the output transistor in the event below VEE – 0.3V even during transient conditions or  
thatconnectionstotheexternalsenseresistorareopened damage to the circuit may result. A Schottky diode from  
or shorted which disables the precision current limit VEE to IN can provide clamping if other elements in the  
function.  
circuit can allow IN to go below VEE.  
SENSE+ (Pin 4): Positive Current Sense Pin. This lead is  
normally connected to the driven end of the external sense  
resistor. Sourcing current limit operation is activated  
when the voltage VSENSE (VSENSE+ – VSENSE–) equals 1/  
10 of the programming control voltage at VCSRC (Pin 13).  
Sinking current limit operation is activated when the  
voltage VSENSE equals –1/10 of the programming control  
voltage at VCSNK (Pin 12).  
+IN (Pin 9): Noninverting Input of Amplifier. +IN may be  
any voltage from VEE – 0.3V to VEE + 36V. IN and +IN  
remain high impedance at all times to prevent current flow  
into the inputs when current limit mode is active. Care  
must be taken to insure that IN or +IN can never go to a  
voltage below VEE – 0.3V even during transient conditions  
or damage to the circuit may result. A Schottky diode from  
VEE to +IN can provide clamping if other elements in the  
circuit can allow +IN to go below VEE.  
1970fb  
8
LT1970  
U
U
U
PI FU CTIO S  
VCSNK (Pin 12): Sink Current Limit Control Voltage Input.  
The current sink limit amplifier will activate when the  
sense voltage between SENSE+ and SENSEequals  
–1.0 • VVCSNK/10. VCSNK may be set between VCOMMON  
and VCOMMON + 6V. The transfer function between VCSNK  
and VSENSE is linear except for very small input voltages at  
VCSNK < 60mV. VSENSE limits at a minimum set point of  
4mV typical to insure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISRC may be left open if  
this function is not monitored.  
ISNK (Pin 17): Sinking Current Limit Digital Output Flag.  
ISNK is an open collector digital output. ISNK pulls low  
whenever the sinking current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
current limit is not active. ISRC, ISNK and TSD may be  
wired “OR” together if desired. ISNK may be left open if  
this function is not monitored.  
VCSRC (Pin 13): Source Current Limit Control Voltage  
Input. The current source limit amplifier will activate  
when the sense voltage between SENSE+ and SENSE–  
equals VVCSRC/10. VCSRC may be set between VCOMMON  
and VCOMMON + 6V. The transfer function between VCSRC  
and VSENSE is linear except for very small input voltages  
at VCSRC < 60mV. VSENSE limits at a minimum set point  
of 4mV typical to insure that the sink and source limit  
amplifiers do not try to operate simultaneously. To force  
zero output current, the ENABLE pin can be taken low.  
TSD (Pin 18): Thermal Shutdown Digital Output Flag. TSD  
isanopencollectordigitaloutput. TSDpullslowwhenever  
theinternalthermalshutdowncircuitactivates, typicallyat  
a die temperature of 160°C. This pin can sink up to 10mA  
of output current. The TSD flag is off when the die  
temperature is within normal operating temperatures.  
ISRC, ISNK and TSD may be wired “OR” together if  
desired. ISNK may be left open if this function is not  
monitored. Thermal shutdown activation should prompt  
the user to evaluate electrical loading or thermal environ-  
mental conditions.  
V+ (Pin 19): Output Stage Positive Supply. V+ may equal  
VCC or may be smaller in magnitude. Only output stage  
current flows through V+, all other current flows into VCC.  
V+ maybeusedtodrivethebase/gateofanexternalpower  
device to boost the amplifier’s output current to levels  
above the rated 500mA of the on-chip output devices.  
Unless used to drive boost transistors, V+ should be  
decoupled to ground with a low ESR capacitor.  
COMMON (Pin 14): Control and ENABLE inputs and flag  
outputs are referenced to the COMMON pin. COMMON  
may be at any potential between VEE and VCC – 3V. In  
typical applications, COMMON is connected to ground.  
ENABLE (Pin 15): ENABLE Digital Input Control. When  
taken low this TTL-level digital input turns off the amplifier  
output and drops supply current to less than 1mA. Use the  
ENABLE pin to force zero output current. Setting VCSNK  
VCSRC = 0V allows IOUT = ±4mV/RSENSE to flow in or out  
of VOUT  
=
.
ISRC (Pin 16): Sourcing Current Limit Digital Output Flag.  
ISRC is an open collector digital output. ISRC pulls low  
whenever the sourcing current limit amplifier assumes  
control of the output. This pin can sink up to 10mA of  
current. The current limit flag is off when the source  
Package Base: The exposed backside of the package is  
electrically connected to the VEE pins on the IC die. The  
package base should be soldered to a heat spreading pad  
on the PC board that is electrically connected to VEE.  
1970fb  
9
LT1970  
W U  
BLOCK DIAGRA A D TEST CIRCUIT  
R
V
FB  
CC  
+
7
1k  
V
15V  
19  
+IN  
9
8
+
Q1  
Q2  
OUT  
+
V
IN  
1×  
GM1  
3
–IN  
R
G
1k  
10k  
10k  
10k  
ISNK  
ISRC  
TSD  
17  
16  
18  
+
D1  
D2  
R
1  
CS  
+
I
V
SINK  
SNK  
SRC  
+
SENSE  
FILTER  
15V  
4
5
6
ENABLE  
+
V
ENABLE  
15  
12  
SENSE  
VC  
SNK  
5V  
VC  
SNK  
+
R
FIL  
1k  
R
VC  
SRC  
LOAD  
V
I
SRC  
VC  
1k  
13  
14  
SRC  
2
V
COMMON  
EE  
–15V  
2, 10, 11, 20  
1970TC  
W U U  
U
APPLICATIO S I FOR ATIO  
The LT1970 power op amp with precision controllable  
current limit is a flexible voltage and current source  
module. The drawing on the front page of this data sheet  
is representative of the basic application of the circuit,  
however many alternate uses are possible with proper  
understanding of the subcircuit capabilities.  
between IN and +IN. No current will flow at the inputs  
when differential input voltage is present. This feature is  
important when the precision current sense amplifiers  
“ISINK” and “ISRC” become active.  
Current Limit Amplifiers  
AmplifierstagesISINKandISRCareveryhightranscon-  
ductanceamplifierstageswithindependentlycontrolledoff-  
setvoltages.Theseamplifiersmonitorthevoltagebetween  
input pins SENSE+ and SENSEwhich usually sense the  
voltage across a small external current sense resistor. The  
transconductance amplifiers outputs connect to the same  
high impedance node as the main input stage GM1 ampli-  
fier.SmallvoltagedifferencesbetweenSENSE+andSENSE–  
, smallerthantheusersetVCSNK/10andVCSRC/10inmag-  
nitude, cause the current limit amplifiers to decouple from  
the signal path. This is functionally indicated by diodes D1  
and D2 in the Block Diagram. When the voltage VSENSE  
increasesinmagnitudesufficienttoequalorovercomeone  
oftheoffsetvoltagesVCSNK/10orVCSRC/10, theappropri-  
ate current limit amplifier becomes active and because of  
1970fb  
CIRCUIT DESCRIPTION  
Main Operational Amplifier  
Subcircuit block GM1, the 1X unity-gain current buffer  
and output transistors Q1 and Q2 form a standard opera-  
tionalamplifier.Thisamplifierhas±500mAcurrentoutput  
capability and a 3.6MHz gain bandwidth product. Most  
applicationsoftheLT1970willusethisopampinthemain  
signalpath.Allconventionalopampcircuitconfigurations  
are supported. Inverting, noninverting, filter, summation  
or nonlinear circuits may be implemented in a conven-  
tional manner. The output stage includes current limiting  
at ±800mA to protect against fault conditions. The input  
stage has high differential breakdown of 36V minimum  
10  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
itsveryhightransconductance,takescontrolfromtheinput  
The transfer function from VC to the associated VOS is  
linear from about 0.1V to 5V in, or 10mV to 500mV at the  
current limit amplifier inputs. An intentional nonlinearity  
is built into the transfer functions at low levels. This non-  
linearity insures that both the sink and source limit ampli-  
fierscannotbecomeactivesimultaneously.Simultaneous  
activation of the limit amplifiers could result in uncon-  
trolled outputs. As shown in the Typical Performance  
Characteristics curves, the control inputs have a “hockey  
stick” shape, to keep the minimum limit threshold at 4mV  
for each limit amplifier.  
stage, GM1. The output current is regulated to a value of  
I
OUT = VSENSE/RSENSE = (VCSRC or VCSNK)/(10 • RSENSE).  
The time required for the current limit amplifiers to take  
control of the output is typically 4µs.  
Linear operation of the current limit sense amplifier oc-  
curs with the inputs SENSE+ and SENSEranging be-  
tween VCC – 1.5V and VEE + 1.5V. Most applications will  
connect pins SENSE+ and OUT together, with the load on  
the opposite side of the external sense resistor and pin  
SENSE.FeedbacktotheinvertinginputofGM1shouldbe  
connected from SENSEto IN. Ground side sensing of  
load current may be employed by connecting the load  
between pins OUT and SENSE+. Pin SENSEwould be  
connected to ground in this instance. Load current would  
be regulated in exactly the same way as the conventional  
connection. However, voltage mode accuracy would be  
Figure 1 illustrates an interesting use of the current sense  
input pins. Here the current limit control amplifiers are  
used to produce a symmetrically limited output voltage  
swing. Instead of monitoring the output current, the  
output voltage is divided down by a factor of 20 and  
applied to the SENSE+ input, with the SENSEinput  
grounded. When the threshold voltage between SENSE+  
and SENSE(VCLAMP/10) is reached, the current limit  
stagetakescontroloftheoutputandclampsitalevelof±2  
• VCLAMP. With control inputs VCSRC and VCSNK tied  
together, a single polarity input voltage sets the same +  
and – output limit voltage for symmetrical limiting. In this  
circuit the output will current limit at the built-in fail-safe  
level of typically 800mA.  
degraded in this case due to the voltage across RSENSE  
.
Creative applications are possible where pins SENSE+ and  
SENSEmonitor a parameter other than load current. The  
operating principle that at most one of the current limit  
stages may be active at one time, and that when active, the  
current limit stages take control of the output from GM1,  
can be used for many different signals.  
Current Limit Threshold Control Buffers  
Input pins VCSNK and VCSRC are used to set the response  
thresholds of current limit amplifiers “ISINK” and “ISRC”.  
Each of these inputs may be independently driven by a  
voltage of 0V to 5V above the COMMON reference pin. The  
0V to 5V input voltage is attenuated by a factor of 10 and  
applied as an offset to the appropriate current limit ampli-  
fier. AC signals may be applied to these pins. The AC  
bandwidth from a VC pin to the output is typically 2MHz.  
For proper operation of the LT1970, these control inputs  
cannot be left floating.  
12V  
80mV  
TO  
V
CLAMP  
R3  
3k  
10V  
OV TO 5V  
–80mV  
TO  
–10V  
±CLAMP  
VC  
SRC  
VC  
REACHED  
SNK  
OUTPUT CLAMPS  
EN  
AT 2× V  
CLAMP  
+IN  
V
IN  
V
CC  
+
V
ISRC  
ISNK  
TSD  
+
OUT  
LT1970  
SENSE  
R1  
21.5k  
SENSE  
FILTER  
R
L
V
–IN  
For low VCC supply applications it is important to keep the  
maximum input control voltages, VCSRC and VCSNK, at  
least 2.5V below the VCC potential. This ensures linear  
controlofthecurrentlimitthreshold.Reducingthecurrent  
limit sense resistor value allows high output current from  
a smaller control voltage which may be necessary if the  
VCC supply is only 5V.  
V
R2  
1.13k  
EE  
COMMON  
–12V  
R
R
F
G
1970 F01  
Figure 1. Symmetrical Output Voltage Limiting  
1970fb  
11  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
indicate activation of the associated current limit ampli-  
fier. The TSD output indicates excessive die temperature  
has caused the circuit to enter thermal shutdown. The  
three digital outputs may be wire “OR’d” together, moni-  
tored individually or left open. These outputs do not affect  
circuit operation, but provide an indication of the present  
operational status of the chip.  
ENABLE Control  
The ENABLE input pin puts the LT1970 into a low supply  
current, high impedance output state. The ENABLE pin  
responds to TTL threshold levels with respect to the  
COMMONpin.PullingtheENABLEpinlowisthebestway  
toforcezerocurrentattheoutput.SettingVCSNK =VCSRC  
= 0V allows the output current to remain as high as  
Forslowvaryingoutputsignals,theassertionofalowlevel  
at the current limit output flags occurs when the current  
limit threshold is reached. For fast moving signals where  
the LT1970 output is moving at the slew limit, typically  
1.6V/µs, the flag assertion can be somewhat premature at  
typically 75% of the actual current limit value.  
±4mV/RSENSE  
.
In applications such as circuit testers (ATE), it may be  
preferable to apply a predetermined test voltage with a  
preset current limit to a test node simultaneously. The  
ENABLE pin can be used to provide this gating action as  
shown in Figure 2. While the LT1970 is disabled, the load  
is essentially floating and the input voltage and current  
limit control voltages can be set to produce the load test  
levels. Enabling the LT1970 then drives the load. The  
LT1970enablesanddisablesinjustafewmicroseconds.  
The actual enable and disable times at the load are a  
function of the load reactance.  
The operating status flags are designed to drive LEDs to  
provide a visual indication of current limit and thermal  
conditions. As such, the transition edges to and from the  
activelowstatearenotparticularlysharpandmayexhibit  
some uncertainty. Adding some positive feedback to the  
current limit control inputs helps to sharpen these  
transitions.  
Operating Status Flags  
With the values shown in Figure 3, the current limit  
threshold is reduced by approximately 0.5% when either  
current limit status flag goes low. With sharp logic transi-  
tions, the status outputs can be used in a system control  
The LT1970 has three digital output indicators; TSD, ISRC  
and ISNK. These outputs are open collector drivers re-  
ferredtotheCOMMONpin.Theoutputshave36Vcapabili-  
ties and can sink in excess of 10mA. ISRC and ISNK  
ENABLE  
5V  
V
OUT  
DISABLE  
0V  
1V/DIV  
0V  
5V  
12V  
EN  
10V/DIV  
VC  
SRC  
VC  
0V  
SNK  
V
IN  
= 0.5V  
V
= –0.5V  
IN  
EN  
+IN  
V
V
CC  
IN  
5µs/DIV  
+
V
ISRC  
R
S
ISNK  
1Ω  
TSD  
OUT  
LT1970  
+
SENSE  
R
L
SENSE  
10Ω  
FILTER  
V
–IN  
V
EE  
COMMON  
R
R
F
10k  
–12V  
G
10k  
1970 F02  
Figure 2. Using the ENABLE pin  
1970fb  
12  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
loop to take protective measures when a current limit  
initially sets a high value of current limit (500mA). The  
circuitoperatesnormallyuntilthesignalislargeenoughto  
entercurrentlimit. Wheneithercurrentlimitflaggoeslow,  
the current limit control voltage is reduced by a factor of  
10. This then forces a low level of output current (50mA)  
until the signal is reduced in magnitude. When the load  
current drops below the lower level, the current limit is  
then restored to the higher value. This action is similar to  
a self resettable fuse that trips at dangerously high current  
levels and resets only when conditions are safe to do so.  
condition is detected automatically.  
The current limit status flag can also be used to produce  
a dramatic change in the current limit value of the ampli-  
fier. Figure 4 illustrates a “snap-back” current limiting  
characteristic. In this circuit, a simple resistor network  
R1  
100Ω  
R3  
20k  
CURRENT  
LIMIT  
CONTROL  
VOLTAGE  
(0.1V TO 5V)  
I
I
FLAG  
SOURCE  
R2  
100Ω  
R4  
20k  
FLAG  
SINK  
12V  
THERMAL MANAGEMENT  
WHEN CURRENT LIMIT  
VC  
SRC  
IS FLAGGED, I  
LIMIT  
TRESHOLD IS REDUCED  
BY 0.5%  
VC  
SNK  
EN  
Minimizing Power Dissipation  
+IN  
V
IN  
V
CC  
+
V
ISRC  
ISNK  
The LT1970 can operate with up to 36V total supply  
voltage with output currents up to ±500mA. The amount  
ofpowerdissipatedinthechipcouldapproach18Wunder  
worst-case conditions. This amount of power will cause  
die temperature to rise until the circuit enters thermal  
shutdown. While the thermal shutdown feature prevents  
damage to the circuit, normal operation is impaired.  
Thermal design of the LT1970 operating environment is  
essential to getting maximum utility from the circuit.  
R
S
1Ω  
TSD  
+
OUT  
LT1970  
SENSE  
SENSE  
FILTER  
R
L
V
–IN  
V
EE  
COMMON  
–12V  
R
G
R
F
1970 F03  
The first concern for thermal management is minimizing  
the heat which must be dissipated. The separate power  
pins V+ and Vcan be a great aid in minimizing on-chip  
power. The output pin can swing to within 1.0V of V+ or V–  
even under maximum output current conditions. Using  
separate power supplies, or voltage regulators, to set V+  
Figure 3. Adding Positive Feedback to Sharpen the Transition  
Edges of the Current Limit Status Flags  
12V  
R1  
54.9k  
R2  
39.2k  
R3  
2.55k  
VC  
SRC  
VC  
SNK  
500mA  
EN  
I
MAX  
+IN  
V
IN  
V
CC  
+
V
ISRC  
ISNK  
50mA  
0
I
LOW  
R
S
I
OUT  
1Ω  
TSD  
+
OUT  
LT1970  
SENSE  
–500mA  
SENSE  
R
L
FILTER  
V
V
CC  
• R2  
(R1 + R2) • 10 • R  
–IN  
V
I
I
EE  
MAX  
S
COMMON  
V
• (R2||R3)  
CC  
[R1 + (R2||R3)] • 10 • R  
LOW  
S
R
R
F
10k  
G
–12V  
10k  
1970 F04  
Figure 4. “Snap-Back” Current Limiting  
1970fb  
13  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
and Vto their minimum values for the required output  
swing will minimize power dissipation. The supplies VCC  
and VEE may also be reduced to a minimal value, but these  
supply pins do not carry high currents, and the power  
saving is much less. VCC and VEE must be greater than the  
maximum output swing by 1.5V or more.  
very effective. Expanding the area on various layers sig-  
nificantly reduces the overall thermal resistance. The  
addition of vias (small 13 mil holes which fill during PCB  
plating) connecting all layers of metal also helps reduce  
the operating temperature of the LT1970. These are also  
shown in Figure 5.  
WhenVandV+ areprovidedseparatelyfromVCC andVEE,  
care must be taken to insure that Vand V+ are always less  
than or equal to the main supplies in magnitude. Protec-  
tion Schottky diodes may be required to insure this in all  
cases, including power on/off transients.  
OperationwithreducedV+ andVsuppliesdoesnotaffect  
any performance parameters except maximum output  
swing.AllDCaccuracyandACperformancespecifications  
guaranteed with VCC = V+ and VEE = Vare still valid with  
the reduced output signal swing range.  
It is important to note that the metal planes used for heat  
sinking are connecting electrically to VEE. These planes  
must be isolated from any other power planes used in the  
PCB design.  
Another effective way to control the power amplifier oper-  
ating temperature is to use airflow over the board. Airflow  
can significantly reduce the total thermal resistance as  
also shown in Figure 5.  
DRIVING REACTIVE LOADS  
Capacitive Loads  
Heat Sinking  
The power dissipated in the LT1970 die must have a path  
to the environment. With 100°C/W thermal resistance in  
free air with no heat sink, the package power dissipation is  
limited to only 1W. The 20-pin TSSOP package with  
exposed copper underside is an efficient heat conductor if  
it is effectively mounted on a PC board. Thermal resis-  
tances as low as 40°C/W can be obtained by soldering the  
bottom of the package to a large copper pattern on the PC  
board. For operation at 85°C, this allows up to 1.625W of  
power to be dissipated on the LT1970. At 25°C operation,  
up to 3.125W of power dissipation can be achieved. The  
PC board heat spreading copper area must be connected  
to VEE.  
The LT1970 is much more tolerant of capacitive loading  
thanmostoperationalamplifiers. Inaworst-caseconfigu-  
ration as a voltage follower, the circuit is stable for capaci-  
tive loads less than 2.5nF. Higher gain configurations  
improve the CLOAD handling. If very large capacitive loads  
are to be driven, a resistive decoupling of the amplifier  
fromthecapacitiveloadiseffectiveinmaintainingstability  
and reducing peaking. The current sense resistor, usually  
connected between the output pin and the load can serve  
as a part of the decoupling resistance.  
Inductive Loads  
Load inductance is usually not a problem at the outputs of  
operational amplifiers, but the LT1970 can be used as a  
high output impedance current source. This condition  
may be the main operating mode, or when the circuit  
entersaprotectivecurrentlimitmode. Justasloadcapaci-  
tance degrades the phase margin of normal op amps, load  
inductance causes a peaking in the loop response of the  
feedback controlled current source. The inductive load  
maybecausedbylongleadlengthsattheamplifieroutput.  
If the amplifier will be driving inductive loads or long lead  
lengths (greater than 4 inches) a 500pF capacitor from the  
SENSEpin to the ground plane will cancel the inductive  
Figure5showsexamplesofPCBmetalbeingusedforheat  
spreading. These are provided as a reference for what  
might be expected when using different combinations of  
metalareaondifferentlayersofaPCB.Theseexamplesare  
with a 4-layer board using 1oz copper on each layer. The  
most effective layers for spreading heat are those closest  
to the LT1970 junction. Soldering the exposed thermal  
padoftheTSSOPpackagetotheboardproducesathermal  
resistancefromjunction-to-caseofapproximately3°C/W.  
Asaminimum, theareadirectlybeneaththepackageonall  
PCB layers can be used for heat spreading. However,  
limiting the area to that of the metal heat sinking pad is not  
load and ensure stability.  
1970fb  
14  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
STILL AIR θ  
PACKAGE  
TOP LAYER  
2ND LAYER  
3RD LAYER  
BOTTOM LAYER  
JA  
TSSOP  
100°C/W  
TSSOP  
50°C/W  
TSSOP  
45°C/W  
1970 F05a  
Typical Reduction in θ with  
JA  
Laminar Airflow Over the Device  
0
–10  
–20  
–30  
–40  
–50  
–60  
% REDUCTION RELATIVE  
TO θ IN STILL AIR  
JA  
0
100 200 300 400 500 600 700 800 900 1000  
AIRFLOW (LINEAR FEET PER MINUTE, lfpm)  
1970 F05b  
Figure 5. Examples of PCB Metal Used for Heat Dissipation. Driver Package Mounted on Top  
Layer. Heat Sink Pad Soldered to Top Layer Metal. Metal Areas Drawn to Scale of Package Size  
1970fb  
15  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
Figure 6 shows the LT1970 driving an inductive load with  
a controlled amount of current. This load is shown as a  
generic magnetic transducer, which could be used to  
create and modulate a magnetic field. Driving the current  
limit control inputs directly forces a current through the  
load that could range up to 2MHz in modulation. Biasing  
the input stage to the midpoint of the modulation signal  
allows symmetrical bidirectional current flow through the  
load.ClampdiodesareaddedtoprotecttheLT1970output  
from large inductive flyback potentials caused by rapid  
di/dt changes.  
Figure 7 shows the connection of these back-to-back  
clampdiodesbetweentheFILTERpinandtheSENSE+ pin.  
With this connection, the internal 1k resistor between the  
SENSEpin and the FILTER pin limits the diode current.  
The BAV99 diodes are small SOT-23 packaged general  
purpose silicon diodes. The maximum current limit sense  
voltage is now the diode voltage drop, determined by the  
voltage across the sense resistor and the 1k internal  
resistor. As the diode begins to conduct current, with a  
voltage drop of around 300mV, an error in the expected  
current limit level at the high end of the control becomes  
Abrupt Load Short Protection  
R
SENSE  
MAIN  
AMPLIFIER  
OUT  
3
An abrupt short-circuit connection, often referred to as  
screwdriver or crowbar short, to ground or other supply  
potentialsistheworst-caseloadconditionfortheLT1970.  
The current limit sense amplifier normally operates with  
an input voltage differential equal to the voltage across the  
sense resistor, which is only 500mV maximum in a typical  
application. During an abrupt load short to ground, the  
load end of the sense resistor is immediately connected to  
ground while the amplifier output remains at the normal  
outputvoltage. Thiscanimposealargedifferentialvoltage  
to the sense amplifier inputs for a brief period. If this delta  
V can be greater than ±2V, it is beneficial to add clamps  
between the current limit sense amplifier inputs. These  
clamps ensure a smooth transition from the main ampli-  
fier control to the current limit amplifier control under all  
load short conditions that may arise.  
LOAD  
CURRENT  
LIMIT SENSE  
AMPLIFIER  
3
+
SENSE  
BAV99  
+
4
5
1
2
FILTER  
100*  
1nF TO 10nF  
1k  
SENSE  
6
+
SENSE  
*OPTIONAL—SEE TEXT  
2N3904  
2N3904  
FILTER  
1970 F07  
HIGHER CLAMP VOLTAGE  
ALTERNATIVE  
Figure 7. Adding Protection for Abrupt Load Shorts  
5V  
V
IN  
12V  
0V  
VC  
SRC  
VC  
SNK  
D1  
EN  
1N4001  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
1Ω  
S
±500mA  
TSD  
+
OUT  
LT1970  
12V  
SENSE  
MAGNETIC  
TRANSDUCER  
R1  
95.3K  
SENSE  
FILTER  
V
2.5V  
–IN  
V
EE  
LT1634-2.5  
D2  
1N4001  
COMMON  
1970 F06  
C1  
500pF  
–12V  
Figure 6. Current Modulation of a Magnetic Transducer  
1970fb  
16  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
apparent, asVDIODE islessthanthevoltageacrossRSENSE  
.
current limit amplifier to go to the incorrect current limit  
direction and hang up. Adding a small filter capacitor  
between the SENSEand FILTER pins, 1nF to 10nF is fairly  
typical, which charges through the clamp diodes forces  
the correct current limit polarity at the instant of the load  
short. This holds the amplifier in current limit until the  
capacitor discharges through the internal 1k resistor,  
eliminating transient induced behavior and creating a  
smooth transition into current limit.  
Adding an optional external 100resistor in parallel with  
the internal 1k resistor forces the diode voltage closer to  
the sensed current limit voltage and reduces the current  
limit error.  
Alternatively, the base-emitter junctions of back-to-back  
2N3904NPNtransistorscanprovidethisclampingaction.  
These diodes begin to conduct at a higher voltage level  
nearer to 600mV. With a 500mV maximum current limit  
threshold very little error will be noticed. Comparisons of  
typical current limit error with three ways of adding  
clamping protection are shown in Figure 8. Scaling the  
currentsenseresistorandthecurrentlimitcontrolvoltage  
down so that a 0V to 300mV current limit sense voltage  
range also prevents these accuracy errors caused by the  
abrupt-short clamping diodes.  
Supply Bypassing  
The LT1970 can supply large currents from the power  
suppliestoaloadatfrequenciesupto4MHz.Powersupply  
impedance must be kept low enough to deliver these  
currents without causing supply rails to droop. Low ESR  
capacitors, such as 0.1µF or 1µF ceramics, located close  
to the pins are essential in all applications. When large,  
high speed transient currents are present additional ca-  
pacitance may be needed near the chip. Check supply rails  
with a scope and if signal related ripple is seen on the  
supply rail, increase the decoupling capacitor as needed.  
Also shown in Figure 7 is a small filtering capacitor. This  
too provides an extra measure of control under abrupt  
load shorting conditions. A fast short-circuit makes ap-  
parentallparasiticinterconnectleadinductancesbetween  
the LT1970 and the load. These distributed parasitic  
elements can cause significant transient voltage spikes in  
the short time after the application or removal of a short  
circuit. These uncontrolled voltage transients could actu-  
ally couple back to the current limit amplifier and cause  
polarity reversal from sourcing current limit to sinking or  
vice versa. This can act as positive feedback and cause the  
To ensure proper start-up biasing of the LT1970, it is  
recommended that the rate of change of the supply volt-  
ages at turn-on be limited to be no faster than 6V/µs.  
Application Circuit Ideas  
The digitally controlled analog pin driver is shown in  
Figure 9. All of the control signals are provided by an  
LTC®1664 quad, 10-bit DAC by way of a 3-wire serial  
interface. The LT1970 is configured as a simple difference  
amplifier with a gain of 3. This gain is required to produce  
±15V from the 0V to 5V outputs from DACs C and D. To  
providevoltageheadroom,thesuppliesfortheLT1970are  
settothemaximumvalueof±18V. As±18Vistheabsolute  
maximum rating of supply voltage for the LT1970, care  
must be taken to not allow the supply voltage to increase.  
DACs A and B separately control the sinking and sourcing  
current limit to the load over the range of ±4mA to  
±500mA. An optional ON/OFF control for the pin driver  
using the ENABLE input is shown. If always enabled the  
ENABLE pin should be tied to VCC.  
25  
20  
BAV99 w 1k  
15  
10  
BAV99 w 100Ω  
5
0
2N3904 w 1kΩ  
–5  
–10  
50  
200  
300 350 400 450 500  
100 150  
250  
±V SENSE (mV)  
CL  
1970 F08  
Figure 8. Current Limit Accuracy with Different Clamps  
1970fb  
17  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
OPTIONAL TEST PIN  
ON/OFF CONTROL  
APPLY LOAD  
DRIVE  
5V  
Hi-Z  
0V  
5V  
CODE C – CODE D  
V
= 15V  
±15V  
OUT  
(
)
1024  
V
CLR  
V
CC  
REF  
0.5 • CODE B  
I
I
=
–4mA TO –500mA  
4mA TO 500mA  
SOURCE(MAX)  
1024 • R  
S
DAC A  
0.5 • CODE A  
=
SINK(MAX)  
1024 • R  
S
18V  
+
3-WIRE  
DAC B  
DAC C  
R5  
R6  
3k  
10µF  
0.1µF  
SERIAL  
3k  
INTERFACE  
CS/LD  
SCK  
DI  
DECODER  
VC  
SRC  
VC  
R1  
SNK  
3.4k  
EN  
+IN  
V
CC  
+
V
R2  
10.2k  
ISRC  
ISNK  
R
S
1Ω  
FORCE  
TSD  
+
OUT  
LT1970  
SENSE  
TEST PIN  
LOAD  
SENSE  
R3  
3.4k  
FILTER  
V
DAC D  
–IN  
V
EE  
COMMON  
SENSE  
10µF  
0.1µF  
+
–18V  
R4  
10.2k  
LTC1664  
QUAD 10-BIT DAC  
1970 F09  
Figure 9. Digitally Controlled Analog Pin Driver  
Insomeapplicationsitmaybenecessarytoknowwhatthe  
current into the load is at any time. Figure 10 shows an  
LT1787 high side current sense amplifier monitoring the  
current through sense resistor RS. The LT1787 is biased  
from the VEE supply to accommodate the common mode  
input range of ±10V. The sense resistor is scaled down to  
provide a 100mV maximum differential signal to the  
current sense amplifier to preserve linearity. The LT1880  
amplifier provides gain and level shifting to produce a 0V  
to 5V output signal (2.5V DC ±5mV/mA) with up to 1kHz  
full-scale bandwidth. An A/D converter could then digitize  
this instantaneous current reading to provide digital feed-  
back from the circuit.  
TheLT1970isjustaseasytouseasastandardoperational  
amplifier. Basic amplification of a precision reference  
voltage creates a very simple bench DC power supply as  
shown in Figure 11. The built-in power stage produces an  
adjustable 0V to 25V at 4mA to 100mA of output current.  
Voltage and current adjustments are derived from the  
LT1634-5 5V reference. The output current capability is  
500mA, but this supply is restricted to 100mA for power  
dissipation reasons. The worst-case output voltage for  
maximum power dissipated in the LT1970 output stage  
occurs if the output is shorted to ground or set to a voltage  
near zero. Limiting the output current to 100mA sets the  
maximum power dissipation to 3W. To allow the output to  
1970fb  
18  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
V
CC  
0V TO 1V  
12V  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
ISNK  
R
S
0.2Ω  
TSD  
+
OUT  
LT1970  
SENSE  
SENSE  
R
LOAD  
FILTER  
V
–IN  
V
EE  
COMMON  
R4  
LT1787  
255k  
+
V
V
V
S
–12V  
S
BIAS  
R
R
F
G
–12V  
12V  
R1  
60.4k  
20k  
V
EE  
OUT  
R2  
10k  
2.5V  
LT1880  
–12V  
±5mV/mA  
+
R3  
20k  
1kHz FULL CURRENT  
BANDWIDTH  
–12V  
0V TO 5V  
A/D  
1970 F10  
OPTIONAL DIGITAL FEEDBACK  
Figure 10. Sensing Output Current  
30V DC  
R2 40k  
R1  
2.1k  
CURRENT LIMIT  
ADJUST  
R5  
5.49k  
R3  
10k  
R4 10k  
LOAD  
FAULT  
OUTPUT  
VOLTAGE  
ADJUST  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
R
1Ω  
S
ISNK  
V
OUT  
TSD  
+
0V TO 25V  
OUT  
LT1970  
LT1634-5  
SENSE  
4mA TO 100mA  
+
C3  
10µF  
SENSE  
FILTER  
V
–IN  
V
EE  
GND  
COMMON  
–5V  
LTC1046  
C2  
10µF  
+
+
R
R
G
F
2.55k  
10.2k  
C1 10µF  
1970 F11  
Figure 11. Simple Bench Power Supply  
1970fb  
19  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
range all the way to 0V, an LTC1046 charge pump inverter  
is used to develop a –5V supply. This produces a negative  
rail for the LT1970 which has to sink only the quiescent  
current of the amplifier, typically 7mA.  
Using a second LT1970, a 0V to ±12V dual tracking power  
supply is shown in Figure 12. The midpoint of two 10k  
resistors connected between the + and – outputs is held at  
0V by the LT1881 dual op amp servo feedback loop. To  
R6  
18.2k  
15V  
+
R7  
3k  
R8  
3k  
0.1  
10µF  
+OUT  
CURRENT FAULT  
LIMIT  
THERMAL  
VC  
SRC  
VC  
R5  
13k  
SNK  
EN  
–IN  
V
CC  
+
V
ISRC  
R
S1  
1  
ISNK  
+OUT  
TSD  
+
0V TO 12V  
4mA TO 150mA  
OUT  
LT1970  
+
SENSE  
C2  
10µF  
SENSE  
FILTER  
V
+IN  
V
EE  
COMMON  
18V  
R1  
R9  
10k  
1%  
5V  
C1  
1µF  
6.19k  
REF  
–15V  
V
OUT  
ADJUST  
R3  
23.2k  
R2  
10k  
R4  
10k  
15V  
+
LT1634-5  
OPTIONAL SYMMETRY  
ADJUST  
+
CURRENT  
R11  
10k  
1/2 LT1881  
LIMIT  
100Ω  
ADJUST  
1/2 LT1881  
–15V  
R12  
10k  
GROUND  
R13  
25.5k  
15V  
R15  
3k  
R10  
10k  
1%  
TO TSD PIN  
OF +OUT  
–OUT  
CURRENT  
LIMIT  
VC  
SRC  
VC  
R14  
10.7k  
SNK  
EN  
–IN  
V
CC  
+
V
ISRC  
ISNK  
R
S2  
1Ω  
–OUT  
TSD  
0V TO –12V  
4mA TO 150mA  
OUT  
+
LT1970  
C3  
SENSE  
+
10µF  
SENSE  
FILTER  
V
+IN  
V
EE  
1970 F12  
COMMON  
10µF  
0.1µF  
+
–15V  
Figure 12. Dual Tracking Bench Power Supply  
1970fb  
20  
LT1970  
W U U  
APPLICATIO S I FOR ATIO  
U
maintain 0V, both outputs must be equal and opposite in  
polarity, thus they track each other. If one output reaches  
current limit and drops in voltage, the other output follows  
to maintain a symmetrical + and – voltage across a  
common load. Again, the output current limit is less than  
the full capability of the LT1970 due to thermal reasons.  
Separate current limit indicators are used on each LT1970  
because one output only sources current and the other  
only sinks current. Both devices can share the same  
thermal shutdown indicator, as the output flags can be  
OR’ed together.  
the desired speed-set input voltage. Because the LT1970  
is unity-gain stable, it can be configured as an integrator  
to force whatever voltage across the motor as necessary  
to match the feedback speed signal with the set input  
signal.  
Additionally, the current limit of the amplifier can be  
adjusted to control the torque and stall current of the  
motor. For reliability, a feedback scheme similar to that  
shown in Figure 4 can be used. Assuming that a stalled  
rotor will generate a current limit condition, the stall  
currentlimitcanbesignificantlyreducedtopreventexces-  
sive power dissipation in the motor windings.  
Another simple linear power amplifier circuit is shown in  
Figure 13. This uses the LT1970 as a linear driver of a DC  
motor with speed control. The ability to source and sink  
the same amount of output current provides for bidirec-  
tional rotation of the motor. Speed control is managed by  
sensing the output of a tachometer built on to the motor.  
Atypicalfeedbacksignalof3V/1000rpmiscomparedwith  
For motor speed control without using a tachometer, the  
circuit in Figure 14 shows an approach. Using the enable  
feature of the LT1970, the drive to the motor can be  
removed periodically. With no drive applied, the spinning  
motor presents a back EMF voltage proportional to its  
rotational speed. The LT1782 is a tiny rail-to-rail amplifier  
OV TO 5V  
TORQUE/STALL  
CURRENT CONTROL  
15V  
VC  
SRC  
VC  
SNK  
EN  
+IN  
V
CC  
+
V
ISRC  
R
S
ISNK  
1Ω  
TSD  
+
OUT  
LT1970  
SENSE  
SENSE  
12V DC  
MOTOR  
FILTER  
V
–IN  
V
EE  
COMMON  
GND  
15V  
C1  
1µF  
R1  
1.2k  
–15V  
TACH  
FEEDBACK  
REVERSE  
3V/1000rpm  
R4  
49.9k  
R5  
49.9k  
1970 F13  
R2  
10k  
FORWARD  
R3  
1.2k  
–15V  
Figure 13. Simple Bidirectional DC Motor Speed Controller  
1970fb  
21  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
15V  
OV TO 5V  
TORQUE/STALL  
CURRENT CONTROL  
R3  
2k  
FAULT/STALL  
VC  
SRC  
FWD  
R1  
10k  
5V  
STOP  
VC  
SNK  
V
MOTOR SPEED  
CONTROL  
CC  
+IN  
+
V
R2  
20k  
ISRC  
0V  
REV  
R
S
1Ω  
ISNK  
TSD  
+
OUT  
LT1970  
SENSE  
SENSE  
12V DC  
MOTOR  
FILTER  
V
–IN  
V
EE  
EN  
COM  
C1  
4.7µF  
–15V  
R14  
10k  
R4  
100k  
12V  
R5  
120k  
+
12V  
1/2 LT1638  
–12V  
100Ω  
+
LT1782  
–12V  
C2  
0.01µF  
SHDN  
R7  
10k  
R8  
20k  
R13  
10k  
R12  
10k  
+
12V  
1/2 LT1638  
D1  
R9  
20k  
R10  
1N4148  
82.5k  
C3  
0.1µF  
D2  
1N4148  
R11  
9.09k  
1970 F14  
–12V  
Figure 14. Simple Bidirectional DC Motor Speed Controller Without a Tachometer  
compared to the speed-set input voltage, settles the  
output to a fixed value. A 0V to 5V signal for the motor  
speed input controls both rotational speed and direction.  
with a shutdown pin. The amplifier is enabled during this  
interval to sample the back EMF voltage across the motor.  
Thisvoltageisthenbufferedbyone-halfofanLT1638dual  
op amp and used to provide the feedback to the LT1970  
integrator. When re-enabled the LT1970 will adjust the  
drive to the motor until the speed feedback voltage,  
The other half of the LT1638 is used as a simple pulse  
oscillator to control the periodic sampling of the motor  
back EMF.  
1970fb  
22  
LT1970  
U
PACKAGE DESCRIPTIO  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663,  
Exposed Pad Variation CA)  
6.40 – 6.60*  
(.252 – .260)  
4.95  
(.195)  
4.95  
(.195)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CA) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
1970fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
23  
LT1970  
W U U  
U
APPLICATIO S I FOR ATIO  
Figure 15 shows how easy it is to boost the output current  
oftheLT1970.This±5Apowerstageusescomplementary  
external N- and P-channel MOSFETs to provide the addi-  
tional current. The output stage power supply inputs, V+  
and V, are used to provide gate drive as needed. With  
higher output currents, the sense resistor RCS, is reduced  
in value to maintain the same easy current limit control.  
Figure 15 shows some optional resistor dividers between  
theoutputconnectionsandthecurrentsenseinputs. They  
are required only if the load of this power stage is removed  
or at a very low current level. Large power devices with no  
load on them can saturate and pull the output voltage very  
close to the power supply rails. The current sense ampli-  
fiers operate properly with input voltages at least 1V away  
from the VCC and VEE supply rails. In boosted current  
applications, it may be necessary to attenuate the maxi-  
mum output voltage levels by 1V before connecting to the  
sense input pins. This only slightly deceases the current  
limit thresholds.  
This Class B power stage is intended for DC and low  
frequency, <1kHz, applications as crossover distortion  
becomes evident at higher frequencies.  
V
CC  
CURRENT LIMIT  
CONTROL VOLTAGE  
0V TO 5V  
15V  
R2  
100  
10µF  
0.1µF  
IRF9530  
V
CC  
R1  
1k  
ENABLE  
+IN  
VC  
SRC  
V
C
SNK  
R4  
+
V
100Ω  
OUT  
LT1970  
+
SENSE  
R5  
100Ω  
SENSE  
R
CS  
COMMON  
V
*
*
0.1Ω  
–IN  
5W  
V
EE  
*
*
R
LOAD  
R
F
G
2.2k  
2.2k  
V
IN  
IRF530  
R3  
100Ω  
V
EE  
–15V  
10µF  
0.1µF  
*OPTIONAL, SEE TEXT  
1970 F15  
Figure 15. A = 1 Amplifier with Discrete Power Devices to Boost Output Current to 5A  
V
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1010  
Fast ±150mA Power Buffer  
20MHz Bandwidth, 75V/µs Slew Rate  
LT1206  
250mA/60MHz Current Feedback Amplifier  
1.1A/35MHz Current Feedback Amplifier  
Shutdown Mode, Adjustable Supply Current  
Stable with C = 10,000pF  
LT1210  
L
1970fb  
LT 0407 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LT1970IFE#TR

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970IFE#TRPBF

LT1970 - 500mA Power Op Amp with Adjustable Precision Current Limit; Package: TSSOP; Pins: 20; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1970_1

500mA Power Op Amp with Adjustable Precision Current Limit
Linear

LT1976

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100mA Quiescent Current
Linear

LT1976B

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BEFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BIFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100μA Quiescent Current
Linear

LT1976BIFE#TR

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976BIFE#TRPBF

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT1976B_15

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100A Quiescent Current
Linear

LT1976EFE

High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100mA Quiescent Current
Linear

LT1976EFE#PBF

LT1976/LT1976B - High Voltage 1.5A, 200kHz Step-Down Switching Regulator with 100&#181;A Quiescent Current; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear