LT3013EDE [Linear]

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; 250毫安, 4V至80V低压差微功耗线性稳压器,具有PWRGD
LT3013EDE
型号: LT3013EDE
厂家: Linear    Linear
描述:

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
250毫安, 4V至80V低压差微功耗线性稳压器,具有PWRGD

稳压器
文件: 总20页 (文件大小:220K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3013  
250mA, 4V to 80V  
Low Dropout Micropower  
Linear Regulator with PWRGD  
FEATURES  
DESCRIPTION  
The LT®3013 is a high voltage, micropower low dropout  
linearregulator. Thedeviceiscapableofsupplying250mA  
ofoutputcurrentwithadropoutvoltageof400mV.Designed  
foruseinbattery-poweredorhighvoltagesystems,thelow  
quiescent current (65μA operating and 1μA in shutdown)  
makes the LT3013 an ideal choice. Quiescent current is  
also well controlled in dropout.  
Wide Input Voltage Range: 4V to 80V  
Low Quiescent Current: 65μA  
Low Dropout Voltage: 400mV  
Output Current: 250mA  
No Protection Diodes Needed  
Adjustable Output from 1.24V to 60V  
1μA Quiescent Current in Shutdown  
Stable with 3.3μF Output Capacitor  
Other features of the LT3013 include a PWRGD flag to  
indicate output regulation. The delay between regulated  
output level and flag indication is programmable with a  
singlecapacitor. TheLT3013alsohastheabilitytooperate  
with very small output capacitors. The regulator is stable  
with only 3.3μF on the output while most older devices  
require between 10μF and 100μF for stability. Small ce-  
ramic capacitors can be used without any need for series  
resistance (ESR) as is common with other regulators.  
Internal protection circuitry includes reverse-battery  
protection, current limiting, thermal limiting and reverse  
current protection.  
Stable with Aluminum, Tantalum or Ceramic  
Capacitors  
Reverse-Battery Protection  
No Reverse Current Flow from Output to Input  
Thermal Limiting  
Thermally Enhanced 16-Lead TSSOP and  
12-Pin (4mm × 3mm) DFN Package  
APPLICATIONS  
Low Current High Voltage Regulators  
Regulator for Battery-Powered Systems  
The device is available with an adjustable output with a  
1.24Vreferencevoltage.TheLT3013regulator isavailable  
in the thermally enhanced 16-lead TSSOP and the low  
profile (0.75mm), 12-pin (4mm × 3mm) DFN package,  
both providing excellent thermal characteristics.  
Telecom Applications  
Automotive Applications  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Dropout Voltage  
TYPICAL APPLICATION  
400  
350  
300  
250  
200  
150  
100  
50  
5V Supply with Shutdown  
V
OUT  
IN  
OUT  
ADJ  
5V  
250mA  
V
LT3013  
IN  
750k  
249k  
5.4V TO  
80V  
1.6M  
3.3µF  
1µF  
SHDN  
PWRGD  
GND  
C
T
3013 TA01  
V
OUTPUT  
1000pF  
SHDN  
<0.3V  
>2.0V  
OFF  
ON  
0
0
50  
100  
150  
200  
250  
OUTPUT CURRENT (mA)  
3013 TA02  
3013fc  
1
LT3013  
ABSOLUTE MAXIMUM RATINGS  
(Note 1)  
Output Short-Circuit Duration .......................... Indefinite  
Storage Temperature Range  
IN Pin Voltage .........................................................±±0V  
OUT Pin Voltage......................................................±60V  
IN to OUT Differential Voltage .................................±±0V  
ADJ Pin Voltage ....................................................... ±7V  
SHDN Pin Input Voltage..........................................±±0V  
CT Pin Voltage .................................................7V, 0.5V  
PWRGD Pin Voltage.......................................±0V, 0.5V  
TSSOP Package................................. –65°C to 150°C  
DFN Package...................................... –65°C to 125°C  
Operating Junction Temperature Range  
(Notes 3, 10, 11)  
LT3013E............................................. –40°C to 125°C  
LT3013HFE ........................................ –40°C to 140°C  
Lead Temperature (FE16 Soldering, 10 sec) ......... 300°C  
PACKAGE/ORDER INFORMATION  
TOP VIEW  
TOP VIEW  
GND  
NC  
1
2
3
4
5
6
7
8
16  
15  
14  
GND  
NC  
NC  
OUT  
1
2
3
4
5
6
12 NC  
11 IN  
10 IN  
OUT  
IN  
OUT  
OUT  
13 IN  
17  
13  
ADJ  
12  
11  
10  
9
NC  
ADJ  
9
8
7
NC  
GND  
SHDN  
GND  
SHDN  
PWRGD  
GND  
C
T
PWRGD  
C
T
GND  
DE PACKAGE  
12-LEAD (4mm × 3mm) PLASTIC DFN  
FE PACKAGE  
16-LEAD PLASTIC TSSOP  
= 140°C, θ = 40°C/W, θ = 16°C/W  
EXPOSED PAD (PIN 17) IS GND  
MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 40°C/W, θ = 16°C/W  
JA JC  
EXPOSED PAD (PIN 13) IS GND  
MUST BE SOLDERED TO PCB  
JMAX  
T
JMAX  
JA JC  
ORDER PART NUMBER  
LT3013EDE  
DE PART MARKING  
3013  
ORDER PART NUMBER  
FE PART MARKING*  
LT3013EFE  
LT3013HFE  
3013EFE  
3013HFE  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
3013fc  
2
LT3013  
(LT3013E)  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the –40°C to 125°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 250mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2,3)  
I
4
4.75  
V
LOAD  
V
= 4V, I  
= 1mA  
1.225  
1.2  
1.24  
1.24  
1.255  
1.2±  
V
V
IN  
LOAD  
4.75V < V < ±0V, 1mA < I  
< 250mA  
LOAD  
IN  
Line Regulation  
ΔV = 4V to ±0V, I  
IN  
= 1mA (Note 2)  
0.1  
7
5
mV  
LOAD  
Load Regulation (Note 2)  
V
IN  
V
IN  
= 4.75V, ΔI  
= 4.75V, ΔI  
= 1mA to 250mA  
= 1mA to 250mA  
12  
25  
mV  
mV  
LOAD  
LOAD  
Dropout Voltage  
I
I
= 10mA  
= 10mA  
160  
250  
400  
230  
300  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
IN  
OUT(NOMINAL)  
I
I
= 50mA  
= 50mA  
340  
420  
mV  
mV  
LOAD  
LOAD  
I
I
= 250mA  
= 250mA  
490  
620  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
I
I
I
= 0mA  
= 100mA  
= 250mA  
65  
3
10  
120  
μA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
= 4.75V  
IN  
(Notes 4, 6)  
1±  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 250mA, BW = 10Hz to 100kHz  
100  
30  
μV  
RMS  
OUT  
LOAD  
(Note 7 )  
100  
2
nA  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.±  
V
V
0.3  
±5  
SHDN Pin Current (Note ±)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.3  
0.1  
2
1
μA  
μA  
Quiescent Current in Shutdown  
PWRGD Trip Point  
V
IN  
= 6V, V  
= 0V  
SHDN  
1
5
μA  
%
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
90  
94  
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3.0  
1.6  
75  
%
I
= 50μA  
250  
6
mV  
μA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V – V  
CT(PWRGD High) CT(PWRGD Low)  
Ripple Rejection  
Current Limit  
V
IN  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 250mA  
LOAD  
65  
dB  
RIPPLE  
P-P RIPPLE  
V
IN  
V
IN  
= 7V, V  
= 0V  
OUT  
400  
= 4.75V, ΔV  
= –0.1V (Note 2)  
250  
OUT  
Reverse Output Current (Note 9)  
V
OUT  
= 1.24V, V < 1.24V (Note 2)  
12  
25  
μA  
IN  
(LT3013H)  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the –40°C to 140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
= 200mA  
MIN  
TYP  
MAX  
UNITS  
Minimum Input Voltage  
ADJ Pin Voltage (Notes 2,3)  
I
4
4.75  
V
LOAD  
V
= 4V, I  
= 1mA  
1.225  
1.2  
1.24  
1.24  
1.255  
1.2±  
V
V
IN  
LOAD  
4.75V < V < ±0V, 1mA < I  
< 200mA  
LOAD  
IN  
Line Regulation  
ΔV = 4V to ±0V, I  
IN  
= 1mA (Note 2)  
0.1  
6
5
mV  
LOAD  
Load Regulation (Note 2)  
V
IN  
V
IN  
= 4.75V, ΔI  
= 4.75V, ΔI  
= 1mA to 200mA  
= 1mA to 200mA  
12  
30  
mV  
mV  
LOAD  
LOAD  
3013fc  
3
LT3013  
(LT3013H)  
ELECTRICAL CHARACTERISTICS  
The  
denotes the specifications which apply over the –40°C to 140°C operating temperature range, otherwise specifications are at TJ = 25°C.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Dropout Voltage  
IN  
I
I
= 10mA  
= 10mA  
160  
230  
320  
mV  
mV  
LOAD  
LOAD  
V
= V  
(Notes 4, 5)  
OUT(NOMINAL)  
I
I
= 50mA  
= 50mA  
250  
360  
340  
450  
mV  
mV  
LOAD  
LOAD  
I
I
= 200mA  
= 200mA  
490  
630  
mV  
mV  
LOAD  
LOAD  
GND Pin Current  
I
I
I
= 0mA  
= 100mA  
= 200mA  
65  
3
7
130  
μA  
mA  
mA  
LOAD  
LOAD  
LOAD  
V
= 4.75V  
IN  
(Notes 4, 6)  
1±  
Output Voltage Noise  
ADJ Pin Bias Current  
Shutdown Threshold  
C
= 10μF, I  
= 200mA, BW = 10Hz to 100kHz  
100  
30  
μV  
RMS  
OUT  
LOAD  
(Note 7)  
100  
2
nA  
V
OUT  
V
OUT  
= Off to On  
= On to Off  
1.3  
0.±  
V
V
0.3  
±5  
SHDN Pin Current (Note ±)  
V
SHDN  
V
SHDN  
= 0V  
= 6V  
0.3  
0.1  
2
1
μA  
μA  
Quiescent Current in Shutdown  
PWRGD Trip Point  
V
IN  
= 6V, V  
= 0V  
SHDN  
1
5
μA  
%
% of Nominal Output Voltage, Output Rising  
% of Nominal Output Voltage  
90  
95  
PWRGD Trip Point Hysteresis  
PWRGD Output Low Voltage  
1.1  
140  
3.0  
1.6  
75  
%
I
= 50μA  
250  
6
mV  
μA  
V
PWRGD  
C Pin Charging Current  
T
C Pin Voltage Differential  
T
V – V  
CT(PWRGD High) CT(PWRGD Low)  
Ripple Rejection  
Current Limit  
V
IN  
= 7V(Avg), V  
= 0.5V , f  
= 120Hz, I = 200mA  
LOAD  
65  
dB  
RIPPLE  
P-P RIPPLE  
V
IN  
V
IN  
= 7V, V  
= 0V  
OUT  
400  
mA  
mA  
= 4.75V, ΔV  
= –0.1V (Note 2)  
200  
OUT  
Reverse Output Current (Note 9)  
V
OUT  
= 1.24V, V < 1.24V (Note 2)  
12  
25  
μA  
IN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6: GND pin current is tested with V = 4.75V and a current source  
IN  
load. This means the device is tested while operating close to its dropout  
region. This is the worst-case GND pin current. The GND pin current will  
decrease slightly at higher input voltages.  
Note 2: The LT3013 is tested and specified for these conditions with the  
ADJ pin connected to the OUT pin.  
Note 7: ADJ pin bias current flows into the ADJ pin.  
Note 8: SHDN pin current flows out of the SHDN pin.  
Note 3: Operating conditions are limited by maximum junction  
temperature. The regulated output voltage specification will not apply  
for all possible combinations of input voltage and output current. When  
operating at maximum input voltage, the output current range must be  
limited. When operating at maximum output current, the input voltage  
range must be limited.  
Note 4: To satisfy requirements for minimum input voltage, the LT3013 is  
tested and specified for these conditions with an external resistor divider  
(249k bottom, 649k top) for an output voltage of 4.5V. The external  
resistor divider will add a 5μA DC load on the output.  
Note 9: Reverse output current is tested with the IN pin grounded and the  
OUT pin forced to the rated output voltage. This current flows into the OUT  
pin and out the GND pin.  
Note 10: The LT3013E is guaranteed to meet performance specifications  
from 0°C to 125°C operating junction temperature. Specifications over  
the –40°C to 125°C operating junction temperature range are assured by  
design, characterization and correlation with statistical process controls.  
The LT3013H is tested to the LT3013H Electrical Characteristics table at  
140°C operating junction temperature. High junction temperatures degrade  
operating lifetimes. Operating lifetime is derated at junction temperatures  
greater than 125°C.  
Note 11: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C (LT3013E) or 140°C (LT3013H) when  
overtemperature protection is active. Continuous operation above the  
specified maximum operating junction temperature may impair device  
Note 5: Dropout voltage is the minimum input to output voltage differential  
needed to maintain regulation at a specified output current. In dropout, the  
output voltage will be equal to (V – V  
).  
IN  
DROPOUT  
reliability.  
3013fc  
4
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Typical Dropout Voltage  
Guaranteed Dropout Voltage  
Dropout Voltage  
600  
500  
400  
300  
200  
100  
0
600  
500  
400  
300  
200  
100  
0
600  
500  
= TEST POINTS  
T
125°C  
J
T
= 125°C  
J
I
= 250mA  
L
I
L
= 100mA  
400  
300  
T
25°C  
J
T
= 25°C  
J
I
= 50mA  
L
I
L
= 10mA  
= 1mA  
200  
100  
0
I
L
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
–50  
0
25 50 75  
125 150  
100  
–25  
OUTPUT CURRENT (mA)  
OUTPUT CURRENT (mA)  
TEMPERATURE (°C)  
3013 G01  
3013 G02  
3013 G03  
Quiescent Current  
ADJ Pin Voltage  
120  
100  
80  
60  
40  
20  
0
1.260  
V
= 6V  
IN  
L
I
= 1mA  
L
R
I
= ∞  
1.255  
1.250  
= 0  
L
V
= V  
IN  
SHDN  
1.245  
1.240  
1.235  
1.230  
1.225  
V
= GND  
SHDN  
1.220  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G04  
–25  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G05  
–25  
3013fc  
5
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Quiescent Current  
Quiescent Current  
GND Pin Current  
250  
225  
200  
175  
150  
125  
100  
75  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
T
R
V
= 25°C  
T
= 25°C  
J
L
T
= 25°C  
= ∞  
J
J
L
=
*FOR V  
= 1.24V  
OUT  
R
= 1.24V  
OUT  
R
I
= 49.6Ω  
L
L
= 25mA*  
V
= V  
IN  
SHDN  
R
I
= 124Ω  
= 10mA*  
V
= V  
IN  
L
L
SHDN  
V
= GND  
R
L
I
L
= 1.24k  
= 1mA*  
SHDN  
50  
25  
V
= GND  
SHDN  
0
0
10 20 30 40 50 60 70 80  
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
10  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
3013 G06b  
3013 G07  
3013 G06  
GND Pin Current  
GND Pin Current vs I  
LOAD  
10  
10  
9
8
7
6
5
4
3
2
1
0
T
= 25°C, *FOR V  
= 1.24V  
OUT  
V
J
= 4.75V  
J
IN  
9
8
7
6
5
4
3
2
1
0
T
= 25°C  
R
L
= 4.96Ω  
L
I
= 250mA*  
R
= 12.4Ω  
= 100mA*  
L
I
L
R
= 24.8, I = 50mA*  
L
L
0
1
2
3
4
5
6
7
8
9
10  
0
50  
100  
150  
200  
250  
INPUT VOLTAGE (V)  
LOAD CURRENT (mA)  
3013 G08  
3013 G09  
3013fc  
6
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDN Pin Current  
SHDN Pin Threshold  
SHDN Pin Current  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
V
= 6V  
T
J
= 25°C  
IN  
SHDN  
= 0V  
CURRENT FLOWS  
OUT OF SHDN PIN  
CURRENT FLOWS  
OUT OF SHDN PIN  
OFF-TO-ON  
ON-TO-OFF  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
–50  
0
25 50 75  
125 150  
100  
–25  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
TEMPERATURE (°C)  
SHDN PIN VOLTAGE (V)  
3013 G10  
3013 G12  
3013 G11  
ADJ Pin Bias Current  
PWRGD Trip Point  
120  
100  
80  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
OUTPUT RISING  
OUTPUT FALLING  
60  
40  
20  
0
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G13  
–50  
0
25 50 75  
125 150  
100  
–25  
–25  
TEMPERATURE (°C)  
3013 G25  
3013fc  
7
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
PWRGD Output Low Voltage  
C Charging Current  
PWRGD TRIPPED HIGH  
C Comparator Thresholds  
T
T
200  
180  
160  
140  
120  
100  
80  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
I
= 50µA  
PWRGD  
V
(HIGH)  
CT  
60  
40  
V
(LOW)  
20  
CT  
0
–50  
0
25 50 75 100 125 150  
–50  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G28  
–25  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G27  
–25  
TEMPERATURE (°C)  
3013 G26  
Current Limit  
Current Limit  
700  
600  
500  
400  
300  
200  
100  
0
1000  
V
= 0V  
OUT  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
T
= 25°C  
J
T
= 125°C  
J
V
V
= 7V  
IN  
OUT  
= 0V  
0
10 20 30 40 50 60 70 80  
–50  
0
25 50 75 100 125 150  
–25  
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
3013 G15  
3013 G14  
3013fc  
8
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reverse Output Current  
Reverse Output Current  
Input Ripple Rejection  
92  
88  
84  
80  
76  
72  
68  
64  
60  
120  
100  
80  
200  
180  
160  
140  
120  
100  
80  
V
V
= 0V  
= V  
T
V
V
= 25°C  
IN  
OUT  
J
= 1.24V  
ADJ  
= 0V  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
60  
ADJ  
PIN CLAMP  
(SEE APPLICATIONS  
INFORMATION)  
40  
60  
40  
V
L
= 4.75V + 0.5V RIPPLE AT f = 120Hz  
P-P  
IN  
20  
0
I
= 250mA  
20  
V
OUT  
= 1.24V  
0
–50  
–25  
0
25 50 75 100 125 150  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–25  
0
1
2
3
4
5
6
7
8
9
10  
TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
3013 G18  
3013 G17  
3013 G16  
Input Ripple Rejection  
Minimum Input Voltage  
100  
90  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
I
= 4.75V + 50mV  
= 250mA  
RIPPLE  
RMS  
IN  
LOAD  
I
= 250mA  
LOAD  
80  
70  
60  
50  
C
= 10µF  
OUT  
40  
30  
20  
10  
0
C
= 3.3µF  
OUT  
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G20  
–25  
FREQUENCY (Hz)  
3013 G19  
3013fc  
9
LT3013  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Regulation  
Output Noise Spectral Density  
10  
1
0
C
I
= 3.3µF  
= 250mA  
I = 1mA TO 250mA  
L
OUT  
–2  
–4  
LOAD  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
0.1  
0.01  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3013 G21  
–25  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
3013 G22  
10Hz to 100kHz Output Noise  
Transient Response  
0.15  
0.10  
0.05  
0
V
OUT  
–0.05  
–0.10  
–0.15  
300  
200  
100  
0
100µV/DIV  
V
V
C
C
= 6V  
= 5V  
= 3.3µF CERAMIC  
IN  
OUT  
IN  
= 3.3µF CERAMIC  
LOAD  
OUT  
I  
= 100mA TO 200mA  
3013 G23  
C
I
= 10µF  
1ms/DIV  
OUT  
L
OUT  
= 250mA  
V
= 1.24V  
0
100  
200  
300  
400  
500  
TIME (µs)  
3013 G24  
3013fc  
10  
LT3013  
PIN FUNCTIONS (DFN Package)/(TSSOP Package)  
NC (Pins 1, 9, 12)/(Pins 2, 12, 15): No Connect. These  
pins have no internal connection; connecting NC pins to a  
copperareaforheatdissipationprovidesasmallimprove-  
ment in thermal performance.  
SHDN (Pin 8)/(Pin 11): Shutdown. The SHDN pin is used  
to put the LT3013 into a low power shutdown state. The  
output will be off when the SHDN pin is pulled low. The  
SHDNpincanbedriveneitherby5Vlogicoropen-collector  
logic with a pull-up resistor. The pull-up resistor is only  
required to supply the pull-up current of the open-collec-  
tor gate, normally several microamperes. If unused, the  
OUT (Pins 2, 3)/(Pins 3, 4): Output. The output supplies  
power to the load. A minimum output capacitor of 3.3μF  
is required to prevent oscillations. Larger output capaci-  
tors will be required for applications with large transient  
loadstolimitpeakvoltagetransients. SeetheApplications  
Information section for more information on output ca-  
pacitance and reverse output characteristics.  
SHDN pin must be tied to a logic high or V .  
IN  
C (Pin 7)/(Pin 10): Timing Capacitor. The C pin allows  
T
T
the use of a small capacitor to delay the timing between  
the point where the output crosses the PWRGD thresh-  
old and the PWRGD flag changes to a high impedance  
state. Current out of this pin during the charging phase  
is 3μA. The voltage difference between the PWRGD low  
and PWRGD high states is 1.6V (see the Applications  
Information Section).  
ADJ (Pin 4)/(Pin 5): Adjust. This is the input to the error  
amplifier. This pin is internally clamped to ±7V. It has a  
bias current of 30nA which flows into the pin (see curve  
of ADJ Pin Bias Current vs Temperature in the Typical  
Performance Characteristics). The ADJ pin voltage is  
1.24V referenced to ground, and the output voltage range  
is 1.24V to 60V.  
IN (Pins 10, 11)/(Pins 13,14): Input. Power is supplied  
to the device through the IN pin. A bypass capacitor is  
required on this pin if the device is more than six inches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so it is  
advisabletoincludeabypasscapacitorinbattery-powered  
circuits. A bypass capacitor in the range of 1μF to 10μF  
is sufficient. The LT3013 is designed to withstand reverse  
voltages on the IN pin with respect to ground and the OUT  
pin. In the case of a reversed input, which can happen if  
a battery is plugged in backwards, the LT3013 will act as  
if there is a diode in series with its input. There will be no  
reverse current flow into the LT3013 and no reverse volt-  
age will appear at the load. The device will protect both  
itself and the load.  
GND (Pins 5, 13)/(Pins 1, 6, 8, 9, 16, 17): Ground. The  
exposedbacksideofthepackageisanelectricalconnection  
forGND.Assuch,toensureoptimumdeviceoperationand  
thermalperformance,theexposedpadmustbeconnected  
directly to pin 5/pin 6 on the PC board.  
PWRGD (Pin 6)/(Pin 7): Power Good. The PWRGD flag is  
an open collector flag to indicate that the output voltage  
has come up to above 90% of the nominal output voltage.  
There is no internal pull-up on this pin; a pull-up resistor  
must be used. The PWRGD pin will change state from an  
open-collector to high impedance after both the output is  
above 90% of the nominal voltage and the capacitor on  
the CT pin has charged through a 1.6V differential. The  
maximum pull-down current of the PWRGD pin in the  
low state is 50μA.  
3013fc  
11  
LT3013  
APPLICATIONS INFORMATION  
The LT3013 is a 250mA high voltage low dropout regula-  
tor with micropower quiescent current and shutdown.  
The device is capable of supplying 250mA at a dropout  
voltage of 400mV. The low operating quiescent current  
(65μA) drops to 1μA in shutdown. In addition to the  
low quiescent current, the LT3013 incorporates several  
protection features which make it ideal for use in bat-  
tery-powered systems. The device is protected against  
both reverse input and reverse output voltages. In battery  
backup applications where the output can be held up by  
a backup battery when the input is pulled to ground, the  
LT3013 acts like it has a diode in series with its output  
and prevents reverse current flow.  
Note that in shutdown the output is turned off and the  
divider current will be zero.  
The adjustable device is tested and specified with the  
ADJ pin tied to the OUT pin and a 5μA DC load (unless  
otherwise specified) for an output voltage of 1.24V. Speci-  
fications for output voltages greater than 1.24V will be  
proportional to the ratio of the desired output voltage to  
1.24V; (V /1.24V). For example, load regulation for an  
OUT  
outputcurrentchangeof1mAto250mAis7mVtypicalat  
V
OUT  
= 1.24V. At V  
= 12V, load regulation is:  
OUT  
(12V/1.24V) • (–7mV) = –6±mV  
Output Capacitance and Transient Response  
Adjustable Operation  
The LT3013 is designed to be stable with a wide range of  
output capacitors. The ESR of the output capacitor affects  
stability, most notably with small capacitors. A minimum  
output capacitor of 3.3μF with an ESR of 3Ω or less is  
recommended to prevent oscillations. The LT3013 is a  
micropower device and output transient response will be  
a function of output capacitance. Larger values of output  
capacitance decrease the peak deviations and provide  
improved transient response for larger load current  
changes. Bypass capacitors, used to decouple individual  
components powered by the LT3013, will increase the  
effective output capacitor value.  
The LT3013 has an output voltage range of 1.24V to 60V.  
The output voltage is set by the ratio of two external  
resistors as shown in Figure 1. The device servos the  
output to maintain the voltage at the adjust pin at 1.24V  
referenced to ground. The current in R1 is then equal to  
1.24V/R1 and the current in R2 is the current in R1 plus  
the ADJ pin bias current. The ADJ pin bias current, 30nA  
at 25°C, flows through R2 into the ADJ pin. The output  
voltagecanbecalculatedusingtheformulainFigure1.The  
value of R1 should be less than 250k to minimize errors  
in the output voltage caused by the ADJ pin bias current.  
V
OUT  
IN  
OUT  
ADJ  
R2  
V
= 1.24V 1 +  
= 1.24V  
+ (I )(R2)  
ADJ  
OUT  
+
R1  
LT3013  
GND  
R2  
R1  
V
IN  
V
I
ADJ  
= 30nA AT 25°C  
OUTPUT RANGE = 1.24V TO 60V  
ADJ  
3013 F01  
Figure 1. Adjustable Operation  
3013fc  
12  
LT3013  
APPLICATIONS INFORMATION  
Extra consideration must be given to the use of ceramic  
capacitors. Ceramic capacitors are manufactured with a  
variety of dielectrics, each with different behavior across  
temperature and applied voltage. The most common  
dielectrics used are specified with EIA temperature char-  
acteristic codes of Z5U, Y5V, X5R and X7R. The Z5U and  
Y5V dielectrics are good for providing high capacitances  
in a small package, but they tend to have strong voltage  
and temperature coefficients as shown in Figures 2 and 3.  
When used with a 5V regulator, a 16V 10μF Y5V capacitor  
can exhibit an effective value as low as 1μF to 2μF for the  
DC bias voltage applied and over the operating tempera-  
ture range. The X5R and X7R dielectrics result in more  
stable characteristics and are more suitable for use as the  
output capacitor. The X7R type has better stability across  
temperature, while the X5R is less expensive and is avail-  
able in higher values. Care still must be exercised when  
using X5R and X7R capacitors; the X5R and X7R codes  
only specify operating temperature range and maximum  
capacitancechangeovertemperature.Capacitancechange  
due to DC bias with X5R and X7R capacitors is better than  
Y5VandZ5Ucapacitors,butcanstillbesignificantenough  
to drop capacitor values below appropriate levels. Capaci-  
tor DC bias characteristics tend to improve as component  
casesizeincreases, butexpectedcapacitanceatoperating  
voltage should be verified.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltageacrossitsterminalsduetomechanicalstress,simi-  
lartothewayapiezoelectricaccelerometerormicrophone  
works. For a ceramic capacitor the stress can be induced  
by vibrations in the system or thermal transients.  
PWRGD Flag and Timing Capacitor Delay  
The PWRGD flag is used to indicate that the ADJ pin volt-  
age is within 10% of the regulated voltage. The PWRGD  
pin is an open-collector output, capable of sinking 50μA  
of current when the ADJ pin voltage is low. There is no  
internal pull-up on the PWRGD pin; an external pull-up  
resistor must be used. When the ADJ pin rises to within  
10% of its final reference value, a delay timer is started.  
At the end of this delay, programmed by the value of the  
capacitor on the C pin, the PWRGD pin switches to a high  
T
impedance and is pulled up to a logic level by an external  
pull-up resistor.  
To calculate the capacitor value on the C pin, use the  
T
following formula:  
ICT tDELAY  
VCT(HIGH) VCT(LOW)  
CTIME  
=
40  
20  
20  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
0
X5R  
0
–20  
X5R  
Y5V  
–20  
–40  
–60  
–80  
–40  
–60  
Y5V  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10µF  
–100  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3013 F03  
3013 F02  
Figure 2. Ceramic Capacitor DC Bias Characteristics  
Figure 3. Ceramic Capacitor Temperature Characteristics  
3013fc  
13  
LT3013  
APPLICATIONS INFORMATION  
Figure 4 shows a block diagram of the PWRGD circuit. At  
startup,thetimingcapacitorisdischargedandthePWRGD  
pin will be held low. As the output voltage increases and  
the ADJ pin crosses the 90% threshold, the JK flip-flop  
is reset, and the 3μA current source begins to charge the  
Thermal Considerations  
The power handling capability of the device will be limited  
by the maximum rated junction temperature (125°C for  
LT3013E or 140°C for LT3013HFE). The power dissipated  
by the device will be made up of two components:  
timing capacitor. Once the voltage on the C pin reaches  
T
1. Output current multiplied by the input/output voltage  
the V  
threshold (approximately 1.7V at 25°C), the  
CT(HIGH)  
differential: I  
• (V – V ) and,  
capacitor voltage is clamped and the PWRGD pin is set to  
a high impedance state.  
OUT  
IN OUT  
2. GND pin current multiplied by the input voltage:  
• V .  
I
Duringnormaloperation,aninternalglitchlterwillignore  
shorttransients(<15μs).Longertransientsbelowthe90%  
threshold will reset the JK flip-flop. This flip-flop ensures  
GND  
IN  
The GND pin current can be found by examining the GND  
Pin Current curves in the Typical Performance Character-  
istics. Power dissipation will be equal to the sum of the  
two components listed above.  
that the capacitor on the C pin is quickly discharged all  
T
the way to the V  
threshold before re-starting the  
CT(LOW)  
time delay. This provides a consistent time delay after the  
ADJ pin is within 10% of the regulated voltage before the  
PWRGD pin switches to high impedance.  
The LT3013 has internal thermal limiting designed to pro-  
tectthedeviceduringoverloadconditions. Forcontinuous  
normal conditions the maximum junction temperature  
rating of 125°C (E-grade) or 140°C (H-grade)must not be  
exceeded. It is important to give careful consideration to  
all sources of thermal resistance from junction to ambi-  
ent. Additional heat sources mounted nearby must also  
be considered.  
I
CT  
3µA  
C
T
PWRGD  
+
ADJ  
V
– V  
BE  
CT(HIGH)  
J
Q
(~1.1V)  
K
V
REF  
• 90%  
+
V
CT(LOW)  
~0.1V  
3013 F04  
Figure 4. PWRGD Circuit Block Diagram  
3013fc  
14  
LT3013  
APPLICATIONS INFORMATION  
For surface mount devices, heat sinking is accomplished  
by using the heat spreading capabilities of the PC board  
and its copper traces. Copper board stiffeners and plated  
through-holes can also be used to spread the heat gener-  
ated by power devices.  
Calculating Junction Temperature  
Example 1: Given an output voltage of 5V, an input voltage  
range of ±V to 12V, an output current range of 0mA to  
250mA, and a maximum ambient temperature of 30°C,  
what will the maximum junction temperature be?  
The following tables list thermal resistance for several  
different board sizes and copper areas. All measurements  
were taken in still air on 3/32” FR-4 board with one ounce  
copper.  
The power dissipated by the device will be equal to:  
I
• (V  
– V ) + (I  
• V  
)
IN(MAX)  
OUT(MAX)  
IN(MAX)  
OUT  
GND  
where:  
Table 1. TSSOP Measured Thermal Resistance  
I
= 250mA  
= 12V  
OUT(MAX)  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
(JUNCTION-TO-AMBIENT)  
V
IN(MAX)  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
40°C/W  
45°C/W  
50°C/W  
62°C/W  
I
at (I = 250mA, V = 12V) = ±mA  
OUT IN  
GND  
So:  
P = 250mA • (12V – 5V) + (±mA • 12V) = 1.±5W  
The thermal resistance will be in the range of 40°C/W to  
62°C/W depending on the copper area. So the junction  
temperature rise above ambient will be approximately  
equal to:  
Table 2. DFN Measured Thermal Resistance  
COPPER AREA  
TOPSIDE  
THERMAL RESISTANCE  
(JUNCTION-TO-AMBIENT)  
BOARD AREA  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
2500 sq mm  
1000 sq mm  
225 sq mm  
100 sq mm  
40°C/W  
45°C/W  
1.±5W • 50°C/W = 92.3°C  
50°C/W  
The maximum junction temperature will then be equal to  
the maximum junction temperature rise above ambient  
plus the maximum ambient temperature or:  
62°C/W  
The thermal resistance junction-to-case (θ ), measured  
at the exposed pad on the back of the die, is 16°C/W.  
JC  
T
= 30°C + 92.3°C = 122.3°C  
JMAX  
Continuous operation at large input/output voltage dif-  
ferentials and maximum load current is not practical  
due to thermal limitations. Transient operation at high  
input/output differentials is possible. The approximate  
thermal time constant for a 2500sq mm 3/32” FR-4 board  
with maximum topside and backside area for one ounce  
copper is 3 seconds. This time constant will increase as  
more thermal mass is added (i.e., vias, larger board, and  
other components).  
Example 2: Given an output voltage of 5V, an input voltage  
of 4±V that rises to 72V for 5ms(max) out of every 100ms,  
and a 5mA load that steps to 200mA for 50ms out of ev-  
ery 250ms, what is the junction temperature rise above  
ambient? Using a 500ms period (well under the time  
constant of the board), power dissipation is as follows:  
P1(4±V in, 5mA load) = 5mA • (4±V – 5V)  
+ (200μA • 4±V) = 0.23W  
Foranapplicationwithtransienthighpowerpeaks,average  
power dissipation can be used for junction temperature  
calculations if the pulse period is significantly less than  
the thermal time constant of the device and board.  
P2(4±V in, 50mA load) = 200mA • (4±V – 5V)  
+ (±mA • 4±V) = ±.9±W  
P3(72V in, 5mA load) = 5mA • (72V – 5V)  
+ (200μA • 72V) = 0.35W  
P4(72V in, 50mA load) = 200mA • (72V – 5V)  
+ (±mA • 72V) = 13.9±W  
3013fc  
15  
LT3013  
APPLICATIONS INFORMATION  
Operation at the different power levels is as follows:  
Protection Features  
76% operation at P1, 19% for P2, 4% for P3, and  
1% for P4.  
TheLT3013incorporatesseveralprotectionfeatureswhich  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, thedeviceisprotectedagainstreverse-inputvolt-  
ages, and reverse voltages from output to input.  
P
= 76%(0.23W) + 19%(±.9±W) + 4%(0.35W)  
EFF  
+ 1%(13.9±W) = 2.03W  
With a thermal resistance in the range of 40°C/W to  
62°C/W, this translates to a junction temperature rise  
above ambient of ±1°C to 125°C.  
Current limit protection and thermal overload protection  
areintendedtoprotectthedeviceagainstcurrentoverload  
conditions at the output of the device. For normal opera-  
tion, the junction temperature should not exceed 125°C  
(LT3013E) or 140°C (LT3013HFE).  
High Temperature Operation  
CaremustbetakenwhendesigningLT3013applicationsto  
operate at high ambient temperatures. The LT3013 works  
at elevated temperatures but erratic operation can occur  
duetounforeseenvariationsinexternalcomponents.Some  
tantalum capacitors are available for high temperature  
operation, but ESR is often several ohms; capacitor ESR  
above 3Ω is unsuitable for use with the LT3013. Ceramic  
capacitor manufacturers (Murata, AVX, TDK, and Vishay  
Vitramonatthiswriting)nowofferceramiccapacitorsthat  
areratedto150°CusinganX±Rdielectric.Deviceinstability  
will occur if output capacitor value and ESR are outside  
design limits at elevated temperature and operating DC  
voltage bias (see information on capacitor characteristics  
underOutputCapacitanceandTransientResponse).Check  
each passive component for absolute value and voltage  
ratings over the operating temperature range.  
Like many IC power regulators, the LT3013 has safe oper-  
ating area protection. The safe area protection decreases  
the current limit as input voltage increases and keeps  
the power transistor inside a safe operating region for  
all values of input voltage. The protection is designed to  
provide some output current at all values of input voltage  
up to the device breakdown. The SOA protection circuitry  
for the LT3013 uses a current generated when the input  
voltage exceeds 25V to decrease current limit. This cur-  
rent shows up as additional quiescent current for input  
voltages above 25V. This increase in quiescent current  
occurs both in normal operation and in shutdown (see  
curve of Quiescent Current in the Typical Performance  
Characteristics).  
Leakagesincapacitorsorfromsolderuxleftafterinsuf-  
ficient board cleaning adversely affects low quiescent  
current operation. The output voltage resistor divider  
should use a maximum bottom resistor value of 124k to  
compensate for high temperature leakage, setting divider  
current to 10μA. Consider junction temperature increase  
due to power dissipation in both the junction and nearby  
components to ensure maximum specifications are not  
violated for the device or external components.  
The input of the device will withstand reverse voltages of  
±0V. No negative voltage will appear at the output. The  
device will protect both itself and the load. This provides  
protection against batteries which can be plugged in  
backward.  
The ADJ pin of the device can be pulled above or below  
ground by as much as 7V without damaging the device.  
If the input is left open circuit or grounded, the ADJ pin  
will act like an open circuit when pulled below ground,  
and like a large resistor (typically 100k) in series with a  
diode when pulled above ground. If the input is powered  
by a voltage source, pulling the ADJ pin below the refer-  
ence voltage will cause the device to current limit. This  
will cause the output to go to a unregulated high voltage.  
Pulling the ADJ pin above the reference voltage will turn  
off all output current.  
3013fc  
16  
LT3013  
APPLICATIONS INFORMATION  
In situations where the ADJ pin is connected to a resistor  
dividerthatwouldpulltheADJpinaboveits7Vclampvolt-  
age if the output is pulled high, the ADJ pin input current  
must be limited to less than 5mA. For example, a resistor  
divider is used to provide a regulated 1.5V output from the  
1.24V reference when the output is forced to 60V. The top  
resistor of the resistor divider must be chosen to limit the  
current into the ADJ pin to less than 5mA when the ADJ  
pin is at 7V. The 53V difference between the OUT and ADJ  
pins divided by the 5mA maximum current into the ADJ  
pin yields a minimum top resistor value of 10.6k.  
open circuit. Current flow back into the output will follow  
the curve shown in Figure 5. The rise in reverse output  
current above 7V occurs from the breakdown of the 7V  
clamp on the ADJ pin. With a resistor divider on the  
regulator output, this current will be reduced depending  
on the size of the resistor divider.  
When the IN pin of the LT3013 is forced below the OUT  
pin or the OUT pin is pulled above the IN pin, input cur-  
rent will typically drop to less than 2μA. This can happen  
if the input of the LT3013 is connected to a discharged  
(low voltage) battery and the output is held up by either  
a backup battery or a second regulator circuit. The state  
of the SHDN pin will have no effect on the reverse output  
current when the output is pulled above the input.  
In circuits where a backup battery is required, several  
different input/output conditions can occur. The output  
voltage may be held up while the input is either pulled  
to ground, pulled to some intermediate voltage, or is left  
200  
T
V
V
= 25°C  
J
= 0V  
180  
160  
140  
120  
100  
80  
IN  
OUT  
= V  
ADJ  
CURRENT FLOWS  
INTO OUTPUT PIN  
ADJ  
PIN CLAMP  
(SEE ABOVE)  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
OUTPUT VOLTAGE (V)  
3013 F05  
Figure 5. Reverse Output Current  
3013fc  
17  
LT3013  
TYPICAL APPLICATIONS  
5V Buck Converter with Low Current Keep Alive Backup  
D2  
D1N914  
Buck Converter  
6
C2  
L1†  
15µH  
Efficiency vs Load Current  
0.33µF  
BOOST  
V
V
IN  
OUT  
4
2
100  
90  
80  
70  
60  
50  
5.5V*  
V
SW  
5V  
IN  
V
= 5V  
OUT  
L = 68µH  
TO 60V  
C3  
4.7µF  
100V  
D1  
1A/250mA  
V
= 10V  
= 42V  
10MQ060N  
IN  
IN  
LT1766  
CERAMIC  
15  
14  
10  
12  
SHDN  
BIAS  
FB  
V
R1  
15.4k  
C1  
+
100µF 10V  
SOLID  
SYNC  
GND  
R2  
4.99k  
TANTALUM  
V
C
1, 8, 9, 16 11  
C
C
1nF  
14  
3
5
3013 TA03  
0
0.25  
0.50  
0.75  
1.00  
1.25  
IN  
OUT  
LOAD CURRENT (A)  
LT3013  
*FOR INPUT VOLTAGES BELOW 7.5V,  
SOME RESTRICTIONS MAY APPLY  
INCREASE L1 TO 30µH FOR LOAD  
CURRENTS ABOVE 0.6A AND TO  
60µH ABOVE 1A  
OPERATING  
CURRENT  
100k  
750k  
249k  
11  
7
3013 TA04  
SHDN  
ADJ  
HIGH  
LOW  
PWRGD  
GND  
C
T
1
10  
1000pF  
LT3013 Automotive Application  
IN  
OUT  
ADJ  
NO PROTECTION  
DIODE NEEDED!  
+
V
IN  
LT3013  
SHDN  
750k  
249k  
3.3µF  
12V  
1µF  
LOAD: CLOCK,  
SECURITY SYSTEM  
ETC  
(LATER 42V)  
GND  
OFF  
ON  
LT3013 Telecom Application  
V
IN  
48V  
(72V TRANSIENT)  
IN  
OUT  
+
LT3013  
750k  
249k  
BACKUP  
BATTERY  
NO PROTECTION  
DIODE NEEDED!  
3.3µF  
1µF  
LOAD:  
SYSTEM MONITOR  
ETC  
SHDN  
ADJ  
GND  
3013 TA05  
OFF  
ON  
3013fc  
18  
LT3013  
PACKAGE DESCRIPTION  
DE Package  
12-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-0±-1695)  
0.38 0.10  
12  
4.00 0.10  
(2 SIDES)  
R = 0.115  
TYP  
7
0.65 0.05  
R = 0.20  
TYP  
3.50 0.05  
2.20 0.05 (2 SIDES)  
1.70 0.05  
3.00 0.10 1.70 0.10  
(2 SIDES)  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PIN 1  
NOTCH  
PACKAGE OUTLINE  
(UE12/DE12) DFN 0603  
6
0.25 0.05  
1
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
0.50  
BSC  
3.30 0.10  
(2 SIDES)  
3.30 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING PROPOSED TO BE A VARIATION OF VERSION  
(WGED) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-0±-1663)  
Exposed Pad Variation BB  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
3.58  
(.141)  
16 1514 13 12 1110  
9
6.60 0.10  
4.50 0.10  
2.94  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
0.45 0.05  
1.05 0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BB) TSSOP 0204  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3013fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT3013  
TYPICAL APPLICATION  
Constant Brightness for Indicator LED over Wide Input Voltage Range  
RETURN  
IN  
OUT  
LT3013  
1µF  
3.3µF  
OFF  
ON  
SHDN  
GND  
ADJ  
R
SET  
–48V  
–48V CAN VARY  
FROM –4V TO –80V  
3013 TA06  
I
= 1.24V/R  
SET  
LED  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1020  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 40μA,  
DO Q SD  
IN  
OUT(MIN)  
Comparator and Reference, Class B Outputs, S16, PDIP14 Packages  
LT1120/LT1120A  
125mA, Micropower Regulator and Comparator V : 4.5V to 36V, V  
= 2.5V, V = 0.4V, I = 40μA, I = 10μA,  
DO Q SD  
IN  
OUT(MIN)  
Comparator and Reference, Logic Shutdown, Ref Sources and Sinks 2/4mA,  
S±, N± Packages  
LT1121/LT1121HV 150mA, Micropower, LDO  
V : 4.2V to 30/36V, V  
= 3.75V, V = 0.42V, I = 30μA, I = 16μA,  
IN  
OUT(MIN) DO Q SD  
Reverse Battery Protection, SOT-223, S±, Z Packages  
LT1129  
700mA, Micropower, LDO  
V : 4.2V to 30V, V = 3.75V, V = 0.4V, I = 50μA, I = 16μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
DD, S0T-223, S±,TO220-5, TSSOP20 Packages  
LT1676  
60V, 440mA (I ), 100kHz, High Efficiency  
V : 7.4V to 60V, V  
= 1.24V, I = 3.2mA, I = 2.5μA, S± Package  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1761  
100mA, Low Noise Micropower, LDO  
V : 1.±V to 20V, V  
= 1.22V, V = 0.3V, I = 20μA, I = <1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, Stable with 1μF Ceramic Capacitors, ThinSOTTM Package  
RMS  
LT1762  
150mA, Low Noise Micropower, LDO  
500mA, Low Noise Micropower, LDO  
3A, Low Noise, Fast Transient Response, LDO  
V : 1.±V to 20V, V  
= 1.22V, V = 0.3V, I = 25μA, I = <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
, MS± Package  
RMS  
LT1763  
V : 1.±V to 20V, V  
= 1.22V, V = 0.3V, I = 30μA, I = <1μA,  
, S± Package  
IN  
OUT(MIN) DO Q SD  
Low Noise < 20μV  
RMS  
LT1764/LT1764A  
V : 2.7V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
, “A” Version Stable with Ceramic Capacitors,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
RMS  
DD, TO220-5 Packages  
LT1766  
60V, 1.2A (I ), 200kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1776  
40V, 550mA (I ), 200kHz, High Efficiency  
V : 7.4V to 40V, V  
IN  
= 1.24V, I = 3.2mA, I = 30μA, N±, S± Packages  
OUT  
Q
SD  
Step-Down DC/DC Converter  
LT1934/LT1934-1  
LT1956  
300mA/60mA, (I ), Constant Off-Time, High  
90% Efficiency, V : 3.2V to 34V, V  
= 1.25V, I = 14μA, I = <1μA,  
OUT  
IN  
OUT(MIN) Q SD  
Efficiency Step-Down DC/DC Converter  
ThinSOT Package  
60V, 1.2A (I ), 500kHz, High Efficiency  
V : 5.5V to 60V, V  
= 1.2V, I = 2.5mA, I = 25μA, TSSOP16/E Package  
Q SD  
OUT  
IN  
OUT(MIN)  
Step-Down DC/DC Converter  
LT1962  
300mA, Low Noise Micropower, LDO  
V : 1.±V to 20V, V  
= 1.22V, V = 0.27V, I = 30μA, I = <1μA,  
DO Q SD  
IN  
OUT(MIN)  
Low Noise < 20μV  
, MS± Package  
RMS  
LT1963/LT1963A  
1.5A, Low Noise, Fast Transient Response, LDO V : 2.1V to 20V, V  
= 1.21V, V = 0.34V, I = 1mA, I = <1μA,  
IN  
OUT(MIN) DO Q SD  
Low Noise < 40μV  
, “A” Version Stable with Ceramic Capacitors,  
RMS  
DD, TO220-5, S0T-223, S± Packages  
LT1964  
200mA, Low Noise Micropower, Negative LDO  
50mA, 3V to ±0V, Low Noise Micropower LDO  
V : –1.9V to –20V, V = 1.21V, V = 0.34V, I = 30μA, I = 3μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
Low Noise < 30μVRMS, Stable with Ceramic Capacitors, ThinSOT Package  
LT3010/LT3010H  
LT3012/LT3012H  
LT3014/HV  
V : 3V to ±V, V = 1.275V, V = 0.3V, I = 30μA, I = 1μA,  
IN  
OUT(MIN)  
DO  
Q
SD  
Low Noise < 100μV  
, MS±E Package, H Grade = +140°C T  
RMS  
JMAX  
250mA, 4V to ±0V, Low Dropout Micropower  
Linear Regulator  
V : 4V to ±0V, V : 1.24V to 60V, V = 0.4V, I = 40μA, I = <1μA,  
IN OUT DO Q SD  
TSSOP-16E and 4mm × 3mm DFN-12 Packages, H Grade = +140°C T  
JMAX  
20mA, 3V to ±0V, Low Dropout Micropower  
Linear Regulator  
V : 3V to ±0V (100V for 2ms, HV version), V : 1.22V to 60V, V = 0.35V,  
IN OUT DO  
I = 7μA, I = <1μA, ThinSOT and 3mm × 3mm DFN-± Packages  
Q
SD  
ThinSOT is a trademark of Linear Technology Corporation.  
3013fc  
LT 0307 REV C • PRINTED IN USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2005  
(40±) 432-1900 FAX: (40±) 434-0507 www.linear.com  

相关型号:

LT3013EDE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013EDE#TRPBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013EFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013EFE#TR

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3013HFE

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear

LT3013HFE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3013HFE#TR

IC VREG 1.24 V-60 V ADJUSTABLE POSITIVE LDO REGULATOR, 0.62 V DROPOUT, PDSO16, 4.40 MM, PLASTIC, TSSOP-16, Adjustable Positive Single Output LDO Regulator
Linear

LT3013HFE#TRPBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LT3013MPFE

250mA, 4V to 80V Low Dropout Micropower
Linear

LT3013MPFE#PBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3013MPFE#TRPBF

LT3013 - 250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD; Package: TSSOP; Pins: 16; Temperature Range: -55&deg;C to 125&deg;C
Linear

LT3013_09

250mA, 4V to 80V Low Dropout Micropower Linear Regulator with PWRGD
Linear