LT5524EFE [Linear]

Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain; 低失真IF与数字控制增益放大器/ ADC驱动器
LT5524EFE
型号: LT5524EFE
厂家: Linear    Linear
描述:

Low Distortion IF Amplifier/ADC Driver with Digitally Controlled Gain
低失真IF与数字控制增益放大器/ ADC驱动器

驱动器 射频和微波 射频放大器 微波放大器
文件: 总16页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5524  
Low Distortion IF  
Amplifier/ADC Driver with  
Digitally Controlled Gain  
U
FEATURES  
DESCRIPTIO  
TheLT®5524isaprogrammablegainamplifier(PGA)with  
bandwidth extending from low frequency (LF) to 540MHz.  
It consists of a digitally controlled variable attenuator,  
followed by a high linearity amplifier. Four parallel digital  
inputs control the gain over a 22.5dB range with 1.5dB  
step resolution. An on-chip power supply regulator/filter  
helps isolate the amplifier signal path from external noise  
sources.  
Output IP3 at 100MHz: 40dBm  
Maximum Output Power: 16dBm  
Bandwidth: LF to 540MHz  
Propagation Delay: 0.8ns  
Maximum Gain: 27dB  
Gain Control Range: 22.5dB  
Gain Control Step: 1.5dB  
Gain Control Settling Time: 500ns  
Noise Figure: 8.6dB at 100MHz (Max Gain)  
The LT5524’s open-loop architecture offers stable opera-  
tion for any practical load conditions, including peaking-  
free AC response when driving capacitive loads, and  
excellent reverse isolation.  
Output Noise Floor: –138dBm/Hz (Max Gain)  
Reverse Isolation: –92dB  
Single Supply: 4.75V to 5.25V  
Shutdown Mode  
The LT5524 may be operated broadband, where the out-  
put differential RC time constant sets the bandwidth, or it  
may be used as a narrowband driver with the appropriate  
output filter.  
Enable/Disable Time: 1µs  
Differential I/O Interface  
20-Lead TSSOP Package  
U
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Patents Pending.  
APPLICATIO S  
High Linearity ADC Driver  
IF Sampling Receivers  
VGA IF Power Amplifier  
50Driver  
Instrumentation Applications  
U
TYPICAL APPLICATIO  
Output IP3 vs Frequency, ROUT = 200  
54  
51  
48  
5V  
CHOKE  
0.1µF  
CHOKE  
0.1µF  
45  
MAX GAIN  
IF  
AMP  
RF  
INPUT  
IF  
BPF  
100  
LT5524  
ADC  
42  
5524 TA01  
39  
LO  
0.1µF  
0.1µF  
1.5dB  
ATTENUATION  
STEP  
GAIN CONTROL  
36  
33  
30  
4 LINES  
100  
FREQUENCY (MHz)  
0
50  
150  
200  
5524 TA02  
5524f  
1
LT5524  
W W  
U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Notes 1, 2)  
TOP VIEW  
Power Supply Voltage (VCC1, VCC2) .......................... 6V  
Output DC Voltage (OUT+, OUT) ............................. 7V  
Control Input Voltage (EN, PGAx) ............. –0.5V to VCC  
Signal Input Voltage (IN+, IN) ................... –0.5V to 3V  
Operating Ambient Temperature Range.. – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
ORDER PART  
NUMBER  
EN  
1
2
3
4
5
6
7
8
9
20 NC  
19  
V
V
CC1  
CC2  
LT5524EFE  
GND  
GND  
18 GND  
17 GND  
+
IN  
16 OUT  
15 OUT  
21  
+
IN  
GND  
GND  
14 GND  
13 GND  
12 PGA3  
11 PGA2  
PGA0  
PGA1 10  
FE PACKAGE  
20-LEAD PLASTIC TSSOP  
TJMAX = 150°C, θJA = 38°C/W  
EXPOSED PAD (PIN 21) IS GND  
MUST BE SOLDERED TO PCB  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
W W  
U
U
PROGRA ABLE GAI SETTI GS  
ATTENUATION STEP  
POWER GAIN  
27.0dB  
25.5dB  
24.0dB  
22.5dB  
21.0dB  
19.5dB  
18.0dB  
16.5dB  
15.0dB  
13.5dB  
12.0dB  
10.5dB  
9.0dB  
RELATIVE TO MAX GAIN  
0dB  
PGA0  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
High  
Low  
PGA1  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
High  
High  
Low  
Low  
PGA2  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
PGA3  
High  
High  
High  
High  
High  
High  
High  
High  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
*
1
2
–1.5dB  
3
–3.0dB  
4
–4.5dB  
5
–6.0dB  
6
–7.5dB  
7
–9.0dB  
8
–10.5dB  
–12.0dB  
–13.5dB  
–15.0dB  
–16.5dB  
–18.0dB  
–19.5dB  
–21.0dB  
–22.5dB  
9
10  
11  
12  
13  
14  
15  
16  
7.5dB  
6.0dB  
4.5dB (Note 3)  
*R  
OUT  
= 200  
5524f  
2
LT5524  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V, VCCO = 5V, EN = 3V, TA = 25°C, unless otherwise noted.  
(Note 7) (Test circuits shown in Figures 9 and 10)  
SYMBOL PARAMETER  
Normal Operating Conditions  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Supply Voltage (Pins 2, 19)  
(Note 4)  
4.75  
3
5
5
5.25  
5.5  
V
V
CC  
+
+
OUT , OUT Output Pin DC Common Mode Voltage OUT , OUT Connected to V  
via  
OSUP  
CCO  
Choke Inductors or Resistors (Note 5)  
Shutdown DC Characteristics, EN = 0.6V  
+
V
IN , IN Bias Voltage  
Max Gain (Note 6)  
1.15  
1.3  
44  
1.5  
20  
V
µA  
µA  
µA  
µA  
IN(BIAS)  
IL(PGA)  
IH(PGA)  
OUT  
I
I
I
I
PGAO, PGA1, PGA2, PGA3 Input Current  
V
V
= 0.6V  
= 5V  
IN  
IN  
PGAO, PGA1, PGA2, PGA3 Input Current  
20  
+
OUT , OUT Current  
Supply Current  
All Gain Settings  
20  
V
All Gain Settings (Note 4)  
100  
CC  
CC  
Enable and PGA Inputs DC Characteristics  
V
V
EN and PGAx Input Low Voltage  
EN and PGAx Input High Voltage  
PGAO, PGA1, PGA2, PGA3 Input Current  
PGAO, PGA1, PGA2, PGA3 Input Current  
EN Input Current  
x = 0, 1, 2, 3  
x = 0, 1, 2, 3  
0.6  
V
V
IL  
3
IH  
I
I
I
I
V
V
V
= 0.6V  
20  
30  
20  
µA  
µA  
µA  
IL(PGA)  
IH(PGA)  
IL(EN)  
IH(EN)  
IN  
IN  
IN  
= 3V and 5V  
= 0.6V  
15  
4
EN Input Current  
V
V
= 3V  
= 5V  
18  
38  
µA  
µA  
IN  
IN  
100  
DC Characteristics, EN = 3V  
+
V
IN , IN Bias Voltage  
Max Gain (Note 6)  
All Gain Settings (DC)  
Max Gain  
1.34  
17  
1.48  
122  
0.15  
20  
1.65  
V
IN(BIAS)  
R
Input Differential Resistance  
IN  
g
Amplifier Transconductance  
S
m
+
I
I
I
OUT , OUT Quiescent Current  
Output Current Mismatch  
All Gain Settings, V  
= 5V  
24  
mA  
µA  
OUT  
OUT  
+
All Gain Settings, IN , IN Open  
100  
OUT(OFFSET)  
CC  
V
+ V  
Supply Current  
Max Gain (Note 4)  
Min Gain (Note 4)  
34  
36  
40  
43  
mA  
mA  
CC1  
CC2  
I
Total Supply Current  
I
+ 2 • I (Max Gain)  
OUT  
75  
91  
mA  
CC(TOTAL)  
CC  
5524f  
3
LT5524  
AC ELECTRICAL CHARACTERISTICS  
VCC = 5V, VCCO = 5V, EN = 3V, TA = 25°C, ROUT = 200. Maximum gain  
specifications are with respect to differential inputs and differential outputs, unless otherwise noted.  
(Note 7) (Test circuits shown in Figures 9 and 10)  
SYMBOL PARAMETER  
Dynamic Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
BW  
Large-Signal –3dB Bandwidth  
All Gain Settings (Note 8), R  
= 100Ω  
LF to 540  
MHz  
V
OUT  
+
V
Output Voltage Clipping Levels  
Each OUT , OUT with Respect to Ground  
(Note 11)  
2
8
OUT(CLIP)  
OUT(MAX)  
m
P
Clipping Limited Maximum Sinusoidal  
Output Power  
All Gain Settings, Single Tone,  
16  
dBm  
f
= 100MHz (Note 10)  
IN  
g
Amplifier Transconductance  
Reverse Isolation  
Max Gain, f = 100MHz  
0.15  
–92  
S
IN  
S12  
f
= 100MHz (Note 9)  
dB  
IN  
Distortion and Noise  
OIP3  
Output Third Order Intercept Point for  
PGA0 = High (PGA1, PGA2, PGA3 Any State)  
P
= 4dBm (Each Tone), 200kHz Tone Spacing,  
OUT  
= 100MHz  
f
+40  
dBm  
IN  
Output Third Order Intercept Point for  
PGA0 = Low (PGA1, PGA2, PGA3 Any State)  
P
= 4dBm (Each Tone), 200kHz Tone Spacing,  
OUT  
= 100MHz  
f
+36  
–76  
–72  
dBm  
dBc  
dBc  
IN  
HD2  
HD3  
Second Harmonic Distortion  
Third Harmonic Distortion  
P
P
= 5dBm (Single Tone), f = 50MHz  
IN  
OUT  
OUT  
= 5dBm (Single Tone), f = 50MHz  
IN  
N
FLOOR  
Output Noise Floor  
(PGAO, PGA2, PGA3 Any State)  
PGA1 = High, f = 100MHz  
–138  
–140  
dBm/Hz  
dBm/Hz  
IN  
PGA1 = Low, f = 100MHz  
IN  
NF  
Noise Figure  
Max Gain Setting, f = 100MHz  
8.6  
500  
600  
dB  
ns  
ns  
IN  
PGA Settling Time  
Enable/Disable Time  
Output Settles within 10% of Final Value  
Output Settles within 10% of Final Value  
Amplifier Power Gain and Gain Step  
G
G
G
Maximum Gain  
Minimum Gain  
Gain Step Size  
f
f
f
f
= 20MHz and 200MHz  
= 20MHz and 200MHz  
= 20MHz and 200MHz  
= 20MHz and 200MHz  
27  
4.5  
dB  
dB  
dB  
dB  
MAX  
MIN  
IN  
IN  
IN  
IN  
0.8  
1.5  
2.2  
STEP  
Gain Step Accuracy  
±0.2  
Amplifier I/O Impedance (Parallel Values, Specified Differentially)  
R
Input Resistance  
Input Capacitance  
Output Resistance  
Output Capacitance  
f
f
f
f
= 100MHz  
= 100MHz  
= 100MHz  
= 100MHz  
122  
2
pF  
IN  
IN  
IN  
IN  
IN  
IN  
C
R
O
5
kΩ  
pF  
C
1.7  
O
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of the device may be impaired.  
matching is assumed. P is the available input power. P  
is the power  
OUT  
IN  
into the external load, R , as seen by the LT5524 differential outputs. All  
OUT  
dBm figures are with respect to 50.  
Note 2: All voltage values are with respect to ground.  
Note 3: Default state for open PGA inputs.  
Note 8: High frequency operation is limited by the RC time constants at  
the input and output ports. The low frequency (LF) roll-off is set by I/O  
interface choice.  
Note 9: Limited by package and board isolation.  
Note 10: See “Clipping Free Operation” in the Applications Information  
Note 4: V  
and V  
(Pins 2 and 19) are internally connected.  
CC2  
CC1  
Note 5: External V  
is adjusted such that V  
output pin common  
OSUP  
CCO  
mode voltage is as specified when resistors are used. For choke inductors  
or transformer, V = V = 5V typ.  
OSUP  
CCO  
section. Refer to Figure 7.  
Note 6: Internally generated common mode input bias voltage requires  
capacitive or transformer coupling to the signal source.  
Note 7: Specifications over the –40°C to 85°C operating temperature  
range are assured by design, characterization and correlation with  
statistical process controls. Gain always refers to power gain. Input  
+
Note 11: Although the instantaneous AC voltage on the OUT or OUT pins  
may in some situations safely exceed 8V (with respect to ground), in no  
case should the DC voltage on these pins be allowed to exceed the  
ABSMAX tested limit of 7V.  
5524f  
4
LT5524  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS TA = 25°C, VCC = 5V, VCCO = 5V, EN = 3V, control  
input levels VIL = 0.6V, VIH = 3V unless otherwise noted. (Test circuit shown in Figure 9)  
Frequency Response for All Gain  
Steps, ROUT = 200Ω  
Gain Error vs Attenuation Step at  
25MHz, ROUT = 200Ω  
Gain Error vs Attenuation Step at  
100MHz, ROUT = 200Ω  
30  
27  
24  
21  
18  
15  
12  
9
0.8  
0.6  
0.8  
0.6  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–0.2  
–0.4  
–0.6  
–0.8  
6
3
0
12  
6
ATTENUATION STEP (dB)  
12  
6
ATTENUATION STEP (dB)  
0
3
9
15  
18  
21  
0
3
9
15  
18  
21  
10  
100  
1000  
FREQUENCY (MHz)  
5524 G01  
5524 G02  
5524 G03  
Minimum Gain vs VCC at 120MHz,  
ROUT = 200Ω  
Maximum Gain vs VCC at  
120MHz, ROUT = 200Ω  
POUT vs PIN at 50MHz, Max Gain  
25  
20  
15  
10  
5
27.6  
27.4  
27.2  
27.0  
26.8  
26.6  
26.4  
26.2  
5.4  
5.2  
5.0  
4.8  
4.6  
4.4  
4.2  
4.0  
–40°C  
–40°C  
25°C  
25°C  
85°C  
R
= 200  
OUT  
85°C  
0
–5  
–16 –13  
(dBm)  
–31 –28 –25 –22 –19  
–10 –7  
4.7  
4.9  
5.1  
(V)  
5.5  
4.5  
5.3  
4.7  
4.9  
5.1  
5.5  
4.5  
5.3  
P
IN  
V
V
CC  
(V)  
CC  
5524 G06  
5524 G05  
5524 G04  
OIP3 vs Frequency at Pin = –23dBm,  
Max Gain and 1.5dB Attenuation  
Step, ROUT = 200Ω  
Harmonic Distortion vs POUT at  
50MHz, Max Gain, ROUT = 200Ω  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
54  
51  
48  
45  
42  
39  
36  
33  
30  
MAX GAIN  
HD3  
HD2  
1.5dB  
ATTENUATION  
STEP  
HD5  
6
HD4  
12  
–100  
100  
0
50  
150  
200  
15  
–6  
0
3
9
–3  
P
OUT  
(dBm)  
FREQUENCY (MHz)  
5524 G07  
5524 G08  
5524f  
5
LT5524  
TYPICAL PERFOR A CE CHARACTERISTICS Two tones, 200kHz spacing, TA = 25°C, EN = 3V,  
U W  
VCC = 5V, VCCO = 5V, control input levels VIL = 0.6V, VIH = 3V unless otherwise noted. (Test circuit shown in Figure 10)  
NF vs Attenuation Step at  
Freq = 100MHz  
Output Noise Floor vs Attenuation  
Noise Figure vs Frequency  
Step, Freq = 100MHz, ROUT = 200Ω  
30  
27  
24  
21  
18  
15  
12  
9
–136  
–137  
–138  
–139  
–140  
–141  
–142  
10.0  
9.5  
9.0  
8.5  
8.0  
7.5  
7.0  
1.5dB ATTENUATION STEP  
(PGA0 = LOW)  
PGA1 = HIGH  
PGA1 = LOW  
MAX GAIN  
3dB ATTENUATION STEP  
(PGA1 = LOW)  
6
3
0
250 300  
0
50 100 150 200  
350 400  
0
3
6
9
12  
15  
18  
21  
0
6
9
12 15 18 21  
3
FREQUENCY (MHz)  
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
5524 G09  
5524 G10  
5524 G11  
Pulse Response vs Output Level at  
Max Gain. Indicated Voltage Levels  
are into 50External Load  
Single-Ended Output Current  
vs Attenuation Step  
VIN(BIAS) vs Attenuation Step  
1.60  
1.55  
1.50  
1.45  
1.40  
21.0  
20.5  
20.0  
19.5  
19.0  
C
= 0.82pF  
OUT  
–40°C  
85°C  
25°C  
25°C  
85°C  
–40°C  
0
6
9
12 15 18 21  
3
0
6
9
12 15 18 21  
3
2ns/DIV  
5524 G12  
ATTENUATION STEP (dB)  
ATTENUATION STEP (dB)  
5524 G14  
5524 G13  
ICC Shutdown Current vs VCC  
EN = 0.6V  
,
Total ICC vs Attenuation Step  
80  
78  
75  
73  
70  
68  
65  
70  
60  
85°C  
25°C  
85°C  
25°C  
50  
40  
30  
20  
10  
–40°C  
–40°C  
0
0
6
9
12 15 18 21  
4.7  
4.9  
5.1  
5.5  
3
4.5  
5.3  
ATTENUATION STEP (dB)  
INPUT V (V)  
CC  
5524 G15  
5524 G16  
5524f  
6
LT5524  
U
U
U
PI FU CTIO S  
EN (Pin 1): Enable Pin for Amplifier. When the input  
voltage is higher than 3V, the amplifier is turned on. When  
the input voltage is less than or equal to 0.6V, the amplifier  
is turned off. This pin is internally pulled to ground if not  
connected.  
PGA2(Pin11):AmplifierPGAControlInputPinforthe6dB  
Attenuation Step (see Programmable Gain table). Input is  
highwhentheinputvoltageisgreaterthan3V. Inputislow  
when the input voltage is less than or equal to 0.6V. This  
pin is internally pulled to ground if not connected.  
VCC1(Pin2):PowerSupply.Thispinisinternallyconnected  
toVCC2 (Pin19).Decouplingcapacitors(1000pFand0.1µF  
for example) may be required in some applications.  
PGA3 (Pin 12): Amplifier PGA Control Input Pin for 12dB  
Attenuation Step (see Programmable Gain table). Input is  
highwhentheinputvoltageisgreaterthan3V. Inputislow  
when the input voltage is less than or equal to 0.6V. This  
pin is internally pulled to ground if not connected.  
OUT+ (Pin 15): Positive Amplifier Output. A transformer  
with center tap tied to VCC or a choke inductor is recom-  
mended to source the DC quiescent current.  
GND (Pins 3, 4, 7, 8, 13, 14, 17, 18): Ground.  
IN+ (Pin 5): Positive Signal Input Pin with Internal DC  
Bias.  
IN(Pin 6): Negative Signal Input Pin with Internal DC  
Bias.  
OUT(Pin 16): Negative Amplifier Output. A transformer  
with center tap tied to VCC or a choke inductor is recom-  
mended to source the DC quiescent current.  
PGA0(Pin9):AmplifierPGAControlInputPinforthe1.5dB  
Attenuation Step (see Programmable Gain table). Input is  
highwhentheinputvoltageisgreaterthan3V. Inputislow  
when the input voltage is less than or equal to 0.6V. This  
pin is internally pulled to ground if not connected.  
VCC2 (Pin 19): Power Supply. This pin is internally con-  
nected to VCC1 (Pin 2).  
NC (Pin 20): Not Connected.  
PGA1(Pin10):AmplifierPGAControlInputPinforthe3dB  
Attenuation Step (see Programmable Gain table). Input is  
highwhentheinputvoltageisgreaterthan3V. Inputislow  
when the input voltage is less than or equal to 0.6V. This  
pin is internally pulled to ground if not connected.  
Exposed Pad (Pin 21): Ground. This pin must be soldered  
to the printed circuit board ground plane for good heat  
transfer.  
W
BLOCK DIAGRA  
LT5524  
+
OUT  
ATTENUATOR  
IN  
16  
5
6
R
IN  
AMPLIFIER  
100  
+
IN  
OUT  
15  
VOLTAGE REGULATOR  
AND BIAS  
GAIN CONTROL  
LOGIC  
ENABLE  
CONTROL  
GND (3, 4, 7, 8  
13, 14, 17, 18)  
V
CC1  
V
CC2  
PGA3 PGA2 PGA1 PGA0  
12 11 10  
NC  
20  
EN  
21  
2
19  
9
1
5524 F01  
Figure 1. Functional Block Diagram  
5524f  
7
LT5524  
W U U  
U
APPLICATIO S I FOR ATIO  
Circuit Operation  
where:  
The LT5524 is a high linearity amplifier with high imped-  
ance output (Figure 1). It consists of the following  
sections:  
gm is the LT5524 transconductance = 0.15S.  
RIN is the LT5524 differential input impedance 122.  
Input impedance matching is assumed.  
• An input variable attenuator “gain-control” block with  
ROUT is the external differential output impedance as  
seen by the LT5524’s differential outputs. ROUT should  
bedistinguishedfromtheactualloadimpedance,RLOAD,  
which will typically be coupled to the LT5524 output by  
an impedance transformation network.  
122input impedance  
• A differential transconductance amplifier, with enable  
input  
• An internal bias block with internal voltage regulator  
• A gain control logic block  
The power gain as a function of ROUT is plotted in Figure 2.  
The ideal relationship is linear. The curved line indicates  
the roll-off due to the finite (noninfinite) output resistance  
of the LT5524.  
The LT5524 amplifier provides amplification with very low  
distortion using a linearized open-loop architecture. In  
contrast with high linearity amplifiers employing negative  
feedback, the LT5524 offers:  
45  
40  
35  
30  
25  
20  
15  
10  
• Stable operation for any practical load  
• A capacitive output reactance (not inductive) that pro-  
vides peaking free AC response to capacitive loads  
• Exceptional reverse isolation of –100dB at 50MHz and  
–78dB at 300MHz (package and board leakage limited)  
TheLT5524isatransconductanceamplifieranditsopera-  
tion can be understood conceptually as consisting of two  
steps: First, the input signal voltage is converted to an  
output current. The intermodulation distortion (in dBc) of  
the LT5524 output current is determined by the input  
signal level, and is almost independent of the output load  
conditions. Thus, the LT5524’s input IP3 is also nearly  
independent of the output load.  
IDEAL  
5
0
WITH R  
O
20  
100  
1000 2000  
R
()  
OUT  
5524 F02  
Figure 2. Power Gain as a Function of ROUT  
The actual available output power (as well as power gain  
andOIP3)willbereducedbylossesintheoutputinterface,  
consisting of:  
Next, the external output load (ROUT) converts the output  
current to output voltage (or power). The LT5524’s volt-  
age and power gain both increase with increasing ROUT  
.
• The insertion loss of the output impedance transforma-  
tion network (for example the transformer insertion  
loss in Figure 6)  
Accordingly, the output power and output IP3 also in-  
crease with increasing ROUT. The actual output linearity  
performance in the application will thus be set by the  
choice of output load, as well as by the output network.  
• About –3dB loss if a matching resistor (RMATCH in  
Figure 6) is used to provide output load impedance  
back-matching (for example when driving transmis-  
sion lines)  
Maximum Gain Calculation  
The maximum power gain (with the 0dB attenuation step)  
is:  
GPWR(dB) = 10 • log(gm2 • RIN • ROUT  
)
5524f  
8
LT5524  
W U U  
APPLICATIO S I FOR ATIO  
Input Interface  
U
V
OSUP  
C3  
C1  
R1  
51  
R2  
51Ω  
R
LOAD  
50Ω  
For the lowest noise and highest linearity, the LT5524  
should be driven with a differential input signal. Single-  
ended drive will severely degrade linearity and noise  
performance.  
LT5524  
+
IN  
R
IN  
R
R
OUT  
LOAD  
C2  
122Ω  
50Ω  
IN  
+
LT5524 F05  
Example input matching networks are shown in Figures 3  
and 4.  
Figure 5. Output Impedance-Matched  
and Capacitively Coupled to a Differential Load  
Input matching network design criteria are:  
Note: In Figure 5, (choke) inductors may be placed in  
parallel with or used to replace resistors R1 and R2, thus  
eliminating the DC voltage drop across these resistors.  
• DC block the LT5524 internal bias voltage (see Input  
Bias Voltage section for DC coupling information)  
• MatchthesourceimpedancetotheLT5524,RIN 122Ω  
V
OSUP  
C1  
• Provide well balanced differential input drive (capacitor  
C2 in Figure 4)  
R
MATCH  
255Ω  
R
LOAD  
50Ω  
T2  
4:1  
LT5524  
+
(OPTIONAL)  
IN  
IN  
• Minimize insertion loss to avoid degrading the noise  
figure (NF)  
R
IN  
R
OUT  
122Ω  
+
LT5524 F06  
R1  
C1  
LT5524  
+
50Ω  
IN  
IN  
Figure 6. Output Impedance-Matched and  
Transformer-Coupled to a Single-Ended Load  
R
IN  
R2  
50Ω  
V
C2  
SRC  
122Ω  
+
LT5524 F03  
Output network design criteria are:  
• Provide DC isolation between the LT5524 DC output  
voltage and RLOAD  
• ProvideapathfortheoutputDCcurrentfromtheoutput  
voltage source VOSUP  
Figure 3. Input Capacitively-Coupled to a Differential Source  
.
R
T1  
1:2  
SRC  
LT5524  
+
50  
.
IN  
IN  
R
IN  
V
SRC  
• Provide an impedance transformation, if required, be-  
tween the load impedance, RLOAD, and the optimum  
122Ω  
+
LT5524 F04  
C2  
0.33µF  
ROUT loading.  
• Set the bandwidth of the output network.  
Figure 4. Input Transformer-Coupled to a Single-Ended Source  
• Optional: Provide board output impedance matching  
using resistor RMATCH (when driving a transmission  
line).  
Output Interface  
The output interface network provides an impedance  
transformationbetweentheactualloadimpedance,RLOAD  
andtheLT5524outputloading, ROUT, chosentomaximize  
powerorlinearity,ortominimizeoutputnoise,orforsome  
other criteria as explained in the following sections.  
,
• Use high linearity passive parts to avoid introducing  
noninearity.  
Note that there is a noise penalty of up to 6dB when using  
power delivered by only one output in Figure 5.  
Two examples of output matching networks are shown in  
Figures 5 and 6 (as implemented in the LT5524 demo  
boards).  
5524f  
9
LT5524  
W U U  
U
APPLICATIO S I FOR ATIO  
25  
Clipping Free Operation  
V
CC  
= V  
CCO  
= 5V  
The LT5524 is a class A amplifier. To avoid signal distor-  
tion, the user must ensure that the LT5524 outputs do not  
enterintocurrentorvoltagelimiting.Thefollowingdiscus-  
sion applies to maximum gain operation.  
CURRENT  
LIMIT  
VOLTAGE  
LIMIT  
20  
15  
10  
5
Toavoidcurrentclipping, theoutputsignalcurrentshould  
not exceed the DC quiescent current, IOUT = 20mA (typi-  
cal). Correspondingly, the maximum input voltage,  
VIN(MAX), is IOUT/gm = 133mV (peak). In power terms,  
0
20  
100  
1000 2000  
P
IN(MAX) = –11.5dBm (assuming RIN = 122).  
R
()  
OUT  
5524 F07  
To avoid output voltage clipping (due to LT5524 output  
stage saturation or breakdown), the single-ended output  
voltage swing should stay within the specified limits; i.e.,  
2V VOUT 8V. For a DC output bias of 5V, the maximum  
single ended swing will be 3Vpeak and the maximum  
differential swing will be 6Vpeak. The simultaneous onset  
Figure 7. Maximum Output Power as a Function of ROUT  
shutdown mode. These inputs are typically coupled by  
means of a capacitor or a transformer to a signal source,  
and impedance matching is assumed. In shutdown mode,  
the internal bias can handle up to 1µA leakage on the input  
coupling capacitors. This reduces the turn-on delay due to  
the input coupling RC time constant when exiting shut-  
down mode.  
of both current and voltage limiting occurs when ROUT  
=
=
6Vpeak/20mA = 300(typ) for a maximum POUT  
17.8dBm. This calculation applies for a sinusoidal signal.  
For nonsinusoidal signals, use the appropriate crest fac-  
tor to calculate the actual maximum power that avoids  
output clipping.  
If DC coupling to the input is required, the external  
common mode bias should track the LT5524’s internal  
common mode level. The DC current from the LT5524  
inputsshouldnotexceedIIN(SINK) =200µAandIIN(SOURCE)  
= 400µA.  
Although the instantaneous AC voltage on the OUT+ or  
OUTpins may in some situations safely exceed 8V (with  
respect to ground), in no case should the DC voltage on  
these pins be allowed to exceed the ABSMAX tested limit  
of 7V.  
Stability Considerations  
The LT5524’s open-loop architecture allows it to drive any  
practical load. Note that LT5524 gain is proportional to the  
load impedance, and may exceed the reverse isolation at  
frequencies above 1GHz if the LT5524’s outputs are left  
unloaded,withinstabilityastheundesirableconsequence.  
Insuchcases, placingaresistivedifferentialload(e.g., 4k)  
or a small capacitor at the LT5524 outputs can be used to  
limit the maximum gain.  
For nonoptimal ROUT values, the maximum available out-  
putpowerwillbelowerandcanbecalculated(considering  
current limiting for ROUT < 300, and voltage limiting for  
ROUT > 300). The result of this calculation is shown in  
Figure 7.  
The LT5524 input should not be overdriven (PIN  
>
–11.5dBm at maximum gain). The consequences of over-  
drive are reduced bandwidth and, when the frequency is  
greater than 50MHz, reduced output power. At reduced  
gainsettings, themaximumPIN isincreasedbyanamount  
equal to the gain reduction.  
The LT5524 has about 20GHz gain-bandwidth product.  
Hence, attention must be paid to the printed circuit board  
layout to avoid output pin to input pin signal coupling (the  
evaluation board layout is a good example). Due to the  
LT5524’s internal power supply regulator, external supply  
decouplingcapacitorstypicallyarenotrequired. Likewise,  
decoupling capacitors on the LT5524 control inputs typi-  
Input Bias Voltage  
The LT5524 IN+, INsignal inputs are internally biased to  
1.48V common mode when enabled, and to 1.26V in  
cally are not needed. Note, however, that the Exposed Pad  
5524f  
10  
LT5524  
W U U  
APPLICATIO S I FOR ATIO  
U
ontheLT5524packagemustbesolderedtoagoodground  
ROUT values, more gain and output power is available, and  
better OIP3 figures can be achieved. However, high ROUT  
values are not easily implemented in practice, limited by  
theavailabilityofhighratiooutputimpedancetransforma-  
tion networks.  
plane on the PCB.  
PGA Function, Linearity and NF  
As described in the Circuit Operation section, the LT5524  
consists of a variable (step) attenuator followed by a high  
gain output amplifier. The overall gain of the LT5524 is  
digitally controlled by means of four gain control pins with  
internal pull-down. Minimum gain is programmed when  
the gain control pins are set low or left floating. In  
shutdown mode, these PGA inputs draw <10µA leakage  
current, regardless of the applied voltage.  
Linearity can also be limited by the output RC time con-  
stant (bandwidth limitations), particularly for high ROUT  
values. AsolutionisoutlinedintheBandpassApplications  
section.  
The LT5524 linearity degrades when common mode sig-  
nal is present. The input transformer center tap should be  
decoupled to ground to provide a balanced input differen-  
tial signal and to avoid linearity degradation for high  
attenuationsteps.Whenthesignalfrequencyislowerthan  
50MHz, and there is significant common mode signal,  
then high attenuation settings may result in degraded  
linearity.  
The6dBand12dBattenuationsteps(PGA2andPGA3)are  
implemented by switching the amplifier inputs to an input  
attenuator tap. The 3dB attenuation step (PGA1) changes  
theamplifiertransconductance.TheoutputIP3isapproxi-  
mately independent of the PGA1, PGA2 and PGA3 gain  
settings. However, the 1.5dB attenuation step utilizes a  
currentsteeringtechniquethatdisablestheinternallinear-  
ity compensation circuit, and the OIP3 can be reduced by  
as much as 6dB when PGA0 is low. Therefore, to achieve  
the LT5524’s highest linearity performance, the PGA0 pin  
should be set high.  
At signal frequencies below 100MHz, the LT5524’s inter-  
nal linearity compensation circuitry may provide “sweet  
spots” with very high OIP3, in excess of +52dBm. This  
almost perfect distortion correction cannot be sustained  
over the full operating temperature range and with varia-  
tions of the LT5524 output load (complex impedance  
ZOUT). Users are advised to rely on data shown in the  
Typical Performance Characteristics curves to estimate  
the dependable linearity performance.  
The LT5524 noise figure is 8.6dB at 100MHz in the maxi-  
mum gain state. For the –3dB attenuation setting, the NF  
is 9.2dB. The noise figure increases in direct proportion to  
the amount of programmed gain reduction for the 1.5dB,  
6dB and 12dB steps.  
Wideband Applications  
The output noise floor is proportional to the output load  
impedance, ROUT. It is almost constant for PGA1 = high  
and for any PGA0, PGA2, PGA3 state. When PGA1 = low,  
the output noise floor is 2dB lower (see Typical Perfor-  
mance Characteristics).  
Atlowfrequencies, thevalueofthedecouplingcapacitors,  
choke inductors and choice of transformer will set the  
minimum frequency of operation. Output DC coupling is  
possible, but this typically reduces the LT5524’s output  
DC bias voltage, and thus the output swing and available  
power.  
Other Linearity Considerations  
At high frequencies, the output RC time constants set an  
upper limit to the maximum frequency of operation in the  
case of the wideband output networks presented so far.  
ForexampletheLT5524outputcapacitance,COUT =1.7pF,  
and a pure resistive load, ROUT = 200, will set the –3dB  
bandwidth to about 400MHz. In an actual application, the  
RLOAD • CLOAD product may be even more restrictive. The  
use of wideband output networks will not only limit the  
LT5524 linearity is a strong function of signal frequency.  
OIP3 decreases about 13dB for every octave of frequency  
increase above 100MHz.  
As noted in the Circuit Operation section, at any given  
frequency and input level, the LT5524 provides a current  
output with fairly constant intermodulation distortion fig-  
ure in dBc, regardless of the output load value. For higher  
5524f  
11  
LT5524  
W U U  
U
APPLICATIO S I FOR ATIO  
bandwidth, but will also degrade linearity because part of  
network, giving improved linearity performance for signal  
frequencies greater than 100MHz. Figure 8 is an example  
of such a network.  
the available power is wasted driving the capacitive load.  
The LT5524’s output reactance is capacitive. Therefore  
improvedACresponseispossiblebyusingexternalseries  
output inductors. When driving purely resistive loads, an  
inductor in series with the LT5524 output may help to  
achieve maximally flat AC response as exemplified in the  
characterization setup schematic (Figure 9).  
The network consists of two parallel resonant LC tank  
circuits critically coupled by capacitors C1 and C2. The  
ROUT to RLOAD transformation ratio in this particular  
implementation is 2. The choice of impedance transfor-  
mation ratio is more flexible than in the wideband case.  
The LC network is a bandpass filter, a useful feature in  
many applications.  
The series inductor can extend the application bandwidth,  
but it provides no improvement in linearity performance.  
A variety of bandpass matching network configurations  
are conceivable, depending on the requirements of the  
particular application. The design of these networks is  
facilitated by the fact that the LT5524 outputs are not  
destabilized by reactive loading.  
Series inductance may also produce peaking in the AC  
response. This can be the case when (high Q) choke  
inductors are used in an output interface such as in  
Figure 5, and the PCB trace (connection) to the load is too  
long. Since the LT5524’s output impedance is relatively  
high, the PCB trace acts as a series inductor. The most  
direct solution is to shorten the connection lines by  
placing the driver closer to the load. Another solution to  
flatten the AC response is to place resistance close to the  
LT5524 outputs. In this way the connection line behaves  
more like a terminated transmission line, and the AC  
peaking due to the capacitive load can be removed.  
Note that these LC networks may distort the output signal  
if their amplitude and phase response exhibit nonlinear  
behavior. For example, if resistors R1 and R2 in Figure 5  
are replaced with LC resonant tank circuits, then severe  
OIP3 degradation may occur.  
Low Output Noise Floor Applications  
In some applications the maximum output noise floor is  
specified. The LT5524 outputnoise flooris elevated above  
the available noise power (–174dBm/Hz into 50) by the  
NF+Gain. Consequently, reductionoftheLT5524’spower  
gain is the only way to reduce the output noise floor.  
Bandpass Applications  
For narrow band IF applications, the LT5524’s output  
capacitance and the application load capacitance can be  
incorporated as part of an LC impedance transformation  
NOTE:  
C3 + C  
C4 + C  
= 12pF  
= 12pF  
LOAD  
LOAD  
V
OSUP  
C7  
0.1µF  
V
CC  
L5  
L6  
C1  
C8  
L3  
56nH  
56nH  
56nH  
C3  
12pF  
0.1µF  
T1  
LT5524  
1:2  
+
R
IN  
LOAD  
C
C
LOAD  
50  
R
C6  
2.2pF  
C5  
5.6pF L4  
56nH  
R
OUT  
LOAD  
DUT  
C2  
12pF  
200Ω  
100Ω  
R
SRC  
IN  
+
50Ω  
C9  
0.33µF  
R
LOAD  
TC2-1T  
V
LOAD  
SRC  
C4  
50Ω  
GAIN = 27dB  
1dB BANDWIDTH:  
f
f
= 130MHz  
= 220MHz  
L
U
PGA0 PGA1 PGA2 PGA3  
5524 F08  
Figure 8. Bandpass Output Transformation Network Example  
5524f  
12  
LT5524  
W U U  
APPLICATIO S I FOR ATIO  
U
In fixed gain applications, the LT5524 can be set to 3dB  
attenuation relative to maximum gain. As shown in the  
Typical Performance Characteristics, this gives a 2dB  
reduction in the output noise floor with no loss of linearity.  
Rather, it represents a compromise that most accurately  
measures the actual operation of the part by itself,  
undistortedbytheartifactsoftheimpedancetransformation  
network, or by external bandwidth limiting factors. Balun  
transformers are used to interface with single-ended test  
equipment. Input and output resistive attenuators (not  
shown) provide broadband I/O impedance control. The  
L1, L2 inductors are selected for maximally flat AC output  
response. COUT (normally open) shows the placement of  
capacitive loading when this is specified as a  
characterization variable. The VCCO monitor pin allows  
setting the output DC level (5V typical) by adjusting  
In general, the output noise floor can be reduced by  
decreasing ROUT (and hence power gain), at the cost of  
reduced OIP3.  
LT5524 Characterization  
The LT5524’s typical performance data are based on the  
test circuits shown in Figures 9 and 10. Figure 9 does not  
necessarily reflect the use of the LT5524 in an actual  
application. (For that, see the Application Boards section.)  
voltage VOSUP  
.
V
V
OSUP  
CC  
C4  
C3  
4.7µF  
C2  
R1  
R2  
0.1µF  
R10  
R9  
0.1µF  
2525Ω  
C1  
35.7Ω  
35.7Ω  
0.33µF  
C
OUT  
C7  
47nF  
C5  
47nF  
L1  
R3  
37.4Ω  
R7  
(OPT)  
(OPT)  
LT5524  
T1  
1:1  
35.7Ω  
T1  
1:1  
+
IN  
C8  
47nF  
C6  
47nF  
R
R
L2  
(OPT)  
LOAD  
R8  
OUT  
R4  
37.4Ω  
DUT  
50Ω  
35.7Ω  
R
50Ω  
SRC  
IN +  
C
ETC-1-  
1-13  
ATT =  
7.7dB  
ETC-1-  
1-13  
OUT  
R5  
51k 51k  
R6  
(OPT)  
V
SRC  
R
R3, R4 ATT L1, L2  
OUT  
10037.49dB 0Ω  
20087.412dB 33nH  
V
CCO  
PGA0 PGA1 PGA2 PGA3  
MONITOR  
5524 F09  
Figure 9. Characterization Board (Simplified Schematic)  
V
CC  
C2  
0.1µF  
EN  
V
OSUP  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C4  
0.1µF  
C3  
EN  
V
NC  
NC  
IF  
4.7µF  
V
OUT  
IF  
IN  
CC1  
CC2  
T2  
4:1  
T1  
1:2  
GND  
GND  
GND  
GND  
LT5524  
+
R
LOAD  
50  
IN  
IN  
OUT  
R
R
MATCH  
OUT  
+
255Ω  
100Ω  
OUT  
GND  
GND  
PGA0  
PGA1  
GND  
GND  
PGA3  
PGA2  
C1  
0.47µF  
J2  
0Ω  
J1  
0Ω  
TC4-1W  
TC2-1T  
10  
PGA0 PGA1  
PGA2 PGA3  
TRANSFORMER DEMO BOARD  
5524 F10  
Figure 10. Output Transformer Application Board (Simplified Schematic)  
5524f  
13  
LT5524  
W U U  
U
APPLICATIO S I FOR ATIO  
Application (Demo) Boards  
(T2 transformer). For the Typical Performance Character-  
istics curves, all linearity tests are performed on this  
board. By removing RMATCH, the performance with ROUT  
= 200can be evaluated (provided the lack of impedance  
back-matching is suitably remedied).  
The LT5524 demo boards are provided in the versions  
shown in Figure 10 (with output transformer) and Fig-  
ure 11 (without output transformer). All I/O signal ports  
are matched to 50. Moreover, 40k resistors (not shown)  
connect all five control pins (EN, PGA0, PGA1, PGA2,  
PGA3) to VCC, such that the LT5524 is shipped in maxi-  
mum gain state.  
The transformer board can provide a differential output  
when Jumper J2 is removed.  
The Wideband Differential Output Application Board (Fig-  
ure 11) is an example of direct coupling (no transformer)  
to the load, and has wider output bandwidth. This board  
gives direct access to the LT5524’s output pins, and was  
used for stability tests. Higher VOSUP (6.5V) is required to  
compensate for the DC voltage drop on R1 and R2. Use  
TP2, TP3 to monitor the actual LT5524 output bias volt-  
age. ByreplacingR1andR2withinductors, thisboardcan  
operate with a 5V supply. However, this may limit the  
minimum signal frequency. For example, an 820nH choke  
inductor will limit the lowest signal frequency to 40MHz.  
The gain setting can be changed by connecting the control  
pins to ground. Test points (TP1, TP2, TP3) are provided  
to monitor the input and output DC bias voltage. Jumper  
J1 can be removed when differential input is desired, but  
in that case, T1 should be changed to a 1:1 center-tap  
transformer to preserve 50input matching. The demo  
board is shipped with optional output back-matching  
resistor RMATCH = 255. This results in a net output load,  
ROUT = 100, presented to the LT5524.  
The Output Transformer Application Board (Figure 10) is  
one example of an output impedance transformation  
V
CC  
EN  
C2  
0.1µF  
V
OSUP  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
C4  
C3  
EN  
V
NC  
NC  
R1  
R2  
IF  
0.1µF  
4.7µF  
5050Ω  
V
OUT  
IF  
IN  
CC1  
CC2  
T1  
1:2  
GND  
GND  
GND  
GND  
LT5524  
+
C5  
47nF  
R
LOAD  
IN  
IN  
OUT  
OUT  
R
OUT  
100Ω  
+
50Ω  
GND  
GND  
PGA0  
PGA1  
GND  
GND  
PGA3  
PGA2  
C1  
0.47µF  
J1  
0Ω  
TC2-1T  
J2  
0PEN  
C6  
47nF  
10  
DIFFERENTIAL OUTPUT  
RESISTIVE DEMO BOARD  
PGA0 PGA1  
PGA2 PGA3  
5524 F11  
Figure 11. Wideband Differential Output Application Board (Simplified Schematic)  
5524f  
14  
LT5524  
U
PACKAGE DESCRIPTIO  
FE Package  
20-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663)  
Exposed Pad Variation CB  
6.40 – 6.60*  
(.252 – .260)  
3.86  
(.152)  
3.86  
(.152)  
20 1918 17 16 15 14 1312 11  
6.60 ±0.10  
2.74  
(.108)  
4.50 ±0.10  
6.40  
(.252)  
BSC  
2.74  
(.108)  
SEE NOTE 4  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10  
RECOMMENDED SOLDER PAD LAYOUT  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE20 (CB) TSSOP 0204  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
5524f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5524  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level Downconverting Mixer  
Ultralow Distortion IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
47dBm OIP3 at 100MHz, 33dB Maximum Gain, 22.5dB Gain  
Control Range  
LT5515  
LT5516  
LT5517  
LT5519  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator  
40MHz to 900MHz Quadrature Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
LT5520  
LT5521  
LT5522  
LT5526  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
3.7GHz Very High Linearity Upconverting Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.9GHz, Wide 3.15V to 5.25V Supply Range,  
–5dBm LO Drive, –42dBm LO-RF Leakage  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
16.5dBm IIP3, 0.6dB Gain, 11dB NF at 900MHz,  
28mA Supply Current  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated,  
2.7V to 5.25V Supply  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
50MHz to 3GHz Wide Dynamic Range Log RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
60dB Dynamic Range, Superb Temperature Stability and Accuracy,  
Low Supply Current, SC70 Package  
LTC5535  
Precision RF Detector with 12MHz Baseband Bandwidth  
600MHz to 7GHz Adjustable Gain, Precision V  
Offset Control  
OUT  
Low Voltage RF Building Blocks  
LT5500  
LT5502  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V  
Supply, –7dB to 56dB Linear Power Gain  
5524f  
LT/TP 0904 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT5524EFE#PBF

暂无描述
Linear

LT5525

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5525EUF

High Linearity, Low Power Downconverting Mixer
Linear

LT5525EUF#PBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5525EUF#TR

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5525EUF#TRPBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5526

High Linearity, Low Power Downconverting Mixer
Linear

LT5526EUF

High Linearity, Low Power Downconverting Mixer
Linear

LT5526EUF#PBF

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5526EUF#TRPBF

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5527

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5527EUF

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear