LT3011IDDTR [Linear]

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD; 50mA时3V至80V低压差微功耗线性稳压器,具有PWRGD
LT3011IDDTR
型号: LT3011IDDTR
厂家: Linear    Linear
描述:

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD
50mA时3V至80V低压差微功耗线性稳压器,具有PWRGD

稳压器
文件: 总16页 (文件大小:225K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3011  
50mA, 3V to 80V Low  
Dropout Micropower Linear  
Regulator with PWRGD  
DESCRIPTION  
FEATURES  
The LT®3011 is a high voltage, micropower, low dropout  
linearregulator.Thedeviceiscapableofsupplying50mAof  
output current with a dropout voltage of 300mV. Designed  
for use in battery-powered high voltage systems, the low  
quiescent current (46μA operating and 1μA in shutdown)  
is well controlled in dropout, making the LT3011 an ideal  
choice.  
n
Wide Input Voltage Range: 3V to 80V  
n
Low Quiescent Current: 46μA  
n
Low Dropout Voltage: 300mV  
Output Current: 50mA  
n
n
PWRGD Flag with Programmable Delay  
n
No Protection Diodes Needed  
n
Adjustable Output from 1.24V to 60V  
n
1μA Quiescent Current in Shutdown  
The LT3011 includes a PWRGD flag to indicate output  
regulation. The delay between regulated output level and  
flag indication is programmable with a single capacitor.  
The LT3011 also has the ability to operate with very small  
output capacitors; it is stable with only 1μF on the output.  
Smallceramiccapacitorscanbeusedwithouttheaddition  
of any series resistance (ESR) as is common with other  
regulators. Internal protection circuitry includes reverse-  
battery protection, current limiting, thermal limiting, and  
reverse current protection.  
n
Stable with 1μF Output Capacitor  
n
Stable with Ceramic, Tantalum, and Aluminum  
Capacitors  
Reverse-Battery Protection  
n
n
No Reverse Current Flow from Output to Input  
n
Thermal Limiting  
n
Thermally Enhanced 12-Lead MSOP and  
10-Pin (3mm × 3mm) DFN Packages  
APPLICATIONS  
The LT3011 features an adjustable output with a 1.24V  
reference voltage. The device is available in the thermally  
enhanced 12-lead MSOP and the low profile (0.75mm)  
10-pin (3mm × 3mm) DFN package, both providing excel-  
lent thermal characteristics.  
n
Low Current High Voltage Regulators  
n
Regulator for Battery-Powered Systems  
Telecom Applications  
n
n
Automotive Applications  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
Dropout Voltage  
5V Supply with Shutdown  
350  
300  
V
OUT  
IN  
OUT  
ADJ  
5V  
50mA  
V
LT3011  
IN  
750k  
249k  
250  
200  
150  
100  
50  
1.6M  
3V TO  
80V  
1μF  
1μF  
SHDN  
PWRGD  
GND  
C
T
POWER GOOD  
1000pF  
3011 TA01  
V
OUTPUT  
OFF  
ON  
SHDN  
<0.3V  
>2.0V  
0
0
10  
20  
30  
40  
50  
OUTPUT CURRENT (mA)  
3011 TA02  
3011f  
1
LT3011  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
Storage Temperature Range................... –65°C to 150°C  
Operating Junction Temperature  
IN Pin Voltage ......................................................... 80V  
OUT Pin Voltage...................................................... 60V  
Input-to-Output Differential Voltage........................ 80V  
ADJ Pin Voltage ........................................................ 7V  
SHDN Pin Voltage ................................................... 80V  
(Notes 3, 10, 11)  
LT3011E, LT3011I .............................. –40°C to 125°C  
LT3011H ............................................ –40°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
C Pin Voltage.................................................. 7V, 0.5V  
T
MSE Package Only............................................ 300°C  
PWRGD Pin Voltage....................................... 80V, 0.5V  
Output Short-Circuit Duration .......................... Indefinite  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
NC  
OUT  
ADJ  
GND  
NC  
12 NC  
11 IN  
10 NC  
OUT  
ADJ  
1
2
3
4
5
10 IN  
9
8
7
6
NC  
11  
13  
GND  
SHDN  
NC  
9
8
7
SHDN  
NC  
NC  
PWRGD  
C
PWRGD  
C
T
T
MSE PACKAGE  
12-LEAD PLASTIC MSOP  
DD PACKAGE  
10-LEAD (3mm s 3mm) PLASTIC DFN  
T
= 150°C, θ = 40°C/W, θ = 16°C/W  
JA JC  
JMAX  
T
= 150°C, θ = 43°C/W, θ = 16°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 13) IS GND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3011EDD#PBF  
LT3011IDD#PBF  
LT3011EMSE#PBF  
LT3011HMSE#PBF  
LT3011IMSE#PBF  
LEAD BASED FINISH  
LT3011EDD  
TAPE AND REEL  
PART MARKING*  
LDKQ  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3011EDD#TRPBF  
LT3011IDD#TRPBF  
LT3011EMSE#TRPBF  
LT3011HMSE#TRPBF  
LT3011IMSE#TRPBF  
TAPE AND REEL  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
–40°C to 125°C  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
LDKQ  
3011  
3011  
12-Lead Plastic MSOP  
3011  
12-Lead Plastic MSOP  
PART MARKING*  
LDKQ  
PACKAGE DESCRIPTION  
LT3011EDD#TR  
10-Lead (3mm × 3mm) Plastic DFN  
10-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
LT3011IDD  
LT3011IDD#TR  
LDKQ  
LT3011EMSE  
LT3011EMSE#TR  
LT3011HMSE#TR  
LT3011IMSE#TR  
3011  
LT3011HMSE  
3011  
12-Lead Plastic MSOP  
LT3011IMSE  
3011  
12-Lead Plastic MSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3011f  
2
LT3011  
(LT3011E, LT3011I)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 125°C operating temperature range, otherwise specifications are TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 50mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2, 3)  
I
2.8  
4
V
LOAD  
V
= 3V, I  
IN  
= 1mA  
1.228  
1.215  
1.24  
1.24  
1.252  
1.265  
V
V
IN  
LOAD  
l
l
4V < V < 80V, 1mA < I  
< 50mA  
LOAD  
Line Regulation (Note 2)  
Load Regulation (Note 2)  
1
6
12  
mV  
ΔV = 3V to 80V, I  
IN  
= 1mA  
LOAD  
15  
25  
mV  
mV  
V
V
= 4V, ΔI  
= 4V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
IN  
IN  
LOAD  
LOAD  
l
l
l
l
Dropout Voltage  
I
I
= 1mA  
= 1mA  
100  
200  
300  
150  
190  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
IN  
I
I
= 10mA  
= 10mA  
260  
350  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
370  
550  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
GND Pin Current  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 50mA  
46  
105  
410  
1.9  
90  
200  
700  
3.3  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
OUT(NOMINAL)  
IN  
(Notes 4, 6)  
μA  
mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 50mA, BW = 10Hz to 100kHz, V  
= 1.24V  
100  
30  
μV  
RMS  
OUT  
LOAD  
OUT  
(Note 7 )  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
1.1  
V
V
0.3  
85  
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.5  
0.1  
2
0.5  
μA  
μA  
Quiescent Current in Shutdown  
PWRGD Trip Point  
V
IN  
= 6V, V  
= 0V  
1
90  
5
μA  
%
SHDN  
l
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
94  
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3
%
l
l
I
= 50μA  
250  
6
mV  
μA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V
V
– V  
CT(PWRGD Low)  
1.67  
85  
CT(PWRGD High)  
Ripple Rejection  
Current Limit  
= 7V (Avg), V  
= 0.5V , f  
= 120Hz, I  
= 50mA  
65  
60  
dB  
IN  
RIPPLE  
P-P RIPPLE  
LOAD  
V
IN  
V
IN  
= 7V, V  
= 0V  
= –0.1V (Note 2)  
140  
mA  
mA  
OUT  
OUT  
l
l
= 4V, ΔV  
Input Reverse Leakage Current  
Reverse Output Current (Note 9)  
V
V
= –80V, V  
= 0V  
6
mA  
μA  
IN  
OUT  
= 1.24V, V < 1.24V (Note 2)  
8
15  
OUT  
IN  
(LT3011H)  
ELECTRICAL CHARACTERISTICS  
The l denotes the specifications which apply over the –40°C to 150°C operating temperature range, otherwise specifications are TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 50mA  
MIN  
TYP  
MAX  
UNITS  
l
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2, 3)  
I
2.8  
4
V
LOAD  
V
= 3V, I  
IN  
= 1mA  
1.228  
1.215  
1.24  
1.24  
1.252  
1.265  
V
V
IN  
LOAD  
l
l
4V < V < 80V, 1mA < I  
< 50mA  
LOAD  
Line Regulation (Note 2)  
Load Regulation (Note 2)  
1
6
12  
mV  
ΔV = 3V to 80V, I  
IN  
= 1mA  
LOAD  
15  
25  
mV  
mV  
V
V
= 4V, ΔI  
= 4V, ΔI  
= 1mA to 50mA  
= 1mA to 50mA  
IN  
IN  
LOAD  
LOAD  
l
3011f  
3
LT3011  
ELECTRICAL CHARACTERISTICS (LT3011H)  
The l denotes the specifications which apply over the –40°C to 150°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
I
I
= 1mA  
= 1mA  
100  
150  
220  
mV  
mV  
LOAD  
LOAD  
l
l
l
V
= V  
OUT(NOMINAL)  
IN  
(Notes 4, 5)  
I
I
= 10mA  
= 10mA  
200  
300  
260  
380  
mV  
mV  
LOAD  
LOAD  
I
I
= 50mA  
= 50mA  
370  
575  
mV  
mV  
LOAD  
LOAD  
l
l
l
l
GND Pin Current  
I
I
I
I
= 0mA  
= 1mA  
= 10mA  
= 50mA  
46  
105  
410  
1.9  
125  
225  
750  
3.5  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
OUT(NOMINAL)  
IN  
(Notes 4, 6)  
μA  
mA  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 50mA, BW = 10Hz to 100kHz, V  
= 1.24V  
100  
30  
μV  
RMS  
OUT  
LOAD  
OUT  
(Note 7)  
100  
2
nA  
l
l
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
1.1  
V
V
0.3  
85  
SHDN Pin Current (Note 8)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.5  
0.1  
2
0.5  
μA  
μA  
Quiescent Current in Shutdown  
PWRGD Trip Point  
V
IN  
= 6V, V  
= 0V  
1
90  
5
μA  
%
SHDN  
l
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
95  
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3
%
l
l
I
= 50μA  
250  
6
mV  
μA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V
V
– V  
CT(PWRGD Low)  
1.67  
85  
CT(PWRGD High)  
Ripple Rejection  
Current Limit  
= 7V (Avg), V  
= 0.5V , f  
= 120Hz, I  
= 50mA  
65  
60  
dB  
IN  
RIPPLE  
P-P RIPPLE  
LOAD  
V
IN  
V
IN  
= 7V, V  
= 0V  
= –0.1V (Note 2)  
140  
mA  
mA  
OUT  
OUT  
l
l
= 4V, ΔV  
Input Reverse Leakage Current  
Reverse Output Current (Note 9)  
V
V
= –80V, V  
= 0V  
6
mA  
μA  
IN  
OUT  
= 1.24V, V < 1.24V (Note 2)  
8
15  
OUT  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3011 is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3011  
is tested and specified for these conditions with an external resistor  
divider (249k bottom, 409k top) for an output voltage of 3.3V. The external  
resistor divider will add a 5μA DC load on the output.  
dropout region. This is the worst-case GND pin current. The GND pin  
current will decrease slightly at higher input voltages.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 10: The LT3011 regulators are tested and specified under pulse  
load conditions such that T T . The LT3011E regulators are 100%  
J
A
tested at T = 25°C. Performance of the LT3011E over the full –40°C  
A
to 125°C operating junction temperature range is assured by design,  
characterization and correlation with statistical process controls. The  
LT3011I regulators are guaranteed over the full –40°C to 125°C operating  
junction temperature range. The LT3011H is tested to the LT3011H  
Electrical Characteristics table at 150°C operating junction temperature.  
High junction temperatures degrade operating lifetimes. Operating lifetime  
is derated at junction temperatures greater than 125°C.  
Note 11: This IC includes overtemperature protection that is intended to protect  
the device during momentary overload conditions. Junction temperature will  
exceed 125°C (LT3011E/LT3011I) or 150°C (LT3011H) when overtemperature  
protection is active. Continuous operation above the specified maximum  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
Note 6: GND pin current is tested with V = V  
and a current  
IN  
OUT(NOMINAL)  
source load. This means the device is tested while operating close to its  
operating junction temperature may impair device reliability.  
3011f  
4
LT3011  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
400  
350  
300  
250  
200  
150  
100  
50  
400  
350  
300  
250  
200  
150  
100  
50  
600  
500  
= TEST POINTS  
I
= 50mA  
L
T
125oC  
J
400  
300  
T
25oC  
J
T
b 125oC  
b 25oC  
J
I
I
= 10mA  
= 1mA  
L
T
J
200  
100  
0
L
0
0
10  
20  
30  
50  
0
40  
0
5
10 15 20 25 30 35 40 45 50  
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3011 G03  
0
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
3011 G02  
3011 G01  
Quiescent Current  
ADJ Pin Voltage  
Quiescent Current  
80  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.250  
1.248  
1.246  
1.244  
1.242  
1.240  
1.238  
1.236  
1.234  
1.232  
1.230  
V
= 6V  
= ∞  
I
L
= 1mA  
T
= 25°C  
J
IN  
L
= 0  
R
R
=
d
70  
60  
L
I
L
V
SHDN  
= V  
IN  
V
SHDN  
= V  
IN  
50  
40  
30  
20  
10  
V
SHDN  
= GND  
0
2
3
4
5
6
10  
–50 –25  
0
25 50 75 100 125 150  
0
1
7
8
9
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3011 G05  
0
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3011 G04  
3011 G06  
GND Pin Current  
GND Pin Current vs IOUT  
SHDN Pin Threshold  
1.6  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
J
= V  
+1V  
OUT(NOMINAL)  
IN  
T
= 25°C  
1.4  
1.2  
R
= 24.8Ω  
= 50mA*  
L
L
I
1.0  
0.8  
0.6  
0.4  
0.2  
R
= 49.6Ω  
= 25mA*  
L
L
I
R
I
= 124Ω  
= 10mA*  
L
L
R
= 1.24k, I = 1mA*  
L
L
0
–50 –25  
0
25 50 75 100 125 150  
0
1
2
3
4
5
6
7
8
9
10  
0
5
10 15 20 25 30 35 40 45 50  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3011 G09  
3011 G07  
3011 G08  
T
= 25°C  
OUT  
J
*FOR V  
= 1.24V  
3011f  
5
LT3011  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
SHDN Pin Current  
SHDN Pin Current  
ADJ Pin Bias Current  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.28  
0.24  
120  
100  
80  
60  
40  
20  
0
V
= 0V  
T
= 25°C  
SHDN  
J
CURRENT FLOWS  
CURRENT FLOWS  
OUT OF SHDN PIN  
OUT OF SHDN PIN  
0.20  
0.16  
0.12  
0.08  
0.04  
0
–50 –25  
0
25 50 75 100 125 150  
1
1.5  
2
2.5  
3
5
0
0.5  
3.5  
4
4.5  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
TEMPERATURE (°C)  
3011 G11  
3011 G12  
3011 G10  
PWRGD Trip Point  
PWRGD Output Low Voltage  
CT Charging Current  
4.0  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
200  
180  
160  
140  
120  
100  
80  
I
= 50μA  
PWRGD TRIPPED HIGH  
PWRGD  
3.5  
3.0  
OUTPUT  
RISING  
2.5  
2.0  
1.5  
1.0  
0.5  
OUTPUT  
FALLING  
60  
40  
20  
0
0
–50 –25  
0
25 50 75 100 125 150  
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3011 G13  
–50 –25  
25 50 75 100 125 150  
0
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3011 G15  
3011 G14  
CT Comparator Threshold  
Current Limit  
Current Limit  
180  
160  
140  
120  
100  
80  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
180  
160  
140  
120  
100  
80  
V
T
= 0V  
V
OUT  
J
CT(HIGH)  
= 25°C  
60  
60  
40  
40  
V
V
= 7V  
20  
V
20  
IN  
OUT  
CT(LOW)  
= 0V  
0
0
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3011 G16  
0
2
3
4
5
6
10  
0
1
7
8
9
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3011 G18  
0
INPUT VOLTAGE (V)  
3011 G17  
3011f  
6
LT3011  
TYPICAL PERFORMANCE CHARACTERISTICS TJ = 25°C, unless otherwise noted.  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
80  
160  
140  
120  
100  
80  
90  
88  
86  
84  
82  
80  
78  
76  
74  
72  
70  
V
V
= 0V  
= V  
V
I
= 7V + 0.5V RIPPLE AT f = 120Hz  
P-P  
IN  
OUT  
IN  
L
= 1.24V  
ADJ  
= 50mA  
70  
60  
V
= 1.24V  
ADJ PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
OUT  
50  
40  
30  
20  
10  
60  
T
= 25°C  
IN  
J
40  
V
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
20  
V
OUT  
= V  
ADJ  
0
0
–50 –25  
0
25 50 75 100 125 150  
2
3
4
5
6
10  
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3011 G21  
0
1
7
8
9
0
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3011 G19  
3011 G20  
Input Ripple Rejection  
Minimum Input Voltage  
Load Regulation  
4.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
0
–2  
I
L
= 50mA  
V
I
= 7V + 50mV  
RIPPLE  
RMS  
ΔI = 1mA TO 50mA  
L
IN  
L
= 50mA, V  
= 1.24V  
OUT  
V
= 1.24V  
OUT  
3.5  
3.0  
C
= 10μF  
OUT  
–4  
CERAMIC  
2.5  
2.0  
1.5  
1.0  
0.5  
–6  
–8  
C
OUT  
= 1μF  
CERAMIC  
–10  
0
–12  
–50 –25  
0
25 50 75 100 125 150  
10  
100  
1k  
10k  
100k  
1M  
–50 –25  
0
25 50 75 100 125 150  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3011 G23  
3011 G24  
3011 G22  
Output Noise Spectral Density  
Output Noise (10Hz to 100kHz)  
Transient Response  
10  
1
0.3  
0.2  
0.1  
0
V
C
I
= 1.24V  
= 1μF  
V
C
I
= 1.24V  
= 1μF  
OUT  
OUT  
OUT  
OUT  
= 50mA  
= 50mA  
L
L
WORST-CASE NOISE  
V
OUT  
100μV/DIV  
0.1  
–0.1  
–0.2  
50  
V
V
C
C
= 6V  
SET FOR 5V  
= 1μF CERAMIC  
IN  
OUT  
IN  
0.01  
0.001  
3011 G26  
1ms/DIV  
25  
= 1μF CERAMIC  
LOAD  
OUT  
ΔI  
= 1mA TO 50mA  
0
200 300 400 500 600  
TIME (μs)  
1000  
700 800 900  
0
100  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
3011 G27  
3011 G25  
3011f  
7
LT3011  
PIN FUNCTIONS (DFN/MSOP)  
OUT (Pin 1/Pin 2): Output. The output supplies power to  
the load. A minimum output capacitor of 1μF is required  
to prevent oscillations. Larger capacitors will be required  
for applications with large transient loads to limit peak  
voltage transients. See the Applications Information  
section for more information on output capacitance and  
reverse output characteristics.  
C (Pin 6/Pin 7): Timing Capacitor. The C pin allows the  
T T  
use of a small capacitor to delay the timing between the  
point where the output crosses the PWRGD threshold and  
the PWRGD flag changes to a high impedance state. Cur-  
rent out of this pin during the charging phase is 3μA. The  
voltage difference between the PWRGD low and PWRGD  
high states is 1.67V (see the Applications Information  
section).  
ADJ (Pin 2/Pin 3): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to 7V. It has a  
bias current of 30nA which flows into the pin (see the  
curve labeled ADJ Pin Bias Current vs Temperature in the  
Typical Performance Characteristics section). The ADJ  
pin voltage is 1.24V referenced to ground, and the output  
voltage range is 1.24V to 60V.  
SHDN (Pin 8/Pin 9): Shutdown. The SHDN pin is used  
to put the LT3011 into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDNpincanbedriveneitherby5Vlogicoropen-collector  
logic with a pull-up resistor. The pull-up resistor is only  
required to supply the pull-up current of the open-collec-  
tor gate, normally several microamperes. If unused, the  
GND (Pins 3, 11/Pins 4, 13): Ground. The exposed back-  
side of the package (Pin 11/Pin 13) is an electrical connec-  
tion for GND. As such, to ensure optimum device opera-  
tion and thermal performance, the Exposed Pad must be  
connected directly to Pin 3/Pin 4 on the PC board.  
SHDN pin must be tied to a logic high or V .  
IN  
IN (Pin 10/Pin 11): Input. Power is supplied to the device  
through the IN pin. A bypass capacitor is required on this  
pin if the device is more than six inches away from the  
main input filter capacitor. In general, the output imped-  
ance of a battery rises with frequency, so it is advisable to  
include a bypass capacitor in battery-powered circuits. A  
bypass capacitor in the range of 1μF to 10μF is sufficient.  
The LT3011 is designed to withstand reverse voltages  
on the IN pin with respect to ground and the OUT pin. In  
the case of a reverse input voltage, which can occur if a  
battery is plugged in backwards, the LT3011 will act as if  
there is a diode in series with its input. There will be no  
reverse current flow into the LT3011 and no reverse volt-  
age will appear at the load. The device will protect both  
itself and the load.  
NC (Pins 4, 7, 9/Pins 1, 5, 8, 10, 12): No Connection.  
These pins have no internal connection. Connecting NC  
pins to a copper area for heat dissipation provides a small  
improvement in thermal performance.  
PWRGD (Pin 5/Pin 6): Power Good. The PWRGD flag is  
an open-collector flag to indicate that the output voltage  
has increased above 90% of the nominal output voltage.  
There is no internal pull-up on this pin; a pull-up resistor  
must be used. The PWRGD pin will change state from an  
open-collector pull-down to high impedance after both  
the output is above 90% of the nominal voltage and the  
capacitor on the C pin has charged through a 1.67V dif-  
T
Exposed Pad (Pin 11/Pin 13): Ground. The Exposed Pad  
must be soldered to the PCB.  
ferential. The maximum pull-down current of the PWRGD  
pin in the low state is 50μA.  
3011f  
8
LT3011  
APPLICATIONS INFORMATION  
The LT3011 is a 50mA high voltage/low dropout regulator  
with micropower quiescent current and shutdown. The  
deviceiscapableofsupplying50mAatadropoutvoltageof  
300mV. Thelowoperatingquiescentcurrent(46μA)drops  
to 1μA in shutdown. In addition to low quiescent current,  
theLT3011incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered systems. The  
device is protected against both reverse input and reverse  
output voltages. In battery backup applications where the  
output can be held up by a backup battery when the input  
is pulled to ground, the LT3011 acts like it has a diode in  
series with its output and prevents reverse current flow.  
fications for output voltages greater than 1.24V will be  
proportional to the ratio of the desired output voltage to  
1.24V; (V /1.24V). For example, load regulation for an  
OUT  
output current change of 1mA to 50mA is –6mV (typical)  
at V  
= 1.24V. At V  
= 12V, load regulation is:  
OUT  
OUT  
12V  
1.24V  
• – 6mV = – 58mV  
Output Capacitance and Transient Response  
The LT3011 is designed to be stable with a wide range  
of output capacitors. The ESR of the output capacitor  
affects stability, most notably with small capacitors. A  
minimum output capacitor of 1μF with an ESR of 3Ω or  
less is recommended to prevent oscillations. The LT3011  
is a micropower device and output transient response  
will be a function of output capacitance. Larger values  
of output capacitance decrease the peak deviations and  
provideimprovedtransientresponseforlargerloadcurrent  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3011, will increase the  
effective output capacitor value.  
Adjustable Operation  
TheLT3011hasanoutputvoltagerangeof1.24Vto60V.The  
outputvoltageissetbytheratiooftwoexternalresistorsas  
showninFigure1.Thedeviceservostheoutputtomaintain  
thevoltageattheadjustpinat1.24Vreferencedtoground.  
ThecurrentinR1isthenequalto1.24V/R1andthecurrent  
in R2 is the current in R1 plus the ADJ pin bias current.  
The ADJ pin bias current, 30nA at 25°C, flows through  
R2 into the ADJ pin. The output voltage can be calculated  
using the formula in Figure 1. The value of R1 should be  
less than 250k to minimize errors in the output voltage  
caused by the ADJ pin bias current. Note that in shutdown  
the output is turned off and the divider current will be zero.  
The adjustable device is tested and specified with the  
ADJ pin tied to the OUT pin and a 5μA DC load (unless  
otherwise specified) for an output voltage of 1.24V. Speci-  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
V
OUT  
IN  
OUT  
ADJ  
R2  
V
= V  
1 +  
+ (I )(R2)  
ADJ  
OUT  
ADJ  
ADJ  
+
R1  
LT3011  
GND  
R2  
R1  
V
IN  
V
I
= 1.24V  
= 30nA AT 25oC  
OUTPUT RANGE = 1.24V TO 60V  
ADJ  
3011 F01  
Figure 1. Adjustable Operation  
3011f  
9
LT3011  
APPLICATIONS INFORMATION  
in a small package, but they tend to have strong voltage PWRGD Flag and Timing Capacitor Delay  
andtemperaturecoefficients, asshowninFigures2and3.  
The PWRGD flag is used to indicate that the ADJ pin volt-  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
age is within 10% of the regulated voltage. The PWRGD  
can exhibit an effective value as low as 1μF to 2μF for the  
pin is an open-collector output, capable of sinking 50μA  
DC bias voltage applied and over the operating tempera-  
of current when the ADJ pin voltage is low. There is no  
ture range. The X5R and X7R dielectrics result in more  
internal pull-up on the PWRGD pin; an external pull-up  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
resistor must be used. When the ADJ pin rises to within  
10% of its final reference value, a delay timer is started.  
At the end of this delay, programmed by the value of the  
capacitor on the C pin, the PWRGD pin switches to a high  
T
impedance and is pulled up to a logic level by an external  
pull-up resistor.  
To calculate the capacitor value on the C pin, use the  
T
following formula:  
ICT • tDELAY  
VCT(HIGH) VCT(LOW)  
CTIME  
=
Figure 4 shows a block diagram of the PWRGD circuit. At  
start-up,thetimingcapacitorisdischargedandthePWRGD  
pin will be held low. As the output voltage increases and  
the ADJ pin crosses the 90% threshold, the JK flipflop is  
reset, and the 3μA current source begins to charge the  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lar to the way piezoelectric accelerometer or microphone  
works. For a ceramic capacitor, the stress can be induced  
by vibrations in the system or thermal transients.  
timing capacitor. Once the voltage on the C pin reaches  
T
the V  
threshold (approximately 1.7V at 25°C), the  
CT(HIGH)  
capacitor voltage is clamped and the PWRGD pin is set to  
a high impedance state.  
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10MF  
0
X5R  
0
–20  
X5R  
–20  
–40  
–40  
Y5V  
–60  
–60  
Y5V  
–80  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10MF  
–100  
–100  
50  
TEMPERATURE (oC)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3011 F02  
3011 F03  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3011f  
10  
LT3011  
APPLICATIONS INFORMATION  
Duringnormaloperation,aninternalglitchlterwillignore  
shorttransients(<15μs).Longertransientsbelowthe90%  
threshold will reset the JK flip-flop. This flip-flop ensures  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
that the capacitor on the C pin is quickly discharged all  
T
the way to the V  
threshold before restarting the  
CT(LOW)  
time delay. This provides a consistent time delay after the  
ADJ pin is within 10% of the regulated voltage before the  
PWRGD pin switches to high impedance.  
The following table lists thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32" FR-4 board with one ounce  
copper.  
Thermal Considerations  
Table 1. MSOP Measured Thermal Resistance  
Thepowerhandlingcapabilityofthedevicewillbelimitedby  
themaximumratedjunctiontemperature(125°C,LT3011E/  
LT3011I or 150°C, LT3011H). The power dissipated by the  
device will be made up of two components:  
COPPER AREA  
THERMAL RESISTANCE  
TOPSIDE  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
100 sq mm 2500 sq mm 2500 sq mm  
52°C/W  
54°C/W  
58°C/W  
64°C/W  
1. Output current multiplied by the input/output voltage  
differential: I  
• (V – V ) and,  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V  
I
GND  
IN  
Table 2. DFN Measured Thermal Resistance  
COPPER AREA  
The GND pin current is found by examining the GND pin  
current curves in the Typical Performance Characteristics  
section. Power dissipation will be equal to the sum of the  
two components listed above.  
THERMAL RESISTANCE  
TOPSIDE  
BACKSIDE BOARD AREA (JUNCTION-TO-AMBIENT)  
2500 sq mm 2500 sq mm 2500 sq mm  
1000 sq mm 2500 sq mm 2500 sq mm  
225 sq mm 2500 sq mm 2500 sq mm  
100 sq mm 2500 sq mm 2500 sq mm  
52°C/W  
54°C/W  
58°C/W  
64°C/W  
TheLT3011seriesregulatorshaveinternalthermallimiting  
designedtoprotectthedeviceduringoverloadconditions.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C (LT3011E/ LT3011I) or 150°C  
(LT3011H) must not be exceeded. It is important to give  
careful consideration to all sources of thermal resistance  
fromjunctiontoambient.Additionalheatsourcesmounted  
nearby must also be considered.  
The thermal resistance junction-to-case (θ ), measured  
JC  
at the Exposed Pad on the back of the die, is 16°C/W.  
Continuous operation at large input/output voltage dif-  
ferentials and maximum load current is not practical due  
to thermal limitations. Transient operation at high input/  
output differentials is possible. The approximate thermal  
time-constant for a 2500sq mm 3/32" FR-4 board, with  
maximum topside and backside area for one ounce cop-  
per, is three seconds. This time-constant will increase as  
more thermal mass is added (i.e., vias, larger board and  
other components).  
I
CT  
3μA  
C
PWRGD  
T
+
ADJ  
V
CT(HIGH)  
– V  
BE  
(z1.1V)  
J
Q
K
V
REF  
• 90%  
+
Foranapplicationwithtransienthighpowerpeaks,average  
power dissipation can be used for junction temperature  
calculationsaslongasthepulseperiodissignificantlyless  
than the thermal time constant of the device and board.  
V
CT(LOW)  
z0.1V  
3011 F04  
Figure 4. PWRGD Circuit Block Diagram  
3011f  
11  
LT3011  
APPLICATIONS INFORMATION  
Calculating Junction Temperature  
Operation at the different power levels is as follows:  
Example 1: Given an output voltage of 5V, an input volt-  
age range of 24V to 30V, an output current range of 0mA  
to 50mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be?  
76% operation at P1, 19% for P2, 4% for P3,  
and 1% for P4.  
P
= 76%(0.23W) + 19%(2.20W) + 4%(0.35W)  
EFF  
+ 1%(3.42W) = 0.64W  
The power dissipated by the device will be equal to:  
Withathermalresistanceintherangeof52°C/Wto64°C/W,  
this translates to a junction temperature rise above ambi-  
ent of 33°C to 41°C.  
I
• (V  
– V ) + (I  
• V  
)
OUT(MAX)  
IN(MAX)  
OUT  
GND  
IN(MAX)  
Where:  
I
= 50mA  
= 30V  
High Temperature Operation  
OUT(MAX)  
V
CaremustbetakenwhendesigningLT3011applicationsto  
operate at high ambient temperatures. The LT3011 works  
at elevated temperatures but erratic operation can occur  
duetounforeseenvariationsinexternalcomponents.Some  
tantalum capacitors are available for high temperature  
operation, but ESR is often several ohms; capacitor ESR  
above 3Ω is unsuitable for use with the LT3011. Ceramic  
capacitor manufacturers (Murata, AVX, TDK and Vishay  
Vitramonatthiswriting)nowofferceramiccapacitorsthat  
areratedto150°CusinganX8Rdielectric.Deviceinstability  
willoccuriftheoutputcapacitorvalueandESRareoutside  
design limits at elevated temperature and operating DC  
voltage bias (see information on capacitor characteristics  
underOutputCapacitanceandTransientResponse).Check  
each passive component for absolute value and voltage  
ratings over the operating temperature range.  
IN(MAX)  
I
at (I  
= 50mA, V = 30V) = 1mA  
GND  
OUT IN  
So:  
P = 50mA • (30V – 5V) + (1mA • 30V) = 1.28W  
The thermal resistance will be in the range of 52°C/W to  
64°C/W depending on the copper area. So, the junction  
temperature rise above ambient will be approximately  
equal to:  
1.28W • 58°C/W = 74°C  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
T
= 50°C + 74°C = 124°C  
JMAX  
Example 2: Given an output voltage of 5V, an input voltage  
of48Vthatrisesto72Vfor5ms(max)outofevery100ms,  
and a 5mA load that steps to 50mA for 50ms out of every  
250ms, what is the junction temperature rise above ambi-  
ent? Using a 500ms period (well under the time-constant  
of the board), power dissipation is as follow:  
Leakageincapacitors,orfromsolderuxleftafterinsuf-  
ficient board cleaning, adversely affects the low quies-  
cent current operation. Consider junction temperature  
increase due to power dissipation in both the junction  
and nearby components to ensure maximum specifica-  
tions are not violated for the LT3011E/LT3011H/LT3011I  
or external components.  
P1 (48V , 5mA load) = 5mA • (48V – 5V)  
IN  
+ (200μA • 48V) = 0.23W  
Protection Features  
P2 (48V , 50mA load) = 50mA • (48V – 5V)  
IN  
TheLT3011incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, the device is protected against reverse-input  
voltages, and reverse voltages from output-to-input.  
+ (1mA • 48V) = 2.20W  
P3 (72V , 5mA load) = 5mA (72V – 5V)  
IN  
+ (200μA • 72V) = 0.35W  
P1 (72V , 50mA load) = 50mA (72V – 5V)  
IN  
+ (1mA • 72V) = 3.42W  
3011f  
12  
LT3011  
APPLICATIONS INFORMATION  
Current limit protection and thermal overload protection divider is used to provide a regulated 1.5V output from the  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C  
(LT3011E/LT3011I) or 150°C (LT3011H).  
1.24V reference when the output is forced to 60V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 53V difference between the OUT and ADJ  
pin is divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 10.6k.  
The input of the device will withstand reverse voltages  
of 80V. Current flow into the device will be limited to less  
than 6mA (typically less than 100μA) and no negative  
voltage will appear at the output. The device will protect  
both itself and the load. This provides protection against  
batteries which can be plugged in backwards.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
open-circuit. Current flow back into the output will follow  
the curve shown in Figure 5. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clampontheADJpin. Witharesistordividerontheregula-  
tor output, this current will be reduced depending on the  
size of the resistor divider.  
The ADJ pin of the adjustable device can be pulled above  
or below ground by as much as 7V without damaging the  
device.Iftheinputisleftopen-circuitorgrounded,theADJ  
pin will act like an open-circuit when pulled below ground,  
and like a large resistor (typically 100k) in series with a  
diodewhenpulledaboveground.Iftheinputispoweredby  
a voltage source, pulling the ADJ pin below the reference  
voltage will cause the device to try and force the current  
limit out of the output. This will cause the output to go to  
an unregulated high voltage. Pulling the ADJ pin above the  
reference voltage will turn off all output current.  
When the IN pin of the LT3011 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the LT3011 is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
160  
140  
ADJ PIN CLAMP  
(SEE ABOVE)  
120  
100  
80  
60  
40  
20  
0
T
V
= 25°C  
IN  
J
= 0V  
CURRENT FLOWS  
INTO OUTPUT PIN  
V
= V  
OUT  
ADJ  
2
3
4
5
6
10  
0
1
7
8
9
OUTPUT VOLTAGE (V)  
3011 F05  
Figure 5. Reverse Output Current  
3011f  
13  
LT3011  
TYPICAL APPLICATIONS  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
Buck Converter  
6
C2  
L1†  
Efficiency vs Load Current  
0.33MF  
BOOST  
15MH  
V
V
IN  
100  
90  
80  
70  
60  
50  
OUT  
5V  
4
2
5.5V*  
V
= 5V  
V
SW  
OUT  
L = 68MH  
IN  
C3  
4.7MF  
100V  
D1  
TO 60V  
1A/250mA  
V
V
= 10V  
= 42V  
IN  
IN  
10MQ060N  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
R1  
15.4k  
C1  
+
100MF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
0
0.25  
0.50  
0.75  
1.00  
1.25  
10  
1
2
3011 TA03  
IN  
OUT  
LOAD CURRENT (A)  
LT3011  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30MH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60MH ABOVE 1A.  
OPERATING  
CURRENT  
100k  
750k  
249k  
3011 TA04  
8
5
SHDN  
ADJ  
HIGH  
LOW  
PWRGD  
GND  
C
T
3, 11  
6
LT3011 PIN NUMBERS ARE FOR  
THE DD PACKAGE.  
1000pF  
LT3011 Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3011  
GND  
750k  
249k  
1MF  
12V  
(FUTURE 42V)  
1MF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
SHDN  
OFF  
ON  
LT3011 Telecom Application  
V
IN  
IN  
OUT  
48V  
(72V TRANSIENT)  
+
LT3011  
750k  
249k  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
1MF  
1MF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
ADJ  
GND  
3011 TA05  
OFF  
ON  
3011f  
14  
LT3011  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
TYP  
6
0.38  
0.10  
10  
0.675 0.05  
3.50 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
2.38 0.10  
(2 SIDES)  
2.38 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION  
OF (WEED-2). CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS  
OF VARIATION ASSIGNMENT  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
MSE Package  
12-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev B)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 p 0.102  
(.112 p .004)  
2.845 p 0.102  
(.112 p .004)  
0.889 p 0.127  
(.035 p .005)  
1
6
0.35  
REF  
5.23  
(.206)  
MIN  
1.651 p 0.102  
(.065 p .004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
DETAIL “B”  
12  
4.039 p 0.102  
(.159 p .004)  
(NOTE 3)  
7
NO MEASUREMENT PURPOSE  
0.65  
(.0256)  
BSC  
0.42 p 0.038  
(.0165 p .0015)  
TYP  
0.406 p 0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 p .003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 p 0.102  
(.118 p .004)  
(NOTE 4)  
0o – 6o TYP  
4.90 p 0.152  
(.193 p .006)  
GAUGE PLANE  
0.53 p 0.152  
(.021 p .006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MSE12) 0608 REV B  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
3011f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT3011  
TYPICAL APPLICATION  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3011  
1MF  
1MF  
OFF  
ON  
SHDN  
GND  
ADJ  
R
SET  
–48V CAN VARY  
FROM –4V TO –80V  
–48V  
3011 TA06  
I
= 1.24V/R  
SET  
LED  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
V : 4.2V to 30V/36V, V  
LT1121/  
150mA, Micropower, LDO  
= 3.75V, V = 0.42V, I = 30μA, I = 16μA,  
OUT(MIN) DO Q SD  
IN  
LT1121HV  
Reverse Battery Protection, SOT-223, S8 and Z Packages  
LT1676  
LT1761  
LT1762  
LT1763  
60V, 440mA (I ), 100kHz, High  
V : 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5μA, S8 Package  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Efficiency Step-Down DC/DC Converter  
100mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 20μA, I <1μA,  
DO Q SD  
IN  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOTTM Package  
RMS  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 25μA, I <1μA,  
, MS8 Package  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
RMS  
V : 1.8V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I <1μA,  
DO Q SD  
, S8 Package  
IN  
OUT(MIN)  
Low Noise < 20μV  
RMS  
LT1764/  
LT1764A  
3A, Low Noise, Fast Transient Response,  
LDO  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD and TO220-5 Packages  
LT1766  
LT1776  
LT1956  
LT1962  
60V, 1.2A (I ), 200kHz, High Efficiency V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP-16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converter  
40V, 550mA (I ), 200kHz, High  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30μA, N8 and S8 Packages  
Q SD  
OUT  
Efficiency Step-Down DC/DC Converter  
60V, 1.2A (I ), 500kHz, High Efficiency V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP-16/E Package  
Q SD  
OUT  
IN  
Step-Down DC/DC Converter  
300mA, Low Noise Micropower, LDO  
V : 1.8V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I <1μA,  
DO Q SD  
, MS8 Package  
IN  
Low Noise < 20μV  
RMS  
LT1963/  
LT1963A  
1.5A, Low Noise, Fast Transient Response, V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I <1μA,  
IN  
OUT(MIN) DO Q SD  
LDO  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, S0T-223 and S8 Packages  
LT1965  
1.1A, Low Noise, Low Dropout Linear  
Regulator  
310mV Dropout Voltage, Low Noise = 40μV  
OUT  
, V : 1.8V to 20V,  
RMS IN  
V
: 1.2V to 19.5V, Stable with Ceramic Capacitors, TO-220, DDPak,  
MSOP and 3mm × 3mm DFN Packages  
280mV Dropout Voltage, Low I = 3μA, V : 1.6V to 20V, ThinSOT and SC-70 Packages  
LT3009  
20mA, 3μA I Micropower LDO  
Q
Q
IN  
LT3010/  
LT3010H  
50mA, 3V to 80V, Low Noise Micropower V : 3V to 8V, V  
= 1.275V, V = 0.3V, I = 30μA, I = 1μA,  
RMS JMAX  
IN  
OUT(MIN) DO Q SD  
LDO  
Low Noise < 100μV  
, MS8E Package, H Grade = +140°C T  
LT3012/  
LT3012H  
250mA, 4V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 4V to 80V, V : 1.24V to 60V, V = 0.4V, I = 40μA, I <1μA,  
IN OUT DO Q SD  
TSSOP-16E and 4mm × 3mm DFN-12 Packages, H Grade = +140°C T  
JMAX  
LT3013/  
LT3013H  
250mA, 4V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 4V to 80V, V : 1.24V to 60V, V = 0.4V, I = 65μA, I <1μA,  
IN OUT DO Q SD  
TSSOP-16E and 4mm × 3mm DFN-12 Packages, H Grade = +140°C T  
, PWRGD Flag  
JMAX  
LT3014/HV  
20mA, 3V to 80V, Low Dropout  
Micropower Linear Regulator  
V : 3V to 80V (100V for 2ms, HV Version), V : 1.22V to 60V, V = 0.35V,  
IN OUT DO  
I = 7μA, I <1μA, ThinSOT and 3mm × 3mm DFN-8 Packages  
Q
SD  
LT3080/  
LT3080-1  
1.1A, Parallelable, Low Noise, Low  
Dropout Linear Regulator  
300mV Dropout Voltage (2-Supply Operation), Low Noise = 40μV  
, V : 1.2V to 36V,  
RMS IN  
V
: 0V to 35.7V, Current-Based Reference with One Resistor V  
Set; Directly  
OUT  
OUT  
Parallelable (No Op Amp Required), Stable with Ceramic Capacitors, TO-220, SOT-223,  
MSOP and 3mm × 3mm DFN Packages; LT3080-1 Features an Integrated Ballast Resistor  
ThinSOT is a trademark of Linear Technology Corporation.  
3011f  
LT 0808 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3011IDDTRPBF

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3011IMSE

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3011IMSE#PBF

LT3011 - 50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3011IMSE#TR

IC VREG 1.24 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.55 V DROPOUT, PDSO12, PLASTIC, MSOP-12, Adjustable Positive Single Output LDO Regulator
Linear

LT3011IMSEPBF

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3011IMSETR

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3011IMSETRPBF

50mA, 3V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3012

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012B

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012BEDE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator
Linear

LT3012BEDE#PBF

LT3012B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3012BEDE#TRPBF

LT3012B - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear