LT5526EUF#PBF [Linear]

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LT5526EUF#PBF
型号: LT5526EUF#PBF
厂家: Linear    Linear
描述:

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

电信 电信集成电路
文件: 总16页 (文件大小:226K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5526  
High Linearity, Low Power  
Downconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5526 is a low power broadband mixer optimized  
for high linearity applications such as point-to-point data  
transmission,cableinfrastructureandwirelessinfrastruc-  
ture systems. The device includes an internally matched  
high speed LO amplifier driving a double-balanced active  
mixer core. An integrated RF buffer amplifier provides  
excellentLO-RFisolation.TheRFandIFportscanbeeasily  
matched across a broad range of frequencies for use in a  
wide variety of applications.  
Operation up to 2GHz  
Broadband RF, LO and IF Operation  
High Input IP3: +16.5dBm at 900MHz  
Typical Conversion Gain: 0.6dB at 900MHz  
SSB Noise Figure: 11dB at 900MHz  
On-Chip 50LO Match  
Integrated LO Buffer: –5dBm Drive Level  
High LO-RF and LO-IF Isolation  
Low Supply Current: 28mA Typ  
Enable Function  
Single 5V Supply  
16-Lead QFN (4mm × 4mm) Package  
The LT5526 offers a high performance alternative to  
passivemixers. Unlikepassivemixerswhichhaveconver-  
sion loss and require high LO drive levels, the LT5526  
delivers conversion gain at significantly lower LO input  
levels and is much less sensitive to LO power level  
U
APPLICATIO S  
variations.  
Point-to-Point Data Communication Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Wireless Infrastructure  
Cable Downlink Infrastructure  
High Linearity Receiver Applications  
U
TYPICAL APPLICATIO  
High Signal Level Frequency Downconversion  
IF Output Power and IM3 vs  
RF Input Power (Two Input Tones)  
V
CC  
5V DC  
0
V
V
EN  
BIAS  
CC2  
CC1  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
P
OUT  
900MHz  
900MHz  
140MHz  
+
+
RF  
RF  
IF  
IF  
LNA  
VGA  
ADC  
T
= 25°C  
= 140MHz  
= 900MHz  
= 760MHz  
= –5dBm  
A
f
f
f
IF  
RF  
LO  
IM3  
GND  
P
LO  
–5  
RF INPUT POWER (dBm/TONE)  
+
LO LO  
LT5526  
–20  
–15  
–10  
0
5526 TA02  
5526 TA01  
LO INPUT  
–5dBm  
5526f  
1
LT5526  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Supply Voltage ...................................................... 5.5V  
Enable Voltage ............................... –0.3V to VCC + 0.3V  
LO Input Power ............................................... +10dBm  
LO+ to LODifferential DC Voltage ......................... ±1V  
RF Input Power................................................ +10dBm  
RF+ to RFDifferential DC Voltage ....................... ±0.7V  
Operating Temperature Range ................ – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Junction Temperature (TJ)................................... 125°C  
ORDER PART  
NUMBER  
16 15 14 13  
LT5526EUF  
NC  
+
1
2
3
4
12 GND  
+
RF  
11 IF  
17  
RF  
NC  
IF  
10  
9
GND  
5
6
7
8
UF PART  
MARKING  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
5526  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND,  
MUST BE SOLDERED TO PCB.  
NC PINS SHOULD BE GROUNDED  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = 3V, TA = 25°C (Note 3), unless otherwise noted. Test circuit shown in Figure 1.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
3.6  
5
5.3  
33  
V
mA  
µA  
Supply Current  
V
= 5V  
28  
CC  
Shutdown Current  
EN = Low  
100  
Enable (EN) Low = Off, High = On  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
Enable Pin Input Current  
3
V
V
0.3  
EN = 5V  
EN = 0V  
55  
0.01  
µA  
µA  
Turn-On Time (Note 5)  
Turn-Off Time (Note 5)  
3
6
µs  
µs  
(Notes 2, 3)  
AC ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
MIN  
TYP  
MAX  
MAX  
UNITS  
MHz  
RF Input Frequency Range (Note 4)  
LO Input Frequency Range (Note 4)  
IF Output Frequency Range (Note 4)  
Requires RF Matching  
Requires DC Blocks  
Requires IF Matching  
0.1 to 2000  
0.1 to 2500  
0.1 to 1000  
MHz  
MHz  
VCC = 5V, EN = 3V, TA = 25°C. Test circuits shown in Figures 1 and 2. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z = 50, External Match  
TYP  
15  
UNITS  
dB  
RF Input Return Loss  
LO Input Return Loss  
IF Output Return Loss  
LO Input Power  
O
Z = 50, External DC Blocks  
O
15  
dB  
Z = 50, External Match  
O
15  
dB  
–10 to 0  
dBm  
5526f  
2
LT5526  
VCC = 5V, EN = 3V, TA = 25°C, PRF = –15dBm (–15dBm/tone for 2-tone  
AC ELECTRICAL CHARACTERISTICS  
IIP3 tests, f = 1MHz), PLO = –5dBm, unless otherwise noted. Test circuits shown in Figures 1 and 2. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF to LO Isolation  
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
69  
55  
50  
dB  
dB  
dB  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
Conversion Gain  
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
0.6  
0.6  
0.4  
dB  
dB  
dB  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = –40°C to 85°C  
–0.013  
dB/°C  
A
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
15.2  
16.5  
14.1  
dBm  
dBm  
dBm  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
Single Sideband Noise Figure  
LO to RF Leakage  
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
12.7  
11.0  
13.7  
dB  
dB  
dB  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
–65  
–65  
–55  
dBm  
dBm  
dBm  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
LO to IF Leakage  
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
–56  
–74  
–37  
dBm  
dBm  
dBm  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
2RF-2LO Output Spurious Product  
350MHz: f = 385MHz at –15dBm, f = 420MHz  
–75  
–72  
–48  
dBc  
dBc  
dBc  
RF  
LO  
(f = f ± f /2)  
900MHZ: f = 830MHz at –15dBm, f = 760MHz  
RF  
LO  
IF  
RF LO  
1900MHz: f = 1830MHz at –15dBm, f = 1760MHz  
RF  
LO  
3RF-3LO Output Spurious Product  
(f = f ± f /3)  
350MHz: f = 396.67MHz at –15dBm, f = 420MHz  
–65  
–68  
–56  
dBc  
dBc  
dBc  
RF  
LO  
900MHZ: f = 806.67MHz at –15dBm, f = 760MHz  
RF  
LO  
IF  
RF  
LO  
1900MHz: f = 1806.67MHz at –15dBm, f = 1760MHz  
RF  
LO  
Input 1dB Compression  
f
f
f
= 350MHz, f = 70MHz, f = 420MHz  
5
5
1
dBm  
dBm  
dBm  
RF  
RF  
RF  
IF  
LO  
= 900MHz, f = 140MHz, f = 760MHz  
IF  
LO  
= 1900MHz, f = 140MHz, f = 1760MHz  
IF  
LO  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Operation over a wider frequency range is possible with reduced  
performance. Consult the factory for information and assistance.  
Note 2: The 900MHz and 1900MHz performance is measured with the test  
circuit shown in Figure 1. The 350MHz performance is measured using the  
test circuit in Figure 2.  
Note 5: Turn-on and turn-off times correspond to a change in the output  
level by 40dB.  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
5526f  
3
LT5526  
W U  
900MHz Application. VCC = 5V, EN = 3V,  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
TA = 25°C, PRF = –15dB (–15dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at  
140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and SSB NF  
vs RF Frequency (Low Side LO)  
Conversion Gain, IIP3 and SSB NF  
vs RF Frequency (High Side LO)  
Conversion Gain, IIP3 and SSB NF  
vs Temperature  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
25  
20  
15  
10  
T
f
= 25°C  
= 140MHz  
T
f
= 25°C  
= 140MHz  
f
= 140MHz  
A
IF  
A
IF  
IF  
LOW SIDE LO  
IIP3  
IIP3  
IIP3  
HIGH SIDE LO  
HIGH SIDE LO  
SSB NF  
12 SSB NF  
SSB NF  
10  
8
LOW SIDE LO  
6
6
5
0
4
4
GAIN  
LOW AND HIGH SIDE LO  
2
2
GAIN  
GAIN  
0
0
–2  
–2  
–5  
600  
800  
1000  
1200  
1400  
600  
800  
1000  
1200  
1400  
–50  
10  
30  
50  
70  
90  
–30 –10  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
TEMPERATURE (°C)  
5526 G02  
5526 G01  
5526 G03  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
LO-IF and LO-RF Leakage  
vs LO Input Frequency  
16  
25  
20  
15  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
f
= 25°C  
= 140MHz  
f
f
= 760MHz  
25°C  
f
f
= 760MHz  
A
IF  
LO  
IF  
LO  
IF  
= 140MHz  
85°C  
= 140MHz  
15  
14  
–40°C  
13  
12  
11  
10  
9
IIP3  
25°C  
LO-IF  
85°C  
–40°C  
LO-RF  
5
0
GAIN  
8
–5  
–10  
–8  
–4  
–2  
0
2
–12  
–6  
–4  
LO INPUT POWER (dBm)  
0
2
700  
1100  
LO FREQUENCY (MHz)  
–12 –10  
–8  
–6  
–2  
500  
900  
1300  
1500  
LO INPUT POWER (dBm)  
5526 G05  
5526 G04  
5526 G06  
Conversion Gain and IIP3  
vs Supply Voltage  
RF, LO and IF Port Return Loss  
vs Frequency  
IF Output Power and IM3 vs RF  
Input Power (Two Input Tones)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
25  
20  
15  
10  
f
f
= 760MHz  
LO  
IF  
RF PORT  
= 140MHz  
–5  
P
OUT  
–10  
–15  
IF PORT  
25°C  
85°C  
IIP3  
–40°C  
–20  
–25  
–30  
5
0
f
f
= 760MHz  
LO  
IF  
GAIN  
IM3  
= 140MHz  
LO PORT  
25°C  
85°C  
–40°C  
–5  
0
500  
1000  
1500  
2000  
–20  
–15  
–10  
0
–5  
4.4  
SUPPLY VOLTAGE (V)  
5.2 5.6  
2.8 3.2  
3.6 4.0  
4.8  
RF INPUT POWER (dBm/TONE)  
FREQUENCY (MHz)  
5526 G08  
5526 G09  
5526 G07  
5526f  
4
LT5526  
W U  
900MHz Application. VCC = 5V, EN = 3V,  
TA = 25°C, PRF = –15dB (–15dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
IFOUT, 2 × 2 and 3 × 3 Spurs  
vs RF Input Power  
2 × 2 and 3 × 3 Spurs  
vs LO Input Power  
10  
0
–30  
–40  
–50  
–60  
T
= 25°C  
A
IF OUT  
f
f
= 760MHz  
LO  
IF  
f
= 900MHz  
RF  
–10  
= 140MHz  
P
= –15dBm  
RF  
–20  
–30  
–40  
3RF-3LO  
f
= 806.67MHz  
RF  
–50  
–60  
–70  
–80  
2RF-2LO  
= 830MHz  
f
RF  
2RF-2LO  
= 830MHz  
–70  
f
RF  
–80  
–90  
–100  
–110  
3RF-3LO  
T
= 25°C  
–90  
A
f
= 806.67MHz  
RF  
f
f
= 760MHz  
LO  
IF  
–100  
–110  
= 140MHz  
–10  
–12  
–8  
0
–20  
–15  
–5  
0
–16  
4
–4  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5526 G10  
5526 G11  
1900MHz Application. VCC = 5V, EN = 3V, TA = 25°C, PRF = –15dB (–15dBm/tone for 2-tone IIP3 tests, f = 1MHz),  
fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at 140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain and IIP3  
vs RF Frequency  
SSB Noise Figure  
vs RF Frequency  
IFOUT, 2 × 2 and 3 × 3 Spurs  
vs RF Input Power  
20  
18  
16  
14  
12  
10  
8
10  
0
18  
17  
16  
15  
14  
13  
12  
11  
10  
f
f
= f – f  
IIP3  
LO RF IF  
IF  
f
f
= f – f  
25°C  
85°C  
–40°C  
LO RF IF  
IF OUT  
= 1900MHz  
= 140MHz  
= 140MHz  
IF  
f
RF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3RF-3LO  
= 1806.67MHz  
f
RF  
2RF-2LO  
= 1830MHz  
25°C  
85°C  
–40°C  
f
RF  
6
4
GAIN  
2
T
= 25°C  
A
f
f
= 1760MHz  
LO  
IF  
0
= 140MHz  
–2  
1400  
1600  
1800  
2000  
2200  
–20  
–15  
–10  
–5 0  
1800  
1600  
RF FREQUENCY (MHz)  
1400  
2000  
2200  
RF FREQUENCY (MHz)  
RF INPUT POWER (dBm)  
5526 G12  
5526 G14  
5526 G13  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
LO-IF and LO-RF Leakage  
vs LO Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
18  
16  
14  
12  
10  
8
18  
f
f
= 1760MHz  
T
f
= 25°C  
= 140MHz  
f
f
= 1760MHz  
25°C  
LO  
IF  
A
IF  
LO  
= 140MHz  
= 140MHz  
85°C  
IF  
17  
16  
–40°C  
LO-IF  
15  
14  
13  
12  
11  
IIP3  
LO-RF  
25°C  
85°C  
6
–40°C  
4
GAIN  
2
0
–2  
10  
–12  
–8  
–6 –4  
–2  
0
2
–10  
–8  
–4  
–2  
0
2
2300  
2100  
2500  
–10  
–12  
–6  
900  
1700  
1100 1300 1500  
1900  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5526 G15  
5526 G16  
5526 G17  
5526f  
5
LT5526  
W U  
350MHz Application. VCC = 5V, EN = 3V,  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
TA = 25°C, PRF = –15dB (–15dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF + 70MHz, PLO = –5dBm, IF output measured at  
70MHz, unless otherwise noted. Test circuit shown in Figure 2.  
Conversion Gain and IIP3  
vs RF Frequency  
SSB Noise Figure  
vs RF Frequency  
IFOUT, 2 × 2 and 3 × 3 Spurs  
vs RF Input Power  
20  
18  
16  
14  
12  
10  
8
20  
0
18  
17  
16  
15  
f
IF  
= f + f  
f
f
= f + f  
25°C  
85°C  
–40°C  
LO RF IF  
LO RF IF  
f
= 70MHz  
= 70MHz  
IF  
IF OUT  
= 350MHz  
f
RF  
IIP3  
–20  
–40  
–60  
3RF-3LO  
= 396.67MHz  
25°C  
85°C  
–40°C  
14  
13  
f
RF  
6
2RF-2LO  
RF  
–80  
4
f
= 385MHz  
12  
11  
10  
T
= 25°C  
2
A
–100  
GAIN  
f
f
= 420MHz  
LO  
IF  
0
= 70MHz  
–120  
–2  
–15  
–10  
0
–20  
–5  
320  
340  
RF FREQUENCY (MHz)  
380  
300  
400  
200 250  
300  
350  
400  
450  
500  
360  
RF FREQUENCY (MHz)  
RF INPUT POWER (dBm)  
5526 G20  
5526 G19  
5526 G18  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
LO-IF and LO-RF Leakage  
vs LO Frequency  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
18  
16  
14  
12  
10  
8
f
f
= 420MHz  
f
f
= 420MHz  
25°C  
T
f
= 25°C  
= 70MHz  
LO  
IF  
LO  
IF  
A
IF  
= 70MHz  
= 70MHz  
85°C  
–40°C  
LO-IF  
IIP3  
25°C  
LO-RF  
85°C  
6
–40°C  
4
GAIN  
2
0
–2  
2
–12  
–8  
–6 –4  
–2  
2
–12  
–8  
LO INPUT POWER (dBm)  
–6 –4  
–2  
0
0
500  
450  
550  
–10  
–10  
150  
350  
200 250 300  
400  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
5526 G21  
5526 G22  
5526 G23  
W U  
Test circuit shown in Figure 1.  
TYPICAL DC PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Shutdown Current vs Supply Voltage  
32  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
25°C  
85°C  
–40°C  
6
4
25°C  
85°C  
–40°C  
2
0
14  
4.4  
SUPPLY VOLTAGE (V)  
5.2 5.6  
2.8 3.2 3.6 4.0  
4.8  
2.8 3.2 3.6 4.0  
SUPPLY VOLTAGE (V)  
5.6  
4.4 4.8 5.2  
5526 G25  
5526 G24  
5526f  
6
LT5526  
U
U
U
PI FU CTIO S  
NC (Pins 1, 4, 8, 13, 16): Not Connected Internally. These  
pinsshouldbegroundedonthecircuitboardforimproved  
LO-to-RF and LO-to-IF isolation.  
RF+, RF(Pins 2, 3): Differential Inputs for the RF Signal.  
These pins must be driven with a differential signal. Each  
pin must also be connected to a DC ground capable of  
sinking 7.5mA (15mA total). This DC bias return can be  
accomplished through the center-tap of a balun or with  
shuntinductors.Animpedancetransformationisrequired  
to match the RF input to 50(or 75).  
GND (Pins 9, 12): Ground. These pins are internally  
connected to the Exposed Pad for better isolation. They  
should be connected to ground on the circuit board,  
though they are not intended to replace the primary  
grounding through the Exposed Pad of the package.  
IFand IF+ (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to VCC  
through impedance matching inductors, RF chokes or a  
transformer center-tap.  
EN (Pin 5): Enable Pin. When the input voltage is higher  
than 3V, the mixer circuits supplied through Pins 6, 7, 10  
and 11 are enabled. When the input voltage is less than  
0.3V, all circuits are disabled. Typical enable pin input  
current is 55µA for EN = 5V and 0.01µA when EN = 0V.  
LO, LO+ (Pins 14, 15): Differential Inputs for the Local  
Oscillator Signal. The LO input is internally matched to  
50; however, external DC blocking capacitors are re-  
quiredbecausethesepinsareinternallybiasedtoapproxi-  
mately 1.7V DC. Either LO input can be driven with a  
single-ended source while connecting the unused input to  
ground through a DC blocking capacitor.  
V
CC1 (Pin 6): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is 11mA. This pin should be  
externally connected to the other VCC pins and decoupled  
with 100pF and 0.01µF capacitors.  
Exposed Pad (Pin 17): Circuit Ground Return for the  
EntireIC.Thismustbesolderedtotheprintedcircuitboard  
ground plane.  
VCC2 (Pin 7): Power Supply Pin for the Bias Circuits.  
Typical current consumption is 2.5mA. This pin should be  
externally connected to the other VCC pins and decoupled  
with 100pF and 0.01µF capacitors.  
W
BLOCK DIAGRA  
17  
EXPOSED  
PAD  
15 14  
+
LO  
LO  
HIGH  
SPEED  
LO BUFFER  
GND  
12  
LINEAR  
AMPLIFIER  
+
+
IF  
RF  
2
3
11  
IF  
RF  
10  
GND  
DOUBLE-  
BALANCED  
MIXER  
9
BIAS  
EN  
V
CC2  
V
CC1  
5
7
6
5526 BD  
5526f  
7
LT5526  
TEST CIRCUITS  
C6  
C5  
RF  
GND  
ER = 4.4  
0.018"  
0.062"  
LO  
IN  
760MHz  
DC  
0.018"  
GND  
16  
15 14  
13  
NC  
+
17 NC LO LO  
NC  
1
2
12  
11  
10  
9
L3  
T2  
T1  
GND  
TL1  
2
6
3
4
1
2
3
5
4
RF  
IN  
900MHz  
+
+
C4  
RF  
IF  
C3  
L2  
LT5526  
C1  
TL2  
3
4
IF  
OUT  
140MHz  
1
IF  
RF  
NC  
GND  
EN  
V
V
NC  
CC1 CC2  
1900MHz INPUT MATCHING:  
C1: 1.5pF  
T1: LDB311G9010C-440  
5
6
7
8
EN  
V
CC  
5526 F01  
C2  
C8  
REF DES  
VALUE  
SIZE  
0402  
0402  
0402  
0402  
0603  
PART NUMBER  
REF DES  
L2, L3  
T1  
VALUE  
150nH  
1:1  
SIZE  
1608  
1206  
PART NUMBER  
C1  
2.7pF  
0.01µF  
1.2pF  
100pF  
1µF  
AVX 04025A2R7CAT  
AVX 04023C103JAT  
AVX 04025A1R2BAT  
AVX 04025A101JAT  
Toko LL1608-FSR15J  
Murata LDB31900M05C-417  
M/A-COM ETC4-1-2  
C2  
C3  
T2  
4:1  
SM-22  
L = 1.25mm  
C4, C5, C6  
C8  
TL1, TL2  
Z = 80  
O
Taiyo Yuden LMK107BJ105MA  
Figure 1. Test Schematic for 900MHz Application. For 1900MHz or Other Applications,  
Component Values Are as Indicated in Figure 1 and in Applications Section  
C6  
C5  
RF  
GND  
ER = 4.4  
0.018"  
0.062"  
LO  
IN  
420MHz  
DC  
0.018"  
C4  
GND  
16  
15 14  
13  
NC  
+
17 NC LO LO  
NC  
1
2
12  
11  
10  
9
L1  
L3  
T2  
GND  
C7  
L4  
RF  
+
1
2
3
5
4
IN  
+
RF  
IF  
350MHz  
C3  
L2  
LT5526  
L5  
3
4
IF  
OUT  
70MHz  
IF  
RF  
C9  
NC  
GND  
EN  
V
V
NC  
CC1 CC2  
5
6
7
8
EN  
V
CC  
5526 F02  
C2  
C8  
REF DES  
C2  
VALUE  
0.01pF  
3.9pF  
100pF  
1µF  
SIZE  
PART NUMBER  
REF DES  
L1, L4  
L2, L3  
L5  
VALUE  
15nH  
270nH  
100nH  
4:1  
SIZE  
1005  
1608  
1005  
PART NUMBER  
0402  
0402  
0402  
0603  
0402  
AVX 04023C103JAT  
AVX 04025A3R9BAT  
AVX 04025A101JAT  
Toko LL1005-FH15NJ  
Toko LL1608-FSR27J  
Toko LL1005-FHR10J  
M/A-COM ETC4-1-2  
C3  
C4, C5, C6  
C8  
Taiyo Yuden LMK107BJ105MA  
AVX 04025A100JAT  
T2  
SM-22  
C7, C9  
10pF  
Figure 2. Test Schematic for 350MHz Applications  
5526f  
8
LT5526  
W U U  
APPLICATIO S I FOR ATIO  
U
The LT5526 consists of a double-balanced mixer, RF  
buffer amplifier, high speed limiting LO buffer and  
bias/enable circuits. The IC has been optimized for  
downconverterapplicationswithRFinputsignalsto2GHz  
and LO signals to 2.5GHz. With proper matching, the IF  
output can be tuned for operation at frequencies from  
0.1MHz to 1GHz. Operation over a wider input frequency  
range is possible, though with reduced performance.  
A lowpass impedance matching network is used to trans-  
form the differential input impedance at Pins 2 and 3 to the  
optimum value for the balun output, as illustrated in  
Figures 3 and 4. To assist in matching, Table 1 lists the  
differential input impedance and reflection coefficient at  
Pins 2 and 3 for several RF frequencies. The following  
example demonstrates how to design a lowpass imped-  
ance transformation network for the RF input.  
The RF, LO and IF ports are all differential, though the LO  
port is internally matched for single-ended drive (with  
external DC blocking capacitors). The LT5526 is charac-  
terizedandproductiontestedusingsingle-endedLOdrive.  
Low side or high side LO injection can be used.  
From Table 1, the differential input impedance at 900MHz  
is: RRF + jXRF = 31.3 + j8.41. The 8.41reactance is  
divided into two halves, with one half on each side of the  
31.3internal load resistor, as shown in Figure 4. The  
matching network consists of additional external series  
inductanceandacapacitor(C1)inparallelwiththedesired  
source impedance (50in this example). The external  
capacitance and inductance are calculated as follows:  
RF Input Port  
Figure 3 shows a simplified schematic of the internal RF  
input circuit and example external impedance matching  
components for a 900MHz application. Each RF input pin  
requires a low resistance DC return to ground capable of  
handling 7.5mA. The DC ground can be realized using the  
center-tap of an input transformer (T1), as shown, or  
through matching inductors or bias chokes connected  
from Pins 2 and 3 to ground.  
n = RS/RRF = 50/31.3 = 1.597  
Q = (n – 1) = 0.773  
XC = RS/Q = 64.7Ω  
C1 = 1/(ω • XC) = 2.74pF  
XL = RRF • Q = 24.2Ω  
XEXT = XL – XRF = 15.8Ω  
LEXT = XEXT/ω = 2.79nH  
TL1  
Z
= 80  
0
7.5mA  
LT5526  
LNG = 1.25mm  
+
RF  
RF  
2
3
RF  
IN  
T1  
1:1  
900MHz  
2
1
6
3
4
C1  
2.7pF  
TL2  
= 80Ω  
Z
0
LNG = 1.25mm  
V
7.5mA  
BIAS  
T1: LDB31900M05C-417  
5526 F03  
Figure 3. RF Input with External Matching  
for 900MHz Application  
5526f  
9
LT5526  
W U U  
U
APPLICATIO S I FOR ATIO  
The external inductance is split in half (1.4nH), with each  
half connected between the pin and C1 as shown in  
Figure 4. The inductance may be realized with short, high  
impedance printed transmission lines, as in Figure 3,  
which provides a compact board layout and reduced  
component count. A 1:1 transformer (T1 in Figure 3)  
converts the 50differential impedance to a 50single-  
ended input.  
RF  
IN  
LT5526  
L1  
C7  
L4  
50  
1/2 X  
1/2 X  
RF  
RF  
+
RF  
RF  
2
3
R
RF  
L5  
C9  
5526 F05  
Figure 5. Schematic of Lumped Element Input Balun  
LT5526  
1/2 X  
1/2 X  
EXT  
EXT  
RF  
RF  
+
RF  
RF  
2
3
RS RRF  
L1= L4 =  
C7 = C9 =  
R
S
C1  
R
RF  
ω
50  
1/2 X  
1/2 X  
1
ω RS RRF  
5526 F04  
Figure 4. RF Input Impedance Matching Topology  
Table 1. RF Input Differential Impedance  
Where RS is the source resistance (50) and RRF is the  
mixer input resistance from Table 1.  
The computed values are only approximate, as they don’t  
factor in the effects of XRF or the parasitics of the external  
components. Actual component values for several fre-  
quencies are listed in Table 2, and measured return loss  
vs. frequency is plotted for each example in Figure 6.  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
REFLECTION COEFFICIENT  
MAG  
0.282  
0.280  
0.278  
0.282  
0.280  
0.268  
0.251  
0.237  
0.269  
ANGLE  
70  
140  
240  
360  
450  
750  
900  
1500  
1900  
28.0 + j1.34  
28.2 + j2.46  
28.4 + j3.30  
28.4 + j4.75  
28.6 + j5.42  
29.9 + j7.39  
31.3 + j8.41  
38.3 + j17.9  
42.5 + j24.6  
176  
172  
169  
164  
0
–5  
162  
155  
150  
112  
–10  
–15  
–20  
–25  
92.2  
An alternative method of driving the RF input is to use a  
lumped-element balun configuration, as shown in Fig-  
ure 5. This type of network may provide a more cost-  
effective solution for narrow band applications (fractional  
bandwidths < 30%). The actual balun is composed of  
components C7, C9, L1 and L4, and their values may be  
estimated as follows:  
100  
500  
700  
900  
1100 1300  
300  
FREQUENCY (MHz)  
5526 F06  
Figure 6. Input Return Loss with Lumped Element Baluns  
Using Values from Table 2  
5526f  
10  
LT5526  
W U U  
APPLICATIO S I FOR ATIO  
U
External 100pF DC blocking capacitors provide a broad-  
band match from about 110MHz to 2.7GHz, as shown in  
the plot of return loss vs frequency in Figure 8. The LO  
input match can be improved at lower frequencies by  
increasing the values of C5 and C6.  
The purpose of L5 is to provide a DC return path for Pin 3.  
(Another possible placement for L5 would be across Pins  
2 and 3, thus using L1 as part of the DC return path.) The  
inductance and resonant frequency of L5 should be large  
enoughthattheydon’tsignificantlyaffecttheinputimped-  
ance and performance of the balun. Either multilayer or  
wire-wound inductors may be used.  
0
–5  
The impact of L5 on input matching can be reduced by  
adding a capacitor in parallel with it. In this case, the  
capacitor value should be the same as C7 and C9, while L5  
should have the same value as L1 and L4.  
–10  
–15  
Table 2. Component Values for Lumped Balun on RF Input  
–20  
–25  
–30  
FREQUENCY  
(MHz)  
BANDWIDTH  
(MHz)  
L (nH)  
27  
C (pF)  
18  
L5 (nH)  
100  
100  
47  
240  
380  
680  
900  
1100  
100  
130  
215  
230  
230  
0
500  
1000  
1500  
2000  
2500  
15  
10  
FREQUENCY (MHz)  
6.8  
4.7  
3.9  
2.7  
5526 F08  
6.8  
18  
Figure 8. Typical LO Input Return Loss  
with 100pF DC Blocking Capacitors  
3.9  
15  
LO Input Port  
Table 3. Single-Ended LO Input Impedance  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
REFLECTION COEFFICIENT  
The LO buffer amplifier consists of high speed limiting  
differential amplifiers designed to drive the mixer core for  
highlinearity.TheLO+andLOpinsaredesignedforsingle-  
ended drive, though differential drive can be used if de-  
sired. TheLOinputisinternallymatchedto50;however,  
external DC blocking capacitors are required because the  
LO pins are internally biased to approximately 1.7V DC. A  
simplified schematic for the LO input is shown in Figure 7.  
MAG  
0.158  
0.128  
0.122  
0.127  
0.135  
0.144  
0.154  
0.160  
ANGLE  
–35.8  
–31.5  
–26.6  
–26.1  
–28.8  
–34.0  
–40.3  
–46.2  
400  
600  
63.4 – j12.0  
61.6 – j8.38  
61.8 – j6.86  
62.4 – j7.09  
62.8 – j8.32  
62.6 – j10.3  
61.9 – j12.6  
60.5 – j14.4  
800  
1000  
1200  
1400  
1600  
1800  
C5  
100pF  
LT5526  
LO  
14  
IF Output Port  
50Ω  
V
CC  
C6  
100pF  
A simplified schematic of the IF output circuit is shown in  
Figure 9. The output pins, IF+ and IF, are internally  
connected to the collectors of the mixer switching transis-  
tors.Bothpinsmustbebiasedatthesupplyvoltage,which  
can be applied through the center-tap of a transformer or  
+
LO  
LO  
IN  
15  
50Ω  
5526 F07  
Figure 7. LO Input Schematic  
5526f  
11  
LT5526  
W U U  
U
APPLICATIO S I FOR ATIO  
throughimpedance-matchinginductors.EachIFpindraws  
about 7.5mA of supply current (15mA total). For optimum  
single-endedperformance,thesedifferentialoutputsmust  
be combined externally through an IF transformer or  
balun.  
network, along with the impedance values listed in Table  
4. As an example, at an IF frequency of 140MHz and RL =  
200(using a 4:1 transformer for T2),  
n = RIF/RL = 574/200 = 2.87  
Q = (n – 1) = 1.368  
XC = RIF/Q = 420Ω  
C = 1/(ω • XC) = 2.71pF  
C3 = C – CIF = 2.01pF  
XL = RL • Q = 274Ω  
LT5526  
IF  
OUT  
L3  
T2  
4:1  
+
IF  
IF  
11  
10  
575  
C3  
V
CC  
L2  
0.7pF  
L2 = L3 = XL/2ω = 156nH  
V
CC  
Table 4. IF Differential Impedance (Parallel Equivalent)  
5526 F09  
FREQUENCY  
(MHz)  
OUTPUT  
IMPEDANCE  
REFLECTION COEFFICIENT  
Figure 9. IF Output with External Matching  
MAG  
0.840  
0.840  
0.840  
0.838  
0.834  
0.831  
0.829  
0.822  
0.814  
ANGLE  
70  
575|| – j3.39k  
574|| – j1.67k  
572|| – j977  
561|| – j519  
537|| – j309  
525|| – j267  
509|| – j229  
474|| – j181  
435|| – j147  
–1.8  
An equivalent small-signal model for the output is shown  
in Figure 10. The output impedance can be modeled as a  
575resistor in parallel with a 0.7pF capacitor. For most  
applications, the bond-wire inductance (0.7nH per side)  
can be ignored.  
140  
–3.5  
240  
–5.9  
450  
–11.1  
–18.6  
–21.3  
–24.8  
–31.3  
–38.0  
750  
860  
1000  
1250  
1500  
LT5526  
0.7nH  
0.7nH  
L3  
+
IF  
IF  
11  
10  
C
R
R
L
200  
IF  
IF  
C3  
L2  
0.7pF  
574Ω  
Low Cost Output Match  
For low cost applications in which the required fractional  
bandwidth of the IF output is less than 25%, it may be  
possible to replace the output transformer with a lumped-  
element network similar to that discussed earlier for the  
RF input. This circuit is shown in Figure 11, where L11,  
L12, C11 and C12 form a narrowband bridge balun. These  
element values are selected to realize a 180° phase shift at  
thedesiredIFfrequencyandcanbeestimatedbyusingthe  
equations below. In this case, RIF is the mixer output  
resistance and RL is the load resistance (50).  
5526 F10  
Figure 10. IF Output Small-Signal Model  
The external components, C3, L2 and L3 form an imped-  
ance transformation network to match the mixer output  
impedance to the input impedance of transformer T2. The  
values for these components can be estimated using the  
same equations that were used for the input matching  
5526f  
12  
LT5526  
W U U  
APPLICATIO S I FOR ATIO  
U
0
RIF RL  
L11= L12 =  
C11= C12 =  
ω
1
ω RIF RL  
–5  
–10  
–15  
–20  
–25  
I
nductors L13 and L14 provide a DC path between VCC  
and the IF+ pin. Only one of these inductors is required.  
Low cost multilayer chip inductors are adequate for L11,  
L12 and L13. If L14 is used instead of L13, a larger value  
is usually required, which may require the use of a wire-  
wound inductor. Capacitor C13 is a DC block which can  
also be used to adjust the impedance match. Capacitor  
C14 is a bypass capacitor.  
100  
200  
250  
300  
350  
400  
150  
FREQUENCY (MHz)  
5526 F12  
Figure 12. Typical Return Loss Performance with  
a 240MHz Narrowband Bridge IF Balun (Swept IF)  
20  
T
= 25°C  
C12  
A
L11  
C11  
+
IF  
IF  
f
f
= 1900MHz  
RF  
C13  
C14  
= f – f  
LO  
LO RF IF  
= –5dBm  
15  
10  
5
P
IF  
L14  
OPT  
OUT  
50Ω  
IIP3  
L13  
OPT  
L12  
V
CC  
GAIN  
5526 F11  
0
Figure 11. Narrowband Bridge IF Balun  
–5  
190  
210  
230  
250  
270  
290  
Typical return loss of the IF output port is plotted versus  
frequencyinFigure12fora240MHzbalundesign. Forthis  
example, L11 = L12 = 100nH, C11 = C12 = 3.9pF, L14 =  
560nH and C13 = 100pF. Performance versus IF output  
frequency is shown in Figure 13 in the case of a 1900MHz  
RF input. These results show that the usable IF bandwidth  
isgreaterthan60MHz, assumingtighttolerancematching  
components. Contact the factory for applications assis-  
tance with this circuit.  
IF FREQUENCY (MHz)  
5526 F13  
Figure 13. Typical Gain and IIP3 Performance with  
a 240MHz Narrowband Bridge IF Balun (Swept IF)  
5526f  
13  
LT5526  
U
TYPICAL APPLICATIO S  
Evaluation Board Layouts  
Top Layer Silkscreen  
Top Layer Metal  
5526f  
14  
LT5526  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 ±0.05  
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 ±0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 ± 0.10  
(4-SIDES)  
(UF) QFN 1103  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5526f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5526  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 21dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level Downconverting Mixer  
Ultralow Distortion, IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain  
Control Range  
LT5515  
LT5516  
LT5517  
LT5519  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator  
40MHz to 900MHz Quadrature Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
LT5520  
LT5521  
LT5522  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
3.7GHz Very High Linearity Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, 12.5dB SSBNF, –42dBm LO Leakage,  
Supply Voltage = 3.15V to 5.25V  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated,  
2.7V to 5.25V Supply  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
50MHz to 3GHz RF Power Detector with 60dB Dynamic Range  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
±1dB Output Variation over Temperature, 38ns Response Time  
Low Voltage RF Building Blocks  
LT5500  
LT5502  
1.8GHz to 2.7GHz Receiver Front End  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer, LO Buffer  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain,  
90dB RSSI Range  
LT5503  
LT5506  
LT5546  
1.2GHz to 2.7GHz Direct IQ Modulator and  
Upconverting Mixer  
1.8V to 5.25V Supply, Four-Step RF Power Control,  
120MHz Modulation Bandwidth  
500MHz Quadrature IF Demodulator with VGA  
1.8V to 5.25V Supply, 40MHz to 500MHz IF, –4dB to 57dB  
Linear Power Gain, 8.8MHz Baseband Bandwidth  
500MHz Ouadrature IF Demodulator with  
VGA and 17MHz Baseband Bandwidth  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V  
Supply, –7dB to 56dB Linear Power Gain  
Wide Bandwidth ADCs  
LT1749  
LT1750  
12-Bit, 80Msps  
500MHz BW S/H, 71.8dB SNR, 87dB SFDR  
14-Bit, 80Msps  
500MHz BW S/H, 75.5dB SNR, 90dB SFDR, 2.25V or 1.35V  
Input Ranges  
P-P  
P-P  
5526f  
LT/TP 0704 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT5526EUF#TRPBF

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5527

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5527EUF

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5527EUF-PBF

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer
Linear

LT5527EUF-TRPBF

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer
Linear

LT5528

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5528EUF

1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator
Linear

LT5528EUF#PBF

LT5528 - 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5528EUF#TRPBF

暂无描述
Linear

LT5534

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6#PBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear