LT5525EUF [Linear]

High Linearity, Low Power Downconverting Mixer; 高线性度,低功率下变频混频器
LT5525EUF
型号: LT5525EUF
厂家: Linear    Linear
描述:

High Linearity, Low Power Downconverting Mixer
高线性度,低功率下变频混频器

文件: 总12页 (文件大小:192K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5525  
High Linearity, Low Power  
Downconverting Mixer  
U
FEATURES  
DESCRIPTIO  
The LT®5525 is a low power broadband mixer optimized  
for high linearity applications such as point-to-point data  
transmission,highperformanceradiosandwirelessinfra-  
structure systems. The device includes an internally 50  
matched high speed LO amplifier driving a double-bal-  
anced active mixer core. An integrated RF buffer amplifier  
providesexcellentLO-RFisolation.TheRFinputbalunand  
all associated 50matching components are integrated.  
The IF ports can be easily matched across a broad range  
of frequencies for use in a wide variety of applications.  
Wide Input Frequency Range: 0.8GHz to 2.5GHz*  
Broadband LO and IF Operation  
High Input IP3: +17.6dBm at 1900MHz  
Typical Conversion Gain: –1.9dB at 1900MHz  
High LO-RF and LO-IF Isolation  
SSB Noise Figure: 15.1dB at 1900MHz  
Single-Ended 50RF and LO Interface  
Integrated LO Buffer: –5dBm Drive Level  
Low Supply Current: 28mA Typ  
Enable Function  
Single 5V Supply  
The LT5525 offers a high performance alternative to  
passive mixers. Unlike passive mixers, which require high  
LO drive levels, the LT5525 operates at significantly lower  
LO input levels and is much less sensitive to LO power  
level variations.  
16-Lead QFN (4mm × 4mm) Package  
U
APPLICATIO S  
Point-to-Point Data Communication Systems  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
*Operation over a wider frequency range is achievable with reduced performance.  
Consult factory for more information.  
Wireless Infrastructure  
High Performance Radios  
High Linearity Receiver Applications  
U
TYPICAL APPLICATIO  
High Signal Level Frequency Downconversion  
IF Output Power and IM3 vs  
RF Input Power (Two Input Tones)  
V
CC  
5V DC  
0.01µF  
0
–10  
–20  
V
V
EN  
BIAS  
CC2  
CC1  
100pF  
P
OUT  
1900MHz  
1900MHz  
140MHz  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
150nH  
+
+
4:1  
RF  
RF  
IF  
IF  
LNA  
VGA  
ADC  
1.2pF  
150nH  
T
= 25°C  
= 1900MHz  
= 1760MHz  
= 140MHz  
= –5dBm  
A
f
f
f
RF  
LO  
IF  
P
GND  
IM3  
LO  
–5  
RF INPUT POWER (dBm/TONE)  
+
LT5525  
LO LO  
–20  
–15  
–10  
0
5525 TA01  
LO INPUT  
–5dBm  
5525 TA02  
5525f  
1
LT5525  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
Supply Voltage ...................................................... 5.5V  
Enable Voltage ............................... –0.3V to VCC + 0.3V  
LO Input Power ............................................... +10dBm  
LO+ to LODifferential DC Voltage ......................... ±1V  
LO+ and LOCommon Mode DC Voltage... –0.5V to VCC  
RF Input Power................................................ +10dBm  
RF+ to RFDifferential DC Voltage ..................... ±0.13V  
RF+ and RFCommon Mode DC Voltage ... –0.5V to VCC  
IF+ and IFCommon Mode DC Voltage................... 5.5V  
Operating Temperature Range ................ – 40°C to 85°C  
Storage Temperature Range ................. 65°C to 125°C  
Junction Temperature (TJ)................................... 125°C  
ORDER PART  
NUMBER  
16 15 14 13  
LT5525EUF  
NC  
+
1
2
3
4
12 GND  
+
RF  
11 IF  
17  
RF  
NC  
IF  
10  
9
GND  
5
6
7
8
UF PART  
MARKING  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
5525  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD (PIN 17) IS GND,  
MUST BE SOLDERED TO PCB.  
NC PINS SHOULD BE GROUNDED  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS  
VCC = 5V, EN = 3V, TA = 25°C (Note 3), unless otherwise noted. Test circuit shown in Figure 1.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
(Note 6)  
3.6  
5
5.3  
33  
V
mA  
µA  
Supply Current  
V
= 5V  
28  
CC  
Shutdown Current  
EN = Low  
100  
Enable (EN) Low = Off, High = On  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
Enable Pin Input Current  
3
V
V
0.3  
EN = 5V  
EN = 0V  
55  
0.1  
µA  
µA  
Turn-On Time (Note 5)  
Turn-Off Time (Note 5)  
3
6
µs  
µs  
(Notes 2, 3)  
AC ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
MIN  
TYP  
MAX  
MAX  
UNITS  
MHz  
RF Input Frequency Range (Note 4)  
LO Input Frequency Range (Note 4)  
IF Output Frequency Range (Note 4)  
Requires RF Matching Below 1300MHz  
800 to 2500  
500 to 3000  
0.1 to 1000  
MHz  
Requires IF Matching  
MHz  
VCC = 5V, EN = 3V, TA = 25°C. Test circuit shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z = 50  
TYP  
15  
UNITS  
dB  
RF Input Return Loss  
LO Input Return Loss  
IF Output Return Loss  
LO Input Power  
O
Z = 50, External DC Blocks  
O
15  
dB  
Z = 50, External Match  
O
15  
dB  
–10 to 0  
dBm  
5525f  
2
LT5525  
VCC = 5V, EN = 3V, TA = 25°C, PRF = –15dBm (–15dBm/tone for 2-tone  
AC ELECTRICAL CHARACTERISTICS  
in Figure 1. (Notes 2, 3)  
IIP3 tests, f = 1MHz), fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at 140MHz, unless otherwise noted. Test circuit shown  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
f
f
f
f
= 900MHz  
= 1900MHz  
= 2100MHz  
= 2500MHz  
–2.6  
–1.9  
–2.0  
–2.0  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = –40°C to 85°C  
–0.020  
dB/°C  
A
f
f
f
f
= 900MHz  
= 1900MHz  
= 2100MHz  
= 2500MHz  
21.0  
17.6  
17.6  
12.0  
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
Single Sideband Noise Figure  
f
f
f
f
= 900MHz  
= 1900MHz  
= 2100MHz  
= 2500MHz  
14.0  
15.1  
15.6  
15.6  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
LO to RF Leakage  
LO to IF Leakage  
f
f
= 500MHz to 1000MHz  
= 1000MHz to 3000MHz  
–50  
–43  
dBm  
dBm  
LO  
LO  
f
f
= 500MHz to 1400MHz  
= 1400MHz to 3000MHz  
–50  
–39  
dBm  
dBm  
LO  
LO  
RF to LO Isolation  
RF to IF Isolation  
f
= 500MHz to 3000MHz  
>38  
dB  
RF  
f
f
f
f
= 900MHz  
= 1900MHz  
= 2100MHz  
= 2500MHz  
62  
42  
40  
33  
dB  
dB  
dB  
dB  
RF  
RF  
RF  
RF  
Input 1dB Compression  
f
f
f
f
= 900MHz  
= 1900MHz  
= 2100MHz  
= 2500MHz  
7.6  
4
4
dBm  
dBm  
dBm  
dBm  
RF  
RF  
RF  
RF  
3
2RF-2LO Output Spurious Product  
900MHz: f = 830MHz at –15dBm  
–63  
–53  
–45  
–42  
dBc  
dBc  
dBc  
dBc  
RF  
(f = f + f /2)  
1900MHz: f = 1830MHz at –15dBm  
RF  
LO  
IF  
RF  
2100MHz: f = 2030MHz at –15dBm  
RF  
2500MHz: f = 2430Hz at –15dBm  
RF  
3RF-3LO Output Spurious Product  
(f = f + f /3)  
900MHz: f = 806.67MHz at –15dBm  
–74  
–59  
–59  
–60  
dBc  
dBc  
dBc  
dBc  
RF  
1900MHz: f = 1806.67MHz at –15dBm  
RF  
LO  
IF  
RF  
2100MHz: f = 2006.67MHz at –15dBm  
RF  
2500MHz: f = 2406.67Hz at –15dBm  
RF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 4: Operation over a wider frequency range is possible with reduced  
performance. Consult the factory for information and assistance.  
Note 2: The performance is measured with the test circuit shown in  
Figure 1. For 900MHz measurements, C1 = 3.9pF. For all other  
measurements, C1 is not used.  
Note 5: Turn-on and turn-off times correspond to a change in the output  
level of 40dB.  
Note 6: The part is operable below 3.6V with reduced performance.  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
5525f  
3
LT5525  
W U  
VCC = 5V, EN = 3V, TA = 25°C, fRF = 1900MHz,  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
PRF = –15dBm (–15dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at 140MHz,  
unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain and IIP3  
Conversion Gain and IIP3  
vs RF Frequency (Low Side LO)  
vs RF Frequency (High Side LO)  
SSB NF vs RF Frequency  
25  
25  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
12  
20  
15  
10  
5
20  
15  
10  
5
IIP3  
IIP3  
HIGH SIDE LO  
LOW SIDE LO  
25°C  
25°C  
85°C  
85°C  
–40°C  
–40°C  
GAIN  
GAIN  
0
0
–5  
–5  
1900 2100  
1900 2100  
2300 2500  
900 1100 1300 1500 1700  
2300 2500  
900 1100 1300 1500 1700  
900  
1100 1300 1500  
1700  
1900 2500  
2100 2300  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5525 G01  
5525 G02  
5525 G03  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
LO-IF, LO-RF and RF-LO Leakage  
vs Frequency  
25  
20  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
20  
19  
18  
17  
16  
15  
14  
13  
12  
25°C  
85°C  
–40°C  
15  
10  
IIP3  
LO-RF  
RF-LO  
25°C  
85°C  
–40°C  
5
0
LO-IF  
GAIN  
–5  
–16 –14 –12 –10 –8 –6 –4 –2  
LO INPUT POWER (dBm)  
0
2
4
500  
1000  
1500  
2000  
2500  
3000  
–6 –4  
–14 –12 –10 –8  
LO INPUT POWER (dBm)  
–2  
0
2
FREQUENCY (MHz)  
5525 G04  
5525 G06  
5525 G05  
Conversion Gain and IIP3  
vs Supply Voltage  
RF, LO and IF Port Return Loss  
vs Frequency  
IF Output Power and IM3 vs RF  
Input Power (Two Input Tones)  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–5  
25  
20  
15  
10  
P
OUT  
RF  
LO  
–10  
–15  
–20  
–25  
–30  
25°C  
85°C  
–40°C  
IIP3  
5
0
IF  
IM3  
GAIN  
25°C  
85°C  
–40°C  
–5  
4.4  
SUPPLY VOLTAGE (V)  
5.2 5.6  
0
1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
–20  
–15  
–10  
0
2.8 3.2  
3.6  
4
4.8  
500  
–5  
RF INPUT POWER (dBm/TONE)  
5525 G08  
5525 G09  
5525 G07  
5525f  
4
LT5525  
W U  
VCC = 5V, EN = 3V, TA = 25°C, fRF = 1900MHz,  
PRF = –15dBm (–15dBm/tone for 2-tone IIP3 tests, f = 1MHz), fLO = fRF – 140MHz, PLO = –5dBm, IF output measured at 140MHz,  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
unless otherwise noted. Test circuit shown in Figure 1.  
IFOUT, 2 × 2 and 3 × 3 Spurs  
vs RF Input Power  
2 × 2 and 3 × 3 Spurs  
vs LO Input Power  
10  
0
–30  
–40  
T
= 25°C  
A
IF OUT  
f
f
= 1760MHz  
LO  
IF  
f
RF  
= 1900MHz  
= 140MHz  
–10  
–20  
–30  
–40  
–50  
–50  
–60  
–70  
3RF-3LO  
f
= 1806.67MHz  
RF  
2RF-2LO  
= 1830MHz  
f
RF  
2RF-2LO  
= 1830MHz  
–60  
–70  
f
RF  
–80  
–90  
–100  
3RF-3LO  
= 1806.67MHz  
–80  
–90  
T
= 25°C  
f
RF  
A
f
f
= 1760MHz  
LO  
IF  
= 140MHz  
–100  
–12  
–8  
–4  
4
–20  
–15  
–10  
–5  
0
–16  
0
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5525 G10  
5525 G11  
W U  
Test circuit shown in Figure 1.  
TYPICAL DC PERFOR A CE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Shutdown Current vs Supply Voltage  
20  
15  
10  
5
32  
30  
28  
26  
24  
22  
20  
18  
16  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
0
14  
2.8 3.2  
3.6  
4
4.4 4.8 5.2 5.6  
2.8 3.2 3.6  
4
5.6  
4.4 4.8 5.2  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5525 G13  
5525 G12  
5525f  
5
LT5525  
U
U
U
PI FU CTIO S  
NC (Pins 1, 4, 8, 13, 16): Not Connected Internally. These  
pinsshouldbegroundedonthecircuitboardforimproved  
LO-to-RF and LO-to-IF isolation.  
RF+, RF(Pins 2, 3): Differential Inputs for the RF Signal.  
OneRFinputpinmaybeDCconnectedtoalowimpedance  
ground to realize a 50single-ended input at the other RF  
pin. No external matching components are required. A DC  
voltage should not be applied across these pins, as they  
are internally connected through a transformer winding.  
GND (Pins 9, 12): Ground. These pins are internally  
connected to the Exposed Pad for better isolation. They  
should be connected to ground on the circuit board,  
though they are not intended to replace the primary  
grounding through the Exposed Pad of the package.  
IFand IF+ (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to VCC  
through impedance matching inductors, RF chokes or a  
transformer center-tap.  
LO, LO+ (Pins 14, 15): Differential Inputs for the Local  
Oscillator Signal. The LO input is internally matched to  
50. The LO can be driven with a single-ended source  
through either LO input pin, with the other LO input pin  
connected to ground. There is an internal DC resistance  
across these pins of approximately 480. Thus, a DC  
blocking capacitor should be used if the signal source has  
a DC voltage present.  
EN (Pin 5): Enable Pin. When the input voltage is higher  
than 3V, the mixer circuits supplied through Pins 6, 7, 10  
and 11 are enabled. When the input voltage is less than  
0.3V, all circuits are disabled. Typical enable pin input  
current is 55µA for EN = 5V and 0.1µA when EN = 0V.  
V
CC1 (Pin 6): Power Supply Pin for the LO Buffer Circuits.  
Typical current consumption is 11mA. This pin should be  
externally connected to the other VCC pins and decoupled  
with 1µF and 0.01µF capacitors.  
Exposed Pad (Pin 17): Circuit Ground Return for the  
EntireIC.Thismustbesolderedtotheprintedcircuitboard  
ground plane.  
VCC2 (Pin 7): Power Supply Pin for the Bias Circuits.  
Typical current consumption is 2.5mA. This pin should be  
externally connected to the other VCC pins and decoupled  
with 1µF and 0.01µF capacitors.  
W
BLOCK DIAGRA  
17  
15 14  
+
LO  
LO  
EXPOSED  
PAD  
HIGH  
SPEED  
LO BUFFER  
GND  
LINEAR  
AMPLIFIER  
12  
11  
10  
9
+
RF  
RF  
+
IF  
2
3
IF  
GND  
DOUBLE-  
BALANCED  
MIXER  
BIAS  
EN  
V
V
CC1  
CC2  
5
7
6
5525 BD  
5525f  
6
LT5525  
TEST CIRCUITS  
RF  
GND  
ER = 4.4  
0.018"  
0.062"  
LO  
IN  
1760MHz  
DC  
0.018"  
GND  
16  
15 14  
13  
NC  
+
17 NC LO LO  
NC  
C1  
OPTIONAL  
1
2
12  
11  
10  
9
L3  
T2  
GND  
RF  
+
1
2
3
5
4
IN  
+
C4  
RF  
IF  
1900MHz  
C3  
L2  
LT5525  
3
4
IF  
OUT  
140MHz  
IF  
RF  
NC  
GND  
EN  
V
V
NC  
CC1 CC2  
5
6
7
8
EN  
V
CC  
5526 F01  
900MHz INPUT MATCHING:  
C1: 3.9pF  
C2  
C8  
REF DES  
VALUE  
SIZE  
0402  
0402  
0402  
0402  
0603  
1608  
SM-22  
PART NUMBER  
C1  
C2  
C3  
C4  
C8  
Frequency Dependent  
AVX 04023C103JAT  
AVX 04025A1R2BAT  
AVX 04025A101JAT  
0.01µF  
1.2pF  
100pF  
1µF  
Taiyo Yuden LMK107BJ105MA  
Toko LL1608-FSR15J  
L2, L3  
T2  
150nH  
4:1  
M/A-COM ETC4-1-2  
Figure 1. Test Schematic  
W U U  
APPLICATIO S I FOR ATIO  
U
T
he LT5525 consists of a double-balanced mixer, RF  
RF Input Port  
balun, RF buffer amplifier, high speed limiting LO buffer  
and bias/enable circuits. The IC has been optimized for  
downconverter applications with RF input signals from  
0.8GHz to 2.5GHz and LO signals from 500MHz to 3GHz.  
With proper matching, the IF output can be operated at  
frequencies from 0.1MHz to 1GHz. Operation over a  
wider frequency range is possible, though with reduced  
performance.  
The mixer’s RF input, shown in Figure 2, consists of an  
integrated balun and a high linearity differential amplifier.  
The primary terminals of the balun are connected to the  
RF+ andRFpins(Pins2and3, respectively). Thesecond-  
arysideofthebalunisinternallyconnectedtotheamplifier’s  
differential inputs.  
For single-ended operation, the RF+ pin is grounded and  
the RFpin becomes the RF input. It is also possible to  
ground the RFpin and drive the RF+ pin, if desired. If the  
RF source has a DC voltage present, then a coupling  
capacitor must be used in series with the RF input pin.  
Otherwise, excessive DC current could damage the pri-  
mary winding of the balun.  
The RF, LO and IF ports are all differential, though the RF  
and LO ports are internally matched to 50for single-  
ended drive. The LT5525 is characterized and production  
tested using single-ended RF and LO inputs. Low side or  
high side LO injection can be used.  
5525f  
7
LT5525  
APPLICATIO S I FOR ATIO  
W U U  
U
25  
20  
+
LT5525  
RF  
2
IIP3  
15  
10  
5
OPTIONAL SERIES  
REACTANCE FOR  
LOW BAND OR  
HIGH BAND  
SSB NF  
T
f
= 25°C  
A
IF  
RF  
IN  
= 140MHz  
MATCHING  
RF  
LOW SIDE LO  
HIGH SIDE LO  
3
5525 F02  
0
GAIN  
Figure 2. RF Input Schematic  
–5  
1050 1100  
800 850 900 950 1000  
1150 1200  
RF FREQUENCY (MHz)  
As shown in Figure 3, the RF input return loss with no  
external matching is greater than 12dB from 1.3GHz to  
2.3GHz. The RF input match can be shifted down to  
800MHzbyaddingaseries3.9pFcapacitorattheRFinput.  
A series 1.2nH inductor can be added to shift the match up  
to 2.5GHz. Measured return losses with these external  
components are also shown in Figure 3.  
5525 F04  
Figure 4. Typical Gain, IIP3 and NF with  
Series 3.9pF Matching Capacitor  
Table 1. RF Port Input Impedance vs Frequency  
FREQUENCY  
(MHz)  
INPUT  
REFLECTION COEFFICIENT  
IMPEDANCE  
MAG  
0.675  
0.551  
0.478  
0.398  
0.321  
0.244  
0.177  
0.131  
0.138  
0.187  
0.250  
0.311  
0.369  
0.435  
ANGLE  
174  
124  
106  
90  
50  
10.4 + j2.63  
18.1 + j23.7  
25.8 + j30.7  
36.5 + j34.5  
48.4 + j33.3  
59.5 + j25.7  
65.9 + j13.1  
65.0 – j1.0  
0
500  
700  
–5  
NO RF  
900  
MATCHING  
–10  
1100  
1300  
1500  
1700  
1900  
2100  
2300  
2500  
2700  
3000  
74  
57  
–15  
–20  
33  
–3  
59.0 – j12.2  
50.2 – j19.0  
41.8 – j22.1  
34.9 – j22.7  
29.1 – j21.9  
23.2 – j19.1  
–47  
–79  
–97  
–109  
–118  
–130  
SERIES 1.2nH  
–25  
SERIES 3.9pF  
–30  
500  
1000  
1500  
2000  
2500  
3000  
RF FREQUENCY (MHz)  
5525 F03  
Figure 3. RF Input Return Loss Without and  
with External Matching Components  
A broadband RF input match can be easily realized by  
using both the series capacitor and series inductor as  
shown in Figure 5. This network provides good return loss  
at both lower and higher frequencies simultaneously,  
while maintaining good mid-band return loss. The broad-  
band return loss is plotted in Figure 6. The return loss is  
better than 12dB from 700MHz to 2.6GHz using the  
element values of Figure 5.  
Figure4illustratesthetypicalconversiongain,IIP3andNF  
performance of the LT5525 when the RF input match is  
shifted lower in frequency using an external series 3.9pF  
capacitor on the RF input.  
RF input impedance and reflection coefficient (S11) ver-  
sus frequency are shown in Table 1. The listed data is  
referenced to the RFpin with the RF+ pin grounded (no  
external matching). This information can be used to simu-  
late board-level interfacing to an input filter, or to design  
a broadband input matching network.  
LO Input Port  
The LO buffer amplifier consists of high speed limiting  
differential amplifiers designed to drive the mixer core for  
high linearity. The LO+ and LOpins are designed for  
5525f  
8
LT5525  
W U U  
APPLICATIO S I FOR ATIO  
U
0
+
LT5525  
RF  
2
–5  
–10  
–15  
C5  
4.7pF  
L3  
1.5nH  
RF  
IN  
RF  
3
5525 F05  
Figure 5. Wideband RF Input Matching  
–20  
0
500 1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
0
5525 F08  
–5  
Figure 8. LO Input Return Loss  
NO EXTERNAL  
RF MATCHING  
–10  
–15  
The LO port input impedance and reflection coefficient  
(S11) versus frequency are shown in Table 2. The listed  
dataisreferencedtotheLO+ pinwiththeLOpingrounded.  
SERIES 1.5nH  
AND 4.7pF  
–20  
–25  
–30  
Table 2. Single-Ended LO Input Impedance  
FREQUENCY  
(MHz)  
INPUT  
REFLECTION COEFFICIENT  
IMPEDANCE  
MAG  
0.686  
0.457  
0.276  
0.171  
0.166  
0.187  
0.281  
0.214  
ANGLE  
–30  
100  
250  
93.1 – j121  
55.8 – j54  
47.7 – j28  
42.3 – j14  
38.5 – j9.3  
35.8 – j7.8  
34.8 – j7.8  
34.2 – j8.7  
500  
1000  
1500  
2000  
2500  
3000  
–57  
RF FREQUENCY (MHz)  
5525 F06  
500  
–79  
1000  
1500  
2000  
2500  
3000  
–110  
–135  
–146  
–148  
–149  
Figure 6. RF Input Return Loss Using  
Wideband Matching Network  
single-ended drive, though differential drive can be used if  
desired. The LO input is internally matched to 50. A  
simplified schematic for the LO input is shown in Figure 7.  
Measured return loss is shown in Figure 8.  
IF Output Port  
If the LO source has a DC voltage present, then a coupling  
capacitor should be used in series with the LO input pin  
due to the internal resistive match.  
A simplified schematic of the IF output circuit is shown in  
Figure 9. The output pins, IF+ and IF, are internally con-  
nected to the collectors of the mixer switching transistors.  
Both pins must be biased at the supply voltage, which can  
be applied through the center-tap of a transformer or  
LT5525  
LO  
14  
15  
20pF  
LT5525  
IF  
OUT  
V
48054Ω  
20pF  
CC  
L3  
T2  
4:1  
+
IF  
11  
10  
LO  
IN  
575  
50Ω  
+
C3  
V
CC  
L2  
LO  
0.7pF  
IF  
5525 F07  
V
CC  
5525 F09  
Figure 7. LO Input Schematic  
Figure 9. IF Output with External Matching  
5525f  
9
LT5525  
W U U  
U
APPLICATIO S I FOR ATIO  
throughimpedance-matchinginductors.EachIFpindraws  
about 7.5mA of supply current (15mA total). For optimum  
single-endedperformance,thesedifferentialoutputsmust  
becombinedexternallythroughanIFtransformerorbalun.  
LT5525  
0.7nH  
0.7nH  
L3  
+
IF  
11  
10  
C
IF  
0.7pF  
R
IF  
574  
R
L
200Ω  
C3  
L2  
IF  
An equivalent small-signal model for the output is shown  
in Figure 10. The output impedance can be modeled as a  
574resistor (RIF) in parallel with a 0.7pF capacitor. For  
most applications, the bond-wire inductance (0.7nH per  
side) can be ignored.  
5525 F10  
Figure 10. IF Output Small Signal Model  
element network. This circuit is shown in Figure 11, where  
L11, L12, C11 and C12 form a narrowband bridge balun.  
These element values are selected to realize a 180° phase  
shift at the desired IF frequency, and can be estimated  
using the equations below. In this case, the load resis-  
tance, RL, is 50.  
The external components, C3, L2 and L3 form an imped-  
ance transformation network to match the mixer output  
impedance to the input impedance of transformer T2. The  
values for these components can be estimated using the  
equationsbelow,alongwiththeimpedancevalueslistedin  
Table 3. As an example, at an IF frequency of 140MHz and  
RL =200(usinga4:1transformerforT2withanexternal  
50load),  
RIF RL  
L11= L12 =  
ω
n = RIF/RL = 574/200 = 2.87  
Q = (n – 1) = 1.368  
XC = RIF/Q = 420Ω  
C = 1/(ω • XC) = 2.71pF  
C3 = C – CIF = 2.01pF  
XL = RL • Q = 274Ω  
1
C11= C12 =  
ω RIF RL  
I
nductor L13 or L14 provides a DC path between VCC and  
the IF+ pin. Only one of these inductors is required. Low  
cost multilayer chip inductors are adequate for L11, L12  
and L13. If L14 is used instead of L13, a larger value is  
usually required, which may require the use of a wire-  
wound inductor. Capacitor C13 is a DC block which can  
also be used to adjust the impedance match. Capacitor  
C14 is a bypass capacitor.  
L2 = L3 = XL/2ω = 156nH  
Table 3. IF Differential Impedance (Parallel Equivalent)  
FREQUENCY  
(MHz)  
OUTPUT  
REFLECTION COEFFICIENT  
IMPEDANCE  
MAG  
0.840  
0.840  
0.840  
0.838  
0.834  
0.831  
0.829  
0.822  
0.814  
ANGLE  
–1.8  
70  
575|| – j3.39k  
574|| – j1.67k  
572|| – j977  
561|| – j519  
537|| – j309  
525|| – j267  
509|| – j229  
474|| – j181  
435|| – j147  
140  
–3.5  
C12  
L11  
C11  
+
240  
–5.9  
IF  
IF  
C13  
C14  
450  
–11.1  
–18.6  
–21.3  
–24.8  
–31.3  
–38.0  
IF  
L14  
OPT  
OUT  
50  
750  
860  
L13  
OPT  
1000  
1250  
1500  
L12  
V
CC  
5525 F11  
Figure 11. Narrowband Bridge IF Balun  
Low Cost Output Match  
Actual component values for IF frequencies of 240MHz,  
360MHz and 450MHz are listed in Table 4. Typical IF port  
return loss for these examples is shown in Figure 12.  
For low cost applications in which the required fractional  
bandwidth of the IF output is less than 25%, it may be  
possible to replace the output transformer with a lumped-  
5525f  
10  
LT5525  
W U U  
APPLICATIO S I FOR ATIO  
U
Table 4. Component Values for Lumped Balun  
IF FREQ (MHz) L11, L12 (nH) C11, C12 (pF) C13 (pF) L14 (nH)  
Conversion gain and IIP3 performance with an RF fre-  
quency of 1900MHz are plotted vs IF frequency in Figure  
13.TheseresultsshowthattheusableIFbandwidthforthe  
lumped element balun is greater than 60MHz, assuming  
tight tolerance matching components. Contact the factory  
for applications assistance with this circuit.  
240  
360  
450  
100  
68  
3.9  
2.7  
2.2  
100  
10  
560  
270  
180  
56  
8.2  
0
20  
15  
10  
5
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
IIP3  
–5  
T
= 25°C  
A
–10  
–15  
f
f
P
P
= f – f  
LO RF IF  
RF  
= 1900MHz  
= –5dBm  
= –15dBm  
LO  
RF  
T
= 25°C  
A
GAIN  
–20  
–25  
0
f
= f – f  
LO RF IF  
P
P
240MHz  
360MHz  
450MHz  
= –5dBm  
= –15dBm  
LO  
RF  
–5  
200  
300  
350  
400  
450  
500  
200  
300  
350  
400  
450  
500  
250  
250  
1200  
1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
1400  
FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
5525 F12  
5525 F13  
5525 F14  
Figure 12. Typical IF Return Loss  
Performance with 240MHz,  
360MHz and 450MHz Lumped  
Element Baluns  
Figure 13. Typical Gain and IIP3 vs  
IF Frequency with 240MHz,  
360MHz and 450MHz Lumped  
Element Baluns  
Figure 14. Typical IIP3 vs RF  
Frequency with Lumped Element  
Baluns and IF Frequencies of  
240MHz, 360MHz and 450MHz  
U
TYPICAL APPLICATIO S  
Evaluation Board Layouts  
Top Layer Silkscreen  
Top Layer Metal  
5525f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5525  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.72 ±0.05  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
4.35 ± 0.05 2.15 ± 0.05  
2.15 ± 0.10  
(4-SIDES)  
(4 SIDES)  
2.90 ± 0.05  
PACKAGE  
OUTLINE  
(UF) QFN 1103  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.30 ±0.05  
0.65 BSC  
0.00 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5512  
LT5514  
DC-3GHz High Signal Level Down Converting Mixer  
21dBm IIP3, Integrated LO Buffer  
Ultralow Distortion, IF Amplifier/ADC Driver with Digitally  
Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain  
Control Range  
LT5519  
LT5520  
LT5521  
LT5522  
LT5526  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
3.7GHz Very High Linearity Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, 12.5dB SSBNF, –42dBm LO Leakage,  
Supply Voltage = 3.15V to 5.25V  
600MHz to 2.7GHz High Signal Level Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB,  
50Single-Ended RF and LO Ports  
16.5dBm IIP3 at 900MHz, NF = 11dB, Supply Current = 28mA, 3.6V  
to 5.3V Supply  
RF Power Detectors  
LTC5508  
LTC5532  
LT5534  
300MHz to 7GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
50MHz to 3GHz RF Power Detector with 60dB Dynamic Range ±1dB Output Variation over Temperature, 38ns Response Time  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
LTC5535  
600MHz to 7GHz RF Power Detector  
12MHz Baseband BW, Precision Offset with Adjustable Gain and Offset  
Wide Bandwidth ADCs  
LTC1749  
LTC1750  
12-Bit, 80Msps ADC  
500MHz BW S/H, 71.8dB SNR, 87dB SFDR  
14-Bit, 80Msps ADC  
500MHz BW S/H, 75.5dB SNR, 90dB SFDR, 2.25V or 1.35V  
Input Ranges  
P-P  
P-P  
LTC2222/  
LTC2223  
12-Bit, 105Msps/80Msps ADC  
10-Bit/12-Bit, 135Msps ADC  
Low Power 775MHz BW S/H, 61dB SNR, 75dB SFDR ±0.5V or ±1V  
Input  
LTC2224/  
LTC2234  
Low Power 775MHz BW S/H, 61dB SNR, 75dB SFDR ±0.5V or ±1V  
Input  
5525f  
LT/TP 1004 1K • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LT5525EUF#PBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5525EUF#TR

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5525EUF#TRPBF

LT5525 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5526

High Linearity, Low Power Downconverting Mixer
Linear

LT5526EUF

High Linearity, Low Power Downconverting Mixer
Linear

LT5526EUF#PBF

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5526EUF#TRPBF

LT5526 - High Linearity, Low Power Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5527

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5527EUF

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5527EUF-PBF

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer
Linear

LT5527EUF-TRPBF

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer
Linear

LT5528

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear