LT3751IUFD#TRPBF [Linear]

LT3751 - High Voltage Capacitor Charger Controller with Regulation; Package: QFN; Pins: 20; Temperature Range: -40°C to 85°C;
LT3751IUFD#TRPBF
型号: LT3751IUFD#TRPBF
厂家: Linear    Linear
描述:

LT3751 - High Voltage Capacitor Charger Controller with Regulation; Package: QFN; Pins: 20; Temperature Range: -40°C to 85°C

文件: 总34页 (文件大小:629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3751  
High Voltage Capacitor  
Charger Controller with Regulation  
FEATURES  
DESCRIPTION  
The LT®3751 is a high input voltage capable flyback con-  
n
Charges Any Size Capacitor  
n
Low Noise Output in Voltage Regulation Mode  
Stable Operation Under a No-Load Condition  
Integrated 2A MOSFET Gate Driver with Rail-to-Rail  
troller designed to rapidly charge a large capacitor to a  
user-adjustable high target voltage set by the transformer  
turns ratio and three external resistors. Optionally, a feed-  
back pin can be used to provide a low noise high voltage  
regulated output.  
n
n
Operation for V ≤ 8V  
CC  
n
Selectable 5.6V or 10.5V Internal Gate Drive  
Voltage Clamp  
The LT3751 has an integrated rail-to-rail MOSFET gate  
driver that allows for efficient operation down to 4.75V.  
A low 106mV differential current sense threshold volt-  
age accurately limits the peak switch current. Added pro-  
tection is provided via user-selectable overvoltage and  
undervoltage lockouts for both V and V  
application can charge a 1000µF capacitor to 500V in less  
than one second.  
n
n
n
n
n
User-Selectable Over/Undervoltage Detect  
Easily Adjustable Output Voltage  
Primary or Secondary Side Output Voltage Sense  
Wide Input V Voltage Range (5V to 24V)  
CC  
Available in 20-Pin QFN 4mm × 5mm and 20-Lead  
. A typical  
TRANS  
CC  
TSSOP Packages  
APPLICATIONS  
The CHARGE pin is used to initiate a new charge cycle  
and provides ON/OFF control. The DONE pin indicates  
when the capacitor has reached its programmed value and  
the part has stopped charging. The FAULT pin indicates  
when the LT3751 has shut down due to either VCC or  
n
High Voltage Regulated Supply  
n
High Voltage Capacitor Charger  
n
Professional Photoflash Systems  
n
Emergency Strobe  
V
voltage exceeding the user-programmed supply  
n
TRANS  
tolerances.  
Security/Inventory Control Systems  
n
Detonators  
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. Patents including 6518733 and 6636021.  
TYPICAL APPLICATION  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
Load Regulation and Efficiency  
T1  
D1  
1:10  
V
500V  
TRANS  
24V  
5ꢍꢍ  
ꢕꢖꢗ  
ꢕꢖꢘ  
ꢕꢖꢕ  
ꢕꢖꢙ  
ꢕꢖꢍ  
ꢖꢍ  
ꢗꢕ  
7ꢗ  
7ꢙ  
ꢘꢘ  
ꢘꢍ  
0 TO 150mA  
+
10µF  
×2  
330µF  
40.2k  
TRANS  
×2  
+
100µF  
RV  
CHARGE  
CLAMP  
18.2k  
0.47µF  
OFF ON  
RDCM  
40.2k  
RV  
OUT  
V
CC  
24V  
V
CC  
LT3751  
10µF  
HVGATE  
LVGATE  
CSP  
TO  
DONE  
FAULT  
V
CC  
MICRO  
374k  
475k  
374k  
475k  
UVLO1  
OVLO1  
UVLO2  
6mΩ  
V
TRANS  
CSN  
FB  
715k  
ꢁꢅꢉꢎꢅꢉ ꢏꢁꢐꢇ  
ꢇꢑꢑꢒꢄꢒꢇꢈꢄꢓ  
V
CC  
OVLO2  
GND  
1.74k  
10nF  
RBG  
5ꢍ  
1ꢍꢍ  
15ꢍ  
732Ω  
ꢀꢁꢂꢃ ꢄꢅꢆꢆꢇꢈꢉ ꢊꢋꢂꢌ  
3751 ꢉꢂꢍ1ꢚ  
3751 TA01a  
3751fd  
1
For more information www.linear.com/LT3751  
LT3751  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
Current into RV  
Pin ........................................ 10mA  
V , CHARGE, CLAMP..............................................24V  
OUT  
CC  
Current into RDCM Pin......................................... 10mA  
Current into UVLO1 Pin.......................................... 1mA  
Current into UVLO2 Pin.......................................... 1mA  
Current into OVLO1 Pin.......................................... 1mA  
Current into OVLO2 Pin.......................................... 1mA  
Maximum Junction Temperature .......................... 125°C  
Operating Temperature Range (Note 2).. –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
DONE, FAULT ............................................................24V  
LVGATE (Note 8).......................................................24V  
V
CC  
– LVGATE .............................................................8V  
HVGATE ................................................................Note 9  
RBG, CSP, CSN ...........................................................2V  
FB ..............................................................................5V  
Current into DONE Pin ........................................... 1mA  
Current into FAULT Pin........................................... 1mA  
Current into RV  
Pin....................................... 1mA  
TRANS  
PIN CONFIGURATION  
ꢄꢅꢆ ꢇꢈꢉꢊ  
ꢍꢏꢂ ꢔꢎꢁꢕ  
ꢖꢔ  
ꢍꢖꢃꢗꢌ  
1
3
5
7
ꢇꢈ ꢖꢋꢄꢚ  
1ꢓ ꢗꢄ  
ꢘꢔꢊꢏ1  
ꢏꢔꢊꢏ1  
ꢘꢔꢊꢏꢇ  
ꢏꢔꢊꢏꢇ  
FAULT  
ꢀꢁ 1ꢂ 1ꢃ 17  
1ꢒ ꢖꢔ  
17 ꢗꢄ  
ꢏꢘꢍ  
ꢅꢇꢘꢅ1  
ꢋꢇꢘꢅꢀ  
ꢅꢇꢘꢅꢀ  
FAULT  
1
3
5
1ꢛ ꢝꢇ  
15 ꢓꢏ  
ꢅꢋꢄ  
1ꢑ ꢖꢛꢆ  
1ꢕ ꢝꢞꢑ  
ꢇ1  
ꢀ1  
15 ꢙꢔꢆꢃꢍꢁ  
1ꢐ ꢊꢔꢆꢃꢍꢁ  
13 ꢜꢇꢑꢎꢄꢉ  
1ꢀ ꢘꢇꢑꢎꢄꢉ  
DONE  
DONE  
ꢏꢜꢎꢝꢑꢉ  
11 ꢇ  
ꢏꢏ  
ꢄꢙꢃꢖꢆꢁ  
ꢄꢊꢃꢚꢂ  
13  
ꢄꢄ  
1ꢇ ꢄꢌꢂ  
11 ꢄꢌꢗ  
7
ꢂ 1ꢁ  
ꢀꢛ 1ꢈ  
ꢀꢁ ꢂꢃꢄꢅꢃꢆꢁ  
ꢇꢈꢉꢊꢁꢃꢋ ꢂꢊꢃꢌꢍꢎꢄ ꢍꢌꢌꢏꢂ  
ꢋꢌꢍ ꢆꢎꢏꢐꢎꢑꢉ  
ꢀꢁꢒꢆꢈꢓ ꢔꢕꢖꢖ × 5ꢖꢖꢗ ꢆꢘꢎꢙꢄꢈꢏ ꢚꢌꢓ  
T
= 125°C, θ = 38°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 21) IS GND, MUST BE SOLDERED TO PCB  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 21) IS GND, MUST BE TIED TO PCB  
http://www.linear.com/product/LT3751#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3751EFE#PBF  
LT3751IFE#PBF  
LT3751EUFD#PBF  
LT3751IUFD#PBF  
LEAD BASED FINISH  
LT3751EFE  
TAPE AND REEL  
LT3751EFE#TRPBF  
LT3751IFE#TRPBF  
LT3751EUFD#TRPBF  
LT3751IUFD#TRPBF  
TAPE AND REEL  
LT3751EFE#TR  
PART MARKING*  
LT3751FE  
LT3751FE  
3751  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
TEMPERATURE RANGE  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
20-Lead Plastic TSSOP  
20-Lead Plastic TSSOP  
20-Pin (4mm × 5mm) Plastic QFN  
20-Pin (4mm × 5mm) Plastic QFN  
PACKAGE DESCRIPTION  
3751  
PART MARKING*  
LT3751FE  
LT3751FE  
3751  
20-Lead Plastic TSSOP  
LT3751IFE  
LT3751IFE#TR  
20-Lead Plastic TSSOP  
LT3751EUFD  
LT3751EUFD#TR  
LT3751IUFD#TR  
20-Pin (4mm × 5mm) Plastic QFN  
20-Pin (4mm × 5mm) Plastic QFN  
LT3751IUFD  
3751  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
3751fd  
2
For more information www.linear.com/LT3751  
LT3751  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VCC = CHARGE = 5V, CLAMP = 0V, unless otherwise noted. Individual  
25kΩ resistors tied from 5V VTRANS supply to RVTRANS, RVOUT, RDCM, unless otherwise noted. (Note 2)  
PARAMETER  
Voltage  
CONDITIONS  
MIN  
4.75  
4.75  
TYP  
MAX  
24  
UNITS  
l
l
V
V
V
CC  
RV  
Voltage  
(Note 3)  
65  
TRANS  
V
Quiescent Current  
Not Switching, CHARGE = 5V  
Not Switching, CHARGE = 0.3V  
5.5  
0
8
1
mA  
µA  
CC  
RV  
RV  
, R  
Quiescent Current  
(Note 4)  
TRANS DCM  
Not Switching, CHARGE = 5V  
Not Switching, CHARGE = 0.3V  
l
l
35  
42  
40  
0
45  
1
µA  
µA  
Quiescent Current  
(Note 4)  
Not Switching, CHARGE = 5V  
Not Switching, CHARGE = 0.3V  
OUT  
47  
0
52  
1
µA  
µA  
UVLO1, UVLO2, OVLO1, OVLO2 Clamp Voltage Measured at 1mA into Pin, CHARGE = 0V  
55  
60  
V
V
RV  
, RV , R  
Clamp Voltage  
Measured at 1mA into Pin, CHARGE = 0V  
TRANS  
OUT DCM  
CHARGE Pin Current  
CHARGE = 24V  
CHARGE = 5V  
CHARGE = 0V  
425  
60  
µA  
µA  
µA  
1
l
l
CHARGE Minimum Enable Voltage  
CHARGE Maximum Disable Voltage  
Minimum CHARGE Pin Low Time  
One-Shot Clock Period  
1.5  
V
V
I
≤ 1µA  
0.3  
VCC  
20  
38  
μs  
μs  
V
l
l
32  
44  
1.005  
40  
V
V
Comparator Trip Voltage  
Comparator Overdrive  
Measured at RBG Pin  
2µs Pulse Width,  
RV  
R
0.955  
0.98  
20  
OUT  
OUT  
mV  
, RV  
TRANS  
= 25kΩ  
OUT  
= 0.83kΩ  
BG  
DCM Comparator Trip Voltage  
Measured as V  
(Note 5)  
– V  
, R  
= 25kΩ, V = 4.75V  
350  
600  
900  
mV  
DRAIN  
TRANS DCM  
CC  
Current Limit Comparator Trip Voltage  
FB Pin = 0V  
FB Pin = 1.3V  
l
l
100  
7
106  
11  
112  
15  
mV  
mV  
FB Pin Bias Current  
Current Sourced from FB Pin, Measured at FB Pin Voltage  
(Note 6)  
64  
1.22  
1.16  
55  
1.34  
60  
5
300  
1.25  
1.2  
nA  
V
l
FB Pin Voltage  
1.19  
1.12  
FB Pin Charge Mode Threshold  
FB Pin Charge Mode Hysteresis  
FB Pin Overvoltage Mode Threshold  
FB Pin Overvoltage Hysteresis  
DONE Output Signal High  
DONE Output Signal Low  
DONE Leakage Current  
FAULT Output Signal High  
FAULT Output Signal Low  
FAULT Leakage Current  
UVLO1 Pin Current  
V
(Note 7)  
mV  
V
1.29  
1.38  
mV  
V
100kΩ to 5V  
100kΩ to 5V  
40  
5
200  
200  
mV  
nA  
V
DONE = 5V  
100kΩ to 5V  
5
100kΩ to 5V  
40  
5
200  
200  
mV  
nA  
μA  
μA  
μA  
μA  
FAULT = 5V  
l
l
l
l
UVLO1 Pin Voltage = 1.24V  
UVLO2 Pin Voltage = 1.24V  
OVLO1 Pin Voltage = 1.24V  
OVLO2 Pin Voltage = 1.24V  
48.5  
48.5  
48.5  
48.5  
50  
50  
50  
50  
51.5  
51.5  
51.5  
51.5  
UVLO2 Pin Current  
OVLO1 Pin Current  
OVLO2 Pin Current  
3751fd  
3
For more information www.linear.com/LT3751  
LT3751  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are TA = 25°C. VCC = CHARGE = 5V, CLAMP = 0V, unless otherwise noted. Individual  
25kΩ resistors tied from 5V VTRANS supply to RVTRANS, RVOUT, RDCM, unless otherwise noted. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.225  
1.225  
1.225  
1.225  
0.7  
MAX  
1.255  
1.255  
1.255  
1.255  
UNITS  
l
l
l
l
UVLO1 Threshold  
UVLO2 Threshold  
OVLO1 Threshold  
OVLO2 Threshold  
Gate Minimum High Time  
Gate Peak Pull-Up Current  
Measured from Pin to GND  
Measured from Pin to GND  
Measured from Pin to GND  
Measured from Pin to GND  
1.195  
1.195  
1.195  
1.195  
V
V
V
V
μs  
V
V
= 5V, LVGATE Active  
= 12V, LVGATE Inactive  
2.0  
1.5  
A
A
CC  
CC  
Gate Peak Pull-Down Current  
Gate Rise Time  
V
V
= 5V, LVGATE Active  
1.2  
1.5  
A
A
CC  
CC  
= 12V, LVGATE Inactive  
10% 90%, C  
V
V
= 3.3nF (Note 8)  
GATE  
= 5V, LVGATE Active  
40  
55  
ns  
ns  
CC  
CC  
= 12V, LVGATE Inactive  
Gate Fall Time  
90% 10%, C  
= 3.3nF (Note 8)  
GATE  
V
V
= 5V, LVGATE Active  
30  
30  
ns  
ns  
CC  
CC  
= 12V, LVGATE Inactive  
Gate High Voltage  
(Note 8):  
V
V
V
V
= 5V, LVGATE Active  
4.98  
10  
5
5
V
V
V
V
CC  
CC  
CC  
CC  
= 12V, LVGATE Inactive  
= 12V, LVGATE Inactive, CLAMP Pin = 5V  
= 24V, LVGATE Inactive  
10.5  
5.6  
11.5  
6.5  
11.5  
10  
10.5  
Gate Turn-Off Propagation Delay  
C
= 3.3nF  
180  
ns  
GATE  
25mV Overdrive Applied to CSP Pin  
Gate Voltage Overshoot  
CLAMP Pin Threshold  
500  
1.6  
mV  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LT3751E is guaranteed to meet performance specifications  
from 0°C to 125°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design  
characterization and correlation with statistical process controls. The  
LT3751I is guaranteed over the full –40°C to 125°C operating junction  
temperature range.  
Note 5: Refer to Block Diagram for V  
and V  
definitions.  
TRANS  
DRAIN  
Note 6: Low noise regulation of the output voltage requires a resistive  
voltage divider from output voltage to FB pin. FB pin should not be  
grounded in this configuration. Refer to the Typical Application diagram for  
proper FB pin configuration.  
Note 7: The feedback pin has built-in hysteresis that defines the boundary  
between charge-only mode and low noise regulation mode.  
Note 8: LVGATE should be used in parallel with HVGATE when V is less  
than or equal to 8V (LVGATE active). When not in use, LVGATE should be  
CC  
tied to V (LVGATE inactive).  
CC  
Note 3: A 60V internal clamp is connected to RV  
, RDCM, RV  
,
TRANS  
OUT  
Note 9: Do not apply a positive or negative voltage or current source to  
HVGATE, otherwise permanent damage may occur.  
UVLO1, UVLO2, OVLO1 and OVLO2. Resistors should be used such that  
the pin currents do not exceed the Absolute Maximum Ratings.  
Note 4: Currents will increase as pin voltages are taken higher than the  
internal clamp voltage.  
3751fd  
4
For more information www.linear.com/LT3751  
LT3751  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC Pin Current  
VTRANS Supply Current  
CHARGE Pin Current  
7
5
3
1
15ꢌ  
1ꢒ5  
1ꢒꢌ  
135  
13ꢌ  
1ꢓ5  
1ꢓꢌ  
115  
11ꢌ  
ꢑ5ꢌ  
ꢑꢌꢌ  
35ꢌ  
3ꢌꢌ  
ꢒ5ꢌ  
ꢒꢌꢌ  
15ꢌ  
1ꢌꢌ  
5ꢌ  
ꢍꢃ  
ꢗ ꢍꢃ ꢗ ꢍ  
ꢚ ꢓ5ꢛ  
ꢆꢍꢇꢂꢎ  
ꢏꢏ  
ꢄꢐꢆ ꢘꢏꢙ  
ꢗ ꢏꢜꢇꢍꢈꢉ ꢚ 5ꢃ  
ꢚ ꢁ  
ꢝ ꢁ  
ꢝ ꢁ  
ꢃꢆꢍꢇꢂꢎ ꢍꢃꢆꢍꢇꢂꢎ ꢍꢃꢄꢐꢆ ꢍꢘꢏꢙ  
ꢕꢒꢌꢖꢏ  
ꢓ5ꢖꢏ  
ꢕꢑꢌꢖꢍ  
ꢒ5ꢖꢍ  
1ꢒ5ꢖꢍ  
ꢕꢒꢌꢖꢍ  
ꢓ5ꢖꢍ  
1ꢓ5ꢖꢏ  
1ꢓ5ꢖꢍ  
1ꢓ  
1ꢑ  
ꢓꢌ  
ꢓꢒ  
1ꢌ  
ꢓꢌ  
3ꢌ  
ꢒꢌ  
5ꢌ  
ꢔꢌ  
1ꢒ  
1ꢓ  
ꢒꢌ  
ꢒꢑ  
ꢀꢁꢂ ꢃꢄꢈꢉ ꢊꢃꢋ  
ꢀꢁꢂ ꢃꢄꢈꢉ ꢊꢃꢋ  
ꢀꢁꢂ ꢃꢄꢈꢉ ꢊꢃꢋ  
3751 ꢈꢌ1  
3751 ꢈꢌꢓ  
3751 ꢈꢌ3  
CHARGE Pin Minimum  
Enable Voltage  
CHARGE Pin Maximum  
Disable Voltage  
DONE, FAULT Pin Voltage Low  
1ꢒ3  
1ꢒꢓ  
1ꢒ1  
1ꢒꢂ  
ꢂꢒꢕ  
ꢂꢒꢔ  
ꢂꢒ7  
ꢂꢒꢖ  
1ꢒꢓ  
1ꢒ1  
1ꢒꢂ  
ꢂꢒꢔ  
ꢂꢒꢖ  
ꢂꢒ7  
ꢂꢒꢕ  
ꢂꢒ5  
ꢁꢂꢂ  
35ꢂ  
3ꢂꢂ  
ꢑ5ꢂ  
ꢑꢂꢂ  
15ꢂ  
1ꢂꢂ  
5ꢂ  
ꢃꢃ  
ꢃꢃ  
ꢃꢃ  
ꢚ 5ꢌ  
ꢚ 1ꢓꢌ  
ꢚ ꢓꢁꢌ  
1ꢏꢋ ꢙꢄꢅꢚ  
1ꢂꢂꢛꢋ ꢙꢄꢅꢚ  
1ꢂꢛꢋ ꢙꢄꢅꢚ  
ꢃꢃ  
ꢃꢃ  
ꢃꢃ  
ꢚ 5ꢌ  
ꢚ 1ꢓꢌ  
ꢚ ꢓꢁꢌ  
ꢀꢁꢂ ꢀꢓꢂ  
ꢓꢂ ꢁꢂ ꢖꢂ ꢔꢂ 1ꢂꢂ 1ꢓꢂ  
ꢀꢁꢂ ꢀꢓꢂ  
ꢓꢂ ꢁꢂ ꢕꢂ ꢖꢂ 1ꢂꢂ 1ꢓꢂ  
ꢀꢁꢂ ꢀꢑꢂ  
ꢑꢂ ꢁꢂ ꢒꢂ ꢓꢂ 1ꢂꢂ 1ꢑꢂ  
ꢏꢈꢗꢉꢈꢆꢅꢏꢘꢆꢈ ꢐꢙꢃꢑ  
ꢏꢈꢗꢉꢈꢆꢅꢏꢘꢆꢈ ꢐꢙꢃꢑ  
ꢊꢍꢔꢃꢍꢕꢋꢊꢖꢕꢍ ꢎꢗꢘꢐ  
3751 ꢇꢂꢁ  
3751 ꢇꢂ5  
3751 ꢌꢂꢒ  
VOUT Comparator Trip Voltage  
UVLO1 Trip Voltage  
UVLO1 Trip Current  
30.8  
30.4  
30.0  
29.6  
29.2  
28.8  
28.4  
1ꢐꢑ3ꢒ  
1ꢐꢑ3ꢁ  
1ꢐꢑ3ꢑ  
1ꢐꢑ3ꢂ  
1ꢐꢑꢑꢓ  
1ꢐꢑꢑꢒ  
1ꢐꢑꢑꢁ  
5ꢂꢒ5  
5ꢂꢒꢁ  
5ꢂꢒ3  
5ꢂꢒꢔ  
5ꢂꢒ1  
5ꢂꢒꢂ  
ꢁꢓꢒꢓ  
ꢁꢓꢒꢕ  
ꢁꢓꢒ7  
RV  
BG  
, RV  
= 25.5k (R  
= 1%)  
TRANS  
OUT  
TOL  
R
= 833Ω  
ꢊꢊ  
ꢊꢊ  
ꢊꢊ  
ꢚ 5ꢄ  
ꢚ 1ꢔꢄ  
ꢚ ꢔꢁꢄ  
ꢗꢗ  
ꢗꢗ  
ꢗꢗ  
ꢘ 5ꢄ  
ꢘ 1ꢑꢄ  
ꢘ ꢑꢁꢄ  
V
= 5V  
= 12V  
= 24V  
TRANS  
V
V
V
= 48V  
= 72V  
TRANS  
TRANS  
TRANS  
TRANS  
V
–40 –20  
0
20 40 60 80 100 120  
TEMPERATURE (°C)  
ꢀꢁꢂ ꢀꢑꢂ  
ꢑꢂ ꢁꢂ ꢒꢂ ꢓꢂ 1ꢂꢂ 1ꢑꢂ  
ꢀꢁꢂ ꢀꢔꢂ  
ꢔꢂ ꢁꢂ ꢖꢂ ꢕꢂ 1ꢂꢂ 1ꢔꢂ  
ꢊꢍꢔꢇꢍꢕꢋꢊꢃꢕꢍ ꢎꢖꢗꢏ  
ꢍꢌꢘꢇꢌꢋꢐꢍꢃꢋꢌ ꢎꢙꢊꢑ  
3751 G07  
3751 ꢌꢂꢓ  
3751 ꢗꢂꢓ  
3751fd  
5
For more information www.linear.com/LT3751  
LT3751  
TYPICAL PERFORMANCE CHARACTERISTICS  
Current Comparator Trip Voltage  
(Charge Mode)  
Current Comparator Minimum  
Trip Voltage (Regulation Mode)  
FB Pin Voltage  
1ꢑꢒꢒ3  
1ꢑꢒꢒꢒ  
1ꢑꢒꢒ1  
1ꢑꢒꢒꢂ  
1ꢑꢒ1ꢓ  
1ꢂꢎꢏꢂ  
1ꢂꢐꢏ5  
1ꢂꢐꢏꢂ  
1ꢂ7ꢏ5  
1ꢂ7ꢏꢂ  
13ꢎꢂ  
1ꢏꢎꢑ  
1ꢏꢎꢐ  
1ꢏꢎꢁ  
1ꢏꢎꢏ  
1ꢏꢎꢂ  
11ꢎꢑ  
11ꢎꢐ  
11ꢎꢁ  
11ꢎꢏ  
11ꢎꢂ  
ꢄꢅ  
ꢙ ꢃ  
ꢀ ꢃ  
ꢘ ꢃ  
ꢀ ꢃ  
ꢗꢙꢓ ꢗꢙꢚ  
ꢘꢚꢔ  
ꢘꢚꢛ  
ꢄꢅ  
ꢛꢜ ꢘ 1ꢎ3ꢃ  
ꢚꢚ  
ꢚꢚ  
ꢚꢚ  
ꢛ 5ꢈ  
ꢛ 1ꢒꢈ  
ꢛ ꢒꢁꢈ  
ꢘꢘ  
ꢘꢘ  
ꢘꢘ  
ꢙ 5ꢃ  
ꢙ 1ꢒꢃ  
ꢙ ꢒꢁꢃ  
ꢗꢗ  
ꢗꢗ  
ꢗꢗ  
ꢘ 5ꢃ  
ꢘ 1ꢏꢃ  
ꢘ ꢏꢁꢃ  
ꢀꢁꢂ ꢀꢒꢂ  
ꢒꢂ ꢁꢂ ꢔꢂ ꢕꢂ 1ꢂꢂ 1ꢒꢂ  
ꢀꢁꢂ ꢀꢒꢂ  
ꢒꢂ ꢁꢂ ꢑꢂ ꢐꢂ 1ꢂꢂ 1ꢒꢂ  
ꢀꢁꢂ ꢀꢏꢂ  
ꢏꢂ ꢁꢂ ꢐꢂ ꢑꢂ 1ꢂꢂ 1ꢏꢂ  
ꢄꢊꢒꢓꢊꢔꢈꢄꢕꢔꢊ ꢋꢖꢗꢍ  
ꢋꢎꢖꢅꢎꢗꢌꢋꢘꢗꢎ ꢏꢙꢚꢐ  
ꢄꢊꢓꢔꢊꢕꢈꢄꢖꢕꢊ ꢋꢗꢘꢍ  
3751 ꢍ1ꢒ  
3751 ꢉ1ꢂ  
3751 ꢉ11  
FB Pin Regulation  
Mode Threshold  
FB Pin Regulation  
Mode Hysteresis  
FB Pin Bias Current  
ꢎꢂ  
5ꢏ  
5ꢎ  
5ꢁ  
5ꢐ  
5ꢂ  
1ꢂꢂ  
ꢒꢂ  
ꢓꢂ  
7ꢂ  
ꢔꢂ  
5ꢂ  
ꢁꢂ  
1ꢑ1ꢒꢓ  
1ꢑ1ꢒꢁ  
1ꢑ1ꢒꢂ  
1ꢑ15ꢒ  
1ꢑ15ꢔ  
ꢗꢗ  
ꢗꢗ  
ꢗꢗ  
ꢘ 5ꢌ  
ꢘ 1ꢐꢌ  
ꢘ ꢐꢁꢌ  
ꢗꢈꢐꢃꢅꢆꢈꢉ ꢐꢍ ꢙꢚ ꢊꢋꢌ ꢛꢄꢕꢈ  
ꢇꢇ  
ꢝ 1ꢖꢛ  
ꢙꢙ  
ꢙꢙ  
ꢙꢙ  
ꢚ 5ꢈ  
ꢚ 1ꢔꢈ  
ꢚ ꢔꢁꢈ  
ꢀꢁꢂ ꢀꢐꢂ  
ꢐꢂ ꢁꢂ ꢎꢂ ꢏꢂ 1ꢂꢂ 1ꢐꢂ  
ꢀꢁꢂ ꢀꢖꢂ  
ꢖꢂ ꢁꢂ ꢔꢂ ꢓꢂ 1ꢂꢂ 1ꢖꢂ  
ꢀꢁꢂ ꢀꢔꢂ  
ꢔꢂ ꢁꢂ ꢒꢂ ꢓꢂ 1ꢂꢂ 1ꢔꢂ  
ꢆꢇꢒꢓꢇꢈꢔꢆꢕꢈꢇ ꢊꢖꢗꢍ  
ꢍꢈꢗꢊꢈꢆꢐꢍꢅꢆꢈ ꢎꢘꢇꢑ  
ꢋꢎꢕꢅꢎꢖꢌꢋꢗꢖꢎ ꢏꢘꢙꢐ  
3751 ꢑ15  
3751 ꢕ13  
3751 ꢍ1ꢁ  
FB Pin Overvoltage Mode  
Threshold Voltage  
FB Pin Overvoltage  
Mode Hysteresis  
CLAMP Pin Threshold  
1ꢑ35ꢒ  
1ꢑ35ꢁ  
1ꢑ35ꢓ  
1ꢑ35ꢂ  
1ꢑ3ꢁꢔ  
1ꢑ3ꢁꢒ  
1ꢑ3ꢁꢁ  
1ꢑꢒ  
1ꢑꢓ  
1ꢑ7  
1ꢑꢔ  
1ꢑ5  
1ꢑꢁ  
ꢎ1ꢏꢂ  
ꢎꢂꢏꢎ  
ꢎꢂꢏꢐ  
5ꢑꢏꢒ  
5ꢑꢏꢁ  
5ꢑꢏꢂ  
ꢙꢙ  
ꢙꢙ  
ꢙꢙ  
ꢚ 5ꢈ  
ꢚ 1ꢓꢈ  
ꢚ ꢓꢁꢈ  
ꢃꢃ  
ꢃꢃ  
ꢙ 1ꢕꢊ  
ꢙ ꢕꢁꢊ  
ꢙꢙ  
ꢙꢙ  
ꢙꢙ  
ꢚ 5ꢌ  
ꢚ 1ꢐꢌ  
ꢚ ꢐꢁꢌ  
ꢀꢁꢂ ꢀꢓꢂ  
ꢓꢂ ꢁꢂ ꢒꢂ ꢔꢂ 1ꢂꢂ 1ꢓꢂ  
ꢀꢁꢂ  
1ꢕꢂ  
ꢁꢂ  
ꢓꢂ  
ꢀꢁꢂ ꢀꢐꢂ  
ꢐꢂ ꢁꢂ ꢎꢂ ꢒꢂ 1ꢂꢂ 1ꢐꢂ  
ꢋꢎꢕꢅꢎꢖꢌꢋꢗꢖꢎ ꢏꢘꢙꢐ  
ꢌꢎꢆꢇꢎꢖꢅꢌꢗꢖꢎ ꢏꢘꢃꢐ  
ꢆꢇꢔꢕꢇꢈꢖꢆꢗꢈꢇ ꢊꢘꢙꢍ  
3751 ꢍ1ꢒ  
3751 ꢍ1ꢓ  
3751 ꢓ17  
3751fd  
6
For more information www.linear.com/LT3751  
LT3751  
TYPICAL PERFORMANCE CHARACTERISTICS  
DCM Trip Voltage (VDRAIN – VTRANS),  
RVTRANS = RDCM = 25kΩ  
HVGATE Pin Clamp Voltage  
HVGATE Pin Clamp Voltage  
11ꢐꢂ  
1ꢂꢐꢑ  
1ꢂꢐꢒ  
1ꢂꢐ7  
1ꢂꢐꢓ  
1ꢂꢐ5  
1ꢂꢐꢁ  
5ꢐ7ꢂ  
5ꢐꢑ5  
5ꢐꢑꢂ  
5ꢐ55  
5ꢐ5ꢂ  
ꢂꢒꢓꢁ  
ꢂꢒꢓꢔ  
ꢂꢒꢓꢂ  
ꢂꢒ5ꢕ  
ꢂꢒ5ꢓ  
ꢂꢒ5ꢁ  
ꢚ ꢔꢁꢄ  
ꢚ 5ꢊ  
ꢙ 1ꢓꢄ  
ꢙꢙ  
ꢆꢇꢍꢘꢙ  
ꢆꢇꢍꢘꢙ  
ꢆꢇꢍꢘꢙ  
ꢆꢇꢍꢘꢙ  
ꢘꢘ  
ꢙꢍꢆꢕꢉ ꢚ ꢂꢄ  
ꢚ 1ꢔꢊ  
ꢚ ꢔꢁꢊ  
ꢚ ꢁꢕꢊ  
ꢘꢍꢆꢔꢉ ꢙ 1ꢓꢄ  
ꢀꢁꢂ ꢀꢔꢂ  
ꢔꢂ ꢁꢂ ꢓꢂ ꢒꢂ 1ꢂꢂ 1ꢔꢂ  
ꢀꢁꢂ ꢀꢓꢂ  
ꢓꢂ ꢁꢂ ꢑꢂ ꢒꢂ 1ꢂꢂ 1ꢓꢂ  
ꢀꢁꢂ  
ꢁꢂ  
ꢕꢂ  
1ꢔꢂ  
ꢇꢈꢕꢉꢈꢖꢆꢇꢗꢖꢈ ꢎꢘꢙꢏ  
ꢇꢈꢔꢉꢈꢕꢆꢇꢖꢕꢈ ꢎꢗꢘꢏ  
ꢆꢏꢅꢉꢏꢇꢍꢆꢖꢇꢏ ꢐꢗꢄꢑ  
3751 ꢅ1ꢑ  
3751 ꢅꢓꢂ  
3751 ꢎꢔ1  
PIN FUNCTIONS  
(TSSOP/QFN)  
RV  
(Pin 1/Pin 19): Transformer Supply Sense Pin.  
UVLO2 (Pin 4/Pin 2): VCC Undervoltage Lockout Pin.  
Senses when V drops below:  
TRANS  
Connect a resistor between the RVTRANS pin and the  
CC  
V
supply. Refer to Table 2 for proper sizing of the  
RTVRTARNASNS resistor. The minimum operation voltage for  
TRANS  
V
= 1.225+ 50µA • R  
UVLO2  
UVLO2  
V
is 4.75V.  
and trips the FAULT latch low, disabling switching. After  
rises above V , toggling the CHARGE pin reac-  
UVLO1 (Pin 2/Pin 20): V  
Undervoltage Lockout Pin.  
TRANS  
drops below:  
V
CC  
UVLO2  
Senses when V  
TRANS  
tivates switching.  
OVLO2 (Pin 5/Pin 3): VCC Overvoltage Lockout Pin.  
Senses when V rises above:  
V
= 1.225+ 50µA • R  
UVLO1  
UVLO1  
CC  
and trips the FAULT latch low, disabling switching. After  
VTRANS rises above VUVLO1, toggling the CHARGE pin  
reactivates switching.  
V
= 1.225+ 50µA • R  
OVLO2  
OVLO2  
and trips the FAULT latch low, disabling switching. After  
drops below V , toggling the CHARGE pin reac-  
OVLO1 (Pin 3/Pin 1): V  
Overvoltage Lockout Pin.  
TRANS  
rises above:  
V
CC  
OVLO2  
Senses when V  
TRANS  
tivates switching.  
V
= 1.225+ 50µA • R  
OVLO1  
FAULT (Pin 6/Pin 4): Open Collector Indication Pin. When  
either VTRANS or VCC exceeds the user-selected voltage  
range, or an internal UVLO condition occurs, a transistor  
turns on. The part will stop switching. This pin needs a  
proper pull-up resistor or current source.  
OVLO1  
and trips the FAULT latch low, disabling switching. After  
drops below V , toggling the CHARGE pin  
V
TRANS  
OVLO1  
reactivates switching.  
3751fd  
7
For more information www.linear.com/LT3751  
LT3751  
PIN FUNCTIONS  
DONE (Pin 7/ Pin 5): Open Collector Indication Pin. When  
the target output voltage (charge mode) is reached or the  
FAULT pin goes low, a transistor turns on. This pin needs  
a proper pull-up resistor or current source.  
LVGATE (Pin 14/Pin 12): Low Voltage Gate Pin. Connect  
the NMOS gate terminal to this pin when operating V  
CC  
below 8V. The internal gate driver will drive the voltage to  
the V rail. When operating V higher than 8V, tie this  
CC  
CC  
pin directly to V .  
CC  
CHARGE (Pin 8/Pin 6): Charge Pin. Initiates a new charge  
cycle (charge mode) or enables the part (regulation mode)  
when driven higher than 1.5V. Bring this pin below 0.3V  
to discontinue charging and put the part into shutdown.  
Turn-on ramp rates should be between 10ns to 10ms.  
CHARGE pin should not be directly ramped with V or  
LT3751 may not properly initialize.  
HVGATE (Pin 15/Pin 13): High Voltage Gate Pin. Connect  
NMOS gate terminal to this pin for all V operating volt-  
CC  
ages. Internal gate driver will drive the voltage to within  
V
CC  
– 2V during each switch cycle.  
CC  
RBG (Pin 16/Pin 14): Bias Generation Pin. Generates  
a bias current set by 0.98V/R . Select R to achieve  
BG  
BG  
TRANS  
CLAMP (Pin 9/Pin 7): Internal Clamp Voltage Selection  
desired resistance for R  
, RV , and RV  
.
DCM  
OUT  
Pin. Tie this pin to V to activate the internal 5.6V gate  
CC  
NC (Pins 17, 19/Pins 15, 18): No Connection.  
driver clamp. Tie this pin to ground to activate the internal  
RVOUT (Pin 18/Pin 16): Output Voltage Sense Pin.  
Develops a current proportional to the output capacitor  
voltage. Connect a resistor between this pin and the drain  
of NMOS such that:  
10.5V gate driver clamp.  
FB (Pin 10/Pin 8): Feedback Regulation Pin. Use this pin  
to achieve low noise voltage regulation. FB is internally  
regulated to 1.22V when a resistive divider is tied from  
this pin to the output. FB pin should not float. Tie FB pin  
to either a resistor divider or ground.  
RV  
OUT  
V
= 0.98 • N •  
V  
DIODE  
OUT  
R
BG  
CSN (Pin 11/Pin 9): Negative Current Sense Pin. Senses  
when RV  
is set equal to RV  
, otherwise:  
OUT  
TRANS  
external NMOS source current. Connect to local R  
SENSE  
RV  
OUT  
RV  
OUT  
ground connection for proper Kelvin sensing. The current  
V
= N • 0.98 •  
+ V  
1  
OUT  
TRANS  
limit is set by 106mV/R  
.
R
RV  
TRANS  
SENSE  
BG  
CSP (Pin 12/Pin 10): Positive Current Sense Pin. Senses  
NMOS source current. Connect the NMOS source terminal  
and the current sense resistor to this pin. The current  
V  
DIODE  
where V  
= forward voltage drop of diode D1 (refer  
DIODE  
to the Block Diagram).  
limit is fixed at 106mV/R  
in charge mode. The cur-  
SENSE  
rent limit can be reduced to a minimum 11mV/R  
regulation mode.  
in  
RDCM (Pin 20/Pin 17): Discontinuous Mode Sense Pin.  
Senses when the external NMOS drain is equal to 20µA •  
SENSE  
R
DCM  
+ V  
and initiates the next switch cycle. Place  
TRANS  
V
(Pin 13/Pin 11): Input Supply Pin. Must be locally  
CC  
a resistor equal to 0.45 times the resistor on the RV  
pin between this pin and V  
TRANS  
bypassed with high grade (X5R or better) ceramic capaci-  
.
DRAIN  
tor. The minimum operating voltage for V is 4.75V.  
CC  
GND (Pin 21/Pin 21): Ground. Tie directly to local ground  
plane.  
3751fd  
8
For more information www.linear.com/LT3751  
LT3751  
BLOCK DIAGRAM  
T1  
1:10  
D1  
V
V
OUT  
450V  
TRANS  
12V  
+
47µF  
×2  
RV  
TRANS  
40.2k  
10µF  
+
C
OUT  
RV  
TRANS  
V
OUT  
COMPARATOR  
+
CHARGE  
0.98V  
60V  
REFERENCE  
OFF ON  
OTLO  
START-UP  
RV  
OUT  
RV  
OUT  
ONE-SHOT  
40.2k  
V
CC  
V
CC  
12V  
MASTER  
LATCH  
DIFF. AMP  
COMPARATOR  
WITH  
INTERNAL  
60V CLAMPS  
60V  
100k  
DONE  
DCM  
COMPARATOR  
10µF  
R
DCM  
S
R
Q
RDCM  
60V  
+
18.2k  
ENABLE  
GATE  
DRIVER  
DCM  
ONE-SHOT  
100k  
1.22V  
REFERENCE  
FAULT  
V
DRAIN  
S
R
Q
FAULT  
LATCH  
V
CC  
26kHz ONE-SHOT  
CLOCK  
HVGATE  
GATE DRIVE  
CIRCUITRY  
M1  
S
R
Q
INTERNAL  
UVLO  
3.8V  
+
SWITCH  
LATCH  
CLAMP  
LVGATE  
V
CC  
V
CC  
R
UVLO1  
191k  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
V
V
RESET  
TRANS  
+
CC  
AUXILIARY  
CLK  
55V  
COUNT  
+
COUNTER  
162mV  
R
OVLO1  
240k  
– +–  
+
26kHz  
ONE-SHOT  
CLOCK  
55V  
MAIN  
CSP  
CSN  
+
R
SENSE  
12mΩ  
106mV  
UVLO/OVLO  
R
UVLO2  
191k  
COMPARATORS  
– +–  
V
+
CC  
TIMING AND PEAK  
CURRENT CONTROL  
55V  
55V  
11mV TO 106mV  
MODULATION  
TO CHARGE  
ONE-SHOT  
26kHz  
ONE-SHOT  
CLOCK  
ERROR  
AMP  
1.22V  
REFERENCE  
+
R
OVLO2  
240k  
A1  
+
R
FBH  
3.65M  
FB  
DIE  
TEMP  
TO V  
OUT  
COMPARATOR  
160ºC  
MODE  
CONTROL  
1.22V  
REFERENCE  
R
FBL  
10k  
10nF  
GND  
RBG  
3751 BD  
R
BG  
1.33k  
3751fd  
9
For more information www.linear.com/LT3751  
LT3751  
OPERATION  
The LT3751 can be used as either a fast, efficient high  
voltage capacitor charger controller or as a high voltage,  
low noise voltage regulator. The FB pin voltage determines  
one of the three primary modes: charge mode, low noise  
regulation, or no-load operation (see Figure 1).  
ꢋꢌꢂꢍ  
ꢆ ꢀ  
ꢌꢂꢍ  
ꢁꢂꢃꢄꢅ  
ꢇꢅꢈꢉꢄꢊ  
ꢌꢒ  
ꢀꢁ ꢂꢃꢄ  
ꢅꢆꢊꢋ  
ꢋꢅꢐꢑ  
ꢄꢆꢍꢇꢆꢉꢎ  
ꢆꢂꢋꢏꢉꢈꢃꢆꢄ  
ꢉꢎꢁ  
ꢏ ꢀ  
ꢇꢍꢉꢇꢐ  
ꢅꢐꢑ  
1ꢔ3ꢕꢅ  
ꢌꢒ  
ꢏꢋꢊꢐꢇꢉꢈꢃꢆꢄ  
1ꢔ1ꢖꢅ  
ꢑꢒꢉꢏꢊꢋ  
ꢓꢆꢎꢋ  
ꢌꢂꢍ  
ꢆ ꢀ  
ꢁꢂꢃꢄꢅ  
ꢇꢅꢈꢉꢄꢊ  
ꢌꢔꢌꢅ  
3751 ꢀꢌ1  
Figure 1. FB Pin Modes  
CHARGE MODE  
ꢆꢈꢀ  
ꢉꢎꢁ  
ꢀ  
ꢇꢍꢉꢇꢐ  
When the FB pin voltage is below 1.16V, the LT3751 acts  
as a rapid capacitor charger. The charging operation has  
four basic states for charge mode steady-state operation  
(see Figure 2).  
ꢅꢐꢑ  
ꢉꢎꢁ  
ꢏ ꢀ  
ꢇꢍꢉꢇꢐ  
1. Start-Up  
The first switching cycle is initiated approximately 2µs  
after the CHARGE pin is raised high. During this phase,  
the start-up one-shot enables the master latch turning  
on the external NMOS and beginning the first switching  
cycle. After start-up, the master latch will remain in the  
switching-enable state until the target output voltage is  
reached or a fault condition occurs.  
ꢆꢄ ꢈꢀ  
ꢆ ꢀ  
ꢇꢅꢈꢉꢄꢊ  
ꢁꢂꢃꢄꢅ  
ꢉꢎꢁ  
ꢏ ꢀ  
ꢇꢍꢉꢇꢐ  
ꢁꢂꢃꢄꢅ  
ꢇꢂꢃꢍꢄ  
ꢁꢂꢃꢄꢅ  
The LT3751 utilizes circuitry to protect against trans-  
former primary current entering a runaway condition and  
remains in start-up mode until the DCM comparator has  
enough headroom. Refer to the Start-Up Protection sec-  
tion for more detail.  
ꢇꢅꢈꢉꢄꢊ  
ꢇꢅꢈꢉꢄꢊ  
3751 ꢓꢔꢕ  
1ꢖ  
ꢕꢖ  
3ꢖ  
ꢌꢂꢍꢗꢃꢂꢘꢙꢅꢍꢇꢐ  
ꢑꢚꢃꢂꢛꢍꢄꢛ  
ꢅꢐꢑꢉꢄꢇꢃꢂꢘ  
ꢐꢄꢐꢂꢛꢘ ꢁꢂꢃꢄꢅꢓꢐꢂ  
ꢃꢄꢇ ꢉꢎꢁꢌꢎꢁ  
ꢇꢍꢅꢑꢉꢄꢁꢍꢄꢎꢉꢎꢅ  
ꢗꢉꢇꢐ  
ꢇꢐꢁꢐꢑꢁꢍꢉꢄ  
ꢇꢐꢁꢐꢑꢁꢍꢉꢄ  
2. Primary-Side Charging  
Figure 2. Idealized Charging Waveforms  
When the NMOS switch latch is set, and depending on the  
use of LVGATE, the gate driver rapidly charges the gate  
pin to V – 2V in high voltage applications or directly to  
CC  
V
in low voltage applications (refer to the Application  
CC  
3751fd  
10  
For more information www.linear.com/LT3751  
LT3751  
OPERATION  
Information section for proper use of LVGATE). With the  
gate driver output high, the external NMOS turns on,  
comparator sets the NMOS switch latch and a new switch  
cycle begins. Steps 2-4 continue until the target output  
voltage is reached.  
forcing V  
– V  
across the primary winding.  
TRANS  
DS(ON)  
Consequently, current in the primary coil rises linearly at  
a rate (V – V )/L . The input voltage is mir-  
Start-Up Protection  
TRANS  
DS(ON) PRI  
rored on the secondary winding N • (V  
– V  
)
TRANS  
DS(ON)  
The LT3751 at start-up, when the output voltage is very  
low (or shorted), usually does not have enough V  
node voltage to trip the DCM comparator. The part in start-  
up mode uses the internal 26kHz clock and an auxiliary  
current comparator. Figure 3 shows a simplified block  
diagram of the start-up circuitry.  
which reverse-biases the diode and prevents current flow  
in the secondary winding. Thus, energy is stored in the  
core of the transformer.  
DRAIN  
3. Secondary Energy Transfer  
When current limit is reached, the current limit compara-  
tor resets the NMOS switch latch and the device enters the  
third phase of operation, secondary energy transfer. The  
energy stored in the transformer core forward-biases the  
diode and current flows into the output capacitor. During  
this time, the output voltage (neglecting the diode drop)  
is reflected back to the primary coil. If the target output  
voltage is reached, the VOUT comparator resets the master  
latch and the DONE pin goes low. Otherwise, the device  
enters the next phase of operation.  
ꢀꢁꢂꢃ ꢄꢅꢆꢇꢈꢇꢄꢁꢉ  
ꢇꢌꢊꢁꢋꢃꢋꢌꢍ  
ꢊꢅꢁꢁꢋꢌꢍ  
ꢊꢂꢃꢎꢄꢁꢄꢍꢂꢁ  
ꢊꢂꢅꢌꢍꢋꢁ 1  
ꢀꢁꢂꢃ ꢒꢊꢃ  
ꢁꢋꢔꢋꢍ  
ꢊꢂꢃꢎꢄꢁꢄꢍꢂꢁ  
ꢀꢁꢂꢃ ꢊꢈꢐ  
ꢔꢘꢇꢍꢊꢙ  
ꢈꢄꢍꢊꢙ  
ꢇꢌꢊꢁꢋꢃꢋꢌꢍ  
ꢊꢂꢅꢌꢍꢋꢁ ꢕ  
ꢁꢋꢔꢋꢍ  
ꢀꢁꢂꢃ ꢑꢄꢍꢋ  
ꢒꢁꢇꢓꢋꢁ ꢂꢌ  
3751 ꢀꢏ3  
Figure 3. Start-Up Protection Circuitry  
Toggling the CHARGE pin always generates a start-up  
one-shot to turn on the external switch, initiating the  
charging process. After the start-up one-shot, the LT3751  
waits for either the DCM comparator to generate a one-  
shot or the output of the start-up protection circuitry  
going high, which ever comes first. If the switch drain  
4. Discontinuous Mode Detection  
During secondary energy transfer to the output capacitor,  
(V  
+ V  
)/N will appear across the primary wind-  
OUT  
DIODE  
ing. A transformer with no energy cannot support a DC  
voltage, so the voltage across the primary will decay to  
zero. In other words, the drain of the NMOS will ring  
node, V  
, is below the DCM comparator threshold  
DRAIN  
down from V  
the drain voltage falls to V  
+ (V  
+ V  
)/N to V  
. When  
TRANS  
OUT  
DIODE  
+ 20µA • R  
TRANS  
(see Entering Normal Boundary Mode), the DCM compar-  
ator will never fire and the start-up circuitry is dominant.  
, the DCM  
TRANS  
DCM  
ꢁꢋ1  
ꢁꢋꢔ  
ꢈꢃꢂꢕꢗ  
ꢍꢅꢁ  
ꢈꢉꢊ  
1ꢄꢀꢋꢍꢁ  
ꢀꢁꢂꢃꢁꢄꢅꢆ  
ꢇꢈꢉꢊ ꢁꢋꢃꢌꢀꢋꢍꢎꢈ ꢏ ꢐ  
ꢒꢍꢅꢗꢈꢂꢃꢚꢄꢊꢍꢈꢌ  
ꢇꢈꢉꢊ ꢁꢋꢃꢌꢀꢋꢍꢎꢈ ꢏ ꢐ  
ꢒꢌꢎꢍꢓ ꢐ  
ꢁꢋꢔ  
ꢇꢓꢂꢕꢁ ꢖꢍꢃ ꢁꢕꢊꢌꢄꢍꢅꢁꢑ  
ꢁꢋꢔ  
ꢁꢋ1  
3751 ꢖꢘꢙ  
Figure 4. DCM Comparator Thresholds  
3751fd  
11  
For more information www.linear.com/LT3751  
LT3751  
OPERATION  
At very low output voltages, the boundary-mode switch-  
ing cycle period increases significantly such that the  
energy stored in the transformer core is not depleted  
before the next clock cycle. In this situation, the clock  
may initiate another switching cycle before the secondary  
winding current reaches zero and cause the LT3751 to  
enter continuous-mode conduction. Normally, this is not  
a problem; however, if the secondary energy transfer time  
is much longer than the CLK period, significant primary  
current overshoot can occur. This is due to the non-zero  
starting point of the primary current when the switch  
turns on and the finite speed of the current comparator.  
and indicates that the energy in the secondary winding  
has depleted. For this to happen, VDRAIN must exceed  
V
+ ΔV  
prior to its negative edge; otherwise,  
TRANS  
DRAIN  
the DCM comparator will not generate a one-shot to initi-  
ate the next switching cycle. The part would remain stuck  
in this state indefinitely; however, the LT3751 uses the  
start-up protection circuitry to jumpstart switching if the  
DCM comparator does not generate a one-shot after a  
maximum time-out of 500µs.  
Figure 4 shows a typical V  
node waveform with a  
DRAIN  
test circuit voltage clamp applied to the output. VTH1 is the  
start-up threshold and is set internally by forcing I  
to 40μA. Once the first DCM one-shot is initiateOdF,FtShEeT  
mode latch is set to boundary-mode. The mode latch then  
sets the clock count to maximum (500µs) and lowers the  
The LT3751 startup circuitry adds an auxiliary current  
comparator with a trip level 50% higher than the nomi-  
nal trip level. Every time the auxiliary current comparator  
trips, the required clock count between switching cycles is  
incremented by one. This allows more time for secondary  
energy transfer.  
DCM comparator threshold to V (I  
= 20μA). This  
TH2  
provides needed hysteresis betweenOsFFtaSrEtT-up mode and  
boundary-mode operation.  
Counter 1 in Figure 3 is set to its maximum count when  
the first DCM comparator one-shot is generated. If no  
DCM one-shot is initiated in normal boundary-mode oper-  
ation during a maximum count of approximately 500µs,  
the LT3751 re-enters start-up mode and the count is  
returned to zero.  
LOW NOISE REGULATION  
Low noise voltage regulation can be achieved by adding  
a resistive divider from the output node to the LT3751 FB  
pin. At start-up (FB pin below 1.16V), the LT3751 enters  
the charge mode to rapidly charge the output capacitor.  
Once the FB pin is within the threshold range of 1.16V  
to 1.34V, the part enters into low noise regulation. The  
switching methodology in regulation mimics that used  
in the capacitor charging mode, but with the addition of  
peak current and duty cycle control techniques. Figure 5  
shows the steady state operation for both regulation tech-  
niques. Figure 6 shows how both techniques are com-  
bined to provide stable, low noise operation over a wide  
load and supply range.  
Note that Counter 1 is initialized to zero at start-up.  
Thus, the output of the startup circuitry will go high after  
one clock cycle. Counter 2 is reset when the gate driver  
goes high. This repeats until either the auxiliary cur-  
rent comparator increments the required clock count or  
until V  
is high enough to sustain normal operation  
DRAIN  
described in steps 2 through 4 in the previous section.  
Entering Normal Boundary Mode  
The LT3751 has two DCM comparator thresholds that  
are dependent on what mode the part is in, either start-  
up mode or normal boundary-mode, and the state of the  
mode latch. For boundary-mode switching, the LT3751  
requires the DCM sense voltage (VDRAIN) to exceed  
During heavy load conditions, the LT3751 sets the peak  
primary current to its maximum value, 106mV/R  
SENSE  
and sets the maximum duty cycle to approximately 95%.  
This allows for maximum power delivery. At very light  
loads, the opposite occurs, and the LT3751 reduces the  
peak primary current to approximately one tenth its maxi-  
mum value while modulating the duty cycle below 10%.  
The LT3751 controls moderate loads with a combination  
of peak current mode control and duty cycle control.  
V
by the ΔDCM comparator threshold, ΔV  
:
TRANS  
DRAIN  
ΔV  
= (40µA + I ) • R – 40µA • RV  
OFFSET DCM TRANS  
DRAIN  
where IOFFSET is mode dependent. The DCM one-shot sig-  
nal is negative edge triggered by the switch node, V  
,
DRAIN  
3751fd  
12  
For more information www.linear.com/LT3751  
LT3751  
OPERATION  
CHARGE MODE  
LIGHT LOAD OPERATION  
26kHz  
ONE-SHOT  
CLK  
26kHz  
ONE-SHOT  
CLK  
...  
...  
...  
...  
SWITCH  
ENABLE  
MAXIMUM  
PEAK CURRENT  
NO BLANKING  
SWITCH  
ENABLE  
DUTY CYCLE  
CONTROL  
DUTY CYCLE  
CONTROL  
FORCED  
BLANKING  
I
I
PRI  
PRI  
...  
...  
t
t
t
≈ 38µs  
PER  
NO-LOAD OPERATION  
HEAVY LOAD OPERATION  
26kHz  
ONE-SHOT  
CLK  
26kHz  
ONE-SHOT  
CLK  
...  
...  
...  
...  
110%  
OUT, NOM  
V
SWITCH  
ENABLE  
PEAK CURRENT  
CONTROL  
V
OUT  
FORCED  
BLANKING  
105%  
OUT, NOM  
V
...  
1/10TH I  
I
PK  
PRI  
...  
I
PRI  
t
t
t
≈ 38µs  
PER  
3751 F05  
Figure 5. Modes of Operation (Steady State)  
ꢒ ꢊꢓꢇꢐ ꢋꢐꢋꢃꢍ ꢑ  
ꢃꢄꢎ  
ꢎꢉꢔ  
ꢖ5ꢗ  
ꢘꢈꢙꢃꢈꢉꢊ  
ꢈꢚꢍꢌꢉꢇꢄꢈꢘ  
1ꢕ1ꢁ  
ꢎꢉꢔ  
1ꢁꢗ  
ꢃꢈꢉꢊ  
ꢋꢓꢌꢌꢍꢘꢇ  
ꢋꢆꢉꢌꢅꢍ  
ꢎꢈꢊꢍ  
3751 ꢀꢁꢂ  
ꢃꢄꢅꢆꢇ ꢃꢈꢉꢊ  
ꢎꢈꢊꢍꢌꢉꢇꢍ  
ꢃꢈꢉꢊ  
ꢆꢍꢉꢏꢐ ꢃꢈꢉꢊ  
Figure 6. Regulation Technique  
3751fd  
13  
For more information www.linear.com/LT3751  
LT3751  
OPERATION  
Periodic Refresh  
Light Load Operation  
When the LT3751 enters regulation, the internal circuitry  
deactivates switching when the internal one-shot clock  
is high. The clock operates at a 1/20th duty cycle with a  
minimum blank time of 1.5µs. This reset pulse is timed to  
drastically reduce switching frequency content within the  
audio spectrum and is active during all loading conditions.  
Each reset pulse guarantees at least one energy cycle. A  
minimum load is required to prevent the LT3751 from  
entering no-load operation.  
The LT3751 uses duty cycle control to drastically reduce  
audible noise in both the transformer (mechanical) and  
the ceramic capacitors (piezoelectric effects). Internal  
control circuitry forces a one-shot condition at a periodic  
rate greater than 20kHz and out of the audio spectrum.  
The regulation loop then determines the number of pulses  
that are required to maintain the correct output voltage.  
Figure 5 shows the use of duty-cycle control.  
No-Load Operation  
Heavy Load Operation  
The LT3751 can remain in low noise regulation at very low  
loading conditions. Below a certain load current threshold  
(Light Load Operation), the output voltage would continue  
to increase and a runaway condition could occur. This is  
due to the periodic one-shot forced by the periodic refresh  
circuitry. By design, the LT3751 has built-in overvoltage  
protection associated with the FB pin.  
The LT3751 enters peak current mode control at higher  
output load conditions. The control loop maximizes the  
number of switch cycles between each reset pulse. Since  
the control scheme operates in boundary mode, the reso-  
nant boundary-mode period changes with varying peak  
primary current:  
1
N
When the FB pin voltage exceeds 1.34V ( 20mV), the  
LT3751 enters no-load operation. No-load operation does  
not reset with the one-shot clock. Instead, the pulse train  
is completely load-dependent. These bursts are asynchro-  
nous and can contain long periods of inactivity. This allows  
regulation at a no-load condition but with the increase of  
audible noise and voltage ripple. Note that when operating  
with no-load, the output voltage will increase 10% above  
the nominal output voltage.  
Period = I • L  
PRI  
+
PK  
V
V
OUT  
TRANS  
and the power output is proportional to the peak primary  
current:  
1/ 2 •I  
PK  
P
=
OUT  
1
N
+
V
V
OUT  
TRANS  
Noise becomes an issue at very low load currents. The  
LT3751 remedies this problem by setting the lower peak  
current limit to one tenth the maximum level and begins  
to employ duty-cycle control.  
3751fd  
14  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
1ꢑꢑ  
ꢖꢑ  
ꢕꢑ  
7ꢑ  
ꢔꢑ  
5ꢑ  
ꢓꢑ  
3ꢑ  
ꢒꢑ  
1ꢑ  
The LT3751 charger controller can be optimized for either  
capacitor charging only or low noise regulation applica-  
tions. Several equations are provided to aid in the design  
process.  
P = 20 WATTS  
P = 50 WATTS  
P = 100 WATTS  
Safety Warning  
Large capacitors charged to high voltage can deliver a  
lethal amount of energy if handled improperly. It is partic-  
ularly important to observe appropriate safety measures  
when designing the LT3751 into applications. First, cre-  
ate a discharge circuit that allows the designer to safely  
discharge the output capacitor. Second, adequately space  
high voltage nodes from adjacent traces to satisfy printed  
circuit board voltage breakdown requirements.  
1
1ꢑ  
ꢀꢁꢂꢃ ꢀꢄꢅꢆꢂꢄꢇ ꢈꢉꢄꢄꢁꢊꢋ ꢌꢂꢍ  
1ꢑꢑ  
3751 ꢐꢑ7  
Figure 7. Maximum Power Output  
Selecting Transformer Turns Ratio  
Selecting Operating Mode  
The transformer ratio, N, should be selected based on  
the input and output voltages. Smaller N values equate  
to faster charge times and larger available output power.  
Tie the FB pin to GND to operate the LT3751 as a capacitor  
charger. In this mode, the LT3751 charges the output at  
peak primary current in boundary mode operation. This  
constitutes maximum power delivery and yields the fast-  
est charge times. Power delivery is halted once the output  
reaches the desired output voltage set by the RV  
RBG pins.  
Note that drastically reducing N below the V /V  
OUT TRANS  
ratio will increase the flyback voltage on the drain of the  
NMOS and increase the current through the output diode.  
and  
OUT  
The ratio, N, should not be drastically increased either,  
2
due to the increased capacitance, N • C , reflected to  
SEC  
the primary. A good choice is to select N equal to V  
/
OUT  
Tie a resistor divider from the FB pin to V  
and GND  
OUT  
V
.
TRANS  
to operate the LT3751 as a low noise voltage regulator  
(refer to Low Noise regulation section for proper design  
procedures). The LT3751 operates as a voltage regulator  
using both peak current and duty cycle modulation to  
vary output current during different loading conditions.  
V
OUT  
N ≤  
V
TRANS  
Choosing Capacitor Charger I  
PK  
When operating the LT3751 as capacitor charger, choose  
Selecting Component Parameters  
IPK based on the required capacitor charge time, tCHARGE  
,
Most designs start with the initial selection of VTRANS  
,
and the initial design inputs.  
VOUT, COUT, and either charge time, tCHARGE, (capacitor  
charger) or POUT,MAX (regulator). These design inputs  
are then used to select the transformer ratio, N, the peak  
2 • N • V  
+ V  
• C  
• V  
OUT OUT  
(
)
(
TRANS  
OUT  
I
=
PK  
Efficiency • V  
• t  
t  
d
CHARGE  
)
TRANS  
primary current, IPK, and the primary inductance, LPRI  
Figure 7 can be used as a rough guide for maximum  
power output for a given V and I .  
.
The converter efficiency varies over the output voltage  
range. The I equation is based on the average efficiency  
PK  
TRANS  
PK  
over the entire charging period. Several factors can cause  
the charge time to increase. Efficiency is the most domi-  
nant factor and is mainly affected by the transformer  
winding resistance, core losses, leakage inductance, and  
transistor R . Most applications have overall efficiencies  
above 70%.DS  
3751fd  
15  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
Transformer Design  
The total propagation delay, t , is the second most domi-  
d
nant factor that affects efficiency and is the summation of  
gate driver on-off propagation delays and the discharge  
time associated with the secondary winding capacitance.  
There are two effective methods to reduce the total propa-  
gation delay. First, reduce the total capacitance on the  
secondary winding, most notably the diode capacitance.  
Second, reduce the total required NMOS gate charge.  
Figure 8 shows the effect of large secondary capacitance.  
The transformer’s primary inductance, LPRI, is determined  
by the desired V  
and previously calculated N and I  
OUT  
PK  
parameters. Use the following equation to select L  
:
PRI  
3µs • V  
OUT  
L
=
PRI  
I
• N  
PK  
The previous equation guarantees that the VOUT com-  
parator has enough time to sense the flyback waveform  
The energy stored in the secondary winding capacitance  
and trip the DONE pin latch. Operating V  
significantly  
OUT  
2
is ½ • C • V  
. This energy is reflected to the primary  
SEC  
when the diodOeUsTtops forward conduction. If the reflected  
capacitance is greater than the total NMOS drain capaci-  
tance, the drain of the NMOS power switch goes negative  
and its intrinsic body diode conducts. It takes some time  
for this energy to be dissipated and thus adds to the total  
propagation delay.  
higher than that used to calculate L could result in a  
PRI  
runaway condition and overcharge the output capacitor.  
The L equation is adequate for most regulator applica-  
tions.PNRIote that if both IPK and N are increased signifi-  
cantly for a given V  
and V , the maximum I will  
TRANS  
OUT PK  
not be reached within the refresh clock period. This will  
result in a lower than expected maximum output power.  
To prevent this from occurring, maintain the condition in  
the following equation.  
ꢁꢂꢃꢄꢅ  
38µs  
L
<
PRI  
ꢉꢊꢋ  
1
N
I
+
ꢅꢍ ꢉꢊꢋꢎ  
ꢋꢃꢌꢃꢋꢄꢏꢃꢅꢋꢊ  
PK  
V
V
OUT  
TRANS  
ꢌꢂꢄ  
The upper constraint on L can be reduced by increas-  
PRI  
ꢉꢊꢋꢎ ꢁꢄꢉꢋꢐꢃꢂꢑꢊ  
ing V  
and starting the design process over. The best  
regulTaRtiAoNnS occurs when operating the boundary-mode  
frequency above 100kHz (refer to Operation section for  
boundary-mode definition).  
3751 ꢆꢇꢈ  
Figure 8. Effect of Secondary Winding Capacitance  
Choosing Regulator Maximum I  
Figure 9 defines the maximum boundary-mode switching  
frequency when operating at a desired output power level  
PK  
The I parameter in regulation mode is calculated based  
PK  
and is normalized to L /P  
(μH/Watt). The relation-  
PRI OUT  
on the desired maximum output power instead of charge  
time like that in a capacitor charger application.  
ship of output power, boundary-mode frequency, I , and  
PK  
primary inductance can be used as a guide throughout  
P
1
N
OUT(AVG)  
the design process.  
I
= 2 •  
+
PK  
Efficiency  
V
V
OUT  
TRANS  
Note that the LT3751 regulation scheme varies the peak  
current based on the output load current. The maximum  
I
is only reached during charge mode or during heavy  
PK  
load conditions where output power is maximized.  
3751fd  
16  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
Table 1. Recommended Transformers  
MANUFACTURER  
PART NUMBER  
SIZE L × W × H (mm)  
MAXIMUM I (A)  
L
(µH)  
PRI  
TURNS RATIO (PRI:SEC)  
PRI  
Coilcraft  
www.coilcraft.com  
DA2033-AL  
DA2034-AL  
GA3459-BL  
GA3460-BL  
HA4060-AL  
HA3994-AL  
17.4 × 24.1 × 10.2  
20.6 × 30 × 11.3  
32.65 × 26.75 × 14  
32.65 × 26.75 × 14  
34.29 × 26.75 × 14  
34.29 × 28.75 × 14  
5
10  
20  
50  
2
10  
1:10  
1:10  
10  
5
1:10  
2.5  
300  
7.5  
1:10  
1:3  
5
2:1:3:3*  
Würth Elektronik/Midcom  
www.we-online.com  
750032051  
750032052  
750310349  
750310355  
28.7 × 22 × 11.4  
28.7 × 22 × 11.4  
36.5 × 42 × 23  
36.5 × 42 × 23  
5
10  
10  
5
1:10  
1:10  
1:10  
1:10  
10  
20  
50  
2.5  
Sumida  
www.sumida.com  
C8117  
23 × 18.6 × 10.8  
32.2 × 27 × 14  
32.5 × 26.5 × 13.5  
32.5 × 26.5 × 13.5  
5
10  
10  
5
1:10  
1:10  
1:10  
1:10  
C8119  
10  
20  
50  
PS07-299  
PS07-300  
2.5  
TDK  
www.tdk.com  
DCT15EFD-U44S003  
DCT20EFD-U32S003  
DCT25EFD-U27S005  
22.5 × 16.5 × 8.5  
30 × 22 × 12  
27.5 × 33 × 15.5  
5
10  
20  
10  
10  
5
1:10  
1:10  
1:10  
*Transformer has three secondaries where the ratio is designated as PRI:SEC1:SEC2:SEC3  
RV  
, RV  
and R  
Selection  
TRANS  
OUT  
DCM  
1ꢔꢖꢔꢔꢔ  
1ꢖꢔꢔꢔ  
ꢔꢖ1ꢔꢔ  
ꢔꢖꢔ1ꢔ  
ꢔꢖꢔꢔ1  
f
f
f
ꢘ 5ꢔꢙꢒꢚ  
ꢘ 1ꢔꢔꢙꢒꢚ  
ꢘ ꢛꢔꢔꢙꢒꢚ  
ꢆꢂꢗ  
ꢆꢂꢗ  
ꢆꢂꢗ  
RVTRANS sets the common-mode reference voltage for  
both the DCM comparator and V comparator. Select  
OUT  
RV  
from Table 2 based on the transformer supply  
volTtaRgAeNSrange, VTRANS, and the maximum trip voltage,  
ΔV  
(V  
-V  
).  
DRAIN DRAIN TRANS  
The RV  
pin is connected to an internal 40µA current  
TRANS  
source. Pin current increases as the pin voltage is taken  
higher than the internal 60V Zener clamp. The LT3751 can  
operate from V  
greater than the 60V internal Zener  
TRANS  
1
1ꢔ  
ꢀꢁꢂꢃ ꢀꢄꢅꢆꢂꢄꢇ ꢈꢉꢄꢄꢁꢊꢋ ꢌꢂꢍ  
1ꢔꢔ  
clamps by limiting the RVTRANS pin current to 250µA.  
3751 ꢓꢔꢕ  
Operating V above 200V requires the use of resis-  
TRANS  
Figure 9. Maximum Switching Frequency  
tor dividers. Two applications are presented that operate  
Table 2. Suggested RVTRANS, RVOUT, and RDCM Values  
V
Range  
∆V  
RANGE  
RV  
RV  
R
DCM  
TRANS  
DRAIN  
TRANS  
OUT  
(V)  
(V)  
(kΩ)  
5.11  
25.5  
40.2  
80.6  
(kΩ)  
5.11  
25.5  
40.2  
80.6  
(kΩ)  
2.32  
11.5  
18.2  
36.5  
4.75 to 55  
4.75 to 60  
8 to 80  
0 to 5  
2.5 to 50  
5 to 80  
8 to 160  
V
55V  
V
55V  
TRANS  
TRANS  
80 to 200  
>200  
2mA • RV  
0.86 • RV  
TRANS  
OUT  
0.25  
0.25  
Resistor Divider Dependent  
Use Resistor Divider  
Use Resistor Divider  
Use Resistor Divider  
3751fd  
17  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
with VTRANS between 100V and 400V (refer to Typical  
Applications section). Consult applications engineering  
RV  
from Table 2 meets this criterion. Use the following  
OUT  
equation to size R (V  
≤ 80V):  
BG TRANS  
for applications with V  
operating above 400V.  
TRANS  
RV  
OUT  
R
= 0.98 •N •  
BG  
RV  
is required for capacitor charger applications but  
OUT  
V
+ V  
DIODE  
OUT,TRIP  
may be removed for regulator applications. Note that the  
comparator can be used as secondary protection  
V
OUT  
Tie R pin to ground when not using the V  
compara-  
OUT  
for regulator applications. If the V  
comparator is used  
BG  
OUT  
tor. Consult applications engineering for calculating R  
for protection, design V  
15% to 20% higher than  
OUT  
BG  
OUT,TRIP  
when operating V  
above 80V.  
the regulation voltage. Tie the RV  
pin to ground when  
TRANS  
RV  
resistor is removed.  
OUT  
NMOS Switch Selection  
R
needs to be properly sized in relation to RV  
.
DCM  
TRANS  
Choose an external NMOS power switch with minimal  
gate charge and on-resistance that satisfies current limit  
and voltage break-down requirements. The gate is nomi-  
nally driven to V – 2V during each charge cycle. Ensure  
that this does nCoCt exceed the maximum gate to source  
voltage rating of the NMOS but enhances the channel  
enough to minimize the on-resistance.  
Improper selection of R  
can lead to undesired switch-  
ing operation at low ouDtpCuMt voltages. Use Table 2 to size  
R
.
DCM  
Parasitic capacitance on RVTRANS, RVOUT, and RDCM  
should be minimized. Capacitances on these nodes slow  
down the response times of the VOUT and DCM com-  
parators. Keep the distance between the resistor and  
pin short. It is recommended to remove all ground and  
power planes underneath these pins and their respective  
components (refer to the recommended board layout at  
the end of this section).  
Similarly, the maximum drain-source voltage rating of  
the NMOS must exceed V  
+ V /N or the magni-  
TRANS  
OUT  
tude of the leakage inductance spike, whichever is greater.  
The maximum instantaneous drain current rating must  
exceed selected current limit. Because the switching  
period decreases with output voltage, the average current  
though the NMOS is greatest when the output is nearly  
charged and is given by:  
R
BG  
Selection  
R
sets the trip current (0.98/R ) and is directly related  
BG  
to the selection of RV . The bBeGst accuracy is achieved  
with a trip current beOtwUTeen 100µA and 2mA. Choosing  
I
• V  
PK  
OUT(PK)  
I
=
AVG,M  
2(V  
+N • V  
)
OUT(PK)  
TRANS  
See Table 3 for recommended external NMOS transistors.  
Table 3. Recommended NMOS Transistors  
MANUFACTURER  
PART NUMBER  
I (A)  
D
V
(V)  
R
(mΩ)  
Q
G(TOT)  
(nC)  
PACKAGE  
DS(MAX)  
DS(ON)  
Fairchild Semiconductor  
www.fairchildsemi.com  
FDS2582  
4.1  
21  
150  
200  
200  
200  
800  
66  
11  
27  
55  
16  
19  
SO-8  
2
FQB19N20L  
FQP34N20L  
FQD12N20L  
FQB4N80  
140  
75  
D PAK  
31  
TO-220  
DPAK  
12  
3.9  
280  
3600  
2
D PAK  
On Semiconductor  
www.onsemi.com  
MTD6N15T4G  
NTD12N10T4G  
NTB30N20T4G  
NTB52N10T4G  
6
150  
100  
200  
100  
300  
165  
81  
15  
14  
75  
72  
DPAK  
DPAK  
12  
30  
52  
2
D PAK  
2
30  
D PAK  
Vishay  
www.vishay.com  
Si7820DN  
2.6  
3.4  
33  
200  
150  
200  
240  
135  
60  
12.1  
20  
53  
1212-8  
1212-8  
TO-220  
Si7818DN  
SUP33N20-60P  
3751fd  
18  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
Table 4. Recommended Output Diodes  
MANUFACTURER  
PART NUMBER  
I
(A)  
V
RRM  
(V)  
T (ns)  
RR  
PACKAGE  
F(AV)  
Central Semiconductor  
www.centralsemi.com  
CMR1U-10M  
CMSH2-60M  
CMSH5-40  
1
2
5
1000  
60  
40  
100  
SMA  
SMA  
SMC  
Fairchild Semiconductor  
www.fairchildsemi.com  
ES3J  
ES1G  
ES1J  
3
1
1
600  
400  
600  
35  
35  
35  
SMC  
SMA  
SMA  
On Semiconductor  
www.onsemi.com  
MURS360  
MURA260  
MURA160  
3
2
1
600  
600  
600  
75  
75  
75  
SMC  
SMA  
SMA  
Vishay  
www.vishay.com  
USB260  
US1G  
2
1
1
5
600  
400  
1000  
600  
30  
50  
75  
30  
SMB  
SMA  
SMA  
US1M  
2
GURB5H60  
D PAK  
Gate Driver Operation  
The average diode current is also a function of the output  
voltage.  
The LT3751 gate driver has an internal, selectable 10.5V  
or 5.6V clamp with up to 2A current capability (using  
LVGATE). For 10.5V operation, tie CLAMP pin to ground,  
I
• V  
PK  
TRANS  
I
=
AVG  
2 • (V  
+N • V  
)
OUT  
TRANS  
and for 5.6V operation, tie the CLAMP pin to the V pin.  
CC  
The highest average diode current occurs at low output  
voltages and decreases as the output voltage increases.  
Reverse recovery time, reverse bias leakage and junction  
capacitance should also be considered. All affect the over-  
all charging efficiency. Excessive diode reverse recovery  
times can cause appreciable discharging of the output  
capacitor, thereby increasing charge time. Choose a diode  
with a reverse recovery time of less than 100ns. Diode  
leakage current under high reverse bias bleeds the output  
capacitor of charge and increases charge time. Choose a  
diode that has minimal reverse bias leakage current. Diode  
junction capacitance is reflected back to the primary, and  
energy is lost during the NMOS intrinsic diode conduction.  
Choose a diode with minimal junction capacitance. Table 4  
recommends several output diodes for various output  
voltages that have adequate reverse recovery times.  
Choose a clamp voltage that does not exceed the NMOS  
manufacturer’s maximum VGS ratings. The 5.6V clamp  
can also be used to reduce LT3751 power dissipation  
and increase efficiency when using logic-level FETs. The  
typical gate driver overshoot voltage is 0.5V above the  
clamp voltage.  
The LT3751’s gate driver also incorporates a PMOS pull-  
up device via the LVGATE pin. The PMOS pull-up driver  
should only be used for V applications of 8V or below.  
CC  
Operating LVGATE with V above 8V will cause perma-  
CC  
nent damage to the part. LVGATE is active when tied to  
HVGATE and allows rail-to-rail gate driver operation. This  
is especially useful for low VCC applications, allowing bet-  
ter NMOS drive capability. It also provides the fastest rise  
times, given the larger 2A current capability verses 1.5A  
when using only HVGATE.  
Setting Current Limit  
Output Diode Selection  
Placing a sense resistor from the positive sense pin, CSP,  
to the negative sense pin, CSN, sets the maximum peak  
switch current. The maximum current limit is nominally  
106mV/RSENSE. The power rating of the current sense  
resistor must exceed:  
The output diode(s) are selected based on the maximum  
repetitive reverse voltage (VRRM) and the average for-  
ward current (IF(AV)). The output diode’s VRRM should  
exceed VOUT + N • VTRANS. The output diode’s IF(AV)  
should exceed I /2N, the average short-circuit current.  
PK  
2
V
I
• R  
SENSE  
3
OUT(PK)  
PK  
P
RSENSE  
V
+N • V  
OUT(PK) TRANS  
3751fd  
19  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
Additionally, there is approximately a 180ns propaga-  
tion delay from the time that peak current limit is  
detected to when the gate transitions to the low state.  
Under/Overvoltage Lockout  
The LT3751 provides user-programmable under and  
overvoltage lockouts for both V and V  
equations in the Pin Functions section for proper selection  
of resistor values. When under/overvoltage lockout com-  
parators are tripped, the master latch is disabled, power  
delivery is halted, and the FAULT pin goes low.  
. Use the  
TRANS  
CC  
This delay increases the peak current limit by (V  
)
TRANS  
(180ns)/L  
.
PRI  
Sense resistor inductance (L ) is another source of  
RSENSE  
current limit error. LRSENSE creates an input offset voltage  
(V ) to the current comparator and causes the current  
OS  
Adequate supply bulk capacitors should be used to reduce  
power supply voltage ripple that could cause false tripping  
during normal switching operation. Additional filtering  
may be required due to the high input impedance of the  
under/overvoltage lockout pins to prevent false tripping.  
Individual capacitors ranging from 100pF to 1nF may be  
placed between each of the UVLO1, UVLO2, OVLO1 and  
OVLO2 pins and ground. Disable the undervoltage lock-  
outs by directly connecting the UVLO1 and UVLO2 pins  
to VCC. Disable the overvoltage lockouts by directly con-  
necting the OVLO1 and OVLO2 pins to ground.  
comparator to trip early. V can be calculated as:  
OS  
L
RSENSE  
V
= V  
OS  
TRANS  
L
PRIMARY  
The change in current limit becomes VOS/RSENSE. The  
error is more significant for applications using large di/  
dt ratios in the transformer primary. It is recommended to  
use very low inductance (< 2nH) sense resistors. Several  
resistors can be placed in parallel to help reduce the  
inductance.  
The LT3751 provides internal Zener clamping diodes to  
Care should also be taken in placement of the sense lines.  
The negative return line, CSN, must be a dedicated trace  
to the low side resistor terminal. Haphazardly routing the  
CSN connection to the ground plane can cause inaccurate  
current limit and can also cause an undesirable discon-  
tinuous charging profile.  
protect itself in shutdown when V  
is operated above  
55V. Supply voltages should onlTyRbAeNSapplied to UVLO1,  
UVLO2, OVLO1 and OVLO2 with series resistance such  
that the Absolute Maximum pin currents are not exceeded.  
Pin current can be calculated using:  
V
55V  
APPLIED  
I
=
DONE and FAULT Pin Design  
PIN  
R
SERIES  
Both the DONE and FAULT pins require proper pull-up  
resistors or current sources. Limit pin current to 1mA  
into either of these pins. 100kΩ pull-up resistors are rec-  
ommended for most applications. Both the DONE and  
FAULT pins are latched in the low output state. Resetting  
either latch requires the CHARGE pin to be toggled. A fault  
condition will also cause the DONE pin to go low. A third,  
non-latching condition occurs during startup when the  
CHARGE pin is driven high. During this start-up condi-  
tion, both the DONE and FAULT pins will go low for several  
micro seconds. This indicates the internal rails are still  
ramping to their proper levels. External RC filters may be  
added to both indication pins to remove start-up indica-  
tion. Time constants for the RC filter should be between  
5µs to 20µs.  
Note that in shutdown, RV  
, RV , R  
, UVLO1,  
TRANS  
OUT DCM  
UVLO2, OVLO1 and OVLO2 currents increase significantly  
when operating V above the Zener clamp voltages  
TRANS  
and are inversely proportional to the external series pin  
resistances.  
NMOS Snubber Design  
The transformer leakage inductance causes a parasitic  
voltage spike on the drain of the power NMOS switch dur-  
ing the turn-off transition. Transformer leakage inductance  
effects become more apparent at high peak primary cur-  
rents. The worst-case magnitude of the voltage spike is  
determined by the energy stored in the leakage inductance  
and the total capacitance on the V  
node.  
DRAIN  
3751fd  
20  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
LOW NOISE REGULATION  
2
L
•I  
LEAK PK  
V
=
The LT3751 has the option to provide a low noise regu-  
lated output voltage when using a resistive voltage divider  
from the output node to the FB pin. Refer to the Selecting  
Component Parameters section to design the transformer,  
NMOS power switch, output diode, and sense resistor.  
Use the following equations to select the feedback resis-  
tor values based on the power dissipation and desired  
output voltage:  
D,LEAK  
C
VDRAIN  
Two problems can arise from large VD,LEAK. First, the  
magnitude of the spike may require an NMOS with an  
unnecessarily high V  
which equates to a larger  
DRAIN  
(BR)DSS  
R
. Secondly, the V  
node will ring—possibly  
DS(ON)  
below ground—causing false tripping of the DCM com-  
parator or damage to the NMOS switch (see Figure 11).  
Both issues can be remedied using a snubber. If leakage  
inductance causes issues, it is recommended to use a RC  
snubber in parallel with the primary winding, as shown  
in Figure 10. Size C  
leakage spike voltage, known leakage inductance, and an  
RC time constant less than 1µs. Otherwise, the leakage  
2
V
1.22  
(
)
OUT  
R
R
=
=
; Top Feedback Resistor  
FBH  
P
D
and R  
based on the desired  
SNUB  
SNUB  
1.22  
1.22  
• R ; Bottom Feedback Resistor  
FBH  
FBL  
V
OUT  
R , depending on output voltage and type used, may  
FBH  
voltage spike can cause false tripping of the V  
parator and stop charging prematurely.  
com-  
OUT  
require several smaller values placed in series. This will  
reduce the risk of arcing and damage to the feedback  
resistors. Consult the manufacturer’s rated voltage speci-  
fication for safe operation of the feedback resistors.  
Figure 11 shows the effect of the RC snubber resulting in  
a lower voltage spike and faster settling time.  
The LT3751 has a minimum periodic refresh frequency  
limit of 23kHz. This drastically reduces switching fre-  
quency components in the audio spectrum. The LT3751  
can operate with no-load, but the regulation scheme  
switches to no-load operation and audible noise and  
output voltage ripple increase. This can be avoided by  
operating with a minimum load current.  
ꢂꢃꢄ  
ꢅꢆꢇꢈ  
ꢅꢆꢇꢈ  
ꢁꢊꢋꢌ  
ꢎꢏꢃꢋꢄꢆ  
Minimum Load Current  
3751 ꢀ11  
Periodic refresh circuitry requires an average minimum  
load current to avoid entering no-load operation. Usually,  
the feedback resistors should be adequate to provide this  
minimum load current.  
Figure 10. RC Snubber Circuit  
ꢄꢅꢆꢇꢈ  
ꢉꢊꢇꢋꢌꢒꢎꢋ  
ꢍꢈꢎꢏꢏꢐꢅꢑ  
2
L
•I • 23kHz  
PRI PK  
I
LOAD(MIN)  
ꢀꢁ  
100 • V  
OUT  
ꢈꢔꢒꢍ ꢄꢇꢒꢄꢐ  
ꢕꢒꢈꢄꢎꢕꢋꢍ  
ꢄꢅꢆꢇꢈ  
I
is the peak primary current at maximum power deliv-  
ꢉꢊꢇꢋꢌ  
PK  
ꢍꢈꢎꢏꢏꢐꢅꢑ  
ery. The LT3751 will enter no-load operation if the mini-  
mum load current is not met. No-load operation will pre-  
vent the application from entering a runaway condition;  
however, the output voltage will increase 10% over the  
nominal regulated voltage.  
ꢀꢁ  
ꢓꢅꢇ  
3751 ꢂ1ꢃ  
Figure 11. Effects of RC Snubber  
3751fd  
21  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
Large Signal Stability  
Small Signal Stability  
The LT3751’s error amplifier is internally compensated to  
increase its operating range but requires the converter’s  
output node to be the dominant pole. Small signal stability  
constraints become more prevalent during heavy load-  
ing conditions where the dominant output pole moves  
to higher frequency and closer to the internal feedback  
poles and zeros. The feedback loop requires the output  
pole frequency to remain below 200Hz to guarantee small  
signal stability. This allows smaller RLOAD values than the  
large signal constraint. Thus, small signal issues should  
not arise if the large signal constraint is met.  
Large signal stability can be an issue when audible noise  
is a concern. Figure 12 shows that the problem originates  
from the one-shot clock and the output voltage ripple.  
The load must be constrained such that the output volt-  
age ripple does not exceed the regulation range of the  
error amplifier within one clock period (approximately  
6mV referred to the FB pin).  
The output capacitance should be increased if oscillations  
occur or audible noise is present. Use Figure 13 to deter-  
mine the maximum load for a given output capacitance to  
maintain low audible noise operation. A small capacitor  
can also be added from the FB pin to ground to lower the  
ripple injected into FB pin.  
Board Layout  
The high voltage operation of the LT3751 demands care-  
ful attention to the board layout, observing the following  
points:  
ꢏꢁꢔꢕ  
ꢕꢓꢁꢁꢒ  
ꢁꢂꢃ  
1. Minimize the area of the high voltage end of the sec-  
ondary winding.  
ꢒꢓꢑ  
2. Provide sufficient spacing for all high voltage nodes  
(NMOS drain, VOUT and secondary winding of the  
transformer) in order to meet the breakdown voltage  
requirements.  
ꢅꢆꢇꢈꢉ  
ꢁꢊꢋꢌꢍꢈꢁꢃ  
ꢎꢏꢐ  
3751 ꢄ13  
3. Keep the electrical path formed by CVTRANS, the primary  
of T1, and the drain of the NMOS as short as possible.  
Increasing the length of this path effectively increases  
the leakage inductance of T1, potentially resulting in an  
overvoltage condition on the drain of the NMOS.  
Figure 12. Voltage Ripple Stability Constraint  
3ꢉ  
ꢑ5  
ꢑꢉ  
15  
1ꢉ  
5
ꢔ 15ꢉꢓ  
ꢔ 3ꢉꢉꢓ  
ꢔ ꢕꢉꢉꢓ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
4. Reduce the total node capacitance on the RV  
and  
OUT  
R
pins by removing any ground or power planes  
DCM  
underneath the RDCM and RVOUT pads and traces.  
Parasitic capacitance can cause unwanted behavior  
on these pins.  
5. Thermal vias should be added underneath the Exposed  
Pad, Pin 21, to enhance the LT3751’s thermal perfor-  
mance. These vias should go directly to a large area of  
ground plane.  
5ꢉ  
1ꢉꢉ  
15ꢉ  
ꢑꢉꢉ  
ꢀꢁꢂꢃꢁꢂ ꢃꢀꢄꢅꢆ ꢇꢄꢈ  
3751 ꢐ1ꢒ  
6. Isolated applications require galvanic separation of the  
output-side ground and primary-side ground. Adequate  
spacing between both ground planes is needed to meet  
voltage safety requirements.  
Figure 13. COUT(MIN) vs Output Power  
3751fd  
22  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
ꢈ ꢌ ꢄ ꢊ ꢇ ꢎ ꢆ ꢅ  
ꢉ ꢅ ꢒ ꢖ ꢆ ꢅ  
3751fd  
23  
For more information www.linear.com/LT3751  
LT3751  
APPLICATIONS INFORMATION  
ꢉ ꢍ ꢅ ꢋ ꢈ ꢏ ꢇ ꢆ  
ꢊ ꢆ ꢙ ꢓ ꢇ ꢆ  
3751fd  
24  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATIONS  
42A Capacitor Charger  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1**  
1:10  
D1 D2***  
V
V
* M1, M2 REQUIRES PROPER  
OUT  
500V  
TRANS  
12V TO 24V  
+
HEATSINK/THERMAL DISSIPATION  
C2  
R6  
C3  
TO MEET MANUFACTURER’S SPECIFICATIONS  
10µF  
40.2k  
1000µF  
×3  
+
C4  
1200µF  
** THERMAL DISSIPATION OF T1 WILL LIMIT  
THE CHARGE/DISCHARGE DUTY CYCLE OF C4  
RV  
CHARGE  
CLAMP  
TRANS  
R7, 18.2k  
R8, 40.2k  
OFF ON  
RDCM  
***D2 MAY BE OMITTED FOR OUTPUT  
VOLTAGE OPERATION BELOW 300V  
V
CC  
V
LT3751  
CC  
4.7nF  
Y-RATED  
12V TO 24V  
RV  
C1  
10µF  
OUT  
R10, 100k  
DONE  
R11, 100k  
R1, 191k  
HVGATE  
LVGATE  
CSP  
M1, M2*  
V
FAULT  
UVLO1  
OVLO1  
UVLO2  
CC  
C1: 25V X5R OR X7R CERAMIC CAPACITOR  
C2: 25V X5R OR X7R CERAMIC CAPACITOR  
R5  
2.5mΩ  
C3: 25V ELECTROLYTIC  
V
TRANS  
R2, 475k  
R3, 191k  
C4: HITACHI FX22L122Y 1200µF, 550V ELECTROLYTIC  
OR: CORNELL DUBILIER DCMC192T550CE2B 1900µF, 550V ELECTROLYTIC  
D1, D2: VISHAY GURB5H60 600V, 5A ULTRAFAST RECTIFIER  
M1, M2: 2 PARALLEL VISHAY SUP33N20-60P 200V, 33A NMOS  
R1 THRU R4, R6 THRU R11: USE 1% 0805 RESISTORS  
R5: USE 2 PARALLEL 5mΩ IRC LR SERIES 2512 RESISTORS  
T1: COILCRAFT GA3460-BL 50A SURACE MOUNT TRANSFORMER  
CSN  
FB  
V
CC  
R4, 475k  
OVLO2  
GND RBG  
3751 TA02  
R9  
787Ω  
FOR ANY V  
VOLTAGE BETWEEN  
OUT  
50V AND 500V SELECT R9 ACCORDING TO:  
40.2kΩ  
+ V  
R9 = 0.98 • N • ⎜  
V
OUT  
DIODE  
Efficiency  
Output Capacitor Charge Times  
Charging Waveform  
ꢒ5  
ꢒꢋ  
75  
7ꢋ  
ꢓ5  
1ꢍꢎꢎ  
ꢕꢎꢎ  
ꢖꢎꢎ  
ꢚ 5ꢎꢎꢛ ꢙ  
ꢚ 5ꢎꢎꢛ ꢙ  
ꢚ 3ꢎꢎꢛ ꢙ  
ꢚ 3ꢎꢎꢛ ꢙ  
ꢚ 1ꢎꢎꢛ  
ꢚ ꢍꢖꢙ  
ꢚ 1ꢍꢙ  
ꢚ ꢍꢖꢙ  
ꢚ 1ꢍꢙ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢀꢁꢂ  
ꢂꢐꢅꢇꢜ  
ꢂꢐꢅꢇꢜ  
ꢂꢐꢅꢇꢜ  
ꢂꢐꢅꢇꢜ  
ꢌ 5ꢀꢀꢆ  
ꢇꢍꢈꢎꢏ  
ꢑꢐ ꢌ 1ꢉꢀꢀꢒꢓ  
ꢊꢋꢇ  
ꢌ ꢉꢐꢆ  
ꢀꢁꢂ  
ꢚ ꢍꢖꢙ  
ꢂꢐꢅꢇꢜ  
ꢚ 1ꢎꢎꢛ  
ꢀꢁꢂ  
ꢚ 1ꢍꢙ  
ꢂꢐꢅꢇꢜ  
ꢊꢋꢇ  
1ꢀꢀꢆꢃꢄꢅꢆ  
ꢈꢆꢔꢍꢈꢕꢔ  
ꢅꢎꢖꢋꢇ  
ꢑꢋꢍꢍꢔꢎꢇ  
5ꢈꢃꢄꢅꢆ  
ꢙ 1ꢕꢄ  
ꢙ ꢕꢔꢄ  
ꢂꢗꢆꢏꢘ  
ꢂꢗꢆꢏꢘ  
3751 ꢇꢈꢀꢉd  
5ꢋ  
15ꢋ  
ꢕ5ꢋ  
35ꢋ  
ꢔ5ꢋ  
ꢍꢎꢎ  
ꢖꢎꢎ  
ꢘꢎꢎ  
ꢕꢎꢎ  
1ꢎꢎꢎ  
1ꢍꢎꢎ  
1ꢀꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
ꢀꢁꢂꢃꢁꢂ ꢄꢅꢃꢅꢄꢆꢂꢅꢇꢄꢈ ꢉꢊꢋꢌ  
3751 ꢂꢆꢋꢕꢖ  
3751 ꢂꢅꢎꢍꢗ  
3751fd  
25  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATIONS  
High Voltage Regulator  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1*  
D1  
1:10  
V
V
OUT  
TRANS  
100V TO 500V  
5V TO 24V  
+
C2  
C3  
C5  
0.47µF  
R6  
5× 2.2µF  
680µF  
40.2k  
* M1 AND T1 REQUIRE PROPER  
+
C4***  
100µF  
HEATSINK/THERMAL DISSIPATION  
TO MEET MANUFACTURER’S SPECIFICATIONS  
RV  
TRANS  
R7, 18.2k  
R8, 40.2k  
OFF ON  
CHARGE  
CLAMP  
RDCM  
** DEPENDING ON DESIRED OUTPUT VOLTAGES,  
R10 MUST BE SPLIT INTO MULTIPLE RESISTORS,  
TO MEET MANUFACTURER’S VOLTAGE SPECIFICATION.  
LT3751  
V
CC  
V
RV  
OUT  
CC  
5V TO 24V  
C1  
10µF  
***C4 MUST BE SIZED TO MEET LARGE SIGNAL  
STABILITY CRITERIA DESCRIBED IN THE  
APPLICATIONS INFORMATION SECTION  
DONE  
TO  
MICRO  
HVGATE  
LVGATE  
CSP  
M1*  
V
FAULT  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
CC  
R1, 69.8k  
R5  
6mΩ  
C1: 25V X5R OR X7R CERAMIC  
C2: 25V X5R OR X7R CERAMIC  
C3: 25V ELECTROLYTIC  
C5: TDK CKG57NX7R2J474M  
D1: VISHAY US1M 1000V  
M1: FAIRCHILD FQP34N20L  
R1 THRU R4, R6 THRU R9, R11: USE 1% 0805  
R5: IRC LR SERIES 2512 RESISTORS  
R10: USE 200V 1206 RESISTOR(S)  
T1: COILCRAFT GA3459-AL  
V
TRANS  
R2, 475k  
R3, 69.8k  
CSN  
FB  
R10**  
R11  
V
CC  
R4, 475k  
C6  
10nF  
GND RBG  
3751 TA04  
R9  
Suggested Component Values  
Steady-State Operation with  
1.1mA Load Current  
I
(mA)  
= 5V,  
I
(mA)  
OUT(MAX)  
OUT(MAX)  
V
AT V  
AT V = 24V,  
TRANS  
R9  
R11  
R10  
OUT  
TRANS  
ꢍꢎꢇ  
(V)  
100  
200  
300  
400  
5% V  
DEFLECTION 5% V  
DEFLECTION  
(kΩ)  
(kΩ)  
(kΩ)  
OUT  
OUT  
ꢈꢏ ꢏꢍꢎꢌꢐꢑꢄ  
ꢒꢆꢃꢄꢅꢆ  
180  
110  
75  
270  
315  
245  
200  
170  
3.32  
0.383  
0.768  
1.13  
30.9  
124  
274  
499  
715  
1.65  
ꢄꢊꢈꢅꢋ  
5ꢀꢆꢃꢄꢅꢆ  
1.10  
ꢌꢊꢅ  
55  
0.825  
Tie to GND  
1.54  
1ꢀꢈꢃꢄꢅꢆ  
500  
40  
1.74  
3751 ꢇꢈꢀ3ꢉ  
1ꢀꢁꢂꢃꢄꢅꢆ  
Transformer primary inductance limits V  
comparator operation to V  
= 400V  
. RV  
MAX OUT  
OUT  
OUT  
and R should be tied to ground when operating V  
above 400V.  
BG  
OUT  
Steady-State Operation with  
100mA Load Current  
Efficiency (VOUT = 500V)  
Load Regulation (VOUT = 500V)  
ꢏꢈ  
515  
51ꢈ  
5ꢈ5  
5ꢈꢈ  
ꢏꢐ5  
ꢘ ꢒꢙꢕ  
ꢍꢎꢇ  
ꢓꢖꢃꢌꢗ  
ꢏꢍꢎꢌꢐꢑꢄ  
ꢒꢆꢃꢄꢅꢆ  
ꢐ5  
ꢐꢈ  
75  
7ꢈ  
ꢑ5  
ꢑꢈ  
ꢘ 1ꢒꢕ  
ꢓꢖꢃꢌꢗ  
ꢄꢊꢈꢅꢋ  
5ꢀꢆꢃꢄꢅꢆ  
ꢕ ꢑꢏꢌ  
ꢊꢒꢃꢓꢔ  
ꢌꢊꢅ  
1ꢀꢈꢃꢄꢅꢆ  
ꢘ 5ꢕ  
ꢓꢖꢃꢌꢗ  
ꢕ 1ꢑꢌ  
ꢊꢒꢃꢓꢔ  
3751 ꢇꢈꢀ3ꢉ  
1ꢀꢁꢂꢃꢄꢅꢆ  
ꢕ 5ꢌ  
ꢊꢒꢃꢓꢔ  
5ꢈ  
1ꢈꢈ  
ꢅꢆꢃꢇ  
15ꢈ  
ꢒꢈꢈ  
5ꢈ  
1ꢈꢈ  
ꢅꢆꢃꢇ  
15ꢈ  
ꢑꢈꢈ  
ꢁꢂꢃꢄ  
ꢁꢂꢃꢄ  
3751 ꢓꢃꢈ3ꢔ  
3751 ꢊꢃꢈ3d  
3751fd  
26  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATIONS  
1.6A High Input Voltage, Isolated Capacitor Charger  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
T1*  
1:3  
V
F1, 1A  
D1 D2  
TRANS  
V
* T1 REQUIRES PROPER THERMAL MANAGEMENT  
TO ACHIEVE DESIRED OUTPUT POWER LEVELS  
OUT  
100V TO  
400VDC  
50V TO 500V  
+
R6  
C2  
2.2µF  
×5  
C3  
+
625k  
47µF  
C4  
220µF  
** M1 REQUIRES PROPER HEAT SINK/THERMAL  
DISSIPATION TO MEET MANUFACTURER’S  
SPECIFICATIONS  
R7, 96.2k  
R8  
RV  
417k  
TRANS  
C5  
0.47µF  
FOR ANY OUTPUT VOLTAGE BETWEEN 50V  
TO 500V, SET R12 GIVEN BY:  
OFF ON  
RDCM  
CHARGE  
CLAMP  
R9  
67.3k  
LT3751  
0.98  
R10  
208k  
V
CC  
R12 =  
V
CC  
V
4.7nF  
Y-RATED  
10V TO 24V  
OUT,TRIP  
C1  
10µF  
+ 40µA • 2  
RV  
OUT  
TO  
MICRO  
DONE  
3 • R10  
R11  
32.1k  
R5  
20Ω  
C1: 25V X5R OR X7R CERAMIC  
FAULT  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
C2: 630V X5R OR X7R CERAMIC  
C3: 450V ILLINOIS CAP 476CKE450MQW  
C4: 50V TO 500V ELECTROLYTIC  
C5: TDK CKG57NX7R2J474M  
R1, 1.5M  
HVGATE  
LVGATE  
FB  
M1**  
R13  
V
CC  
V
TRANS  
R2, 9M  
D1, D2: VISHAY US1M 1000V  
R3, 154k  
CSP  
F1: BUSSMANN PCB-1-R  
M1: FAIRCHILD FQB4N80  
V
CC  
68mΩ  
R4, 475k  
R1, R2: 2 X 1206 RESISTORS IN SERIES, 1%  
R3 THRU R5, R9, R12: 0805 RESISTORS, 1%  
R6, R10: 3 X 1206 RESISTORS IN SERIES, 0.1%  
R7, R11: 0805 RESISTORS, 0.1%  
R8: 3 X 1206 RESISTORS IN SERIES, 1%  
R13: IRC LR SERIES 1206 RESISTOR, 1%  
T1: COILCRAFT HA4060-AL  
CSN  
GND RBG  
3751 TA04a  
R12  
Output Trip Voltage  
and Charge Time  
(VOUT = 500V, COUT = 220µF)  
Efficiency  
Charging Waveform  
53ꢍ  
5ꢐꢍ  
1ꢍꢍꢍ  
ꢓ5ꢍ  
1ꢋꢋ  
ꢓ5  
ꢌ 5ꢀꢀꢆ  
ꢌ 3ꢀꢀꢆ  
ꢌ 1ꢐꢆ  
ꢊꢋꢇ  
ꢇꢍꢈꢎꢏ  
ꢊꢋꢇ  
ꢍꢏ  
ꢘ 1ꢋꢋꢄ  
ꢓꢋ  
ꢘ ꢔ5ꢋꢄ  
ꢘ ꢕꢋꢋꢄ  
ꢍꢏ  
ꢍꢏ  
ꢆꢃꢄꢎꢄꢏꢀꢂ  
ꢒ5  
ꢒꢋ  
75  
7ꢋ  
51ꢍ  
7ꢍꢍ  
ꢊꢋꢇ  
1ꢀꢀꢆꢃꢄꢅꢆ  
ꢈꢆꢑꢍꢈꢒꢑ  
ꢅꢎꢓꢋꢇ  
ꢔꢋꢍꢍꢑꢎꢇ  
ꢐꢀꢀꢁꢈꢃꢄꢅꢆ  
ꢕꢖꢈꢏꢉꢊ ꢄꢀꢗꢊ  
5ꢍꢍ  
ꢑꢒꢍ  
55ꢍ  
ꢑꢍꢍ  
ꢔꢕꢈꢍꢒꢑ  
1ꢀꢆꢃꢄꢅꢆ  
ꢖ5  
3751 ꢇꢈꢀꢉd  
3ꢍꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢑꢍꢍ  
ꢔ5ꢋ  
35ꢋ  
ꢕ5ꢋ  
1ꢍꢍ  
ꢐꢍꢍ  
5ꢋ  
15ꢋ  
1ꢀꢀꢁꢂꢃꢄꢅꢆ  
ꢀꢁꢂꢃꢁꢂ ꢄꢀꢇꢈ ꢉꢄꢊ  
3751 ꢄꢈꢍꢑꢔ  
3751 ꢂꢆꢋꢕꢗ  
3751fd  
27  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATIONS  
High Input Voltage, High Output Voltage Regulator  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
V
T1*  
1:3  
OUT  
V
F1, 1A  
D1 D2  
TRANS  
100V TO 500V  
100V TO  
400VDC  
* T1 REQUIRES PROPER THERMAL MANAGEMENT  
TO ACHIEVE DESIRED OUTPUT POWER LEVELS  
+
C2  
2.2µF  
×5  
C3  
R6, 625k  
R7, 97.6k  
+
47µF  
C4  
** M1 REQUIRES PROPER HEAT SINK/THERMAL  
DISSIPATION TO MEET MANUFACTURER’S  
SPECIFICATIONS  
100µF  
RV  
TRANS  
R8, 417k  
C5  
OFF ON  
CHARGE  
CLAMP  
RDCM  
0.47µF  
***DEPENDING ON DESIRED OUTPUT VOLTAGE,  
R10 MUST BE SPLIT INTO MULTIPLE RESISTORS  
TO MEET MANUFACTURER’S VOLTAGE SPECIFICATION  
R9  
67.3k  
V
CC  
LT3751  
10V TO  
V
RV  
OUT  
CC  
24V  
C1  
10µF  
DONE  
R5, 20Ω  
TO  
MICRO  
C1: 25V X5R OR X7R CERAMIC  
HVGATE  
LVGATE  
CSP  
M1**  
R12  
C2: 630V X5R OR X7R CERAMIC  
C3: 450V ILLINOIS CAP 476CKE450MQW  
C4: 50V TO 500V ELECTROLYTIC  
C5: TDK CKG57NX7R2J474M  
V
FAULT  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
CC  
R1, 1.5M  
V
TRANS  
68mΩ  
C6: 6.3V X5R OR X7R CERAMIC  
D1, D2: VISHAY US1M 1000V  
F1: BUSSMANN PCB-1-R  
M1: FAIRCHILD FQB4N80  
R2, 9M  
CSN  
FB  
R10***  
R11  
R3, 154k  
V
CC  
R4, 475k  
R1, R2: 2 X 1206 RESISTORS IN SERIES, 1%  
R3 THRU R5, R7, R9, R11: 0805 RESISTORS, 1%  
R6, R8: 3 X 1206 RESISTORS IN SERIES, 1%  
R10: 1206 RESISTOR(S), 1%  
C6  
10nF  
GND RBG  
3751 TA05a  
R12: IRC LR SERIES 1206 RESISTOR, 1%  
T1: COILCRAFT HA4060-AL  
Suggested Component Values  
I
(mA)  
I
(mA)  
OUT(MAX)  
TRANS  
OUT  
OUT(MAX)  
V
AT V  
= 100V,  
AT V = 400V,  
TRANS  
R10  
R11  
OUT  
(V)  
100  
200  
300  
400  
500  
1% V  
DEFLECTION 1% V  
DEFLECTION  
OUT  
(kΩ)  
(kΩ)  
0.383  
0.768  
1.13  
55  
110  
95  
130  
150  
175  
130  
140  
30.9  
124  
274  
499  
715  
80  
1.54  
65  
1.74  
Steady-State Operation with  
50mA Load Current  
Efficiency  
Line Regulation  
ꢔꢌ  
ꢓꢌ  
7ꢌ  
ꢒꢌ  
5ꢌ  
ꢍꢌ  
3ꢎꢐ  
3ꢎ7  
3ꢎꢏ  
3ꢎ5  
ꢊ ꢋꢀꢀꢆ  
ꢅꢉ  
ꢌꢍꢇ  
ꢘ 1ꢌꢌꢗ  
ꢘ ꢕ5ꢌꢗ  
ꢏꢇ  
ꢏꢇ  
ꢊ ꢎꢀꢀꢆ  
ꢔ 1ꢍꢕꢈ  
ꢆꢃꢄ  
ꢆꢃꢄ  
ꢄꢏꢈꢅꢉ  
1ꢀꢀꢆꢃꢄꢅꢆ  
ꢔ ꢑ5ꢕꢈ  
ꢆꢃꢄ  
ꢘ ꢍꢌꢌꢗ  
ꢏꢇ  
ꢔ 5ꢍꢕꢈ  
ꢐꢏꢅ  
ꢋꢈꢃꢄꢅꢆ  
3751 ꢇꢈꢀ5d  
5ꢌ  
ꢀꢁꢂꢃꢁꢂ ꢄꢁꢅꢅꢆꢇꢂ ꢈꢉꢊꢋ  
75  
1ꢍꢍ  
3ꢍꢍ  
ꢑꢍꢍ  
ꢀꢁꢂꢃꢄ ꢅꢆꢉꢊ ꢋꢅꢌ  
ꢓꢍꢍ  
ꢕ5  
1ꢀꢁꢂꢃꢄꢅꢆ  
3751 ꢂꢊꢌ5ꢖ  
3751 ꢄꢈꢍ5ꢒ  
3751fd  
28  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATIONS  
Isolated 282V Voltage Regulator  
DANGER HIGH VOLTAGE! OPERATION BY HIGH VOLTAGE TRAINED PERSONNEL ONLY  
D2  
R2, 10Ω  
ISOLATION BOUNDARY  
T1  
Npb  
V
TRANS  
D5  
V
F1, 2A  
TRANS  
V
OUT  
100V TO  
200VDC  
282V  
+
C4  
1µF  
×2  
R1  
49.9k  
C3  
R3  
225mA  
+
22µF  
210k  
C6  
0.1µF  
C7  
400µF  
Np  
Ns  
M1  
D3  
×2  
R4  
RV  
CHARGE  
CLAMP  
105k  
TRANS  
OFF ON  
RDCM  
C1  
100pF  
R5  
210k  
R16  
249k  
D4  
LT3751  
V
RV  
OUT  
CC  
Nsb  
R15  
5.11Ω  
C1, C8: 16V COG CERAMIC  
C2  
U2  
D1  
DONE  
HVGATE  
LVGATE  
CSP  
M2  
TO  
R17  
221k  
D6  
C2: 16V X5R OR X74 CERAMIC  
C3: 350V ELECTROLYTIC  
1µF  
MICRO  
C5  
0.01µF  
V
COMP  
IN  
C8  
FAULT  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
V
CC  
C4: 250V X5R OR X7R CERAMIC  
22nF  
R9, 2.7M  
C5, C6, C11, C12: 630V X5R OR X7R CERAMIC  
C7: 350V ELECTROLYTIC  
C9  
3.3µF  
LT4430  
R19  
3.16k  
V
TRANS  
R10, 4.3M  
R11, 84.5k  
C9, C10: 25V X5R OR X7R CERAMIC  
F1: 250V, 2A FUSE  
R1: 2010 RESISTOR, 1%  
R6  
40mΩ  
GND  
FB  
C10  
0.47µF  
R18  
1k  
CSN  
FB  
R2, R3, R6, R16, R17: 1206 RESISTORS, 1%  
R4, R5: TWO 1206 RESISTORS IN SERIES, 1%  
R7 THRU R12, R15 THRU R20: 0805 RESISTORS, 1%  
D1: 12V ZENER  
V
CC  
R12, 442k  
OC  
D7  
U1  
V
CC  
R7  
475Ω  
OPTO  
GND RBG  
R20  
274Ω  
D2: VISHAY MURS140  
R8 3751 TA06a  
2.49k  
D3: VISHAY P6KE200A  
D4: VISHAY MURS160  
D5: STMICROELECTRONICS STTH112A  
D6: VISHAY BAT54  
T1: TDK SRW24LQ  
D7: NXP SEMICONDUCTORS BAS516  
M1: VISHAY IRF830  
(Np:Ns:Npb:Nsb = 1:2:0.08:0.08)  
U1: NEC PS2801-1  
4.7nF  
Y RATED  
M2: STMICROELECTRONICS STB11NM60FD U2: LINEAR TECHNOLOGY LT4430  
Steady-State Operation with  
7.1mA Load Current  
Load Regulation  
Efficiency  
1ꢀꢀ  
ꢊ5  
ꢊꢀ  
ꢋ5  
ꢋꢀ  
75  
7ꢀ  
ꢈꢊ5ꢈ  
ꢈꢊꢑ5  
ꢏ3ꢘ ꢕꢓꢍꢒꢓꢍ  
ꢌꢋꢘ ꢕꢓꢍꢒꢓꢍ  
ꢑ5ꢘ ꢕꢓꢍꢒꢓꢍ  
ꢅꢌꢉꢆꢏ  
1ꢁꢁꢇꢄꢅꢆꢇ  
ꢋꢌꢆꢍꢉꢌꢎ  
ꢀꢉꢄꢅꢆꢇ  
3751 ꢈꢉꢁꢊd  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
ꢉꢈꢊꢑ5  
ꢉꢈꢊ5ꢈ  
Steady-State Operation with  
225mA Load Current  
1ꢀꢀ  
1ꢑꢀ  
1ꢌꢀ  
1ꢏꢀ  
1ꢋꢀ  
ꢑꢀꢀ  
5ꢈ  
1ꢈꢈ  
15ꢈ  
ꢄꢅꢆꢇ  
ꢑꢈꢈ  
ꢑ5ꢈ  
ꢃꢅꢒꢓꢍ ꢔꢕꢗꢁ ꢇꢔꢉ  
ꢁꢂꢃ  
3751 ꢍꢎꢀꢏꢐ  
3751 ꢃꢆꢈꢒꢓ  
ꢅꢍꢉꢆꢐ  
1ꢁꢁꢇꢄꢅꢆꢇ  
ꢌꢍꢆꢎꢉꢍꢏ  
ꢀꢉꢄꢅꢆꢇ  
3751 ꢈꢉꢁꢊꢋ  
ꢀꢁꢂꢃꢄꢅꢆꢇ  
3751fd  
29  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATIONS  
Wide Input Voltage Range, 15 Watt, Triple Output Voltage Regulator  
T1  
2:1:3:3  
(P1:S1:S2:S3)  
D1  
V
V
OUT3  
IN  
5V TO 24V  
+15V  
+
+
C2  
1000µF  
×2  
R5  
C3  
10µF  
C7  
R12  
C4  
25.5k  
10µF  
4.99k  
470µF  
S3  
S2  
S1  
RV  
CHARGE  
CLAMP  
TRANS  
OFF ON  
D2  
R6  
V
OUT2  
11.5k  
–15V  
V
RDCM  
C5  
470µF  
C8  
10µF  
CC  
R13  
4.99k  
C1  
10µF  
+
+
P1  
R7  
25.5k  
LT3751  
R1, 100k  
RV  
DONE  
OUT  
D3  
R2, 100k  
R3, 66.5k  
R4, 464k  
V
M1  
OUT1  
FAULT  
UVLO1  
OVLO1  
+5V  
C6  
100µF  
×2  
C9  
100µF  
HVGATE  
LVGATE  
CSP  
C1, C3: 25V X5R OR X7R CERAMIC  
V
CC  
C2: 25V SANYO 25ME1000AX  
C4, C5: 35V SANYO 35ME470AX  
R11  
25mΩ  
C6: 10V KEMET T520D107M010ASE055  
C7, C8: 16V CERAMIC, TDK C4532X7R1E106M  
C9: 6.3V CERAMIC, TDK C4532X5R0J107M  
D1, D2: CENTRAL SEMI CMSH2-60M  
D3: CENTRAL SEM1 CMSH5-40  
R9  
309Ω  
CSN  
FB  
UVLO2  
OVLO2  
GND RBG  
R10  
100Ω  
M1: FAIRCHILD FQD12N20L  
R8  
2.21k  
R1 THRU R10, R12, R13: 0805 RESISTOR, 1%  
R11: 1206 RESISTOR, 1%  
T1: COILCRAFT HA3994-AL, 2:1:3:3 (P1:S1:S2:S3)  
3751 TA07a  
Maximum Output Conditions  
I
*
OUT(MAX) (mA)  
V
P
OUT(MAX)  
CC  
(V)  
(W)  
V
OUT1  
V
V
OUT3  
OUT2  
5
6.5  
10  
13  
750  
300  
300  
300  
300  
300  
300  
12  
24  
1750  
2500  
*All other output currents set to 0mA  
Cross Regulation  
(IVOUT1 = 100mA)  
Cross Regulation  
(IVOUT1 = 500mA)  
Efficiency  
(IVOUT1 = 500mA)  
ꢆꢐ  
ꢆꢍ  
ꢆꢆ  
ꢆꢎ  
1ꢏ  
1ꢐ  
1ꢍ  
ꢖꢌ  
ꢓ5  
ꢓꢌ  
75  
7ꢌ  
ꢕ5  
ꢕꢌ  
ꢆꢐ  
1ꢍ  
1ꢎ  
1ꢏ  
ꢗ ꢆꢔꢂ  
ꢁꢐ  
ꢁꢒ  
ꢓ 5ꢂ  
ꢗ 1ꢆꢂ  
ꢁꢐ  
ꢁꢒ  
ꢓ ꢆꢏꢂ  
ꢁꢒ  
ꢓ ꢆꢍꢂ  
ꢁꢒ  
ꢓ 5ꢂ  
ꢁꢒ  
ꢓ 1ꢆꢂ  
ꢁꢒ  
ꢓ 1ꢆꢂ  
ꢁꢐ  
ꢗ 5ꢂ  
1
1ꢎ  
1ꢎꢎ  
1ꢎꢎꢎ  
ꢆꢌꢌ  
ꢀꢁ  
ꢔꢌꢌ  
ꢇ ꢁ  
ꢕꢌꢌ  
ꢓꢌꢌ  
1
1ꢐ  
1ꢐꢐ  
1ꢐꢐꢐ  
ꢀꢁ  
ꢇ ꢁ  
ꢈꢈ ꢉꢊꢋꢌ  
ꢈꢉꢊꢋ  
ꢀꢁ  
ꢇ ꢁ  
ꢈꢈ ꢉꢊꢋꢌ  
ꢂꢃꢄꢅꢆ ꢂꢃꢄꢅ3  
ꢂꢃꢄꢅꢆ ꢂꢃꢄꢅ3  
ꢂꢃꢄꢅꢆ ꢂꢃꢄꢅ3  
3751 ꢅꢊꢌ7d  
3751 ꢅꢋꢎ7ꢑ  
3751 ꢅꢋꢐ7ꢑ  
ꢈꢈꢔꢃꢄꢕꢖꢗꢘꢔꢁꢒꢙ ꢁꢚꢗꢒꢅꢁꢖꢋꢛ ꢖꢄꢕꢕꢗꢒꢅꢔ ꢜꢕꢃꢝ ꢞꢃꢅꢟ ꢂ  
ꢋꢒꢚ ꢂ  
ꢇ ꢕꢗꢔꢠꢗꢖꢅꢁꢂꢗꢡ  
ꢃꢄꢅꢆ  
ꢃꢄꢅ3  
3751fd  
30  
For more information www.linear.com/LT3751  
LT3751  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT3751#packaging for the most recent package drawings.  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
ꢀꢁꢂfꢂꢃꢂꢄꢅꢂ ꢆꢇꢈ ꢉꢊꢋ ꢌ ꢍ5ꢎꢍꢏꢎ1ꢐꢐ3 ꢁꢂꢑ ꢆꢒ  
Exposed Pad Variation CB  
DETAIL A  
6.40 – 6.60*  
3.86  
(.152)  
(.252 – .260)  
0.60  
(.024)  
REF  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
0.28  
(.011)  
REF  
6.60 ±0.10  
DETAIL A IS THE PART OF  
THE LEAD FRAME FEATURE  
FOR REFERENCE ONLY  
2.74  
(.108)  
DETAIL A  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
NO MEASUREMENT PURPOSE  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE20 (CB) TSSOP REV L 0117  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3751fd  
31  
For more information www.linear.com/LT3751  
LT3751  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/product/LT3751#packaging for the most recent package drawings.  
UFD Package  
20-Pin Plastic QFN (4mm × 5mm)  
(Reference LTC DWG # 05-08-1711 Rev B)  
ꢂꢁ7ꢂ ꢂꢁꢂ5  
ꢅꢁꢣ5 ꢂꢁꢂ5  
3ꢁꢣ5 ꢂꢁꢂ5  
ꢀꢁ5ꢂ ꢂꢁꢂ5  
3ꢁꢃꢂ ꢂꢁꢂ5  
ꢃꢁ5ꢂ ꢋꢉꢌ  
ꢔꢑꢘꢙꢑꢓꢉ ꢎꢚꢏꢛꢇꢍꢉ  
ꢂꢁꢅ5 ꢂꢁꢂ5  
ꢂꢁ5ꢂ ꢕꢆꢘ  
ꢅꢁ5ꢂ ꢋꢉꢌ  
ꢀꢁꢃꢂ ꢂꢁꢂ5  
5ꢁ5ꢂ ꢂꢁꢂ5  
ꢋꢉꢘꢎꢖꢖꢉꢍꢈꢉꢈ ꢆꢎꢛꢈꢉꢋ ꢔꢑꢈ ꢔꢇꢏꢘꢟ ꢑꢍꢈ ꢈꢇꢖꢉꢍꢆꢇꢎꢍꢆ  
ꢑꢔꢔꢛꢢ ꢆꢎꢛꢈꢉꢋ ꢖꢑꢆꢙ ꢏꢎ ꢑꢋꢉꢑꢆ ꢏꢟꢑꢏ ꢑꢋꢉ ꢍꢎꢏ ꢆꢎꢛꢈꢉꢋꢉꢈ  
ꢔꢇꢍ ꢃ ꢍꢎꢏꢘꢟ  
ꢋ ꢦ ꢂꢁꢅꢂ ꢎꢋ  
ꢘ ꢦ ꢂꢁ35  
ꢂꢁ75 ꢂꢁꢂ5  
ꢃꢁ5ꢂ ꢋꢉꢌ  
ꢃꢤ  
ꢀꢁꢂꢂ ꢂꢁꢃꢂ  
ꢄꢅ ꢆꢇꢈꢉꢆꢊ  
ꢋ ꢦ ꢂꢁꢂ5 ꢏꢢꢔ  
ꢅꢂ  
ꢂꢁꢀꢂ ꢂꢁꢃꢂ  
ꢔꢇꢍ ꢃ  
ꢏꢎꢔ ꢖꢑꢋꢙ  
ꢄꢍꢎꢏꢉ ꢣꢊ  
5ꢁꢂꢂ ꢂꢁꢃꢂ  
ꢄꢅ ꢆꢇꢈꢉꢆꢊ  
ꢅꢁ5ꢂ ꢋꢉꢌ  
3ꢁꢣ5 ꢂꢁꢃꢂ  
ꢅꢁꢣ5 ꢂꢁꢃꢂ  
ꢄꢚꢌꢈꢅꢂꢊ ꢨꢌꢍ ꢂ5ꢂꢣ ꢋꢉꢝ ꢕ  
ꢂꢁꢅ5 ꢂꢁꢂ5  
ꢂꢁ5ꢂ ꢕꢆꢘ  
ꢂꢁꢅꢂꢂ ꢋꢉꢌ  
ꢋ ꢦ ꢂꢁꢃꢃ5  
ꢏꢢꢔ  
ꢂꢁꢂꢂ ꢧ ꢂꢁꢂ5  
ꢕꢎꢏꢏꢎꢖ ꢝꢇꢉꢒꢥꢉꢞꢔꢎꢆꢉꢈ ꢔꢑꢈ  
ꢍꢎꢏꢉꢐ  
ꢃꢁ ꢈꢋꢑꢒꢇꢍꢓ ꢔꢋꢎꢔꢎꢆꢉꢈ ꢏꢎ ꢕꢉ ꢖꢑꢈꢉ ꢑ ꢗꢉꢈꢉꢘ ꢔꢑꢘꢙꢑꢓꢉ ꢎꢚꢏꢛꢇꢍꢉ ꢖꢎꢜꢅꢅꢂ ꢝꢑꢋꢇꢑꢏꢇꢎꢍ ꢄꢒꢞꢞꢞꢜꢞꢊꢁ  
ꢅꢁ ꢈꢋꢑꢒꢇꢍꢓ ꢍꢎꢏ ꢏꢎ ꢆꢘꢑꢛꢉ  
3ꢁ ꢑꢛꢛ ꢈꢇꢖꢉꢍꢆꢇꢎꢍꢆ ꢑꢋꢉ ꢇꢍ ꢖꢇꢛꢛꢇꢖꢉꢏꢉꢋꢆ  
ꢀꢁ ꢈꢇꢖꢉꢍꢆꢇꢎꢍꢆ ꢎꢌ ꢉꢞꢔꢎꢆꢉꢈ ꢔꢑꢈ ꢎꢍ ꢕꢎꢏꢏꢎꢖ ꢎꢌ ꢔꢑꢘꢙꢑꢓꢉ ꢈꢎ ꢍꢎꢏ ꢇꢍꢘꢛꢚꢈꢉ  
ꢖꢎꢛꢈ ꢌꢛꢑꢆꢟꢁ ꢖꢎꢛꢈ ꢌꢛꢑꢆꢟꢠ ꢇꢌ ꢔꢋꢉꢆꢉꢍꢏꢠ ꢆꢟꢑꢛꢛ ꢍꢎꢏ ꢉꢞꢘꢉꢉꢈ ꢂꢁꢃ5ꢡꢡ ꢎꢍ ꢑꢍꢢ ꢆꢇꢈꢉ  
5ꢁ ꢉꢞꢔꢎꢆꢉꢈ ꢔꢑꢈ ꢆꢟꢑꢛꢛ ꢕꢉ ꢆꢎꢛꢈꢉꢋ ꢔꢛꢑꢏꢉꢈ  
ꢣꢁ ꢆꢟꢑꢈꢉꢈ ꢑꢋꢉꢑ ꢇꢆ ꢎꢍꢛꢢ ꢑ ꢋꢉꢌꢉꢋꢉꢍꢘꢉ ꢌꢎꢋ ꢔꢇꢍ ꢃ ꢛꢎꢘꢑꢏꢇꢎꢍ  
ꢎꢍ ꢏꢟꢉ ꢏꢎꢔ ꢑꢍꢈ ꢕꢎꢏꢏꢎꢖ ꢎꢌ ꢔꢑꢘꢙꢑꢓꢉ  
3751fd  
32  
For more information www.linear.com/LT3751  
LT3751  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
5/10  
Updated FAULT (Pin 6/Pin 4) description in Pin Functions  
Updated DONE (Pin 7/Pin 5) description in Pin Functions  
Updated Block Diagram  
7
8
9
Revised Applications Information section  
Revised Typical Applications illustration  
Revised Applications Information section  
Corrected Schematic R8 value from 3.40k to 2.21k  
Updated FE package drawing  
17, 18  
30  
20  
30  
31  
2
C
D
6/12  
12/17 Revised Absolute Maximum storage temperature range upper limit from 125°C to 150°C.  
3751fd  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
33  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
For more information www.linear.com/LT3751  
LT3751  
TYPICAL APPLICATION  
300V Regulated Power Supply  
T1  
D1  
1:10  
V
V
TRANS  
24V  
OUT  
300V  
+
C2  
C3  
R6  
40.2k  
0mA TO 270mA  
2.2µF  
+
680µF  
C4  
20µF  
×5  
RV  
CHARGE  
TRANS  
R7  
18.2k  
OFF ON  
RDCM  
RV  
CLAMP  
OUT  
V
CC  
V
CC  
24V  
C1  
10µF  
R8*  
274k  
M1  
R5  
HVGATE  
LVGATE  
CSP  
DONE  
FAULT  
TO  
V
CC  
MICRO  
R1  
432k  
UVLO1  
OVLO1  
UVLO2  
OVLO2  
* DEPENDING ON DESIRED OUTPUT  
VOLTAGE, R8 MUST BE SPLIT  
INTO MULTIPLE RESISTORS TO  
MEET MANUFACTURER’S VOLTAGE  
SPECIFICATION.  
6mΩ  
V
R2  
TRANS  
LT3751  
475k  
CSN  
FB  
R3  
432k  
C5  
10nF  
V
CC  
R4  
475k  
R9  
1.13k  
GND RBG  
3751 TA08  
C1: 25V X5R OR X7R CERAMIC CAPACITOR  
C2: 25V X5R OR X7R CERAMIC CAPACITOR  
C3: 25V ELECTROLYTIC  
C4: 330V RUBYCON PHOTOFLASH CAPACITOR  
D1: VISHAY US1M 1000V  
M1: FAIRCHILD FQP34N20L  
R1 THROUGH R4: USE 1% 0805 RESISTORS  
R5: IRC LR SERIES 2512 RESISTOR  
T1: SUMIDA PS07-299, 20A TRANSFORMER  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 2.75V to 5.5V, Charges Two Supercapacitors in Series to 4.8V or 5.3V  
LTC3225  
150mA Supercapacitor Charger  
IN  
LT3420/LT3420-1  
1.4A/1A, Photoflash Capacitor Charger  
with Automatic Top-Off  
Charges 220µF to 320V in 3.7 Seconds from 5V, V : 2.2V to 16V, I < 1µA,  
IN SD  
10-Lead MS Package  
LT3468/LT3468-1/  
LT3468-2  
1.4A, 1A, 0.7A, Photoflash Capacitor Charger V : 2.5V to 16V, Charge Time: 4.6 Seconds for LT3468 (0V to 320V, 100µF,  
IN  
V
= 3.6V), I < 1µA, ThinSOT Package  
SD  
IN  
LT3484-0/LT3484-1/ 1.4A, 0.7A, 1A Photoflash Capacitor Charger  
LT3484-2  
V : 1.8V to 16V, Charge Time: 4.6 Seconds for LT3484-0 (0V to 320V, 100µF,  
IN  
IN  
V
= 3.6V), I < 1µA, 2mm × 3mm 6-Lead DFN Package  
SD  
LT3485-0/LT3485-1/ 1.4A, 0.7A, 1A, 2A Photoflash Capacitor  
V : 1.8V to 10V, Charge Time: 3.7 Seconds for LT3485-0 (0V to 320V, 100µF,  
IN  
V = 3.6V), I < 1µA, 3mm × 3mm 10-Lead DFN Package  
IN SD  
LT3485-2/LT3485-3  
Charger with Output Voltage Monitor and  
Integrated IGBT  
LT3585-0/LT3585-1/ 1.2A, 0.55A, 0.85A, 1.7A Photoflash  
V : 1.5V to 16V, Charge Time: 3.3 Seconds for LT3585-3 (0V to 320V, 100µF,  
IN  
V = 3.6V), I < 1µA, 3mm × 2mm DFN-10 Package  
IN SD  
LT3585-2/LT3585-3  
Capacitor Charger with Adjustable Input  
Current and IGBT Drivers  
LT3750  
Capacitor Charger Controller  
V : 3V to 24V, Charge Time: 300ms for (0V to 300V, 100µF) MSOP-10 Package  
IN  
3751fd  
LT 1217 REV D • PRINTED IN USA  
www.linear.com/LT3751  
34  
ANALOG DEVICES, INC. 2017  

相关型号:

LT3751IUFD-PBF

Capacitor Charger Controller with Regulation
Linear

LT3751IUFD-TR

Capacitor Charger Controller with Regulation
Linear

LT3751IUFD-TRPBF

Capacitor Charger Controller with Regulation
Linear

LT3752

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3752-1

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3752-1_15

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller
Linear

LT3752_15

Active Clamp Synchronous Forward Controllers with Internal Housekeeping Controller
Linear

LT3753

Synchronous Rectifier Controller with Opto-Coupler Driver for Forward Converters
Linear

LT3754

16-Channel × 50mA LED Driver
Linear

LT3754EUH#PBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754EUH#TRPBF

LT3754 - 16-Channel x 50mA LED Driver; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT3754EUHPBF

16-Channel × 50mA LED Driver
Linear