LT3471EDD#TRPBF [Linear]

LT3471 - Dual 1.3A, 1.2MHz Boost/Inverter in 3mm x 3mm DFN; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LT3471EDD#TRPBF
型号: LT3471EDD#TRPBF
厂家: Linear    Linear
描述:

LT3471 - Dual 1.3A, 1.2MHz Boost/Inverter in 3mm x 3mm DFN; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总16页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3471  
Dual 1.3A, 1.2MHz  
Boost/Inverter in  
3mm × 3mm DFN  
FEATURES  
DESCRIPTION  
n
1.2MHz Switching Frequency  
The LT®3471 dual switching regulator combines two 42V,  
1.3A switches with error amplifiers that can sense to  
ground providing boost and inverting capability. The low  
n
Low V  
Switches: 330mV at 1.3A  
CESAT  
n
n
n
n
n
n
n
n
n
High Output Voltage: Up to 40V  
Wide Input Range: 2.4V to 16V  
Inverting Capability  
5V at 630mA from 3.3V Input  
12V at 320mA from 5V Input  
–12V at 200mA from 5V Input  
Uses Tiny Surface Mount Components  
Low Shutdown Current: <1μA  
Low Profile (0.75mm) 10-Lead 3mm × 3mm  
DFN Package  
V
CESAT  
bipolar switches enable the device to deliver high  
current outputs in a small footprint. The LT3471 switches  
at1.2MHz,allowingtheuseoftiny,lowcostandlowprofile  
inductors and capacitors. High inrush current at start-up  
is eliminated using the programmable soft-start function,  
whereanexternalRCsetsthecurrentramprate.Aconstant  
frequency current mode PWM architecture results in low,  
predictable output noise that is easy to filter.  
The LT3471 switches are rated at 42V, making the device  
ideal for boost converters up to 40V as well as SEPIC  
and flyback designs. Each channel can generate 5V at  
up to 630mA from a 3.3V supply, or 5V at 510mA from  
four alkaline cells in a SEPIC design. The device can be  
configured as two boosts, a boost and inverter or two  
inverters.  
APPLICATIONS  
n
Organic LED Power Supply  
n
Digital Cameras  
n
White LED Power Supply  
Cellular Phones  
Medical Diagnostic Equipment  
Local 5V or 12V Supply  
TFT-LCD Bias Supply  
xDSL Power Supply  
n
n
The LT3471 is available in a low profile (0.75mm) 10-lead  
3mm × 3mm DFN package.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
n
n
TYPICAL APPLICATION  
OLED Driver  
2.2μH  
OLED Driver Efficiency  
V
OUT1  
V
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
IN  
7V  
3.3V  
350mA  
90.9k  
15k  
4.7μF  
V
OUT1  
= 7V  
CONTROL 1  
SW1  
4.7k  
SHDN/SS1  
FB1N  
FB1P  
0.33μF  
V
OUT1  
= –7V  
V
REF  
0.1μF  
V
V
LT3471  
IN  
IN  
10μF  
4.7k  
15k  
FB2N  
FB2P  
CONTROL 2  
SHDN/SS2  
GND  
SW2  
0.33μF  
75pF  
3471 TA01  
105k  
1μF  
10μH  
15μH  
V
–7V  
250mA  
OUT2  
200  
0
100  
300  
400  
V
IN  
I
(mA)  
OUT  
10μF  
3471 TA01b  
3471fb  
1
LT3471  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V Voltage................................................................16V  
IN  
SW1, SW2 Voltage.....................................0.4V to 42V  
FB1N  
FB1P  
1
2
3
4
5
10 SW1  
FB1N, FB1P, FB2N, FB2P Voltage......... 12V or V – 1.5V  
9
8
7
6
SHDN/SS1  
IN  
V
REF  
11  
V
IN  
SHDN/SS1, SHDN/SS2 Voltage ............................... 16V  
FB2P  
FB2N  
SHDN/SS2  
V
Voltage.............................................................1.5V  
REF  
SW2  
Maximum Junction Temperature ........................ 125°C  
Operating Temperature Range (Note 2) ...40°C to 85°C  
Storage Temperature Range...................65°C to 125°C  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
= 125°C, θ = 43°C/ W, θ = 3°C/W  
JMAX  
JA JC  
EXPOSED PAD (PIN 11) IS GND MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3471EDD#PBF  
LEAD BASED FINISH  
LT3471EDD  
TAPE AND REEL  
LT3471EDD#TRPBF  
TAPE AND REEL  
LT3471EDD#TR  
PART MARKING  
LBHM  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
PART MARKING  
LBHM  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
10-Lead (3mm × 3mm) Plastic DFN  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are TA = 25°C. VIN = VSHDN = 3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Operating Voltage  
Reference Voltage  
2.1  
2.4  
V
0.991  
0.987  
1.000  
1.009  
1.013  
V
V
l
Reference Voltage Current Limit  
Reference Voltage Load Regulation  
Reference Voltage Line Regulation  
Error Amplifier Offset  
(Note 3)  
1
1.4  
0.1  
0.03  
2
mA  
%/100μA  
%/V  
0mA ≤ I  
≤ 100μA (Note 3)  
0.2  
0.08  
3
REF  
2.6V ≤ V ≤ 16V  
IN  
Transition from Not Switching to Switching, V  
= V  
= 1V  
FBN  
mV  
FBP  
l
FB Pin Bias Current  
V
V
V
= 1V (Note 3)  
60  
100  
4
nA  
FB  
Quiescent Current  
= 1.8V, Not Switching  
2.5  
0.01  
1.2  
94  
mA  
SHDN  
SHDN  
Quiescent Current in Shutdown  
Switching Frequency  
= 0.3V, V = 3V  
1
μA  
IN  
1
1.4  
MHz  
Maximum Duty Cycle  
90  
86  
%
%
l
Minimum Duty Cycle  
Switch Current Limit  
15  
%
At Minimum Duty Cycle  
At Maximum Duty Cycle (Note 4)  
1.5  
0.9  
2.05  
1.45  
2.6  
2.0  
A
A
Switch V  
I
= 0.5A (Note 5)  
= 5V  
150  
250  
1
mV  
μA  
CESAT  
SW  
Switch Leakage Current  
V
0.01  
SW  
SHDN/SS Input Voltage High  
1.8  
V
3471fb  
2
LT3471  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VIN = VSHDN = 3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SHDN Input Voltage Low  
SHDN Pin Bias Current  
Quiescent Current ≤ 1μA  
0.3  
V
V
V
= 3V, V = 4V  
22  
0
36  
0.1  
μA  
μA  
SHDN  
SHDN  
IN  
= 0V  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3471E is guaranteed to meet performance specifications  
from 0°C to 70°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 3: Current flows out of the pin.  
Note 4: See Typical Performance Characteristics for guaranteed current  
limit vs duty cycle.  
Note 5: V  
is 100% tested at wafer level only.  
CESAT  
TYPICAL PERFORMANCE CHARACTERISTICS  
Quiescent Current  
vs Temperature  
VREF Voltage vs VREF Current  
VREF Voltage vs Temperature  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.010  
1.005  
1.000  
0.995  
0.990  
V
REF  
VOLTAGE  
100mV/DIV  
V
CURRENT 200μA/DIV  
REF  
3471 G03  
–50 –25  
0
25  
50  
75 100 125  
–50 –25  
0
25  
50  
75 100 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
3471 G01  
3471 G02  
SHDN/SS Current  
vs SHDN/SS Voltage  
Switch Saturation Voltage  
vs Switch Current  
Current Limit vs Duty Cycle  
800  
700  
600  
500  
400  
300  
200  
100  
0
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
V
= 3.3V  
IN  
TYPICAL  
90°C  
SHDN/SS  
CURRENT  
20μV/DIV  
GUARANTEED  
25°C  
V
> V  
SHDN/SS  
IN  
SHDN/SS VOLTAGE 1V/DIV  
3471 G04  
0
20  
40  
60  
80  
100  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
DUTY CYCLE (%)  
SW CURRENT (A)  
3471 G05  
3471 G06  
3471fb  
3
LT3471  
TYPICAL PERFORMANCE CHARACTERISTICS  
Oscillator Frequency  
vs Temperature  
Peak Switch Current  
Start-Up Waveform  
(Figure 2 Circuit)  
vs SHDN/SS Voltage  
1.50  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.00  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
T
= 25°C  
A
I
SUPPLY  
1A/DIV  
V
OUT1  
2V/DIV  
V
OUT2  
5V/DIV  
CONTROL 1  
AND 2  
5V/DIV  
0.5ms/DIV  
3471 G09  
–50  
0
25  
50  
75 100 125  
–25  
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8 2.0  
TEMPERATURE (°C)  
V
(V)  
SHDN/SS  
3471 G07  
3471 G08  
PIN FUNCTIONS  
FB1N (Pin 1): Negative Feedback Pin for Switcher 1.  
and minimize the metal trace area connected to this pin  
to minimize EMI.  
Connect resistive divider tap here. Minimize trace area at  
FB1N. Set V  
= V  
(1 + R1/R2), or connect to ground  
FB1P  
OUT  
SHDN/SS2 (Pin 7): Shutdown and Soft-Start Pin. Tie to  
1.8V or more to enable device. Ground to shut down. Soft-  
start function is provided when the voltage at this pin is  
ramped slowly to 1.8V with an external RC circuit.  
for inverting topologies.  
FB1P(Pin2):PositiveFeedbackPinforSwitcher1.Connect  
eithertoV oradivideddownversionofV ,orconnect  
REF  
REF  
to a resistive divider tap for inverting topologies.  
V (Pin 8): Input Supply. Must be locally bypassed.  
IN  
V
(Pin 3): 1.00V Reference Pin. Can supply up to  
REF  
SHDN/SS1(Pin9):SameasSHDN/SS2butforSwitcher 1.  
Note: taking either SHDN/SS pin high will enable the part.  
Each switcher is individually enabled with its respective  
SHDN/SS pin.  
1mA of current. Do not pull this pin high. Must be locally  
bypassed with no less than 0.01μF and no more than 1μF.  
A 0.1μF ceramic capacitor is recommended. Use this pin  
as the positive feedback reference or connect a resistor  
divider here for a smaller reference voltage.  
SW1 (Pin 10): Same as SW2 but for Switcher 1.  
Exposed Pad (Pin 11): Ground. Connect directly to local  
ground plane. This ground plane also serves as a heat  
sink for optimal thermal performance.  
FB2P (Pin 4): Same as FB1P but for Switcher 2.  
FB2N (Pin 5): Same as FB1N but for Switcher 2.  
SW2 (Pin 6): Switch Pin for Switcher 2 (Collector of in-  
ternal NPN power switch). Connect inductor/diode here  
3471fb  
4
LT3471  
BLOCK DIAGRAM  
10 SW1  
Q1  
FB1P  
2
+
+
DRIVER  
A1  
FB1N  
R
1
A2  
R
Q
C
S
C
C
+
V
V
REF  
IN  
1.00V  
0.01Ω  
8
9
3
REFERENCE  
RAMP  
GENERATOR  
SHDN/SS1  
LEVEL  
SHIFTER  
GND  
SW2  
11  
6
FB2P  
FB2N  
4
5
+
+
DRIVER  
A3  
R
Q2  
A4  
R
Q
C
S
C
C
+
SHDN/SS2  
LEVEL  
SHIFTER  
7
0.01Ω  
RAMP  
GENERATOR  
GND  
1.2MHz  
OSCILLATOR  
3471 F01  
Figure 1. Block Diagram  
OPERATION  
The LT3471 uses a constant frequency, current mode  
control scheme to provide excellent line and load regu-  
lation. Refer to the Block Diagram. At the start of each  
oscillator cycle, the SR latch is set, which turns on the  
powerswitch,Q1(Q2).Avoltageproportionaltotheswitch  
current is added to a stabilizing ramp and the resulting  
sum is fed into the positive terminal of the PWM compara-  
tor A2 (A4). When this voltage exceeds the level at the  
negative input of A2 (A4), the SR latch is reset, turning  
off the power switch Q1 (Q2). The level at the negative  
input of A2 (A4) is set by the error amplifier A1 (A3) and  
is simply an amplified version of the difference between  
the negative feedback voltage and the positive feedback  
the output. Similarly, if the error decreases, less current  
is delivered. Each switcher functions independently but  
they share the same oscillator and thus the switchers are  
always in phase. Enabling the part is done by taking either  
SHDN/SS pin above 1.8V. Disabling the part is done by  
grounding both SHDN/SS pins. The soft-start feature of  
the LT3471 allows for clean start-up conditions by limiting  
the amount of voltage rise at the output of comparator A1  
and A2, which in turn limits the peak switching current.  
The soft-start feature for each switcher is enabled by  
slowly ramping that switcher’s SHDN/SS pin, using an  
RC network, for example. Typical resistor and capacitor  
values are 0.33μF and 4.7k, allowing for a start-up time  
on the order of milliseconds. The LT3471 has a current  
limit circuit not shown in the Block Diagram. The switch  
current is constantly monitored and not allowed to exceed  
the maximum switch current (typically 1.6A). If the switch  
3471fb  
voltage, usually tied to the reference voltage V . In  
REG  
this manner, the error amplifier sets the correct peak  
current level to keep the output in regulation. If the error  
amplifier’s output increases, more current is delivered to  
5
LT3471  
OPERATION  
current reaches this value, the SR latch is reset regardless  
of the state of the comparator A2 (A4). Also not shown  
in the Block Diagram is the thermal shutdown circuit. If  
the temperature of the part exceeds approximately 160°C,  
both latches are reset regardless of the state of compara-  
tors A2 and A4. The current limit and thermal shutdown  
circuits protect the power switch as well as the external  
components connected to the LT3471.  
APPLICATIONS INFORMATION  
Duty Cycle  
For inverting topologies, V  
is tied to ground and V  
FBN  
FBP  
FBP  
(see the Ap-  
is connected between R1 and R2. R2 is between V  
and V and R1 is between V and V  
The typical maximum duty cycle of the LT3471 is 94%.  
The duty cycle for a given application is given by:  
REF  
FBP  
OUT  
plications section for examples). In this case:  
|VOUT |+|VD |–|V |  
|VOUT |+|VD |–|VCESAT  
IN  
DC=  
R1  
R2  
VOUT = VREF  
|
Where V is the diode forward voltage drop and V  
is in the worst case 330mV (at 1.3A)  
D
CESAT  
Select values of R1 and R2 according to the following  
equation:  
The LT3471 can be used at higher duty cycles, but it must  
beoperatedinthediscontinuousconductionmodesothat  
the actual duty cycle is reduced.  
V
OUT ꢅ  
R1=R2  
V
REF  
A good value for R2 is 15k, which sets the current in the  
resistor divider chain to 1.00V/15k = 67μA.  
Setting Output Voltage  
Setting the output voltage depends on the topology used.  
For normal noninverting boost regulator topologies:  
Switching Frequency and Inductor Selection  
R1  
TheLT3471switchesat1.2MHz, allowingforsmallvalued  
inductors to be used. 4.7μH or 10μH will usually suffice.  
Choose an inductor that can handle at least 1.4A without  
saturating, and ensure that the inductor has a low DCR  
V
OUT = VFBP 1+  
R2ꢄ  
where V  
is connected between R1 and R2 (see the  
Typical Applications section for examples).  
FBN  
2
(copper-wire resistance) to minimize I R power losses.  
Note that in some applications, the current handling  
requirements of the inductor can be lower, such as in the  
SEPIC topology where each inductor only carries one half  
ofthetotalswitchcurrent.Forbetterefficiency,usesimilar  
valuedinductorswithalargervolume.Manydifferentsizes  
and shapes are available from various manufacturers.  
Choose a core material that has low losses at 1.2 MHz,  
such as ferrite core.  
Select values of R1 and R2 according to the following  
equation:  
VOUT  
R1= R2  
– 1  
V
REF  
A good value for R2 is 15k which sets the current in the  
resistor divider chain to 1.00V/15k = 67μA.  
V
is usually just tied to V = 1.00V, but V can also  
REF FBP  
FBP  
Table 1. Inductor Manufacturers  
be tied to a divided down version of V  
or some other  
REF  
Sumida  
TDK  
(847) 956-0666  
(847) 803-6100  
(714) 852-2001  
www.sumida.com  
www.tdk.com  
voltage as long as the absolute maximum ratings for the  
feedback pins are not exceeded (see Absolute Maximum  
Ratings).  
Murata  
www.murata.com  
3471fb  
6
LT3471  
APPLICATIONS INFORMATION  
Soft-Start and Shutdown Features  
CAPACITOR SELECTION  
To shut down the part, ground both SHDN/SS pins. To  
shut down one switcher but not the other one, ground that  
switcher’s SHDN/SS pin. The soft-start feature provides a  
way to limit the inrush current drawn from the supply upon  
start-up. To use the soft-start feature for either switcher,  
slowly ramp up that switcher’s SHDN/SS pin. The rate of  
voltage rise at the output of the switcher’s comparator (A1  
or A3 for switcher 1 or switcher 2 respectively) tracks the  
rate of voltage rise at the SHDN/SS pin once the SHDN/SS  
pin has reached about 1.1V. The soft-start function will  
go away once the voltage at the SHDN/SS pin exceeds  
1.8V. See the Peak Switch Current vs SHDN/SS Voltage  
graph in the Typical Performance Characteristics section.  
The rate of voltage rise at the SHDN/SS pin can easily be  
controlled with a simple RC network connected between  
the control signal and the SHDN/SS pin. Typical values  
for the RC network are 4.7kΩ and 0.33μF, giving start-up  
times on the order of milliseconds. This RC time constant  
can be adjusted to give different start-up times. If differ-  
ent values of resistance are to be used, keep in mind the  
SHDN/SS Current vs SHDN/SS voltage graph along with  
the Peak Switch Current vs SHDN/SS Voltage graph, both  
found in the Typical Performance Characteristics section.  
The impedance looking into the SHDN/SS pin depends  
Low ESR (equivalent series resistance) capacitors should  
beusedattheoutputtominimizetheoutputripplevoltage.  
Multi-layer ceramic capacitors are an excellent choice,  
as they have extremely low ESR and are available in very  
small packages. X5R dielectrics are preferred, followed  
by X7R, as these materials retain the capacitance over  
wide voltage and temperature ranges. A 4.7μF to 15μF  
output capacitor is sufficient for most applications, but  
systems with very low output currents may need only a  
1μF or 2.2μF output capacitor. Solid tantalum or OS-CON  
capacitors can be used, but they will occupy more board  
area than a ceramic and will have a higher ESR. Always  
use a capacitor with a sufficient voltage rating.  
Ceramic capacitors also make a good choice for the input  
decoupling capacitor, which should be placed as close as  
possible to the LT3471. A 4.7μF to 10μF input capacitor  
is sufficient for most applications. Table 2 shows a list  
of several ceramic capacitor manufacturers. Consult the  
manufacturers for detailed information on their entire  
selection of ceramic parts.  
Table 2. Ceramic Capacitor Manufacturers  
Taiyo Yuden  
AVX  
(408) 573-4150  
(803) 448-9411  
(714) 852-2001  
www.t-yuden.com  
www.avxcorp.com  
www.murata.com  
on whether the SHDN/SS is above or below V . Normally  
Murata  
IN  
SHDN/SS will not be driven above V , and thus the imped-  
IN  
The decision to use either low ESR (ceramic) capacitors  
or the higher ESR (tantalum or OS-CON) capacitors can  
affect the stability of the overall system. The ESR of any  
capacitor, along with the capacitance itself, contributes  
a zero to the system. For the tantalum and OS-CON ca-  
pacitors, this zero is located at a lower frequency due to  
the higher value of the ESR, while the zero of a ceramic  
capacitor is at a much higher frequency and can generally  
be ignored.  
ance looks like 100kΩ in series with a diode. If the voltage  
of the SHDN/SS pin is above V , the impedance looks  
IN  
more like 50kΩ in series with a diode. This 100kΩ or 50kΩ  
impedance can have a slight effect on the start-up time if  
you choose the R in the RC soft-start network too large.  
Another consideration is selecting the soft-start time so  
that the soft-start feature is dominated by the RC network  
and not the capacitor on V . (See V voltage reference  
REF  
REF  
section of the Applications Information for details.)  
Aphaseleadzerocanbeintentionallyintroducedbyplacing  
The soft-start feature is of particular importance in ap-  
plications where the switch will see voltage levels of 30V  
orhigher.Intheseapplications,thesimultaneouspresence  
of high current and voltage during startup may cause an  
overstress condition to the switch. Therefore, depending  
on input and output voltage conditions, higher RC time  
constant values may be necessary to improve the rug-  
gedness of the design.  
a capacitor (C ) in parallel with the resistor (R3) between  
PL  
V
OUT  
and V as shown in Figure 2. The frequency of the  
zero is determined by the following equation.  
FB  
1
ƒZ =  
2π R3CPL  
3471fb  
7
LT3471  
APPLICATIONS INFORMATION  
L1  
2.2μH  
D1  
V
OUT1  
V
9
IN  
7V  
10  
SW1  
R3  
C
C3  
R
PL  
SS1  
CONTROL 1  
1.8V  
0V  
90.9k  
33pF  
4.7μF  
4.7k  
1
2
3
SHDN/SS1  
FB1N  
FB1P  
R4  
15k  
C
SS1  
0.33μF  
V
REF  
V
IN  
8
7
C2  
0.1μF  
V
LT3471  
2.6V TO 4.2V  
Li-Ion  
IN  
10μF  
5
4
R2  
15k  
R
FB2N  
FB2P  
SS2  
CONTROL 2  
1.8V  
0V  
4.7k  
SHDN/SS2  
GND  
SW2  
6
C
SS2  
3471 F02  
0.33μF  
11  
C5  
1μF  
C6  
75pF  
L3  
15μH  
R1  
105k  
L2  
10μH  
V
OUT2  
V
IN  
–7V  
C4  
10μF  
D2  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 10V  
C5: XR5 OR X7R 16V  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1: SUMIDA CR43-2R2  
L2: SUMIDA CDRH4D18-100  
L3: SUMIDA CDRH4D18-150  
C
: OPTIONAL  
PL  
Supply Current of Figure 2 During  
Start-Up without Soft-Start RC Network  
Supply Current of Figure 2 During  
Start-Up with Soft-Start RC Network  
I
SUPPLY  
0.5A/DIV  
I
SUPPLY  
0.5A/DIV  
V
V
OUT1  
OUT1  
2V/DIV  
2V/DIV  
3471 F02b  
3471 F02c  
0.1ms/DIV  
0.2ms/DIV  
Figure 2. Li-Ion OLED Driver  
3471fb  
8
LT3471  
APPLICATIONS INFORMATION  
V
VOLTAGE REFERENCE  
By choosing the appropriate values for the resistor and  
capacitor, the zero frequency can be designed to improve  
the phase margin of the overall converter. The typical  
target value for the zero frequency is between 35kHz  
to 55kHz. Figure 3 shows the transient response of the  
step-up converter from Figure 2 without the phase lead  
REG  
Pin3oftheLT3471isabandgapvoltagereferencethathas  
been divided down to 1.00V and buffered for external use.  
This pin must be bypassed with at least 0.01μF and no more  
than 1μF. This will ensure stability as well as reduce the  
noiseonthispin.Thebufferhasabuilt-incurrentlimitofat  
least 1mA (typically 1.4mA). This not only means that you  
can use this pin as an external reference for supplemental  
circuitry, but it also means that it is possible to provide a  
soft-start feature if this pin is used as one of the feedback  
pins for the error amplifier. Normally the soft-start time  
will be dominated by the RC time constant discussed in  
the soft-start and shutdown section. However, because of  
capacitor C . Although adequate for many applications,  
PL  
phase margin is not ideal as evidenced by 2-3 “bumps”  
in both the output voltage and inductor current. A 33pF  
capacitor for C results in ideal phase margin, which  
PL  
is revealed in Figure 4 as a more damped response and  
less overshoot.  
the finite current limit of the buffer for the V  
take some time to charge up the bypass capacitor. During  
this time, the voltage at the V pin will ramp up, and  
pin, it will  
REG  
V
OUT  
200mV/DIV  
AC COUPLED  
REG  
this action provides an alternate means for soft-starting  
the circuit. If the largest recommended bypass capacitor  
is used, 1μF, the worst-case (longest) soft-start function  
I
L1  
0.5A/DIV  
AC/COUPLED  
that would be provided from the V  
pin is:  
REF  
LOAD CURRENT  
100mA/DIV  
AC/COUPLED  
1μF 1.00V  
=1.0ms  
1.0mA  
50μs/DIV  
Choose the RC network such that the soft-start time is  
longerthanthistime,orchooseasmallerbypasscapacitor  
Figure 3. Transient Response of Figure 2’s Step-Up  
Converter without Phase Lead Capacitor  
for the V pin (but always larger than 0.01μF) so that the  
REF  
RCnetworkdominatesthesoft-startingoftheLT3471.The  
voltage at the V pin can also be divided down and used  
REF  
V
OUT  
for one of the feedback pins for the error amplifier. This  
is especially useful in LED driver applications, where the  
currentthroughtheLEDsissetusingthevoltagereference  
across a sense resistor in the LED chain. Using a smaller  
or divided down reference leads to less wasted power in  
the sense resistor. See the Typical Applications section  
for an example of LED driving applications.  
200mV/DIV  
AC COUPLED  
I
L1  
0.5A/DIV  
AC/COUPLED  
LOAD CURRENT  
100mA/DIV  
AC/COUPLED  
50μs/DIV  
Figure 4. Transient Response of Figure 2’s Step-Up  
Converter with 33pF Phase Lead Capacitor  
3471fb  
9
LT3471  
APPLICATIONS INFORMATION  
DIODE SELECTION  
Compensation—Theory  
Like all other current mode switching regulators, the  
LT3471 needs to be compensated for stable and efficient  
operation. Two feedback loops are used in the LT3471: a  
fast current loop which does not require compensation,  
and a slower voltage loop which does. Standard Bode  
plot analysis can be used to understand and adjust the  
voltage feedback loop.  
A Schottky diode is recommended for use with the  
LT3471. For high efficiency, a diode with good thermal  
characteristics at high currents should be used such as  
the On Semiconductor MBRM120. This is a 20V diode.  
Wheretheswitchvoltageexceeds20V,usetheMBRM140,  
a 40V diode. These diodes are rated to handle an average  
forward current of 1.0A. In applications where the average  
forward current of the diode is less than 0.5A, use the  
Philips PMEG 2005, 3005, or 4005 (a 20V, 30V or 40V  
diode, respectively).  
As with any feedback loop, identifying the gain and phase  
contribution of the various elements in the loop is critical.  
Figure6showsthekeyequivalentelementsofaboostcon-  
verter. Because of the fast current control loop, the power  
stage of the IC, inductor and diode have been replaced by  
LAYOUT HINTS  
theequivalenttransconductanceamplifierg .g actsas  
mp mp  
The high speed operation of the LT3471 demands care-  
ful attention to board layout. You will not get advertised  
performance with careless layout. Figure 5 shows the  
recommended component placement.  
a current source where the output current is proportional  
to the V voltage. Note that the maximum output current  
C
of g is finite due to the current limit in the IC.  
mp  
CONTROL 1  
CONTROL 2  
C
C
SS2  
SS1  
R
SS1  
R
SS2  
g
mp  
V
OUT  
GND  
GND  
GND  
+
C
R
ESR  
R
L
PL  
C4  
C
OUT  
C1  
1.00V  
REFERENCE  
+
V
OUT2  
V
C
g
ma  
R1  
R2  
L1  
L2  
L3  
R
R
O
C
V
CC  
V
OUT1  
D1  
C5  
C
C
SW1  
10  
SW2  
6
3471 F06  
9
8
7
C : COMPENSATION CAPACITOR  
C
D2  
GND  
C3  
GND  
C
C
: OUTPUT CAPACITOR  
SHDN/SS1  
SHDN/SS2  
OUT  
: PHASE LEAD CAPACITOR  
PL  
ma  
mp  
C
L
g
g
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
R : COMPENSATION RESISTOR  
LT3471  
R : OUTPUT RESISTANCE DEFINED AS V  
DIVIDED BY I  
LOAD(MAX)  
OUT  
R : OUTPUT RESISTANCE OF g  
PIN 11 GND  
O
ma  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
R
: OUTPUT CAPACITOR ESR  
ESR  
V
FB1N FB1P  
FB2P FB2N  
REF  
Figure 6. Boost Converter Equivalent Model  
1
2
3
4
5
R4  
R2  
R3  
R1  
V
OUT1  
V
OUT2  
C2  
3471 F05  
Figure 5. Suggested Layout Showing a Boost on SW1 and  
an Inverter on SW2. Note the Separate Ground Returns for  
All High Current Paths (Using a Multilayer Board)  
3471fb  
10  
LT3471  
APPLICATIONS INFORMATION  
From Figure 6, the DC gain, poles and zeroes can be  
calculated as follows:  
Using the circuit of Figure 2 as an example, Table 3 shows  
the parameters used to generate the Bode plot shown in  
Figure 7.  
2
Output Pole: P1=  
Table 3. Bode Plot Parameters  
2• π RL COUT  
Parameter  
Value  
20  
Units  
Ω
Comment  
1
R
Application Specific  
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Adjustable  
L
Error Amp Pole: P2=  
2• π RO CC  
C
4.7  
10  
μF  
OUT  
R
mΩ  
MΩ  
pF  
ESR  
1
Error Amp Zero: Z1=  
R
0.9  
90  
O
C
2• π RC CC  
C
VREF  
VOUT  
1
2
C
33  
pF  
PL  
DC GAIN: A=  
gma RO gmp RL •  
R
55  
kΩ  
kΩ  
kΩ  
V
Not Adjustable  
Adjustable  
C
R1  
R2  
90.9  
15  
1
ESR Zero: Z2=  
Adjustable  
2• π RESR COUT  
V
7
Application Specific  
Application Specific  
Not Adjustable  
Not Adjustable  
Application Specific  
Not Adjustable  
OUT  
V
2 RL  
IN  
V
3.3  
50  
V
IN  
RHP Zero: Z3=  
2• π • VOUT2 L  
g
g
μmho  
mho  
μH  
ma  
9.3  
2.2  
1.2  
mp  
fS  
3
High Frequency Pole: P3>  
L
f
MHz  
S
1
Phase Lead Zero: Z4=  
2• π R1CPL  
From Figure 7, the phase is –115° when the gain reaches  
0dB giving a phase margin of 65°. This is more than  
adequate. The crossover frequency is 50kHz.  
1
Phase Lead Pole: P4=  
R1R2  
R1+R2  
2• π CPL •  
70  
60  
0
–50  
The Current Mode zero is a right half plane zero which can  
be an issue in feedback control design, but is manageable  
with proper external component selection.  
50  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
40  
30  
20  
10  
0
–10  
–20  
–30  
GAIN  
PHASE  
100  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
3471 F07  
Figure 7. Bode Plot of 3.3V to 7V Application  
3471fb  
11  
LT3471  
TYPICAL APPLICATIONS  
Li-Ion OLED Driver  
L1  
2.2μH  
D1  
V
OUT1  
V
9
IN  
7V  
10  
SW1  
R3  
C6  
C3  
4.7μF  
R
500mA WHEN V = 4.2V  
SS1  
IN  
IN  
CONTROL 1  
1.8V  
0V  
90.9k  
33pF  
4.7k  
350mA WHEN V = 3.3V  
1
SHDN/SS1  
FB1N  
250mA WHEN V = 2.6V  
IN  
2
R4  
15k  
C
FB1P  
SS1  
3
0.33μF  
V
REF  
V
V
IN  
8
7
CONTROL  
0V TO 1V  
C2  
0.1μF  
V
LT3471  
2.6V TO 4.2V  
Li-Ion  
IN  
C1  
10μF  
R5  
20k  
5
4
R2  
15k  
FB2N  
FB2P  
CONTROL 2  
1.8V  
0V  
R
4.7k  
SS2  
SHDN/SS2  
R6  
10k  
GND  
SW2  
6
C
SS2  
0.33μF  
3471 TA02  
11  
C5  
1μF  
C6  
75pF  
L3  
15μH  
R1  
105k  
L2  
15μH  
V
OUT2  
V
IN  
–7V TO –4V  
–7V WHEN V  
–4V WHEN V  
C4  
10μF  
= 0V  
= 1  
D2  
CONTROL  
CONTROL  
–7V, 300mA WHEN V = 4.2V  
IN  
–7V, 250mA WHEN V = 3.3V  
IN  
–7V, 200mA WHEN V = 2.6V  
IN  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 10V  
C5: XR5 OR X7R 16V  
C6: OPTIONAL  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1: SUMIDA CR43-2R2  
L2: SUMIDA CDRH4D18-100  
L3: SUMIDA CDRH4D18-150  
Li-Ion OLED Driver Efficiency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
V
= 7V  
OUT  
V
= 4.2V  
IN  
V
IN  
= 3.3V  
V
= 2.6V  
IN  
V
= 4.2V  
IN  
= 3.3V  
V
IN  
V
= 2.6V  
IN  
V
OUT  
= –7V  
100  
50  
0
400  
500  
200  
300  
(mA)  
I
OUT  
3471 TA02b  
3471fb  
12  
LT3471  
TYPICAL APPLICATIONS  
Single Li-Ion Cell to 5V, 12V Boost Converter  
L1  
3.3μH  
V
OUT1  
D1  
5V  
V
900mA IF V = 4.2V  
IN  
IN  
10  
630mA IF V = 3.3V  
IN  
R1  
C5  
100pF  
C3  
10μF  
R
SS1  
CONTROL 1  
1.8V  
OV  
425mA IF V = 2.6V  
IN  
20k  
4.7k  
SW1  
9
1
2
3
SHDN/SS1  
FB1N  
FB1P  
R2  
4.99k  
C
SS1  
0.33μF  
V
REF  
8
7
V
C2  
0.1μF  
IN  
V
LT3471  
IN  
2.6V TO 4.2V  
C1  
4
5
4.7μF  
R
FB2P  
FB2N  
SS2  
CONTROL 2  
1.8V  
0V  
4.7k  
SHDN/SS2  
GND  
SW2  
6
C
SS2  
0.33μF  
3471 TA03  
11  
L2  
6.8μH  
V
OUT2  
D2  
12V  
300mA IF V = 4.2V  
V
IN  
IN  
C4  
10μF  
C6  
220pF  
210mA IF V = 3.3V  
IN  
R3  
54.9k  
145mA IF V = 2.6V  
IN  
R4  
4.99k  
C1-C3: X5R OR X7R 6.3V  
C4: X5R OR X7R 16V  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1: SUMIDA CR43-3R3  
L2: SUMIDA CR43-6R8  
3471fb  
13  
LT3471  
TYPICAL APPLICATIONS  
Li-Ion 20 White LED Driver  
L1  
2.2μH  
D1  
V
9
IN  
C3  
I
OUT1  
10  
SW1  
0.22μF  
R
20mA  
SS1  
CONTROL 1  
4.7k  
1
2
3
1.8V  
OV  
SHDN/SS1  
FB1N  
FB1P  
C
SS1  
0.33μF  
V
REF  
R1  
90.9k  
8
7
V
C2  
0.1μF  
IN  
V
IN  
LT3471  
10 WHITE LEDs  
2.6V TO 4.2V  
C1  
4
5
4.7μF  
R2  
10k  
R
4.7k  
FB2P  
FB2N  
SS2  
CONTROL 2  
1.8V  
OV  
SHDN/SS2  
GND  
SW2  
6
C
SS2  
0.33μF  
3471 TA04  
11  
4.99Ω  
L2  
2.2μH  
D2  
V
IN  
C4  
I
OUT2  
0.22μF  
20mA  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 50V  
D1, D2: ON SEMICONDUCTOR MBRM-140  
L1, L2: SUMIDA CDRH2D-2R2  
10 WHITE LEDs  
4.99Ω  
3471fb  
14  
LT3471  
TYPICAL APPLICATIONS  
Li-Ion or 4-Cell Alkaline to 3.3V and 5V SEPIC  
C3  
4.7μF  
L1  
10μH  
V
OUT1  
D1  
3.3V  
640mA AT V = 6.5V  
V
IN  
IN  
550mA AT V = 5V  
C4  
15μF  
IN  
L2  
470mA AT V = 4V  
IN  
C7  
56pF  
10μH  
410mA AT V = 3.3V  
IN  
10  
SW1  
R1  
R
340mA AT V = 2.6V  
IN  
SS1  
CONTROL 1  
34.8k  
4.7k  
9
1
2
3
1.8V  
SHDN/SS1  
FB1N  
FB1P  
OV  
R2  
15k  
C
SS1  
0.33μF  
V
REF  
8
7
C2  
0.1μF  
V
IN  
V
LT3471  
IN  
2.6V TO 6.5V  
C1  
4
5
4.7μF  
R
FB2P  
FB2N  
SS2  
CONTROL 2  
1.8V  
OV  
4.7k  
SHDN/SS2  
GND  
SW2  
6
C
SS2  
0.33μF  
3471 TA05  
11  
C5  
10μF  
L3  
10μH  
V
OUT2  
D2  
5V  
500mA AT V = 6.5V  
V
IN  
IN  
C6  
15μF  
420mA AT V = 5V  
IN  
C8  
R3  
L4  
10μH  
360mA AT V = 4V  
56pF 60.4k  
C1, C3, C5: X5R OR X7R 10V  
C4, C6: X5R OR X7R 6.3V  
D1, D2: ON SEMICONDUCTOR MBRM-120  
L1-L4: MURATA LQH43CN100K032  
IN  
300mA AT V = 3.3V  
IN  
250mA AT V = 2.6V  
IN  
R4  
15k  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
TYP  
6
0.38 0.10  
10  
0.675 0.05  
3.50 0.05  
2.15 0.05 (2 SIDES)  
1.65 0.05  
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
PACKAGE  
OUTLINE  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN 1103  
5
1
0.25 0.05  
0.50 BSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.50  
BSC  
2.38 0.10  
(2 SIDES)  
2.38 0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3471fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresenta-  
t ion t h a t t he in ter c onne c t ion o f i t s cir cui t s a s de s cr ib e d her ein w ill no t in fr inge on ex is t ing p a ten t r igh t s.  
15  
LT3471  
TYPICAL APPLICATIONS  
5V to 12V Dual Supply Boost/Inverting Converter  
L1  
D1  
10μH  
V
OUT1  
12V  
V
IN  
320mA  
10  
SW1  
R1  
C6  
C3  
4.7μF  
CONTROL 1  
54.9k  
56pF  
4.7k  
1.8V  
9
1
2
3
SHDN/SS1  
FB1N  
FB1P  
OV  
R2  
4.99k  
0.33μF  
V
REF  
R3  
15k  
8
7
V
IN  
5V  
C2  
V
LT3471  
IN  
0.1μF  
C1  
4.7μF  
4
5
FB2P  
FB2N  
CONTROL 2  
4.7k  
1.8V  
SHDN/SS2  
OV  
C7  
GND  
SW2  
6
56pF  
0.33μF  
3471 TA06  
11  
R4  
182k  
V
OUT2  
–12V  
V
IN  
L2  
10μH  
L3  
10μH  
200mA  
C4  
4.7μF  
D2  
C5  
1μF  
C1, C2: X5R OR X7R 6.3V  
C3, C4: X5R OR X7R 16V  
C5: X5R OR X7R 25V  
L1: SUMIDA CR43-10  
L2, L3: SUMIDA CLS63-10  
D1, D2: ON SEMICONDUCTOR MBRM-120  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1611  
550mA (I ), 1.4MHz, High Efficiency Micropower Inverting  
V : 1.1V to 10V, V  
= –34V, I = 3mA, I < 1μA,  
Q SD  
SW  
IN  
OUT(MAX)  
= 34V, I = 3mA, I < 1μA,  
OUT(MAX) Q SD  
DC/DC Converter  
ThinSOT Package  
LT1613  
LT1614  
550mA (I ), 1.4MHz, High Efficiency Step-Up  
V : 0.9V to 10V, V  
SW  
IN  
DC/DC Converter  
ThinSOT Package  
750mA (I ), 600kHz, High Efficiency Micropower Inverting  
V : 1V to 12V, V  
= –24V, I = 1mA, I < 10μA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converter  
MS8, S8 Packages  
LT1615/LT1615-1 300mA/80mA (I ), High Efficiency Step-Up  
V
= 1V to 15V, V  
= 34V, I = 20μA, I < 1μA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converters  
ThinSOT Package  
LT1617/LT1617-1 350mA/100mA (I ), High Efficiency Micropower Inverting  
V
= 1.2V to 15V, V  
= –34V, I = 20μA, I < 1μA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converters  
ThinSOT Package  
LT1930/LT1930A 1A (I ), 1.2MHz/2.2MHz, High Efficiency Step-Up  
V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA,  
Q
SW  
IN  
OUT(MAX)  
DC/DC Converters  
I
< 1μA, ThinSOT Package  
SD  
LT1931/LT1931A 1A (I ), 1.2MHz/2.2MHz High Efficiency Micropower Inverting  
V
= 2.6V to 16V, V  
= –34V, I = 5.8mA, I < 1μA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
DC/DC Converters  
ThinSOT Package  
LT1943 (Quad)  
LT1945 (Dual)  
Quad Boost, 2.6A Buck, 2.6A Boost, 0.3A Boost, 0.4A Inverter  
1.2MHz TFT DC/DC Converter  
V
= 4.5V to 22V, V  
= 40V, I = 10μA, I < 35μA,  
Q SD  
IN  
TSSOP28E Package  
Dual Output, Boost/Inverter, 350mA (I ), Constant Off-Time,  
V
= 1.2V to 15V, V  
= 34V, I = 40μA, I < 1μA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converter  
10-Lead MS Package  
LT1946/LT1946A 1.5A (I ), 1.2MHz/2.7MHz, High Efficiency Step-Up  
V : 2.45V to 16V, V  
= 34V, I = 3.2mA, I < 1μA,  
OUT(MAX) Q SD  
SW  
IN  
DC/DC Converters  
MS8 Package  
LT3436  
3A (I ), 1MHz, 34V Step-Up DC/DC Converter  
V
: 3V to 25V, V  
= 34V, I = 0.9mA, I < 6μA,  
OUT(MAX) Q SD  
SW  
IN  
TSSOP16E Package  
LT3462/LT3462A 300mA (I ), 1.2MHz/2.7MHz, High Efficiency Inverting  
V
= 2.5V to 16V, V  
= –38V, I = 2.9mA, I < 1μA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
DC/DC Converters with Integrated Schottkys  
ThinSOT Package  
LT3463/LT3463A Dual Output, Boost/Inverter, 250mA (I ), Constant Off-Time,  
V
= 2.3V to 15V, V  
= 40V, I = 40μA, I < 1μA,  
Q SD  
SW  
IN  
High Efficiency Step-Up DC/DC Converters with Integrated Schottkys DFN Package  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter with  
V
= 2.3V to 10V, V  
= 34V, I = 25μA, I < 1μA,  
Q SD  
SW  
IN  
Integrated Schottky and PNP Disconnect  
ThinSOT Package  
3471fb  
LT 1008 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3472

Inverting Micropower DC/DC Converter with Schottky in ThinSOT Package
Linear

LT3472EDD

Boost and Inverting DC/DC Converter for CCD Bias
Linear

LT3472EDD#PBF

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3472EDD#TRPBF

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3473A

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3473AEDE

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473AEDE#PBF

LT3473 - Micropower 1A Boost Converter with Schottky and Output Disconnect; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473AEDE#TRPBF

LT3473 - Micropower 1A Boost Converter with Schottky and Output Disconnect; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473A_15

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473EDD

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473EDD#PBF

暂无描述
Linear