LT3023EDD#PBF [Linear]

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LT3023EDD#PBF
型号: LT3023EDD#PBF
厂家: Linear    Linear
描述:

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

文件: 总24页 (文件大小:277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3032 Series  
Dual 150mA  
Positive/Negative Low Noise  
Low Dropout Linear Regulator  
FEATURES  
DESCRIPTION  
TheLT®3032isadual, lownoise, positiveandnegativelow  
dropout voltage linear regulator. Each regulator delivers  
up to 150mA with a typical 300mV dropout voltage. Each  
regulator’s quiescent current is low (30μA operating and  
<3μAinshutdown)andwell-controlledindropout,making  
it an excellent choice for battery-powered circuits.  
n
Low Noise: 20μV  
(Positive) and  
RMS  
30μV  
(Negative)  
RMS  
n
n
n
n
n
n
n
n
n
n
n
n
n
Low Quiescent Current: 30μA/Channel  
Wide Input Voltage Range: 2ꢀ3V to 20V  
Output Current: 150mA  
Low Shutdown Current: <3μA Total (Typical)  
Low Dropout Voltage: 300mV/Channel  
Fixed Output Voltages: 5V, 12V, 15V  
Adjustable Outputs from 1.22V to 20V  
No Protection Diodes Needed  
Stable with 2.2μF Output Capacitors  
Stable with Ceramic, Tantalum or Aluminum Capacitors  
Starts into Reverse Output Voltage  
Current Limit and Thermal Limit  
Another key feature of the LT3032 is low output noise.  
Addinganexternal10nFbypasscapacitortoeachregulator  
reducesoutputnoiseto20μV  
100kHz bandwidth. The LT3032 is stable with minimum  
output capacitors of 2.2μF. The regulators do not require  
the addition of ESR as is common with other regulators.  
30μV  
RMS/  
overa10Hzto  
RMS  
The regulators are offered as adjustable output devices  
with an output voltage down to the 1.22V reference volt-  
age or in fixed voltages of 5V, 12V and 15V. Internal  
protection circuitry includes reverse-output protection,  
current limiting and thermal limiting.  
Low Profile 14-Lead 4mm × 3mm × 0.75mm  
DFN Package  
APPLICATIONS  
The LT3032 is available in a unique low profile 14-lead  
4mm × 3mm × 0.75mm DFN package with exposed back-  
side pads for each regulator, allowing optimum thermal  
performance.  
n
Battery-Powered Instruments  
n
Bipolar Power Supplies  
n
Low Noise Power Supplies  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners.  
TYPICAL APPLICATION  
Dual Polarity Low Noise 150mA Power Supply  
10Hz to 100kHz Output Noise  
5V OUT AT 150mA  
20μV NOISE  
INP  
OUTP  
LT3032-5  
RMS  
5.4V TO  
20V  
<0.25V = OFF  
>2V = ON  
OUTP  
10μF  
10μF  
20μV  
30μV  
0.01μF  
0.01μF  
RMS  
RMS  
10μF  
100μV/DIV  
BYPP  
SHDNP  
SHDNN  
GND  
BYPN  
–5.4V TO  
–20V  
OUTN  
100μV/DIV  
10μF  
–5V OUT AT –150mA  
30μV NOISE  
INN  
OUTN  
RMS  
3032 TA01  
3032 TA02a  
1mS/DIV  
3032fd  
1
LT3032 Series  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
INP Pin Voltage....................................................... 20V  
INN Pin Voltage....................................................... 20V  
OUTP Pin Voltage.................................................... 20V  
OUTN Pin Voltage (Note 3) ..................................... 20V  
INP Pin to OUTP Pin Differential Voltage ................ 20V  
OUTN Pin to INN Pin Differential Voltage  
(Note 3)..........................................................–0.5V, 20V  
ADJP Pin Voltage...................................................... 7V  
ADJN Pin Voltage  
OUTP  
1
2
3
4
5
6
7
14 INP  
NC /ADJP  
BYPP  
GND  
15  
GND  
13 NC  
12 SHDNP  
11 BYPN  
10 SHDNN  
GND  
16  
INN  
INN  
9
8
INN  
††  
OUTN  
ADJN/NC  
DE14MA PACKAGE  
14-LEAD (4mm × 3mm) PLASTIC DFN  
T
JMAX  
= 125°C, θ = 30°C/W TO 43°C/W*, θ = 10°C/W*  
JA JC  
(with Respect to INN Pin, Note 3) ..................–0.5V, 20V  
BYPP Pin Voltage................................................... 0.5V  
BYPN Pin Voltage  
(with Respect to INN Pin)........................................ 20V  
SHDNP Pin Voltage................................................. 20V  
SHDNN Pin Voltage  
*SEE APPLICATIONS INFORMATION FOR MORE DETAIL  
PIN 2: NC FOR LT3032-5/LT3032-12/LT3032-15, ADJP FOR LT3032  
††  
PIN 8: NC FOR LT3032-5/LT3032-12/LT3032-15, ADJN FOR LT3032  
EXPOSED PAD (PIN 15) IS GND, MUST BE SOLDERED TO PINS 4, 5 ON PCB  
EXPOSED PAD (PIN 16) IS INN, MUST BE SOLDERED TO PINS 6, 9 ON PCB  
(with Respect to INN Pin, Note 3) ..................–0.5V, 35V  
SHDNN Pin Voltage  
(with Respect to GND Pin) ..............................20V, 15V  
Output Short-Circuit Duration.......................... Indefinite  
Operating Junction Temperature Range (Note 2)  
E, I Grades......................................... –40°C to 125°C  
MP-Grade .......................................... –55°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
3032  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
LT3032EDE#PBF  
LT3032EDE#TRPBF  
LT3032IDE#TRPBF  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
LT3032IDE#PBF  
3032  
LT3032MPDE#PBF  
LT3032EDE-5#PBF  
LT3032IDE-5#PBF  
LT3032MPDE-5#PBF  
LT3032EDE-12#PBF  
LT3032IDE-12#PBF  
LT3032MPDE-12#PBF  
LT3032EDE-15#PBF  
LT3032IDE-15#PBF  
LT3032MPDE-15#PBF  
LT3032MPDE#TRPBF  
LT3032EDE-5#TRPBF  
LT3032IDE-5#TRPBF  
LT3032MPDE-5#TRPBF  
LT3032EDE-12#TRPBF  
LT3032IDE-12#TRPBF  
3032  
30325  
30325  
30325  
30322  
30322  
LT3032MPDE-12#TRPBF 30322  
LT3032EDE-15#TRPBF  
LT3032IDE-15#TRPBF  
03215  
03215  
LT3032MPDE-15#TRPBF 03215  
3032fd  
2
LT3032 Series  
ORDER INFORMATION  
LEAD BASED FINISH  
TAPE AND REEL  
PART MARKING*  
3032  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–55°C to 125°C  
LT3032EDE  
LT3032EDE#TR  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
14-Lead (4mm × 3mm) Plastic DFN  
LT3032IDE  
LT3032IDE#TR  
3032  
LT3032MPDE  
LT3032EDE-5  
LT3032IDE-5  
LT3032MPDE#TR  
LT3032EDE-5#TR  
LT3032IDE-5#TR  
LT3032MPDE-5#TR  
LT3032EDE-12#TR  
LT3032IDE-12#TR  
LT3032MPDE-12#TR  
LT3032EDE-15#TR  
LT3032IDE-15#TR  
LT3032MPDE-15#TR  
3032  
30325  
30325  
30325  
30322  
30322  
30322  
03215  
03215  
03215  
LT3032MPDE-5  
LT3032EDE-12  
LT3032IDE-12  
LT3032MPDE-12  
LT3032EDE-15  
LT3032IDE-15  
LT3032MPDE-15  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.8  
MAX  
UNITS  
l
l
Minimum INP Operating Voltage  
Minimum INN Operating Voltage  
LT3032 I  
LT3032 I  
= 150mA  
2.3  
V
V
LOAD  
LOAD  
= –150mA  
–2.3  
–1.6  
Regulated Output Voltage  
(Notes 4, 10)  
LT3032-5  
LT3032-5  
LT3032-12  
LT3032-12  
LT3032-15  
LT3032-15  
LT3032  
V
= 5.5V, I  
INP  
= 1mA  
4.925  
4.850  
5.00  
5.00  
5.075  
5.150  
V
V
INP  
LOAD  
l
l
l
l
l
l
l
l
6V ≤ V ≤ 20V, 1mA ≤ I  
≤ 150mA  
LOAD  
V
= –5.5V, I  
INN  
= –1mA  
–5.075  
–5.150  
–5.00  
–5.00  
–4.925  
–4.850  
V
V
INN  
LOAD  
–6V ≥ V ≥ –20V, 1mA ≥ I  
≥ –150mA  
LOAD  
V
= 12.5V, I  
INP  
= 1mA  
11.82  
11.64  
12.00  
12.00  
12.18  
12.36  
V
V
INP  
LOAD  
13V ≤ V ≤ 20V, 1mA ≤ I  
≤ 150mA  
LOAD  
V
= –12.5V, I  
= –1mA  
–12.18 –12.00 –11.82  
–12.36 –12.00 –11.64  
V
V
INN  
LOAD  
–13V ≥ V ≥ –20V, 1mA ≥ I  
≥ 150mA  
INN  
LOAD  
V
= 15.5V, I  
INP  
= 1mA  
14.775  
14.550  
15.00  
15.00  
15.225  
15.450  
V
V
INP  
LOAD  
16V ≤ V ≤ 20V, 1mA ≤ I  
≤ 150mA  
LOAD  
V
= –15.5V, I  
= –1mA  
–15.225 –15.00 –14.775  
–15.450 –15.00 –14.550  
V
V
INN  
LOAD  
–16V ≥ V ≥ –20V, 1mA ≥ I  
≥ 150mA  
INN  
LOAD  
ADJP Pin Voltage  
(Notes 4, 5)  
V
= 2V, I  
= 1mA  
1.202  
1.184  
1.22  
1.22  
1.238  
1.256  
V
V
INP  
LOAD  
2.3V ≤ V ≤ 20V, 1mA ≤ I  
≤ 150mA  
INP  
LOAD  
ADJN Pin Voltage  
(Notes 4, 5, 10)  
LT3032  
V
= –2V, I  
= –1mA  
–1.238  
–1.256  
–1.22  
–1.22  
–1.202  
–1.184  
V
V
INN  
LOAD  
–2.3V ≤ V ≤ –20V, 1mA ≤ I  
≤ –150mA  
INN  
LOAD  
l
l
Line Regulation (Note 5)  
LT3032-5 OUTP  
OUTN  
ΔV = 5.5V to 20V, I  
INN  
= 1mA  
LOAD  
1
15  
6
50  
mV  
mV  
INP  
LOAD  
ΔV = –5.5V to –20V, I  
= –1mA  
l
l
LT3032-12 OUTP  
OUTN  
ΔV = 12.5V to 20V, I  
INN  
= 1mA  
LOAD  
1.5  
13  
15  
75  
mV  
mV  
INP  
LOAD  
ΔV = –12.5V to –20V, I  
= –1mA  
l
l
LT3032-15 OUTP  
OUTN  
ΔV = 15.5V to 20V, I  
INN  
= 1mA  
LOAD  
2
10  
20  
75  
mV  
mV  
INP  
LOAD  
ΔV = –15.5V to 20V, I  
= –1mA  
l
l
LT3032  
ADJP  
ADJN  
ΔV = 2V to 20V, I  
INN  
= 1mA  
LOAD  
1
1
6
12  
mV  
mV  
INP  
LOAD  
ΔV = –2V to –20V, I  
= –1mA  
3032fd  
3
LT3032 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ  
PARAMETER  
CONDITIONS  
LT3032-5 OUTP  
MIN  
TYP  
–9  
MAX  
UNITS  
mV  
Load Regulation (Notes 5, 13)  
V
V
V
V
V
V
= 6V, ΔI  
= 1mA to 150mA  
INP  
INN  
INP  
INN  
INP  
INN  
LOAD  
LT3032-5 OUTN  
LT3032-12 OUTP  
LT3032-12 OUTN  
LT3032-15 OUTP  
LT3032-15 OUTN  
= –6V, ΔI  
= 13V, ΔI  
= –1mA to –150mA  
= 1mA to 150mA  
15  
mV  
LOAD  
20  
mV  
LOAD  
= –13V, ΔI  
= –1mA to –150mA  
20  
mV  
LOAD  
= 16V, ΔI  
= 1mA to 150mA  
25  
mV  
LOAD  
= –16V, ΔI  
= –1mA to –150mA  
27  
mV  
LOAD  
LT3032  
ADJP  
V
INP  
V
INP  
= 2.3V, ΔI  
= 2.3V, ΔI  
= 1mA to 150mA  
= 1mA to 150mA  
–1.5  
–7  
–15  
mV  
mV  
LOAD  
LOAD  
l
LT3032  
ADJN  
V
V
= –2.3V, ΔI  
= –2.3V, ΔI  
= –1mA to –150mA  
= –1mA to –150mA  
1.5  
7
mV  
mV  
INN  
INN  
LOAD  
LOAD  
l
l
l
15  
Dropout Voltage  
I
I
I
I
I
I
I
I
= 1mA  
0.09  
0.15  
0.21  
0.27  
0.10  
0.15  
0.21  
0.30  
0.20  
0.27  
V
V
V
V
V
V
V
V
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
OUTP(NOMINAL)  
INP  
= 10mA  
= 50mA  
(Notes 6, 7)  
= 150mA  
= –1mA  
l
l
Dropout Voltage  
0.20  
0.27  
V
= V  
OUTN(NOMINAL)  
INN  
= –10mA  
= –50mA  
= –150mA  
(Notes 6, 7)  
l
l
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
I
I
= 0mA (LT3032, LT3032-5)  
–25  
–50  
–70  
–80  
–350  
–1.3  
–4  
–65  
–120  
–120  
180  
–500  
–1.8  
–7  
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
, V = 0V  
OUTP(NOMINAL) INN  
= 0mA (LT3032-12, LT3032-15)  
= 1mA (LT3032, LT3032-5)  
= 1mA (LT3032-12, LT3032-15)  
= 10mA  
INP  
(Notes 6, 8, 9)  
μA  
μA  
μA  
mA  
mA  
= 50mA  
= 150mA  
l
l
l
l
l
l
l
GND Pin Current  
I
I
I
I
I
I
I
= 0mA (LT3032, LT3032-5)  
= 0mA (LT3032-12, LT3032-15)  
= –1mA (LT3032, LT3032-5)  
= –1mA (LT3032-12, LT3032-15)  
= –10mA  
30  
50  
70  
130  
180  
180  
600  
1.5  
5
μA  
μA  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
LOAD  
V
= V  
, V = 0V  
INN  
OUTN(NOMINAL) INP  
(Notes 6, 8, 9, 10)  
85  
μA  
90  
μA  
μA  
mA  
mA  
300  
0.75  
2
= –50mA  
= –150mA  
ADJP Pin Bias Current  
ADJN Pin Bias Current  
Shutdown Threshold  
LT3032  
LT3032  
(Notes 5, 9)  
(Notes 5, 9)  
30  
100  
–100  
2
nA  
nA  
–30  
l
l
l
l
l
l
SHDNP  
SHDNP  
SHDNN  
SHDNN  
SHDNN  
SHDNN  
V
OUTP  
V
OUTP  
V
OUTN  
V
OUTN  
V
OUTN  
V
OUTN  
= Off to On  
0.7  
0.6  
1.4  
–1.9  
1.4  
–1.9  
V
V
V
V
V
V
= On to Off  
0.25  
= Off to On (Positive)  
= Off to On (Negative)  
= On to Off (Positive)  
= On to Off (Negative)  
2
–2.8  
0.25  
–0.25  
SHDNP Pin Current (Note 9)  
V
V
= 0V  
–1  
–1  
1
4
μA  
μA  
SHDNP  
SHDNP  
= 20V  
1
SHDNN Pin Current  
(Note 9)  
V
V
V
= 0V  
= 15V  
= -15V  
1
15  
–9  
μA  
μA  
μA  
SHDNN  
SHDNN  
SHDNN  
6
–3  
l
l
l
Quiescent Current in Shutdown  
V
V
V
= 6V, V  
= 0V, V = 0V  
0.1  
–3  
10  
8
–10  
20  
μA  
μA  
μA  
INP  
INN  
INN  
SHDNP  
INN  
= –6V, V  
= 0V, V = 0V (LT3032, LT3032-5)  
SHDNN  
INP  
–1V, V  
= V  
= 0V, V = 0V  
OUT(NOMINAL)  
SHDNN INP  
(LT3032-12/ LT3032-15)  
3032fd  
4
LT3032 Series  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°Cꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Voltage Noise (10Hz to 100kHz)  
C
OUTP  
C
OUTN  
= 10μF, C  
= 10μF, C  
0.01μF, I  
0.01μF, I  
= 150mA  
= –150mA  
20  
30  
μV  
RMS  
μV  
RMS  
BYPP  
BYPN  
LOAD  
LOAD  
Ripple Rejection  
V
V
to V  
= 1.5V (Average), I = 100mA  
LOAD  
50  
46  
68  
54  
dB  
dB  
INP  
INN  
OUTP  
OUTN  
V
= 0.5V  
f
= 120Hz  
to V  
= –1.5V (Average), I  
= –100mA  
RIPPLE  
P-P, RIPPLE  
LOAD  
Current Limit (Note 12)  
V
V
V
V
= 7V, V  
= 0V  
OUTN  
OUTP(NOMINAL)  
OUTP(NOMINAL)  
400  
350  
mA  
mA  
mA  
mA  
INP  
INN  
INP  
INN  
OUTP  
= –7V, V  
= 0V  
l
l
= 2.3Vor V  
= –2.3Vor V  
+ 1V, ΔV  
= –0.1V  
OUTN  
170  
170  
OUTP  
– 1V, ΔV  
= 0.1V  
l
l
INP Reverse Leakage Current  
INN Reverse Leakage Current  
V
INP  
V
INN  
= –20V, V  
= 0V  
–1  
1
mA  
mA  
OUTP  
= 20V, V  
, V  
, V  
= Open Circuit  
OUTN ADJN SHDNN  
Reverse Output Current  
(Notes 5, 11)  
LT3032-5  
LT3032-12  
LT3032-15  
LT3032  
V
V
V
V
= 5V, V < 5V  
10  
25  
25  
5
20  
50  
50  
10  
μA  
μA  
μA  
μA  
OUTP  
OUTP  
OUTP  
OUTP  
INP  
= 12V, V < 12V  
INP  
= 15V, V < 15V  
INP  
= V  
= 1.22V, V < 1.22V  
INP  
ADJP  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
For lower output voltages, dropout voltage is limited by the minimum  
input voltage specification under some output voltage/load conditions;  
see curves for Minimum INN Voltage and Minimum INP Voltage in Typical  
Performance Characteristics. LTC is unable to guarantee Maximum  
Dropout Voltage specifications at 50mA and 150mA due to production  
test limitations with Kelvin-Sensing the package pins. Please consult the  
Typical Performance Characteristics for curves of Dropout Voltage as a  
function of Output Load Current and Temperature.  
Note 2: The LT3032 is tested and specified under pulse load conditions  
such that T T . The LT3032E is 100% tested at T = 25°C. Performance  
J
A
A
of the LT3032E over the full –40°C to 125°C operating junction  
temperature range is assured by design, characterization, and correlation  
with statistical process controls. The LT3032I regulators are guaranteed  
over the full –40°C to 125°C operating junction temperature range.  
Note 8: GND pin current is tested with V = V  
or V  
=
INP  
OUTP(NOMINAL)  
INN  
V
and a current source load. This means the device is tested  
OUTN(NOMINAL)  
while operating in its dropout region. This is the worst-case GND pin  
current. GND pin current decreases slightly at higher input voltages.  
Note 9: Positive current flow is into the pin. Negative current flow is out of  
Note 3: Parasitic diodes exist internally between the INN pin and the OUTN,  
ADJN, and SHDNN pins. These pins cannot be pulled more than 0.5V  
below the INN pin during fault conditions, and must remain at a voltage  
more positive than the INN pin during operation.  
the pin.  
Note 4: Operating conditions are limited by maximum junction  
Note 10: For input-to-output differential voltages from INN to OUTN  
greater than –7V, a 50μA load is needed to maintain regulation.  
Note 11: Reverse output current is tested with the INP pin grounded and  
the OUTP pin forced to the nominal output voltage. This current flows into  
the OUTP pin and out the GND pin.  
temperature. Specifications do not apply for all possible combinations of  
input voltages and output currents. When operating at maximum input  
voltages, the output current ranges must be limited. When operating at  
maximum output currents, the input voltage ranges must be limited.  
Note 5: The LT3032 is tested and specified for these conditions with the  
ADJP pin tied to the OUTP pin and the ADJN pin tied to the OUTN pin.  
Note 12: Positive side current limit is tested at V = 2.3V or  
INP  
V
+ 1V (whichever is more positive). Negative side current  
OUTP(NOMINAL)  
Note 6: To satisfy requirements for minimum input voltage, the LT3032 is  
tested and specified for these conditions with an external resistor divider  
(two 250k resistors) from OUTP/OUTN to the corresponding ADJP/ADJN  
pin to give an output voltage of 2.44V. The external resistor divider adds a  
5μA DC load on the output. The LT3032-12/LT3032-15 have higher internal  
resistor divider current, resulting in higher GND pin current at light/no load.  
Note 7: Dropout voltage is the minimum input-to-output voltage  
differential needed to maintain regulation at a specified output current. In  
dropout, output voltage equals:  
limit is tested at V = –2.3V or V  
negative).  
Note 13: LTC is unable to guarantee load regulation specifications on  
fixed voltage versions of the LT3032 due to production test limitations  
with Kelvin-Sensing the package pins. Please consult the Typical  
Performance Characteristics for curves of Load Regulation as a function of  
Temperature.  
– 1V (whichever is more  
INN  
OUTN(NOMINAL)  
V
– V  
DROPOUT  
INP/INN  
3032fd  
5
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
INP-to-OUTP  
Typical Dropout Voltage  
INN-to-OUTN  
Typical Dropout Voltage  
INP-to-OUTP  
Dropout Voltage  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
T
= 125°C  
= 25°C  
J
J
I
= 150mA  
L
T
= 125°C  
J
I
= 50mA  
= 10mA  
= 1mA  
L
T
= 25°C  
I
L
J
I
L
0
–50  
0
0
0
–40  
–80  
–120  
–160  
0
25  
50  
75  
125  
40  
120  
–25  
100  
0
20  
60 80 100  
140 160  
TEMPERATURE (°C)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3032 G02  
3032 G03  
3032 G01  
INN-to-OUTN  
Dropout Voltage  
INP Quiescent Current  
INN Quiescent Current  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
70  
60  
50  
40  
30  
20  
10  
0
–60  
–50  
–40  
–30  
–20  
–10  
I
I
= 0 (FIXED VOLTAGES)  
= –5μA (ADJUSTABLE)  
I
I
= 0 (FIXED VOLTAGES)  
= 5μA (ADJUSTABLE)  
L
L
L
L
V
= V = V  
INP  
+1V  
OUTP(NOMINAL)  
SHDNP  
(12V, 15V)  
V
= V = V  
INN  
–1V  
OUTN(NOMINAL)  
SHDNN  
I
= 150mA  
= 50mA  
(12V, 15V)  
L
V
= V = 6V  
INP  
SHDNP  
(5V, ADJ)  
V
= V  
= –6V  
INN  
SHDNN  
(5V, ADJ)  
I
L
I
= 10mA  
= 1mA  
L
I
L
V
= 0V, V  
50  
= –6V  
INN  
SHDNN  
V
= 0V, V = 6V  
INP  
SHDNP  
0
–50  
0
–25  
0
25  
50  
75  
125  
0
25  
50  
75 100 125  
–50  
100  
–50 –25  
0
25  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3032 G04  
3032 G05  
3032 G06  
LT3032-5 OUTP Output Voltage  
LT3032-5 OUTN Output Voltage  
LT3032-12 OUTP Output Voltage  
12.24  
12.18  
12.12  
12.06  
12.00  
11.94  
11.88  
11.82  
11.76  
5.100  
5.075  
5.050  
5.025  
5.000  
4.975  
4.950  
4.925  
4.900  
–5.100  
–5.075  
–5.050  
–5.025  
–5.000  
–4.975  
–4.950  
–4.925  
–4.900  
I
L
= –1mA  
I
= 1mA  
L
I = 1mA  
L
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–25  
0
50  
75 100 125  
–50  
100  
–50  
100  
–50  
25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3032 G58  
3032 G52  
3032 G53  
3032fd  
6
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT3032-12 OUTN Output Voltage  
LT3032-15 OUTP Output Voltage  
LT3032-15 OUTN Output Voltage  
–12.24  
–12.18  
–12.12  
–12.06  
–12.00  
–11.94  
–11.88  
–11.82  
–11.76  
15.300  
15.225  
15.150  
15.075  
15.000  
14.925  
14.850  
14.775  
14.700  
–15.300  
–15.225  
–15.150  
–15.075  
–15.000  
–14.925  
–14.850  
–14.775  
–14.700  
I
= –1mA  
I
= 1mA  
I = –1mA  
L
L
L
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–25  
0
25  
50  
75  
125  
–50  
100  
–50  
100  
–50  
100  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3032 G59  
3032 G60  
3032 G61  
LT3032 ADJP Pin Voltage  
LT3032 ADJN Pin Voltage  
LT3032-5 INP Quiescent Current  
–1.240  
–1.235  
–1.230  
–1.225  
–1.220  
–1.215  
–1.210  
–1.205  
–1.200  
400  
350  
300  
250  
200  
150  
100  
50  
1.240  
1.235  
1.230  
1.225  
1.220  
1.215  
1.210  
1.205  
1.200  
I
L
= –1mA  
T
= 25°C  
= ∞  
J
L
I
= 1mA  
L
R
V
= V  
INP  
SHDNP  
V
= 0V  
SHDNP  
0
–25  
0
25  
50  
75  
125  
–50 –25  
0
25  
50  
75 100 125  
–50  
100  
0
2
4
6
8
10 12 14 16 18 20  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INP VOLTAGE (V)  
3032 G08  
3032 G07  
3032 G54  
LT3032-5 INN Quiescent Current  
LT3032-12 INP Quiescent Current  
LT3032-12 INN Quiescent Current  
400  
350  
300  
250  
200  
150  
100  
50  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
–60  
–50  
–40  
–30  
–20  
–10  
–0  
T
= 25°C  
= ∞  
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
J
L
J
L
J
R
R
V
= V  
INN  
SHDNN  
V
= V  
SHDNN INN  
V
= V  
INP  
SHDNP  
V
= 0V  
SHDNN  
V
= 0V  
SHDNN  
V
= 0V  
SHDNP  
0
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
0
2
4
6
8
10 12 14 16 18 20  
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
INN VOLTAGE (V)  
INP VOLTAGE (V)  
INP VOLTAGE (V)  
3032 G55  
3032 G62  
3032 G63  
3032fd  
7
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT3032-15 INP Quiescent Current  
LT3032-15 INN Quiescent Current  
LT3032 INP Quiescent Current  
400  
350  
300  
250  
200  
150  
100  
50  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
30  
25  
20  
15  
10  
5
T
= 25°C  
= ∞  
T
= 25°C  
R = ∞  
L
J
L
J
R
V
= V  
INP  
SHDNP  
V
= V  
INP  
SHDNP  
T
= 25°C  
= 250k  
J
L
V
V
= V  
INN  
SHDNN  
R
= 0V  
SHDNN  
V
= 0V  
SHDNP  
V
= 0V  
SHDNP  
0
0
0
2
4
6
8
10 12 14 16 18 20  
0
2
4
6
8
10 12 14 16 18 20  
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
INP VOLTAGE (V)  
INP VOLTAGE (V)  
INN VOLTAGE (V)  
3032 G09  
3032 G64  
3032 G65  
LT3032-5  
Positive Side GND Pin Current  
LT3032-5  
Negative Side GND Pin Current  
LT3032 INN Quiescent Current  
–40  
–35  
–30  
–25  
–20  
–15  
–10  
–5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
SHDNN  
T
= 25°C  
= V  
J
J
INP  
T
= 25°C  
= 250k  
J
L
V
= V  
V
INN  
= –5V  
SHDNP  
R
*FOR V  
*FOR V  
= 5V  
OUTN  
OUTP  
I
= –5μA  
L
R
L
= 33.3Ω  
V
= V  
INN  
L
SHDNN  
I
= 150mA*  
R
L
= 33.3Ω  
L
I
= 150mA*  
R
L
= 50Ω  
= –100mA*  
L
I
R
= 50Ω  
= 100mA*  
L
R
L
= 100Ω  
L
I
L
I
= –50mA*  
R
= 100Ω  
L
= 50mA*  
R = 500Ω  
L
I = –10mA*  
L
V
= 0V  
SHDNN  
I
L
–0  
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
4
0
1
2
3
5
6
7
8
9
10  
INN VOLTAGE (V)  
INN VOLTAGE (V)  
INP VOLTAGE (V)  
3032 G10  
3032 G57  
3032 G56  
LT3032-12  
Positive Side GND Pin Current  
LT3032-12  
Negative Side GND Pin Current  
LT3032-15  
Positive Side GND Pin Current  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C  
SHDNP  
T = 25°C  
J
T
= 25°C  
SHDNP  
J
J
R
= 100Ω  
L
L
V
= V  
V
= V  
SHDNN INN  
V
= V  
INP  
INP  
*I = 150mA  
*FOR V  
= 12V  
*FOR V  
= –12V  
OUTN  
*FOR V  
= 15V  
OUTP  
OUTP  
R
= 80Ω  
L
L
*I = 150mA  
R
= 80Ω  
L
L
*I = –150mA  
R = 150Ω  
L
*I = 100mA  
R
= 120Ω  
*I = 100mA  
L
L
L
R
= 120Ω  
L
*I = –100mA  
L
R
= 240Ω  
L
R
= 240Ω  
*I = 50mA  
L
*I = –50mA  
L
L
R
= 300Ω  
L
*I = 50mA  
L
R
= 1.2k, *I = –10mA  
L
L
0
2
4
6
8
10 12 14 16 18 20  
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
2
4
6
10 12 14 16 18 20  
0
8
INP VOLTAGE (V)  
INN VOLTAGE (V)  
INP VOLTAGE (V)  
3032 G66  
3032 G67  
3032 G68  
3032fd  
8
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
LT3032-15  
Negative Side GND Pin Current  
LT3032  
LT3032  
Negative Side GND Pin Current  
Positive Side GND Pin Current  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
T
= 25°C; V  
= V  
;
INN  
T
= 25°C  
SHDNN  
J
SHDNN  
J
T
= 25°C  
J
*FOR V  
= –1.22V  
V
= V  
OUTN  
INN  
V
= V  
INP  
SHDNP  
*FOR V  
= –15V  
OUTN  
*FOR V  
= 1.22V  
OUTP  
R
L
= 8.07Ω  
= –150mA*  
R
= 100Ω  
L
I
*I = –150mA  
L
L
R
L
= 8.07Ω  
L
I
= 150mA*  
R
L
= 12.2Ω  
= –100mA*  
L
I
R
= 150Ω  
R
= 12.2Ω  
L
L
L
*I = –100mA  
I
= 100mA*  
L
R
= 24.4Ω  
L
R
L
= 24.4Ω  
I
= –50mA*  
L
L
I
= 50mA*  
R
L
= 122Ω  
= –10mA*  
L
R
= 300Ω, *I = 50mA  
L
L
I
R
= 1.5k, *I = –10mA  
L
L
0
–1 –2 –3 –4 –5 –6 –7 –8 –9 –10  
0
–2 –4 –6 –8 –10 –12 –14 –16 –18 –20  
4
0
1
2
3
5
6
7
8
9
10  
INN VOLTAGE (V)  
INN VOLTAGE (V)  
INP VOLTAGE (V)  
3032 G12  
3032 G69  
3032 G11  
Positive Side GND Pin Current  
vs ILOAD  
Negative Side GND Pin Current  
vs ILOAD  
SHDNP Pin Threshold  
–4.0  
–3.5  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
– 1V  
OUTN(NOMINAL)  
V
= V  
+ 1V  
INN  
I
L
= 1mA  
INP  
OUTP(NOMINAL)  
T
= 25°C  
J
ON  
T
= –50°C  
J
T
= 25°C  
J
OFF  
T
= 125°C  
J
0
–20 –40 –60 –80 –100 –120 –140 –160  
40  
120  
–50  
0
25  
50  
75  
125  
0
20  
60 80 100  
140 160  
–25  
100  
NEGATIVE LOAD CURRENT (mA)  
TEMPERATURE (°C)  
POSITIVE LOAD CURRENT (mA)  
3032 G14  
3032 G13  
3032 G15  
SHDNN Pin Thresholds  
SHDNP Pin Input Current  
SHDNP Pin Input Current  
2.5  
2.0  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 20V  
SHDNP  
ON  
1.5  
1.0  
0.5  
0
OFF  
ON  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–25  
0
25  
50  
75  
125  
–50 –25  
0
25  
50  
75 100 125  
–50  
100  
4
0
1
2
3
5
6
7
8
9
10  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SHDNP PIN VOLTAGE (V)  
3032 G16  
3032 G18  
3032 G17  
3032fd  
9
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
SHDNN Pin Input Current  
SHDNN Pin Input Current  
ADJP Pin Bias Current  
10  
8
12  
9
140  
120  
100  
80  
V
= –15V  
INN  
T
= 25°C  
J
POSITIVE CURRENT  
FLOWS INTO THE PIN  
POSITIVE CURRENT  
FLOWS INTO THE PIN  
6
6
4
V
V
= 15V  
SHDNN  
SHDNN  
2
3
0
0
60  
–2  
–4  
–6  
–8  
–10  
= –15V  
–3  
–6  
–9  
40  
20  
0
–50 –25  
0
25  
TEMPERATURE (°C)  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–10 –8 –6 –4 –2  
0
2
4
6
8
10  
–25  
TEMPERATURE (°C)  
SHDNN PIN VOLTAGE (V)  
3032 G19  
3032 G20  
3032 G21  
ADJN Pin Bias Current  
Positive Side Current Limit  
Positive Side Current Limit  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
V
= 0V  
V
= 7V  
= 0V  
OUTP  
INP  
OUTP  
V
0
0
–50 –25  
0
25  
50  
75 100 125  
0
2
3
4
5
6
7
50  
TEMPERATURE (°C)  
125  
1
–50  
0
25  
75 100  
–25  
TEMPERATURE (°C)  
INP-TO-OUTP DIFFERENTIAL VOLTAGE (V)  
3032 G22  
3032 G23  
3032 G24  
Negative Side Current Limit  
Negative Side Current Limit  
Reverse OUTP Pin Current  
–600  
–500  
–400  
–300  
–200  
–100  
0
–600  
–500  
–400  
–300  
–200  
–100  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
T
= 25°C, V = 0V  
INP  
J
ΔV  
OUTN  
= 100mV  
V
V
= –7V  
INN  
OUTN  
CURRENT FLOWS  
INTO OUTP PIN  
= 0V  
LT3032  
V
= V  
(LT3032)  
OUTP  
ADJP  
LT3032-5  
LT3032-12  
LT3032-15  
0
–4  
–8  
–12  
–16  
–20  
–50 –25  
0
25  
50  
75 100 125  
8
0
2
4
6
10 12 14 16 18 20  
INN-TO-OUTN DIFFERENTIAL VOLTAGE (V)  
TEMPERATURE (°C)  
OUTP PIN VOLTAGE (V)  
3032 G25  
3032 G26  
3032 G27  
3032fd  
10  
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Reverse OUTP Pin Current  
INP-to-OUTP Ripple Rejection  
INP-to-OUTP Ripple Rejection  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
V
= 0V  
C
= 0.01μF  
INP  
BYPP  
= V  
=1.22V (LT3032)  
OUTP  
OUTP  
OUTP  
OUTP  
ADJP  
= 5V (LT3032-5)  
= 12V (LT3032-12)  
= 15V (LT3032-15)  
C
= 1000pF  
BYPP  
C
= 100pF  
BYPP  
C
C
= 10μF  
= 2.2μF  
OUTP  
(LT3032-12/LT3032-15)  
I
= 150mA  
L
I = 150mA  
L
(LT3032-5)  
OUTP  
V
= V  
+
INP  
OUTP(NOMINAL)  
V
= V  
+
INP  
OUTP(NOMINAL)  
1.5V + 50mV  
C
RIPPLE  
RMS  
1.5V + 50mV  
RIPPLE  
RMS  
= 0  
BYPP  
C
= 10μF  
(LT3032)  
OUTP  
0
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
–50  
0
25  
50  
75 100 125  
–25  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
3032 G29  
3032 G30  
3032 G28  
INN-to-OUTN Ripple Rejection  
INP-to-OUTP Ripple Rejection  
INN-to-OUTN Ripple Rejection  
80  
70  
60  
50  
40  
30  
20  
10  
0
68  
66  
64  
62  
60  
58  
56  
54  
52  
60  
58  
56  
54  
52  
50  
48  
46  
44  
I
= –150mA  
L
V
= V  
P-P  
= –150mA  
– 1.5V +  
OUTN(NOMINAL)  
INN  
V
= V  
– 1.5V +  
INN  
OUTN(NOMINAL)  
0.5V RIPPLE AT f = 120Hz  
50mV  
RIPPLE  
RMS  
I
L
C
= 0  
BYPN  
C
= 10μF  
OUTN  
V
= V  
+
INP  
OUTP(NOMINAL)  
1.5V + 0.5V RIPPLE  
P-P  
AT f = 120Hz  
I
= 150mA  
C
= 1μF  
L
OUTN  
10k  
10  
100  
1k  
100k  
1M  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3032 G31  
3032 G33  
3032 G32  
LT3032 Minimum INP Pin Voltage  
LT3032 Minimum INN Pin Voltage  
Positive Load Regulation  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–3.0  
–2.5  
–2.0  
–1.5  
–1.0  
–0.5  
0
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
LT3032  
LT3032-5  
V
= 1.22V  
OUTP  
I
= 150mA  
L
LT3032-12  
I
I
= –150mA  
= –1mA  
L
L
I
= 1mA  
L
LT3032-15  
NOTE: THE SHDNN PIN THRESHOLD  
MUST BE MET TO ENSURE  
DEVICE OPERATION  
V
= V  
+1V  
50  
INP  
OUTP(NOMINAL)  
ΔI = 1mA TO 150mA  
L
–50 –25  
0
25  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3032 G36  
3032 G35  
3032 G34  
3032fd  
11  
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Negative Load Regulation  
OUTP Noise Spectral Density  
OUTN Noise Spectral Density  
10  
1
10  
1
60  
50  
40  
30  
20  
10  
0
C
I
= 10μF  
V
I
= V  
– 1V  
OUTN(NOMINAL)  
OUTP  
L
INN  
L
= 150mA  
= –1mA TO –150mA  
C
= 1000pF  
C
C
BYPP  
= 0.01μF  
BYPN  
= 100pF  
BYPN  
C
= 1000pF  
BYPP  
C
= 100pF  
C
= 0  
BYPP  
BYPN  
LT3032-12  
LT3032-15  
0.1  
LT3032-5  
0.1  
0.01  
C
= 0.01μF  
= 10μF  
BYPN  
OUTN  
C
I
V
V
= –5V  
= V  
OUTN  
OUTN  
LT3032  
75 100 125  
V
V
= 5V  
ADJP  
OUTP  
OUTP  
= –150mA  
L
ADJN  
= V  
0.01  
–50 –25  
0
25  
50  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
10  
100  
1k  
FREQUENCY (Hz)  
10k  
100k  
TEMPERATURE (°C)  
3032 G39  
3032 G37  
3032 G38  
OUTP RMS Noise  
vs Bypass Capacitor  
OUTP RMS Noise  
vs Load Current (10Hz to 100kHz)  
OUTN RMS Noise  
vs Bypass Capacitor  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
LT3032-15  
C
L
= 10μF  
OUTN  
C
I
= 10μF  
OUTP  
L
LT3032-12  
LT3032-5  
LT3032  
LT3032-15  
LT3032-12  
I
= –150mA  
= 150mA  
LT3032-15  
LT3032-12  
f = 10Hz TO 100kHz  
f = 10Hz TO 100kHz  
LT3032-15  
C
BYPP  
BYPP  
= 10μF  
OUTP  
C
C
= 0  
= 0.01μF  
LT3032-12  
LT3032-5  
LT3032  
LT3032-5  
LT3032  
LT3032-5  
LT3032  
0
0
0
10  
100  
1k  
10k  
0.01  
0.1  
1
10  
LOAD CURRENT (mA)  
100  
1k  
10  
100  
1k  
10k  
C
(pF)  
C
(pF)  
BYPN  
BYPP  
3032 G42  
3032 G40  
3032 G41  
OUTN RMS Noise  
vs Load Current (10Hz to 100kHz)  
OUTP 10Hz to 100kHz Output Noise  
CBYPP = 0  
OUTP 10Hz to 100kHz Output Noise  
CBYPP = 0ꢀ01μF  
140  
120  
100  
80  
C
= 10μF  
OUTN  
C
= 0  
= 0.01μF  
BYPN  
BYPN  
C
LT3032-15  
LT3032-15  
LT3032-12  
LT3032-5  
LT3032  
LT3032-12  
V
V
OUTP  
100μV/DIV  
OUTP  
100μV/DIV  
60  
LT3032-5  
40  
LT3032  
3032 G44  
3032 G45  
20  
C
L
V
= 10μF  
1ms/DIV  
C
= 10μF  
OUTP  
1ms/DIV  
OUTP  
I
= 150mA  
I = 150mA  
L
0
= 5V  
V
= 5V  
OUTP  
OUTP  
–0.01  
–0.1  
–1  
–10  
–100  
–1k  
LOAD CURRENT (mA)  
3032 G43  
3032fd  
12  
LT3032 Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
OUTN, 10Hz to 100kHz  
Output Noise, CBYPN = 0  
OUTP Transient Response  
CBYPP = 0  
OUTN, 10Hz to 100kHz Output  
Noise, CBYPN = 0ꢀ01μF  
0.3  
0.2  
0.1  
0
V
V
C
C
= 5V  
OUTP  
INP  
INP  
= 6V  
= 10μF  
= 10μF  
OUTP  
V
OUTN  
–0.1  
–0.2  
–0.3  
150  
100  
50  
V
OUTN  
100μV/DIV  
200μV/DIV  
3032 G46  
3032 G47  
C
= 10μF  
= –150mA  
= –5V  
1ms/DIV  
OUTN  
LOAD  
C
= 10μF  
= –150mA  
= –5V  
1ms/DIV  
OUTN  
LOAD  
I
I
V
0
OUTN  
V
OUTN  
800  
TIME (μs)  
0
400  
1200  
1600  
2000  
3032 G48  
OUTP Transient Response  
CBYPP = 0ꢀ01μF  
OUTN Transient Response  
CBYPN = 0  
OUTN Transient Response  
CBYPN = 0ꢀ01μF  
0.06  
0.04  
0.02  
0
V
= –5V  
V
OUTN  
= –5V  
V
= 5V  
OUTN  
OUTP  
0.2  
0.1  
0.04  
0.02  
0
V
C
C
= –6V  
V
C
C
= –6V  
V
C
C
= 6V  
INN  
INN  
OUTN  
INN  
INN  
OUTN  
INP  
INP  
OUTP  
= 10μF  
= 10μF  
= 10μF  
= 10μF  
= 10μF  
= 10μF  
0
–0.02  
–0.04  
–0.06  
0
–0.1  
–0.2  
0
–0.02  
–0.04  
–50  
–100  
–150  
150  
100  
50  
–50  
–100  
–150  
0
80  
TIME (μs)  
0
40  
120  
160  
200  
0
100 200 300 400 500 600 700 800 900 1k  
0
50 100 150 200 250 300 350 400 450 500  
TIME (μs)  
TIME (μs)  
3032 G49  
3032 G50  
3032 G51  
3032fd  
13  
LT3032 Series  
PIN FUNCTIONS  
OUTP(Pin1):PositiveOutput.Thisoutputsuppliespower  
to the positive side load. A minimum output capacitor  
of 2.2μF is required to prevent oscillations. Larger out-  
put capacitors are required for applications with large  
transient loads to limit peak voltage transients. See the  
Applications Information section for more information  
on output capacitance, bypass capacitance, and reverse  
output characteristics.  
a battery rises with frequency, so it is advisable to include  
a bypass capacitor in battery-powered circuits. A bypass  
capacitor in the range of 1μF to 10μF is sufficient.  
OUTN(Pin7):NegativeOutput.Thisoutputsuppliespower  
to the negative side load. A minimum output capacitor  
of 1μF is required to prevent oscillations. Larger output  
capacitors are required for applications with large tran-  
sient loads to limit peak voltage transients. A parasitic  
diode exists between OUTN and INN; OUTN can not be  
pulled more negative than INN during normal operation,  
or more than 0.5V below INN during a fault condition. See  
theApplicationsInformationsectionformoreinformation  
on output capacitance and bypass capacitors.  
ADJP (Pin 2, Adjustable Part Only): Positive Adjust. This  
is the input to the positive side error amplifier. This pin  
is internally clamped to 7V. It has a typical bias current  
of 30nA which flows into the pin (see curve of ADJP Pin  
Bias Current vs Temperature in the Typical Performance  
Characteristics).TheADJPpinvoltageis1.22Vreferenced  
to ground and the output voltage range is 1.22V to 20V.  
ADJN(Pin8, AdjustablePartOnly):NegativeAdjust. This  
is the input to the negative side error amplifier. The ADJN  
pin has a typical bias current of 30nA that flows out of the  
pin. The ADJN pin voltage is –1.22V referenced to ground,  
andtheoutputvoltagerangeis1.22Vto20V. Aparasitic  
diode exists between ADJN and INN. The ADJN pin cannot  
bepulledmorenegativethanINNduringnormaloperation,  
or more than 0.5V below INN during a fault condition.  
BYPP (Pin 3): Positive Bypass. The BYPP pin is used to  
bypassthereferenceofthepositivesideregulatortoachieve  
low noise performance. The BYPP pin is clamped internally  
to 0.6V (one V ). A small capacitor from OUTP to this pin  
BE  
will bypass the reference to lower the output voltage noise.  
A maximum value of 0.01μF is used for reducing output  
voltage noise to a typical 20μV  
over the 10Hz to 100kHz  
RMS  
SHDNN(Pin10):NegativeShutdown.TheSHDNNpinputs  
the negative side into a low power shutdown state. The  
SHDNN pin is referenced to ground for regulator control,  
allowing the negative side to be driven by either positive  
or negative logic. The negative output will be off if the  
SHDNN pin is within 0.8V(typical) of ground. Pulling the  
SHDNNpinmorethan1.9Vor+1.4V(typical)willturnthe  
negative output on. The SHDNN pin can be driven by 5V  
logic or open-collector logic with a pull-up resistor. The  
pull-up resistor is required to supply the pull-up current of  
theopen-collectordevice,normallyseveralmicroamperes,  
and the SHDNN pin current, typically 3μA out of the pin  
(for negative logic) or 6μA into the pin (for positive logic).  
If unused, the SHDNN pin must be connected to INN. The  
negativeoutputwillbeshutdowniftheSHDNNpinisopen  
circuit. A parasitic diode exists between SHDNN and INN,  
the SHDNN pin cannot be pulled more negative than INN  
during normal operation, or more than 0.5V below INN  
during a fault condition.  
bandwidth. If not used, this pin must be left unconnected.  
GND (Pins 4, 5, Exposed Pad Pin 15): Ground. One of  
the DFN’s exposed backside pads (Pin 15) is an electrical  
connection to ground. To ensure proper electrical and  
thermal performance, solder Pin 15 to the PCB’s ground  
and tie directly to Pins 4 and 5. Connect the bottom of  
the positive and negative output voltage setting resistor  
dividers directly to Pins 4 and 5 for optimum load regula-  
tion performance.  
INN (Pin 6, 9, Exposed Pad Pin 16): Negative Input. The  
DFN package’s second exposed backside pad (Pin 16) is  
an electrical connection to INN. To ensure proper electri-  
cal and thermal performance, solder Pin 16 to the PCB’s  
negative input supply and tie directly to Pins 6 and 9.  
Power is supplied to the negative side of the LT3032  
through the INN pins. A bypass capacitor is required on  
this pin if it is more than six inches away from the main  
input filter capacitor. In general, the output impedance of  
3032fd  
14  
LT3032 Series  
PIN FUNCTIONS  
BYPN (Pin 11): Negative Bypass. The BYPN pin is used  
to bypass the reference of the negative side regulator to  
achieve low noise performance. A small capacitor from  
OUTN to this pin will bypass the reference to lower the  
output voltage noise. A maximum value of 0.01μF is used  
The positive output will be shut down if the SHDNP pin  
is open circuit. The SHDNP pin can be tied directly to the  
SHDNN pin and both pins driven directly by positive logic  
for a single point control of both outputs.  
NC (Pin 13/Pins 2, 8 for Fixed Voltage Devices): No  
Connect. The No Connect pin has no connection to inter-  
nal circuitry and may be tied to INP, GND, INN, SHDNP,  
SHDNN, OUTP, OUTN, floated, or tied to any other point.  
for reducing output voltage noise to a typical 30μV  
RMS  
over the 10Hz to 100kHz bandwidth. If not used, this pin  
must be left unconnected.  
SHDNP(Pin12):PositiveShutdown. TheSHDNPpinputs  
the positive side into a low power shutdown state. The  
positive output will be off when the SHDNP pin is pulled  
below 0.6V(typical). The SHDNP pin can be driven by 5V  
logic or open-collector logic with a pull-up resistor. The  
pull-up resistor is required to supply the pull-up current  
of the open-collector device, normally several microam-  
peres, and the SHDNP pin current, typically 1μA into the  
pin. If unused, the SHDNP pin must be connected to INP.  
INP (Pin 14): Positive Input. Power is supplied to the  
positive side of the LT3032 through the INP pin. A bypass  
capacitorisrequiredonthispinifitismorethansixinches  
away from the main input filter capacitor. In general, the  
output impedance of a battery rises with frequency, so  
it is advisable to include a bypass capacitor in battery-  
powered circuits. A bypass capacitor in the range of 1μF  
to 10μF is sufficient.  
3032fd  
15  
LT3032 Series  
APPLICATIONS INFORMATION  
TheLT3032isadual150mApositiveandnegativelownoise  
low dropout linear regulator with micropower quiescent  
current and shutdown. It supplies 150mA at a dropout  
of 300mV. Output voltage noise can be lowered on the  
V
OUTP  
LT3032  
OUTP  
R2P  
R1P  
(
R2P  
)
V
V
= 1.22 V 1+  
+
I
(
)
OUTP  
ADJP  
+
+
R2P  
R1P  
R1N  
R2N  
= 1.22 V  
ADJP  
ADJP  
I
= 30nA at 25°C  
ADJP  
OUTPUT RANGE = 1.22 V TO 20 V  
positive side to 20μV  
and to 30μV  
on the negative  
RMS  
RMS  
GND  
side over the 10Hz to 100kHz bandwidth with the addition  
of 0.01μF reference bypass capacitors. Additionally, the  
reference bypass capacitors improve transient response,  
lowering the settling time for transient load conditions.  
Quiescent current is 25μA for the positive side and –30μA  
for the negative side (45μA each for the LT3032-12/  
LT3032-15), typically dropping to less than 3μA total in  
shutdown. In addition to the low quiescent current, the  
LT3032 incorporates several protection features which  
make it ideal for use in battery-powered systems. If the  
load is common mode between the two outputs, it does  
not matter which output starts first; either output can be  
pulled to the opposing side of ground and the regulator  
will still start and operate.  
R2N  
R1N  
(
ADJN  
)
V
V
= –1.22 V 1+  
+
I
(
R2N  
)
OUTN  
= –1.22 V  
ADJN  
ADJN  
OUTN  
I
= –30nA at 25°C  
ADJN  
OUTPUT RANGE = –1.22 V TO – 20 V  
V
OUTN  
3032 F01  
Figure 1ꢀ Setting Output Voltages  
The LT3032 is tested and specified with the ADJP/ADJN  
pin tied to the respective OUTP/OUTN pin and a 5μA DC  
load (unless otherwise specified) for an output voltage  
of 1.22V. Specifications for output voltages greater than  
this will be proportional to 1.22V; (V / 1.22V). For  
OUT  
example, load regulation for an output current change  
Setting Output Voltage  
of 1mA to 150mA is –2mV typical at V  
= –1.22V. At  
OUTN  
V
= –12V, load regulation is:  
OUTN  
The adjustable LT3032 has output voltage ranges of 1.22V  
to 20V for the positive side and –1.22V to –20V for the  
negative side. The output voltages are set by the ratio of  
two external resistor dividers as shown in Figure 1. The  
LT3032 servos the outputs to maintain the voltages at the  
ADJP and ADJN pins to 1.22V and –1.22V, respectively.  
The current in the bottom resistor of each divider (R1P  
or R1N) is equal to 1.22V/R1 and the current in the top  
resistor (R2P or R2N) is equal to the current in the bottom  
resistor plus the respective ADJP/ADJN pin bias current.  
The bias current for ADJP and ADJN is 30nA at 25°C,  
flowing into the pin for ADJP and flowing out of the pin  
for ADJN. The output voltages can then be calculated us-  
ing the formulas shown in Figure 1. The value of R1P or  
R1N should be less than 250k to minimize errors in the  
resultant output voltage caused by the ADJP/ADJN pin  
bias current. Note that in shutdown the respective output  
is turned off and the divider current will be zero. Curves  
of ADJP Pin Voltage, ADJN Pin Voltage, ADJP Pin Bias  
Current, and ADJN Pin Bias Current (all vs Temperature)  
appear in the Typical Performance Characteristics.  
(–12V/–1.22V)•(–2mV) = –19.6mV  
Bypass Capacitors and Low Noise Performance  
The LT3032 provides reasonable noise performance  
without reference bypass capacitors from OUTP/OUTN  
to the corresponding BYPP/BYPN pin. Using the LT3032  
with the addition of reference bypass capacitors lowers  
output voltage noise. Good quality low leakage capacitors  
are recommended. These capacitors bypass the internal  
referencesforthepositiveandnegativesidesoftheLT3032,  
providing low frequency noise poles. The noise poles  
provided by the bypass capacitors decrease the output  
voltage noise to as low as 20μV  
for the positive side  
RMS  
and 30μV  
for the negative side with the use of 0.01μF  
RMS  
bypass capacitors.  
The BYPP pin and BYPN pin are high impedance nodes  
and leakage into or out of these pins affects the reference  
voltage. The BYPP pin operates at approximately 74mV at  
3032fd  
16  
LT3032 Series  
APPLICATIONS INFORMATION  
25°C during normal operation where the BYPN pin oper-  
ates at approximately –60mV. DC leakages on the order  
of 1μA into or out of these pins can throw off the internal  
reference by 20% or more.  
Give extra consideration to the use of ceramic capacitors.  
Ceramic capacitors are manufactured with a variety of di-  
electrics, each with different behavior across temperature  
and applied voltage. The most common dielectrics used  
are specified with EIA temperature characteristic codes of  
Z5U, Y5V, X5R and X7R. The Z5U and Y5V dielectrics are  
good for providing high capacitances in a small package,  
but they tend to have strong voltage and temperature  
coefficients as shown in Figures 3 and 4. When used with  
a 5V regulator, a 16V 10ꢀF Y5V capacitor can exhibit an  
effective value as low as 1ꢀF to 2ꢀF for the DC bias voltage  
appliedandovertheoperatingtemperaturerange.TheX5R  
and X7R dielectrics result in more stable characteristics  
and are more suitable for use as the output capacitor.  
The X7R type has better stability across temperature,  
while the X5R is less expensive and is available in higher  
values. Care still must be exercised when using X5R and  
X7R capacitors. The X5R and X7R codes only specify  
operating temperature range and maximum capacitance  
change over temperature. Capacitance change due to DC  
bias with X5R and X7R capacitors is better than Y5V and  
Z5U capacitors, but can still be significant enough to drop  
capacitor values below appropriate levels. Capacitor DC  
bias characteristics tend to improve as component case  
size increases, but expected capacitance at operating  
voltage should be verified in situ for a given application.  
Output Capacitance and Transient Response  
The LT3032 requires output capacitors for stability. It  
is designed to be stable with most low ESR capacitors  
(typically ceramic, tantalum or low ESR electrolytic). A  
minimum output capacitor of 2.2ꢀF with an ESR of 3Ω  
or less is recommended to prevent oscillations on each  
output. The LT3032 is a micropower device and output  
transient response is a function of output capacitance.  
Larger values of output capacitance decrease peak de-  
viations and provide improved transient response for  
largerloadcurrentchanges.Additionalcapacitors,usedto  
decouple individual components powered by the LT3032,  
increase the effective output capacitor value. When using  
bypass capacitors (for low noise operation), larger values  
of output capacitors are needed. For 100pF of bypass ca-  
pacitance, 3.3μF of output capacitance is recommended.  
With a 330pF bypass capacitor or larger, a 4.7μF output  
capacitor is recommended. The shaded region of Figure 2  
defines the range over which the LT3032 is stable. The  
minimum ESR needed is defined by the amount of bypass  
capacitance used, while the maximum ESR is 3ꢁ. These  
requirements are applicable to both the positive and nega-  
tive linear regulator.  
Voltage and temperature coefficients are not the only  
sources of problems. Some ceramic capacitors have a  
piezoelectric response. A piezoelectric device generates  
voltage across its terminals due to mechanical stress. In  
a ceramic capacitor, the stress can be induced by vibra-  
tions in the system or thermal transients. Tapping on the  
ceramicbypasscapacitorwithapencilgeneratedthenoise  
shown in Figure 5. Similar vibration induced behavior can  
masquerade as increased output voltage noise.  
4.0  
3.5  
3.0  
STABLE REGION  
2.5  
2.0  
1.5  
1.0  
0.5  
0
C
= 0  
BYP  
C
= 100pF  
BYP  
C
= 330pF  
BYP  
C
≥ 3300pF  
BYP  
1
3
6
9 10  
8
2
4
5
7
OUTPUT CAPACITANCE (μF)  
1762 F02  
Figure 2ꢀ Stability  
3032fd  
17  
LT3032 Series  
APPLICATIONS INFORMATION  
20  
Stability and Input Capacitance  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
0
Low ESR, ceramic input bypass capacitors are acceptable  
forapplicationswithoutlonginputleads.However,applica-  
tions connecting a power supply to an LT3032’s circuit’s  
INP/INN and GND pins with long input wires combined  
withlowESR,ceramicinputcapacitorsarepronetovoltage  
spikes, reliability concerns and application-specific board  
oscillations. The input wire inductance found in many  
battery-poweredapplications, combinedwiththelowESR  
ceramic input capacitor, forms a high-Q LC resonant tank  
circuit. In some instances this resonant frequency beats  
against the output current dependent LDO bandwidth and  
interferes with proper operation. Simple circuit modifica-  
tions/solutions are then required. This behavior is not  
indicative of LT3032 instability, but is a common ceramic  
input bypass capacitor application issue.  
X5R  
–20  
–40  
–60  
Y5V  
–80  
–100  
0
8
12 14  
2
4
6
10  
16  
DC BIAS VOLTAGE (V)  
3032 F03  
Figure 3ꢀ Ceramic Capacitor DC Bias Characteristics  
40  
20  
The self-inductance, or isolated inductance, of a wire is  
directly proportional to its length. Wire diameter is not a  
major factor on its self-inductance. For example, the self-  
inductance of a 2-AWG isolated wire (diameter = 0.26”) is  
about half the self-inductance of a 30-AWG wire (diameter  
= 0.01”). One foot of 30-AWG wire has about 465nH of  
self-inductance.  
X5R  
0
–20  
–40  
Y5V  
–60  
–80  
BOTH CAPACITORS ARE 16V,  
1210 CASE SIZE, 10μF  
One of two ways reduces a wire’s self-inductance. One  
method divides the current flowing towards the LT3032  
between two parallel conductors. In this case, the farther  
apart the wires are from each other, the more the self-  
inductanceisreduced;uptoa50%reductionwhenplaced  
a few inches apart. Splitting the wires basically connects  
two equal inductors in parallel, but placing them in close  
proximity gives the wires mutual inductance adding to  
the self-inductance. The second and most effective way  
to reduce overall inductance is to place both forward and  
return current conductors (the input and GND wires) in  
verycloseproximity.Two30-AWGwiresseparatedbyonly  
0.02”, used as forward– and return– current conductors,  
reduce the overall self-inductance to approximately one-  
fifth that of a single isolated wire.  
–100  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3032 F04  
Figure 4ꢀ Ceramic Capacitor Temperature Characteristics  
3032 F05  
OUTPUT SET TO 5V  
Figure 5ꢀ Noise Resulting From Tapping on a Ceramic Capacitor  
3032fd  
18  
LT3032 Series  
APPLICATIONS INFORMATION  
The LT3032 is a surface mount device and heat sinking is  
accomplished by using the heat spreading capabilities of  
the PC board and its copper traces. Copper board stiffen-  
ers and plated through-holes can also be used to spread  
the heat generated by power devices.  
If wiring modifications are not permissible for the applica-  
tions,includingseriesresistancebetweenthepowersupply  
and the input of the LT3032 also stabilizes the application.  
As little as 0.1ꢁ to 0.5ꢁ, often less, is effective in damp-  
ing the LC resonance. If the added impedance between  
the power supply and the input is unacceptable, adding  
ESR to the input capacitor also provides the necessary  
damping of the LC resonance. However, the required ESR  
is generally higher than the series impedance required.  
Note that the exposed pads (Pins 15 and 16) are elect-  
ricallyconnectedtoground(GND)andthenegativeinput  
(INN) respectivelyꢀ  
The following table lists thermal resistance as a function  
of copper area on a fixed board size. All measurements  
were taken in still air on a 4-layer FR-4 board with 1oz  
solid internal planes and 2oz external trace planes with a  
total finished board thickness of 1.6mm.  
Thermal Considerations  
The power handling capability of the device is limited by  
the maximum rated junction temperature (125°C). The  
power dissipated by the device is made up of the follow-  
ing components:  
Table 3ꢀ DE Package, 14-Lead DFN  
COPPER AREA  
1. Output current of each side multiplied by the respective  
THERMAL RESISTANCE  
TOPSIDE*  
BACKSIDE  
BOARD AREA (JUNCTION-TO-AMBIENT)  
input/output voltage differential: (I )(V to V ),  
OUT  
IN  
OUT  
2
2
2
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
2500mm  
32°C/W  
33°C/W  
38°C/W  
43°C/W  
and  
2. GND pin current for each side multiplied by its input  
voltage: (I )(V )  
2
2
2
2
2
1000mm  
2500mm  
2
2
225mm  
2500mm  
GND  
IN  
2
2
100mm  
2500mm  
The GND pin current of each side is found by examining  
the GND Pin Current curves in the Typical Performance  
Characteristics. Total power dissipation equals the sum  
for both channels of the components listed above.  
*Device is mounted on topside  
For further information on thermal resistance and using  
thermal information, refer to JEDEC standard JESD51,  
notably JESD51-12.  
The LT3032 has internal thermal limiting designed to pro-  
tect each side of the regulator during overload conditions.  
For continuous normal conditions, the maximum junction  
temperature rating of 125°C must not be exceeded. It is  
important to give careful consideration to all sources of  
thermal resistance from junction to ambient. Additional  
heat sources mounted nearby must also be considered.  
PCB layers, copper weight, board layout and thermal vias  
affect the resultant thermal resistance. This table provides  
thermal resistance numbers for best-case 4-layer boards  
with 1oz internal and 2oz external copper. Modern, mul-  
tilayer PCBs may not be able to achieve quite the same  
level performance as found in this table.  
3032fd  
19  
LT3032 Series  
APPLICATIONS INFORMATION  
Calculating Junction Temperature  
Protection Features  
Example: Given a positive output voltage of 3.3V, a posi-  
tive input voltage of 4V to 6V, output current range from  
10mAto150mA,negativeoutputvoltageof3.3V,negative  
input voltage of –5V to –6V, a negative output current of  
–100mA, and a maximum ambient temperature of 50°C,  
what will the maximum junction temperature be for a  
The LT3032 incorporates several protection features that  
make it ideal for use in battery-powered circuits. In ad-  
dition to the normal protection features associated with  
monolithicregulators,suchascurrentlimitingandthermal  
limiting, the LT3032 is protected against reverse input  
voltages and reverse output voltages on both channels.  
2
2
2500mm board with topside copper of 1000mm ?  
Current limit protection and thermal overload protection  
protect the device against current overload conditions at  
the outputs of the part. For normal operation, the junction  
temperature should not be allowed to exceed 125°C.  
The power in each side equals:  
P
= (V  
– V )(I  
)+(V  
•I  
)
SIDE  
IN(MAX)  
OUT OUT(MAX)  
IN(MAX) GND  
where,  
The positive input of the LT3032 withstands 20V reverse  
voltage. The negative input also withstands reverse volt-  
age, but the negative input may not be more than 0.5V  
I
= 150mA  
= 6V  
OUTP(MAX)  
V
(one V ) higher than the OUTN and SHDNN pins. This  
INP(MAX)  
BE  
provides protection against batteries that are plugged in  
backwards.  
I
I
at (I  
= 150mA, V = 6V) = 3.7mA  
OUTP INP  
GND  
OUTN(MAX)  
= –100mA  
= –6V  
The outputs of the LT3032 can be pulled to opposing volt-  
ageswithoutdamagingthepart.Theoutputsmaybepulled  
to the opposing polarity with a load that is common mode  
between the two and one regulator starts before the other;  
inthiscondition,itdoesnotmatterwhichregulatorstarted  
first. Both sides are capable of having the output pulled to  
the opposing polarity and both will still start and operate.  
V
I
INN(MAX)  
at (I  
= –100mA, V = –6V) = –1.5mA  
INN  
GND  
OUTN  
The total power equals:  
P
= P  
+ P  
TOTAL  
POSITIVE NEGATIVE  
If an input is left open circuit or grounded, the corre-  
sponding output can be pulled to its opposing polarity by  
as much as 20V. The output will act like an open circuit;  
no current will flow into or out of the pin. If the input is  
powered by a voltage source, the output will source the  
short-circuit current and will protect itself by thermal  
limiting. In this case, grounding the respective SHDNP/  
SHDNN pin will turn off that side of the LT3032 and stop  
the output from sourcing current.  
So,  
P
= 150mA(6V – 3.3V) + 3.7mA(6V) = 0.43W  
POSITIVE  
P
= –100mA(–6V+3.3V)–1.5mA(–6V) =  
NEGATIVE  
0.28W  
P
= 0.43W + 0.28W = 0.71W  
TOTAL  
Junction Temperature equals:  
T = T + P • θ (using tables)  
J
A
TOTAL  
JA  
The ADJP pin can be pulled above or below ground by  
7V without damage to the device. If the input is left open  
circuit or grounded, the ADJP pin acts like an open circuit  
whenpulledbelowgroundandlikealargeresistor(typically  
100k) in series with a diode when pulled above ground.  
T = 50°C + 0.71W • 33°C/W = 73.4°C  
J
In this case, the junction temperature is below the maxi-  
mum rating, ensuring reliable operation.  
3032fd  
20  
LT3032 Series  
APPLICATIONS INFORMATION  
In situations where the ADJP pin is connected to a resistor  
divider that would pull the ADJP pin above its 7V clamp  
voltage if the output is pulled high, the ADJP pin input  
current must be limited to less than 5mA. For example, a  
resistor divider is used to provide a 1.5V output from the  
1.22V reference and the output is forced to 20V. The top  
resistor of the divider must be chosen to limit the current  
into the ADJP pin to less than 5mA when the ADJP pin is  
at7V. The13VdifferencebetweenOUTPandADJPdivided  
by the 5mA maximum current into the ADJP pin yields a  
minimum top resistor value of 2.6k.  
Like many IC power regulators, the negative side of the  
LT3032hassafeoperatingarea(SOA)protection. Thesafe  
operating area protection activates when the differential  
voltage between INN and OUTN is greater than -7V. The  
SOA protection decreases current limit as a function of  
the voltage differential between INN and OUTN and keeps  
the power transistor inside a safe operating region for all  
values of forward input-to-output voltage. The protection  
is designed to provide some output current at all values  
of INN to OUTN differential voltage up to the Absolute  
Maximum Rating. A 50μA load is required to maintain  
regulation for INN to OUTN differential voltages greater  
than –7V. When in shutdown, protection circuitry remains  
activeandwillcausetheoutputtoriseslightlyatzeroload.  
A small pre-load is needed for zero output, if desired (see  
graph of Quiescent Current vs Input Voltage in Typical  
Performance Characteristics).  
In circuits where a backup battery is required on the posi-  
tive output, several different input/output conditions can  
occur. The output voltage may be held up while the input  
is either pulled to ground, pulled to some intermediate  
voltage or is left open circuit. Current flow back into OUTP  
follows the curve shown in Figure 6.  
When power to the negative side is first turned on, as the  
inputvoltagerises,OUTNfollowsINN,allowingtheregula-  
tor to start into very heavy loads. During start-up, as the  
INN voltage is rising, the differential voltage between INN  
and OUTN is small, allowing the negative side to supply  
large output currents. With a high INN voltage, a problem  
can occur wherein removal of an output short will not al-  
low the output voltage to fully recover. Other regulators,  
such as the LT1175, LT1964, and LT3080 also exhibit this  
phenomenon, so it is not unique to the LT3032.  
100  
T
= 25°C, V = 0V  
INP  
J
CURRENT FLOWS  
INTO OUTP PIN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
LT3032  
V
= V  
(LT3032)  
OUTP  
ADJP  
LT3032-5  
LT3032-12  
LT3032-15  
8
0
2
4
6
10 12 14 16 18 20  
TheproblemoccurswithaheavyoutputloadwhentheINN  
voltageishighandtheOUTNvoltageislow. Commonsitu-  
ations are immediately after the removal of a short-circuit  
or when the SHDNN pin is pulled high after the INN pin  
has already been turned on. The load line for such a load  
may intersect the output current curve at two points. If  
this happens, there are two stable operating points for the  
negative side of the LT3032. With this double intersection,  
the INN supply may need to be cycled down to zero and  
brought up again to make OUTN recover.  
OUTP PIN VOLTAGE (V)  
3032 F06  
Figure 6ꢀ Reverse Output Current  
If the INP pin is forced below the OUTP pin or the OUTP  
pin is pulled above the INP pin, input current typically  
drops to less than 2μA. This can happen if the device is  
connected to a discharged (low voltage) battery and the  
output is held up by a backup battery or a second regula-  
tor circuit. The state of the SHDNP pin has no effect on  
the reverse output current if OUTP is pulled above INP.  
3032fd  
21  
LT3032 Series  
PACKAGE DESCRIPTION  
Please refer to http://wwwꢀlinearcom/designtools/packaging/ for the most recent package drawingsꢀ  
DE14MA Package  
14-Lead Plastic DFN (4mm × 3mm)  
(Reference LTC DWG # 05-08-1731 Rev A)  
1.78 p0.05  
0.70 p0.05  
0.10 TYP  
0.51 TYP  
3.50 p0.05  
1.65 p 0.05  
2.10 p0.05  
1.65 p 0.05  
1.07  
p0.05  
PACKAGE  
OUTLINE  
0.25 p 0.05  
0.50 BSC  
3.00 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
8
4.00 p0.10  
(2 SIDES)  
1.78 p0.10  
14  
R = 0.05  
TYP  
1.07  
p0.10  
0.10 TYP  
0.51 TYP  
3.00 p0.10  
1.65 p 0.10  
0.40 p 0.10  
1.65 p 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PIN 1 NOTCH  
R = 0.20 OR  
0.25 s 45o  
CHAMFER  
7
1
0.25 p 0.05  
0.75 p0.05  
0.200 REF  
0.50 BSC  
(DE14MA) DFN 0507 REV A  
3.00 REF  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3032fd  
22  
LT3032 Series  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
08/10 Updated all applicable sections to add fixed voltage 5V option.  
1-7, 9-14  
B
01/11 Swapped OUTN and INN pins in Absolute Maximum Ratings.  
Revised values in SHDNN and SHDNP descriptions in Pin Functions.  
Revised quiescent current for the positive side up to 25μA in Applications Information.  
09/11 Updated to add 12V and 15V options  
2
12, 13  
14  
C
D
1-12, 21  
03/12 Added MP-Grade to Order Information and Absolute Maximum Ratings  
2, 3  
3032fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LT3032 Series  
TYPICAL APPLICATION  
5V to 15V Tracking Supply  
5V TO 15V  
AT 150mA  
10μF  
5.5V TO  
20V  
INP  
OUTP  
LT3032  
0.01μF  
536k  
BYPP  
OFF ON  
SHDNP  
SHDNN  
ADJP  
GND  
95.3k  
250k  
ADJN  
BYPN  
0.01μF  
536k  
10μF  
–5V TO –15V  
AT –150mA  
–5.5V TO  
–20V  
OUTN  
3032 TA02  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1175  
800mA Negative Low Dropout  
Micropower Regulator  
V : 4.5V to -20V, I = 45ꢀA, 0.5V Dropout Voltage, S8, DD-Pak, TO-220 and SOT-223  
IN  
Q
Packages  
LT1761  
LT1762  
LTC1844  
100mA, Low Noise LDO  
300mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 20V, ThinSOT package  
RMS IN  
150mA, Low Noise LDO  
300mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 20V, MS8 package  
RMS IN  
150mA, Very Low Dropout LDO  
80mV Dropout Voltage, Low Noise <30μV  
, V = 1.6V to 6.5V, Stable with 1μF Output  
RMS IN  
Capacitors, ThinSOT Package  
LT1962  
LT1964  
LT3023  
300mA, Low Noise LDO  
270mV Dropout Voltage, Low Noise: 20μV  
, V = 1.8V to 20V, MS8 Package  
RMS IN  
200mA, Low Noise, Negative LDO  
340mV Dropout Voltage, Low Noise 30μV  
, V = –1.8V to –20V, ThinSOT Package  
RMS IN  
Dual 100mA, Low Noise, Micropower LDO V : 1.8V to 20V, V  
= 1.22V, VDO = 0.30V, I = 40ꢀA, ISD < 1ꢀA; DFN and MS10E  
Q
IN  
OUT(MIN)  
Packages  
LT3024  
LT3027  
LT3028  
LT3029  
Dual 100mA/500mA, Low Noise,  
Micropower LDO  
V : 1.8V to 20V, V  
= 1.22V, VDO = 0.30V, I = 60ꢀA, ISD < 1ꢀA; DFN and  
Q
IN  
OUT(MIN)  
TSSOP-16E Packages  
Dual 100mA, Low Noise, Micropower  
LDO with Independent Inputs  
V : 1.8V to 20V, V  
= 1.22V, VDO = 0.30V, I = 50ꢀA, ISD < 1ꢀA; DFN and MS10E  
Q
IN  
OUT(MIN)  
Packages  
Dual 100mA/500mA, Low Noise,  
Micropower LDO with Independent Inputs TSSOP-16E Packages  
V : 1.8V to 20V, V  
= 1.22V, VDO = 0.32V, I = 60ꢀA, ISD < 1ꢀA; DFN and  
IN  
OUT(MIN)  
Q
Dual 500mA/500mA, Low Dropout, Low  
Noise, Micropower Linear Regulator  
Low Noise: 20ꢀV  
(10Hz to 100kHz), Low Quiescent Current: 55ꢀA per Channel Wide  
RMS  
Input Voltage Range: 1.8V to 20V (Common or Independent Input Supply) Adjustable  
Output: 1.215V Reference, Very Low Quiescent Current in Shutdown: <1ꢀA per Channel  
Stable with 3.3ꢀF Minimum Output Capacitor, Thermally Enhanced 16-Lead MSOP and  
16-Lead (4mm × 3mm) DFN Packages  
LT3082  
200mA, Parallelable, Single Resistor, Low Wide Input Voltage Range: 1.2V to 40V Low Value Input/Output Capacitors Required:  
Dropout Linear Regulator 0.22ꢀF, Single Resistor Sets Output Voltage Initial Set Pin Current Accuracy: 1%, Low  
Output Noise: 40ꢀV (10Hz to 100kHz) Reverse-Battery Protection, Reverse-Current  
RMS  
Protection 8-Lead SOT-23, 3-Lead SOT-223 and 8-Lead 3mm × 3mm DFN Packages  
3032fd  
LT 0312 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3023EDD#TRPBF

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3023EMSE

Dual 100mA, Low Dropout, Low Noise, Micropower Regulator
Linear

LT3023EMSE#TRPBF

暂无描述
Linear

LT3023IDD

暂无描述
Linear

LT3023IDD#PBF

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3023IMSE

LT3023 - Dual 100mA, Low Dropout, Low Noise, Micropower Regulator; Package: MSOP; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024

Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator
Linear

LT3024EDE

Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator
Linear

LT3024EDE#PBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EDE#TR

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EDE#TRPBF

LT3024 - Dual 100mA/500mA Low Dropout, Low Noise, Micropower Regulator; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3024EDE-PBF

Dual 100mA/500mA Low Dropout, Low Noise,Micropower Regulator
Linear