LT3472EDD#PBF [Linear]

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LT3472EDD#PBF
型号: LT3472EDD#PBF
厂家: Linear    Linear
描述:

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

转换器 CD
文件: 总12页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3472  
Boost and Inverting  
DC/DC Converter  
for CCD Bias  
U
FEATURES  
DESCRIPTIO  
The LT®3472 dual channel switching regulator generates  
positive and negative outputs for biasing CCD imagers.  
The device delivers up to –8V at 50mA and 15V at 20mA  
from a lithium-ion cell, providing bias for many popular  
CCD imagers. Switching at 1.1MHz, the LT3472 uses tiny,  
low profile capacitors and inductors and generates low  
noise outputs that are easy to filter. Schottky diodes are  
internal and the output voltages are set with one resistor  
per channel, reducing external component count. The  
entire solution is less than 1mm profile and occupies just  
50mm2.  
Generates 15V at 20mA, –8V at 50mA  
from a Li-Ion Cell  
Internal Schottky Diodes  
VIN Range: 2.2V to 16V  
Output Voltages Up to ±34V  
Capacitor-Programmable Soft-Start  
Sequencing: Positive Output Reaches 88% of Final  
Value Before Negative Output Begins  
Requires Only One Resistor to Set Output Voltage  
Constant Switching Frequency Ensures Low  
Noise Outputs  
Available in a 10-Lead (3mm × 3mm) DFN Package  
Internal sequencing circuitry disables the negative chan-  
nel until the positive channel has reached 88% of its final  
value, ensuring that the sum of the two outputs is always  
positive. Separate soft-start capacitors for each output  
allow the ramp of each output to be independently  
controlled.  
U
APPLICATIO S  
CCD Bias  
TFT LCD Bias  
OLED Bias  
± Rail Generation for Op Amps  
The LT3472 is available in a low profile (0.75mm) 10-pin  
3mm × 3mm DFN package.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
Li-Ion CCD Bias Supply  
V
IN  
Conversion Efficiency  
3V TO 4.2V  
2.2µF  
85  
1µF  
22µH  
47µH  
80  
75  
70  
65  
60  
55  
50  
45  
40  
POS CHANNEL  
NEG CHANNEL  
SWP  
V
SWN  
DN  
IN  
V
POS  
15V  
V
POS  
20mA  
550k  
47µH  
LT3472  
GND  
FBP  
4.7pF  
V
320k  
10pF  
NEG  
–8V  
FBN  
50mA  
SHDN  
SHDN  
SSP  
SSN  
100nF  
100nF  
2.2µF  
2.2µF  
0
40  
50  
10  
20  
30  
LOAD CURRENT (mA)  
3472 TA01b  
3472 TA01a  
3472f  
1
LT3472  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
VIN, SHDN Voltage................................................... 16V  
SWP, SWN, VPOS Voltage ....................................... 36V  
DN Voltage ............................................................ –36V  
FBP, FBN, SSP, SSN Voltage ................................... 10V  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range  
SWP  
1
2
3
4
5
10  
9
V
POS  
V
SSP  
FBP  
SSN  
FBN  
IN  
LT3472EDD  
11  
SHDN  
SWN  
DN  
8
7
6
DFN PART  
MARKING  
DD PACKAGE  
10-LEAD (3mm × 3mm) PLASTIC DFN  
Extended Commercial......................... –40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
TJMAX = 125°C, θJA = 43°C/W, θJC = 3°C/W  
EXPOSED PAD IS GND (PIN 11)  
MUST BE SOLDERED TO PCB  
LBGC  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3V, SHDN = 3V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Minimum Operation Voltage  
Maximum Operation Voltage  
Supply Current  
2.2  
V
V
16  
1
SHDN = 3V, Not Switching  
SHDN = 0V  
2.8  
0.1  
mA  
µA  
SHDN Voltage High  
0.8  
V
V
SHDN Voltage Low  
0.3  
SHDN Pin Bias Current  
SHDN = 3V  
35  
1.25  
0
µA  
Positive Feedback Voltage  
Negative Feedback Voltage  
Positive Feedback Voltage Line Regulation  
Negative Feedback Voltage Line Regulation  
FBP Current  
1.2  
–5  
1.3  
5
V
mV  
%/V  
mV/V  
µA  
0.01  
0.008  
25  
FBP = V  
FBN = V  
24.5  
24.5  
1.02  
0.9  
25.3  
25.3  
1.18  
1.4  
FBP  
FBN Current  
25  
µA  
FBN  
FBP to Start Negative Channel  
Switching Frequency  
1.1  
V
1.1  
MHz  
%
Maximum Duty Cycle (Both Channels)  
Positive Channel Switch Current Limit  
Negative Channel Switch Current Limit  
88  
92  
250  
300  
350  
400  
245  
400  
0.01  
700  
750  
mA  
mA  
mV  
mV  
µA  
Positive Channel Switch V  
I
I
= 200mA  
= 200mA  
= 5V  
CESAT  
SWP  
SWN  
Negative Channel Switch V  
CESAT  
Switch Leakage Current (Both Channels)  
Schottky DP Forward Drop  
V
5
950  
1000  
4
SW  
I
I
= 150mA  
= 150mA  
mV  
mV  
µA  
DP  
DN  
Schottky DN Forward Drop  
Schottky Leakage Current (Both Channels)  
V = 36V  
R
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: The LT3472E is guaranteed to meet specified performance from  
0°C to 70°C. Specifications over the –40°C to 85°C operating range are  
assured by design, characterization and correlation with statistical process  
controls.  
3472f  
2
LT3472  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Minimum FBP Voltage to Enable  
Inverter  
Quiescent Current  
FBP Voltage  
3.1  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
1.13  
1.12  
1.11  
1.10  
1.09  
1.08  
1.07  
1.06  
1.05  
1.30  
1.28  
1.26  
1.24  
1.22  
1.20  
50  
0
TEMPERATURE (°C)  
50  
0
TEMPERATURE (°C)  
50  
0
TEMPERATURE (°C)  
–50  
100  
–50  
100  
–50  
100  
3472 G01  
3472 G02  
3472 G03  
FBN Bias Current  
FBN Voltage  
FBP Bias Current  
10  
5
26.0  
25.5  
25.0  
24.5  
24.0  
26.0  
25.5  
25.0  
24.5  
24.0  
0
–5  
–10  
50  
0
TEMPERATURE (°C)  
50  
0
TEMPERATURE (°C)  
50  
0
TEMPERATURE (°C)  
–50  
100  
–50  
100  
–50  
100  
3472 G04  
3472 G05  
3472 G06  
SHDN Pin Bias Current  
Positive Channel Switch VCESAT  
350  
300  
250  
200  
150  
100  
50  
300  
250  
200  
150  
100  
50  
90°C  
25°C  
–45°C  
0
0
0
50  
100  
150  
200  
250  
300  
0
5
10  
SHDN VOLTAGE (V)  
15  
20  
SWITCH CURRENT (mA)  
3472 G07  
3472 G08  
3472f  
3
LT3472  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Negative Channel Schottky  
I-V Characteristic  
Positive Channel Schottky  
I-V Characteristic  
Negative Channel Switch VCESAT  
600  
500  
400  
300  
200  
100  
0
400  
350  
300  
250  
200  
150  
100  
50  
350  
300  
250  
200  
150  
100  
50  
25°C  
25°C  
90°C  
90°C  
25°C  
90°C  
–45°C  
–45°C  
–45°C  
0
0
0.2  
0.4  
0.8  
0
100  
150  
200  
250  
0.2  
0.4  
0.8  
1.0  
0
1.0  
50  
0
0.6  
0.6  
SWITCH CURRENT (mA)  
SCHOTTKY FORWARD DROP (V)  
SCHOTTKY FORWARD DROP (V)  
3472 G10  
3472 G09  
3472 G11  
3472f  
4
LT3472  
U
U
U
PI FU CTIO S  
SWP (Pin 1): Switch Pin for Positive (Boost) Channel.  
SSN (Pin 7): Soft Start-Up Pin for Inverter. Connect a cap  
here for soft start-up. Leave open for quick start-up. This  
pin is connected to 1.25V with a 50k resistor internally.  
Connect boost inductor here.  
VIN (Pin 2): Input Supply Pin. Must be locally bypassed  
with a X5R or X7R type ceramic capacitor.  
FBP (Pin 8): Feedback Pin for Boost. Connect boost  
feedback resistor R1 from this Pin to VO1. Choose R1  
accordingto VO1 =1.25(1+R1/50k).Pinvoltage=1.25V  
when regulated.  
SHDN(Pin3):ShutdownPin. Connectto0.8Vorhigherto  
enable device, 0.3V or less to disable device.  
SWN (Pin 4): Switch Pin for Negative (Inverter) Channel.  
Connect inverter input inductor and flying capacitor here.  
SSP (Pin 9): Soft Start-Up Pin for Boost. Connect a cap  
here for soft start-up. Leave open for quick start-up. This  
pin is connected to 1.25V with a 50k resistor internally.  
DN (Pin 5): Anode of Internal Schottky for Inverter.  
Connect inverter output inductor and flying capacitor  
here.  
V
POS (Pin10):OutputPinforBoost. Connectboostoutput  
capacitor here.  
FBN (Pin 6): Feedback Pin for Inverter. Connect feedback  
resistor R2 from this pin to VO2. Choose R2 according to  
VO2 = 1.25 • R2/50k. Pin voltage = 0V when regulated.  
GND (Exposed Pad) (Pin 11): GND Pin. Tie directly to  
ground plane through multiple vias under the package for  
optimum thermal performance.  
W
BLOCK DIAGRA  
SWP  
1
COMPARATOR  
DP  
8
+
FBP  
10  
V
POS  
X1  
R
DRIVER 1  
A1  
+
50k  
Q1  
A2  
Q
S
+
V
2
IN  
V
REF  
1.25V  
RAMP  
GENERATOR  
11  
3
GND  
50k  
1.2MHz  
OSCILLATOR  
SHDN  
COMPARATOR  
6
7
FBN  
SSN  
+
DRIVER 2  
X2  
R
4
SWN  
A3  
S
Q2  
A4  
Q
+
+
50k  
1.25V  
50k  
DN  
RAMP  
GENERATOR  
5
DN  
SSP  
9
3472 BD  
Figure 1. LT3472 Block Diagram  
3472f  
5
LT3472  
U
W
U U  
APPLICATIO S I FOR ATIO  
Operation  
Inductor Selection  
The LT3472 uses a constant frequency, current mode  
control scheme to provide excellent line and load regula-  
tion. Operation can be best understood by referring to the  
block diagram in Figure 1. At the start of each oscillator  
cycle, the SR latch X1 is set, which turns on the power  
switch Q1. A voltage proportional to the switch current is  
added to a stabilizing ramp and the resulting sum is fed  
into the positive terminal of the PWM comparator A2.  
When this voltage exceeds the level at the negative input  
of A2, the SR latch X1 is reset turning off the power switch  
Q1. The level at the negative input of A2 is set by the error  
amplifier A1, and is simply an amplified version of the  
difference between the feedback voltage and the reference  
voltage of 1.25V. In this manner, the error amplifier sets  
the correct peak current level to keep the output in regu-  
lation. If the error amplifier’s output increases, more  
current is delivered to the output; if it decreases, less  
current is delivered. The second channel is an inverting  
converter. The basic operation is the same as the positive  
channel. The SR latch X2 is also set at the start of each  
oscillator cycle. The power switch Q2 is turned on at the  
same time as Q1. The turn off of Q2 is determined by its  
own feedback loop, which consists of error amplifier A3  
and PWM comparator A4. The reference voltage of this  
negative channel is ground.  
A 22µH inductor is recommended for LT3472 step-up  
channel. The inverter channel can use a 22µH or 47µH  
inductor. 47µH inductors will provide slightly more cur-  
rent. Small size and high efficiency are the major concerns  
for most LT3472 applications. Inductors with low core  
losses and small DCR (copper wire resistance) at 1.1MHz  
are good choices for LT3472 applications. Some induc-  
tors in this category with small size are listed in  
Table 1. The efficiency comparison of different inductors  
is shown in Figure 3.  
85  
INVERTER LOAD = 20mA  
LQH32CN220  
80  
TOKO 1067FB-220M  
75  
LQH2MCN220  
70  
65  
60  
0
10  
15  
20  
O1  
25  
30  
5
LOAD CURRENT I (mA)  
3473 F02a  
3472 F02a  
85  
80  
75  
70  
65  
60  
BOOST LOAD = 20mA  
LQH32CN220  
Switching waveforms with typical load conditions are  
shown in Figure 2.  
TOKO 1067FB-220M  
LQH2MCN220  
V
SWP  
20V/DIV  
I
L1  
100mA/DIV  
V
SWN  
20V/DIV  
I
SWN  
100mA/DIV  
0
10  
15  
20  
25  
30  
5
3472 FO4  
LOAD CURRENT I (mA)  
V
V
V
= 3.6V  
500ns/DIV  
O2  
IN  
= 15V, 20mA  
POS  
NEG  
3473 F02a  
3472 F02b  
= –7.5V, 30mA  
Figure 3. Efficiency Comparison of Different Inductors  
Figure 2. Switching Waveforms  
3472f  
6
LT3472  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 1. Recommended Inductors  
1A. The selection of inductor and capacitor value should  
ensure the peak of the inrush current to be below 1A. The  
peak inrush current can be calculated as follows:  
Part No.  
Inductance DCR  
Current  
Manufacturer  
(µH)  
() Rating (mA)  
LQH32CN220  
LQH32CN470  
LQH2MCN220  
LQH2MCN470  
22  
47  
22  
47  
0.71  
1.3  
2.1  
5.1  
250  
170  
185  
120  
Murata  
(814) 237-1431  
www.murata.com  
V – 0.6  
L•ω  
α
ω
⎛ ⎞  
IN  
IP =  
EXP – arctan  
⎜ ⎟  
⎝ ⎠  
α
ω
D1067FB-220M  
22  
22  
22  
2.0  
4.0  
270  
160  
350  
TOKO  
(408) 432-8281  
www.tokoam.com  
ω
⎛ ⎞  
SIN arctan•  
⎜ ⎟  
⎝ ⎠  
α
ELJPC220KF  
Panasonic  
(714) 373-7334  
www.panasonic.com  
r + 1.5  
2•L  
1
L•C  
α =  
ω =  
CDRH3D16-220  
0.53  
Sumida  
(847) 956-0666  
www.sumida.com  
r
2
4 L  
LB2012B220M  
LEM2520-220  
22  
22  
1.7  
5.5  
75  
125  
Taiyo Yuden  
(408) 573-4150  
www.t-yuden.com  
where L is the inductance, r is the resistance of the  
inductor and C is the output capacitance. For low DCR  
inductors, which is usually the case for this application,  
the peak inrush current can be simplified as follows:  
Capacitor Selection  
The small size of ceramic capacitors makes them suitable  
for LT3472 applications. X5R and X57 types of ceramic  
capacitors are recommended because they retain their  
capacitance over wider voltage and temperature ranges  
than other types such as Y5V or Z5U. A 2.2µF input  
capacitor and a 2.2µF output capacitor are sufficient for  
most LT3472 applications.  
V – 0.6  
L • ω  
α π  
IN  
IP =  
EXP –  
ω 2  
Table 3 gives inrush peak currents for some component  
selections. Note that inrush current is not a concern if the  
input voltage rises slowly.  
Table 3. Inrush Peak Current  
Table 2. Recommended Ceramic Capacitor Manufacturers  
V
(V)  
r ()  
0.5  
L (µH)  
22  
C (µF)  
2.2  
2.2  
2.2  
1
I (A)  
IN  
P
Manufacturer  
Taiyo Yuden  
Murata  
Phone  
URL  
5
0.89  
0.59  
0.46  
0.32  
0.46  
(408) 573-4150  
(814) 237-1431  
(408) 986-0424  
www.t-yuden.com  
www.murata.com  
www.kemet.com  
3.6  
3.6  
3.6  
3.6  
0.7  
22  
2.1  
22  
Kemet  
1.3  
47  
0.7  
22  
1
Inrush Current  
The LT3472 uses internal Schottky diodes. When supply  
voltage is abruptly applied to VIN pin, for the positive  
channel, the voltage difference between VIN and VPOS  
generates inrush current flowing from input through the  
inductor LP and the internal Schottky diode DP to charge  
the output capacitor COP. For the inverter channel, there is  
a similar inrush current flowing from input through the  
inductor LN1 path, charging the capacitor CNF, and return-  
ing through the internal Schottky diode DN. The maximum  
current the Schottky diodes in the LT3472 can sustain is  
External Diode Selection  
As stated previously the LT3472 has internal Schottky  
diodes. The Schottky diode DP is sufficient for most step-  
up applications. However, for high current inverter appli-  
cations, a properly selected external Schottky diode in  
parallel with DN can improve efficiency. For external diode  
selection, both forward voltage drop and diode capaci-  
tance need to be considered. Schottky diodes rated for  
higher current usually have lower forward voltage drop  
3472f  
7
LT3472  
W U U  
U
APPLICATIO S I FOR ATIO  
andlargercapacitance,whichcancausesignificantswitch-  
ing losses at 1.1MHz switching frequency. Some recom-  
mended Schottky diodes are listed in Table 4.  
In order to maintain accuracy, high precision resistors are  
preferred (1% is recommended).  
Soft-Start  
Table 4. Recommended Schottky Diodes  
The LT3472 has independent soft-start control for each  
channel. As shown in Figure 1, the SSP and SSN pins have  
an internal resistor of 50k pulling up to 1.25V, respec-  
tively. By connecting a capacitor from the SSP or SSN pin  
to ground, the ramp of each output can be programmed  
individually. If SSP or SSN is open or pull higher than  
1.25V, thecorrespondingoutputwillrampupquickly. The  
waveforms with and without soft-start for the Boost  
channel are shown in Figure 4.  
Forward  
Current  
(mA)  
Forward  
Voltage  
Drop (V)  
Diode  
Capacitance  
(pF)  
Part No.  
Manufacturer  
CMDSH-3  
100 0.58 @100mA 7 @ 10V Central Semiconductor  
CMDSH2-3 200 0.49 @ 200mA 15 @ 10V (631) 435-1110  
www.centralsemi.com  
Setting the Output Voltages  
The LT3472 has an accurate feedback resistor of 50k for  
each channel. Only one resistor is needed to set the output  
voltage for each channel. The output voltage can be set  
according to the following formulas:  
Thewaveformswithandwithoutsoft-startforthenegative  
channel are shown in Figure 5.  
Start Sequencing  
The LT3472 has internal sequencing circuitry that inhibits  
thenegativechannelfromoperatinguntilfeedbackvoltage  
of the step-up channel reaches about 1.1V, ensuring that  
R1  
50k  
VPOS = 1.25• 1+  
R2  
50k  
VNEG = –1.25•  
V
V
SSP  
SSP  
2V/DIV  
1V/DIV  
V
V
POS  
POS  
5V/DIV  
5V/DIV  
I
I
IN  
IN  
200mA/DIV  
100mA/DIV  
3472 FO4a  
3472 FO4b  
1ms/DIV  
100µs/DIV  
Figure 4a. VSSP, VPOS, IIN with 100nF on SSP  
Figure 4b. VSSP, VPOS, IIN with SSP Open  
V
V
SSN  
SSN  
2V/DIV  
1V/DIV  
V
NEG  
V
NEG  
5V/DIV  
5V/DIV  
I
I
IN  
IN  
200mA/DIV  
100mA/DIV  
3472 FO5a  
3472 FO5b  
500µs/DIV  
100µs/DIV  
Figure 5a. VSSN, VNEG, IIN with 100nF on SSN  
Figure 5b. VSSN, VNEG, IIN with SSN Open  
3472f  
8
LT3472  
W U U  
APPLICATIO S I FOR ATIO  
U
the sum of the two outputs is always positive. The se-  
quencing is shown in Figure 6.  
ence (EMI) problems, proper layout of the high frequency  
switchingpathisessential. ThevoltagesignalsoftheSWP  
andSWNpinshaveriseandfalltimesofafewns.Minimize  
the length and area of all traces connected to the SWP and  
SWN pins and always use a ground plane under the  
switching regulator to minimize interplane coupling. Rec-  
ommended component placement is shown in Figure 7.  
Board Layout Consideration  
As with all switching regulators, careful attention must be  
paid to the PCB board layout and component placement.  
Tomaximizeefficiency, switchriseandfalltimesaremade  
as short as possible. To prevent electromagnetic interfer-  
V
POS  
C
OP  
5V/DIV  
C
L
IN  
L
P
C
FBP  
R
FBP  
C
SSP  
V
NEG  
5V/DIV  
N1  
V
SHDN  
C
5V/DIV  
SSN  
3472 FO6  
100µs/DIV  
R
C
FBN  
FBN  
C
NF  
L
N2  
Figure 6. Start-Up Sequencing  
C
ON  
3472 F06  
Figure 7. Recommended Component Placement  
3472f  
9
LT3472  
U
TYPICAL APPLICATIO S  
V
IN  
3V TO 4.2V  
C
IN  
2.2µF  
C
NF  
L
L
P
N1  
47µH  
1µF  
22µH  
SWP  
V
SWN  
DN  
V
IN  
POS  
15V  
V
POS  
R
FBP  
550k  
20mA  
L
N2  
LT3472  
GND  
FBP  
47µH  
R
C
, 4.7pF  
FBP  
FBN  
V
320k  
NEG  
–8V  
FBN  
50mA  
C
FBN  
10pF  
SHDN  
SHDN  
SSP  
SSN  
C
C
C
C
OP  
2.2µF  
SSP  
100nF  
SSN  
100nF  
ON  
2.2µF  
3472 TA02  
C
C
C
C
: TAIYO YUDEN JMK107BJ225  
IN  
: TAIYO YUDEN EMK316BJ225  
OP  
NF  
ON  
: TAIYO YUDEN EMK212BJ105  
: TAIYO YUDEN LMK212BJ225  
L : MURATA LQH32CN220  
P
L
, L : MURATA LQH32CN470  
N1 N2  
VPOS Load Step Response  
VNEG Load Step Response  
15mA  
25mA  
I
POS  
–20mA  
–30mA  
I
NEG  
V
V
POS  
NEG  
20mV/DIV  
10mV/DIV  
3472 TA04  
3472 TA05  
20µs/DIV  
50µs/DIV  
3472f  
10  
LT3472  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PACKAGE  
OUTLINE  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.10  
(2 SIDES)  
2.38 ±0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3472f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT3472  
U
TYPICAL APPLICATIO  
V
IN  
3V TO 4.2V  
2.2µF  
1µF  
22µH  
47µH  
SWP  
V
SWN  
DN  
IN  
V
POS  
15V  
20mA  
V
POS  
550k  
47µH  
LT3472  
GND  
FBP  
4.7pF  
V
320k  
10pF  
NEG  
–8V  
FBN  
50mA  
SHDN  
SHDN  
SSP  
SSN  
100nF  
100nF  
2.2µF  
2.2µF  
3472 TA03  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LT1611  
550mA (I ), 1.4MHz, High Efficiency Micropower  
Inverting DC/DC Converter  
V : 1.1V to 10V, V  
ThinSOT Package  
= –34V, I = 3mA, I <1µA,  
OUT(MAX) Q SD  
SW  
IN  
LT1615/LT1615-1  
LT1617/LT1617-1  
LT1930/LT1930A  
LT1931/LT1931A  
LT1944/LT1944-1  
LT1945(Dual)  
300mA/80mA (I ), High Efficiency  
Step-Up DC/DC Converter  
V : 1V to 15V, V  
ThinSOT Package  
= 34V, I = 20µA, I <1µA,  
SW  
IN  
OUT(MAX) Q SD  
350mA/100mA (I ), High Efficiency Micropower  
V : 1.2V to 15V, V  
= –34V, I = 20µA, I <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Inverting DC/DC Converter  
ThinSOT Package  
1A (I ), 1.2MHz/2.2MHz, High Efficiency  
V : 2.6V to 16V, V  
= 34V, I = 4.2mA/5.5mA, I <1µA,  
Q SD  
SW  
IN  
Step-Up DC/DC Converter  
ThinSOT Package  
1A (I ), 1.2MHz/2.2MHz, High Efficiency Micropower  
V : 2.6V to 16V, V  
= –34V, I = 5.8mA, I <1µA,  
Q SD  
SW  
IN  
Inverting DC/DC Converter  
ThinSOT Package  
Dual Output, 350mA/100mA (I ), Constant  
V : 1.2V to 15V, V  
= 34V, I = 20µA, I <1µA,  
Q SD  
SW  
IN  
Off-Time, High Efficiency Step-Up DC/DC Converter  
MS10 Package  
Dual Output, Boost/Inverter, 350mA (I ), Constant  
Off-Time, High Efficiency Step-Up DC/DC Converter  
V : 1.2V to 15V, V  
= ±34V, I = 40µA, I <1µA,  
Q SD  
SW  
IN  
MS10 Package  
LT1946/LT1946A  
LT3461/LT3461A  
LT3462/LT3462A  
LT3463/LT3463A  
1.5A (I ), 1.2MHz/2.7MHz, High Efficiency  
Step-Up DC/DC Converter  
V : 2.45V to 16V, V  
MS8 Package  
= 34V, I = 3.2mA, I <1µA,  
SW  
IN  
OUT(MAX) Q SD  
0.3A (I ), Inverting 1.3MHz/3MHz High Efficiency  
V : 2.5V to 16V, V  
ThinSOT Package  
= 38V, I = 2.8mA, I <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Step-Up DC/DC Converter with Integrated Schottky Diodes  
300mA (I ), Inverting 1.2MHz/2.7MHz DC/DC Converter  
V : 2.5V to 16V, V  
= –38V, I = 2.9mA, I <10µA,  
Q SD  
SW  
IN  
with Integrated Schottky Diodes  
ThinSOT Package  
Dual Output, Boost/Inverter, 250mA (I ), Constant  
V : 2.3V to 15V, V  
IN  
= 40V, I = 40µA, I <1µA,  
Q SD  
SW  
Off-Time, High Efficiency Step-Up DC/DC Converter  
with Integrated Schottkys  
DFN Package  
LT3464  
85mA (I ), High Efficiency Step-Up DC/DC Converter  
with Integrated Schottky and PNP Disconnect  
V : 2.3V to 10V, V  
ThinSOT Package  
= 34V, I = 25µA, I <1µA,  
Q SD  
SW  
IN  
OUT(MAX)  
LT3467/LT3467A  
1.1A, 1.3MHz/2.1MHz Step-Up DC/DC Converter with  
Integrated Soft-Start in ThinSOT  
V : 2.4V to 16V, V  
ThinSOT Package  
= 40V, I = 1mA, I <1µA,  
Q SD  
IN  
OUT(MAX)  
3472f  
LT/TP 0804 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
©LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT3472EDD#TRPBF

LT3472 - Boost and Inverting DC/DC Converter for CCD Bias; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3473A

20mA LED Driver and OLED Driver with Integrated Schottky in 3mm x 2mm DFN
Linear

LT3473AEDE

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473AEDE#PBF

LT3473 - Micropower 1A Boost Converter with Schottky and Output Disconnect; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473AEDE#TRPBF

LT3473 - Micropower 1A Boost Converter with Schottky and Output Disconnect; Package: DFN; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3473A_15

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473EDD

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3473EDD#PBF

暂无描述
Linear

LT3473_15

Micropower 1A Boost Converter with Schottky and Output Disconnect
Linear

LT3474

Step-Down 1A LED Driver
Linear

LT3474-1

Step-Down 1A LED Driver
Linear