LT5527EUF-PBF [Linear]

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer; 400MHz至3.7GHz的5V高信号电平下变频混频器
LT5527EUF-PBF
型号: LT5527EUF-PBF
厂家: Linear    Linear
描述:

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer
400MHz至3.7GHz的5V高信号电平下变频混频器

文件: 总16页 (文件大小:198K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5527  
400MHz to 3.7GHz  
5V High Signal Level  
Downconverting Mixer  
FEATURES  
DESCRIPTION  
The LT®5527 active mixer is optimized for high linearity,  
wide dynamic range downconverter applications. The  
IC includes a high speed differential LO buffer amplifier  
driving a double-balanced mixer. Broadband, integrated  
transformersontheRFandLOinputsprovidesingle-ended  
50Ωinterfaces.ThedifferentialIFoutputallowsconvenient  
interfacing to differential IF filters and amplifiers, or is  
easily matched to drive 50Ω single-ended, with or without  
an external transformer.  
n
50Ω Single-Ended RF and LO Ports  
n
Wide RF Frequency Range: 400MHz to 3.7GHz*  
n
High Input IP3: 24.5dBm at 900MHz  
23.5dBm at 1900MHz  
n
Conversion Gain: 3.2dB at 900MHz  
2.3dB at 1900MHz  
n
Integrated LO Buffer: Low LO Drive Level  
n
High LO-RF and LO-IF Isolation  
n
Low Noise Figure: 11.6dB at 900MHz  
12.5dB at 1900MHz  
The RF input is internally matched to 50Ω from 1.7GHz  
to 3GHz, and the LO input is internally matched to 50Ω  
from 1.2GHz to 5GHz. The frequency range of both ports  
is easily extended with simple external matching. The IF  
output is partially matched and usable for IF frequencies  
up to 600MHz.  
n
Very Few External Components  
n
Enable Function  
n
4.5V to 5.25V Supply Voltage Range  
16-Lead (4mm × 4mm) QFN Package  
n
APPLICATIONS  
The LT5527’s high level of integration minimizes the total  
solution cost, board space and system-level variation.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Operation over a wider frequency range is possible with reduced performance. Consult factory  
for information and assistance.  
n
Cellular, WCDMA, TD-SCDMA and UMTS  
Infrastructure  
n
GSM900/GSM1800/GSM1900 Infrastructure  
n
900MHz/2.4GHz/3.5GHz WLAN  
MMDS, WiMAX  
n
n
High Linearity Downmixer Applications  
TYPICAL APPLICATION  
High Signal Level Downmixer for Multi-Carrier Wireless Infrastructure  
1.9GHz Conversion Gain, IIP3, SSB NF and  
LO-RF Leakage vs LO Power  
LO INPUT  
–3dBm (TYP)  
24  
22  
20  
18  
16  
14  
12  
10  
8
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
IIP3  
LT5527  
IF = 240MHz  
LOW SIDE LO  
T
= 25°C  
A
CC  
4.7pF  
V
= 5V  
+
100nH  
IF  
IF  
SSB NF  
1nF  
IF  
220nH  
OUTPUT  
240MHz  
LO-RF  
4.7pF  
RF  
RF  
INPUT  
6
4
G
C
BIAS  
EN  
2
100nH  
1μF  
–9  
–7  
–5  
–3  
–1  
1
3
V
V
CC1  
GND  
CC2  
LO POWER (dBm)  
5527 TA01b  
5V  
1nF  
5527 TA01a  
5527fa  
1
LT5527  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage (V , V , IF+, IF–).......................5.5V  
CC1 CC2  
Enable Voltage ................................ –0.3V to V + 0.3V  
16 15 14 13  
CC  
NC  
NC  
RF  
NC  
1
2
3
4
12 GND  
LO Input Power (380MHz to 4GHz)......................10dBm  
+
11 IF  
LO Input DC Voltage ..............................–1V to V + 1V  
CC  
17  
IF  
10  
9
Continuous RF Input Power  
GND  
(400MHz to 4GHz) ...............................................12dBm  
RF Input Power (400MHz to 4GHz)......................15dBm  
RF Input DC Voltage............................................... 0.1V  
Operating Temperature Range ................–40°C to 85°C  
Storage Temperature Range...................–65°C to 125°C  
5
6
7
8
UF PACKAGE  
16-LEAD (4mm s 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
T
JMAX  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
Junction Temperature (T ) ................................... 125°C  
J
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead (4mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5527EUF#PBF  
LT5527EUF#TRPBF  
5527  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
DC ELECTRICAL CHARACTERISTICS VCC = 5V, EN = High, TA = 25°C, unless otherwise specified. Test  
circuit shown in Figure 1. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
4.5  
5
5.25  
VDC  
Supply Current  
V
V
(Pin 7)  
23.2  
2.8  
52  
mA  
mA  
mA  
mA  
CC1  
(Pin 6)  
CC2  
+
IF + IF (Pin 11 + Pin 10)  
Total Supply Current  
60  
88  
78  
Enable (EN) Low = Off, High = On  
Shutdown Current  
EN = Low  
100  
μA  
VDC  
VDC  
μA  
Input High Voltage (On)  
Input Low Voltage (Off)  
EN Pin Input Current  
Turn-ON Time  
3
0.3  
90  
EN = 5VDC  
50  
3
μs  
Turn-OFF Time  
3
μs  
AC ELECTRICAL CHARACTERISTICS Test circuit shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
400  
380  
TYP  
MAX  
UNITS  
RF Input Frequency Range  
No External Matching (Midband)  
With External Matching (Low Band or High Band)  
1700 to 3000  
MHz  
MHz  
3700  
LO Input Frequency Range  
IF Output Frequency Range  
No External Matching  
With External Matching  
1200 to 3500  
0.1 to 600  
MHz  
MHz  
Requires Appropriate IF Matching  
MHz  
5527fa  
2
LT5527  
AC ELECTRICAL CHARACTERISTICS Test circuit shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z = 50Ω, 1700MHz to 3000MHz  
MIN  
TYP  
>10  
MAX  
UNITS  
dB  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
LO Input Power  
O
Z = 50Ω, 1200MHz to 3400MHz  
O
>12  
dB  
Differential at 240MHz  
407Ω||2.5pF  
R||C  
1200MHz to 3500MHz  
380MHz to 1200MHz  
–8  
–5  
–3  
0
2
5
dBm  
dBm  
Standard Downmixer Application: VCC = 5V, EN = High, TA = 25°C, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), fLO = fRF  
– fIF, PLO = –3dBm (0dBm for 450MHz and 900MHz tests), IF output measured at 240MHz, unless otherwise noted. Test circuit shown  
in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1700MHz  
2.5  
3.4  
2.3  
2.3  
2.0  
1.8  
0.3  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RF = 1900MHz  
RF = 2200MHz  
RF = 2650MHz  
RF = 3500MHz, IF = 380MHz  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = –40°C to 85°C, RF = 1900MHz  
–0.018  
dB/°C  
A
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1700MHz  
23.2  
24.5  
24.2  
23.5  
22.7  
20.8  
18.2  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
RF = 1900MHz  
RF = 2200MHz  
RF = 2650MHz  
RF = 3500MHz, IF = 380MHz  
Single-Sideband Noise Figure  
RF = 450MHz, IF = 140MHz, High Side LO  
RF = 900MHz, IF = 140MHz  
RF = 1700MHz  
13.3  
11.6  
12.1  
12.5  
13.2  
13.9  
16.1  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RF = 1900MHz  
RF = 2200MHz  
RF = 2650MHz  
RF = 3500MHz, IF = 380MHz  
LO to RF Leakage  
f
LO  
f
LO  
= 400MHz to 2100MHz  
= 2100MHz to 3200MHz  
≤–44  
≤–36  
dBm  
dBm  
LO to IF Leakage  
f
LO  
f
LO  
= 400MHz to 700MHz  
= 700MHz to 3200MHz  
≤–40  
≤–50  
dBm  
dBm  
RF to LO Isolation  
f
RF  
f
RF  
= 400MHz to 2200MHz  
= 2200MHz to 3700MHz  
>43  
>38  
dB  
dB  
RF to IF Isolation  
f
RF  
f
RF  
= 400MHz to 800MHz  
= 800MHz to 3700MHz  
>42  
>54  
dB  
dB  
2RF-2LO Output Spurious Product  
900MHz: f = 830MHz at –5dBm, f = 140MHz  
–60  
–65  
dBc  
dBc  
RF  
IF  
(f = fLO + f /2)  
1900MHz: f = 1780MHz at –5dBm, f = 240MHz  
RF  
IF  
RF IF  
3RF-3LO Output Spurious Product  
(f = fLO + f /3)  
900MHz: f = 806.67MHz at –5dBm, f = 140MHz  
–73  
–63  
dBc  
dBc  
RF  
IF  
1900MHz: f = 1740MHz at –5dBm, f = 240MHz  
RF  
IF  
RF  
IF  
Input 1dB Compression  
RF = 450MHz, IF = 140MHz, High Side  
LO RF = 900MHz, IF = 140MHz  
RF = 1900MHz  
9.5  
8.9  
9.0  
dBm  
dBm  
dBm  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 4: SSB Noise Figure measurements performed with a small-signal  
Note 2: 450MHz, 900MHz and 3500MHz performance measured with  
external LO and RF matching. See Figure 1 and Applications Information.  
noise source and bandpass filter on RF input, and no other RF signal  
applied.  
5527fa  
3
LT5527  
Midband (No external RF/LO matching)  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
otherwise noted. Test circuit shown in Figure 1.  
V
CC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), PLO = –3dBm, IF output measured at 240MHz, unless  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
LO Leakage vs LO Frequency  
RF Isolation vs RF Frequency  
24  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–30  
T
= 25°C  
T
= 25°C  
LO  
A
A
IIP3  
22  
20  
18  
16  
14  
12  
10  
8
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
P
= –3dBm  
LO-RF  
RF-LO  
SSB NF  
LO-IF  
T
= 25°C  
A
RF-IF  
IF = 240MHz  
LOW SIDE LO  
HIGH SIDE LO  
6
4
G
C
2
0
1200  
1800 2100 2400 2700 3000  
1700  
1900  
2100  
2300  
2500  
2700  
1500  
1700  
1900  
2100  
2300  
2500  
2700  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5527 G02  
5527 G01  
5527 G03  
Conversion Gain and IIP3  
Conversion Gain and IIP3  
1900MHz Conversion Gain, IIP3  
and NF vs Supply Voltage  
vs Temperature (Low Side LO)  
vs Temperature (High Side LO)  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
9
8
7
6
5
4
3
2
1
0
24  
22  
20  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
10  
9
8
7
6
5
4
3
2
1
0
IIP3  
IIP3  
IIP3  
LOW SIDE LO  
IF = 240MHz  
–40°C  
18  
16  
14  
25°C  
85°C  
IF = 240MHz  
IF = 240MHz  
1700MHz  
1900MHz  
2200MHz  
12  
10  
8
1700MHz  
1900MHz  
2200MHz  
SSB NF  
6
G
C
4
G
C
G
C
2
0
5
4.5  
4.75  
5.25  
5.5  
–50  
–25  
25  
50  
75  
100  
0
–50  
–25  
25  
50  
75  
100  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
5527 G06  
5527 G04  
5527 G05  
1700MHz Conversion Gain, IIP3  
and NF vs LO Power  
1900MHz Conversion Gain, IIP3  
and NF vs LO Power  
2200MHz Conversion Gain, IIP3  
and NF vs LO Power  
25  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
23  
21  
19  
17  
15  
13  
11  
9
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
LOW SIDE LO  
IF = 240MHz  
–40°C  
IIP3  
LOW SIDE LO  
IF = 240MHz  
–40°C  
25°C  
25°C  
85°C  
SSB NF  
SSB NF  
85°C  
SSB NF  
LOW SIDE LO  
IF = 240MHz  
–40°C  
25°C  
7
6
6
G
C
85°C  
G
C
5
4
4
G
C
3
2
2
1
0
0
–9  
–5  
–3  
–1  
1
3
–9  
–5  
–3  
–1  
1
3
–9  
–5  
–3  
–1  
1
3
–7  
–7  
–7  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5527 G07  
5527 G08  
5527 G09  
5527fa  
4
LT5527  
Midband (No external RF/LO matching)  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
V
CC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), PLO = –3dBm, IF output measured at 240MHz, unless  
otherwise noted. Test circuit shown in Figure 1.  
IF Output Power, IM3 and IM5 vs  
IFOUT, 2 × 2 and 3 × 3 Spurs  
2 × 2 and 3 × 3 Spurs  
RF Input Power (2 Input Tones)  
vs RF Input Power (Single Tone)  
vs LO Power (Single Tone)  
10  
15  
5
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–95  
–100  
T
= 25°C  
A
0
LO = 1660MHz  
IF = 240MHz  
IF  
OUT  
3RF-3LO  
(RF = 1740MHz)  
–10  
–20  
–5  
IF  
OUT  
(RF = 1900MHz)  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
–85  
–95  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
= 25°C  
A
2RF-2LO  
(RF = 1780MHz)  
RF1 = 1899.5MHz  
RF2 = 1900.5MHz  
LO = 1660MHz  
3RF-3LO  
(RF = 1740MHz)  
2RF-2LO  
(RF = 1780MHz)  
T
= 25°C  
A
IM3  
LO = 1660MHz  
IF = 240MHz  
P
= –5dBm  
IM5  
RF  
–21  
–15 –12 –9  
–6  
–3  
0
–9 –6  
3
6
–18  
–18 –15 –12  
–3  
0
9
12  
–9  
–7  
–3  
–1  
1
3
–5  
RF INPUT POWER (dBm/TONE)  
5527 G10  
LO INPUT POWER (dBm)  
5527 G12  
RF INPUT POWER (dBm)  
5527 G11  
High Band (3500MHz application with external RF matching) VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests,  
Δf = 1MHz), low side LO, PLO = –3dBm, IF output measured at 380MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and SSB  
NF vs RF Frequency  
3500MHz Conversion Gain, IIP3  
and SSB NF vs LO Power  
LO Leakage and RF-LO Isolation  
vs LO and RF Frequency  
20  
18  
16  
14  
12  
10  
8
19  
17  
15  
13  
11  
9
–20  
–30  
–40  
–50  
–60  
–70  
60  
50  
40  
30  
20  
10  
IIP3  
IIP3  
SSB NF  
SSB NF  
LO-RF  
LOW SIDE LO  
IF = 380MHz  
LOW SIDE LO  
IF = 380MHz  
RF-LO  
T
= 25°C  
T
= 25°C  
A
A
7
6
5
4
3
LO-IF  
G
C
2
1
G
C
–1  
0
3300  
3400  
3500  
3600  
3700  
–9  
–7  
–3  
–1  
1
3
3000  
3200  
3400  
3600  
–5  
3800  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5527 G13  
5527 G14  
LO/RF FREQUENCY (MHz)  
5527 G15  
Low Band (450MHz application with external RF/LO matching) VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests,  
Δf = 1MHz), PLO = 0dBm, IF output measured at 140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF  
vs RF Frequency  
450MHz Conversion Gain,  
IIP3 and NF vs LO Power  
LO Leakage vs LO Frequency  
24  
22  
20  
18  
16  
14  
12  
10  
8
–20  
–30  
24  
22  
20  
T
= 25°C  
LO  
A
P
= 0dBm  
IIP3  
IIP3  
HIGH SIDE LO  
IF = 140MHz  
–40°C  
HIGH SIDE LO  
T
= 25°C  
LO-IF  
(450MHz APP)  
A
18  
16  
14  
LO-RF  
(900MHz APP)  
IF = 140MHz  
25°C  
–40  
–50  
85°C  
SSB NF  
SSB NF  
12  
10  
8
LO-RF  
(450MHz APP)  
–60  
–70  
–80  
LO-IF  
(900MHz APP)  
6
6
G
C
4
4
2
2
G
C
0
0
–6  
–2  
0
2
4
6
400  
600  
800  
1000  
1200  
450  
–4  
400  
425  
475  
500  
LO INPUT POWER (dBm)  
5527 G19  
LO FREQUENCY (MHz)  
5527 G20  
5527 G18  
RF FREQUENCY (MHz)  
5527fa  
5
LT5527  
Low Band (900MHz application with external  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
RF/LO matching) VCC = 5V, EN = High, PRF = –5dBm (–5dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), PLO = 0dBm, IF output measured at  
140MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain, IIP3 and NF vs  
RF Frequency (900MHz Low Side  
Application)  
900MHz Conversion Gain, IIP3 and  
NF vs LO Power (Low Side LO)  
IFOUT, 2 × 2 and 3 × 3 Spurs  
vs RF Input Power (Single Tone)  
25  
23  
21  
19  
17  
15  
13  
11  
9
25  
23  
21  
19  
17  
15  
13  
11  
9
20  
10  
T
= 25°C  
IIP3  
A
LO = 760MHz  
IF = 140MHz  
IIP3  
LOW SIDE LO  
IF = 140MHz  
–40°C  
0
IF  
LOW SIDE LO  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
(RF = 900MHz)  
T
= 25°C  
A
25°C  
IF = 140MHz  
85°C  
SSB NF  
2RF-2LO  
(RF = 830MHz)  
SSB NF  
7
7
G
C
3RF-3LO  
(RF = 806.67MHz)  
5
5
G
C
3
3
1
1
750  
850  
900  
950  
1000 1050  
–6  
–2  
0
2
4
6
800  
–4  
–18 –15 –12 –9 –6 –3  
0
3
6
9
12  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5527 G21  
5527 G22  
5527 G23  
Conversion Gain, IIP3 and NF vs  
RF Frequency (900MHz High Side  
Application)  
900MHz Conversion Gain, IIP3 and  
NF vs LO Power (High Side LO)  
2 × 2 and 3 × 3 Spurs  
vs LO Power (Single Tone)  
25  
23  
21  
19  
17  
15  
13  
11  
9
25  
23  
21  
19  
17  
15  
13  
11  
9
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
T
= 25°C  
A
IIP3  
LO = 760MHz  
IF = 140MHz  
IIP3  
HIGH SIDE LO  
IF = 140MHz  
–40°C  
HIGH SIDE LO  
P
= –5dBm  
RF  
T
= 25°C  
A
2RF-2LO  
(RF = 830MHz)  
IF = 140MHz  
25°C  
85°C  
SSB NF  
SSB NF  
3RF-3LO  
(RF = 806.67MHz)  
7
7
G
C
5
5
G
C
3
3
1
1
750  
850  
900  
950  
1000 1050  
800  
–6  
–2  
0
2
4
6
–4  
–6  
–4  
0
2
4
6
–2  
RF FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5527 G24  
5527 G25  
5527 G26  
Test circuit shown in Figure 1.  
TYPICAL DC PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
Shutdown Current vs Supply Voltage  
82  
81  
80  
79  
78  
76  
75  
74  
73  
72  
71  
100  
10  
1
85°C  
60°C  
25°C  
0°C  
–40°C  
85°C  
25°C  
0°C  
60°C  
–40°C  
0.1  
4.5  
4.75  
5
5.25  
5.5  
4.5  
4.75  
5
5.25  
5.5  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5527 G17  
5527 G16  
5527fa  
6
LT5527  
PIN FUNCTIONS  
NC(Pins 1, 2, 4, 8, 13, 14, 16): Not Connected Internally.  
These pins should be grounded on the circuit board for  
improved LO-to-RF and LO-to-IF isolation.  
be externally connected to the V  
with 1000pF and 1μF capacitors.  
pin and decoupled  
CC2  
GND (Pins 9, 12): Ground. These pins are internally  
connected to the backside ground for improved isola-  
tion. They should be connected to the RF ground on the  
circuit board, although they are not intended to replace  
the primary grounding through the backside contact of  
the package.  
RF (Pin 3): Single-Ended Input for the RF Signal. This pin  
is internally connected to the primary side of the RF input  
transformer, which has low DC resistance to ground. If  
the RF source is not DC blocked, then a series blocking  
capacitormustbeused.TheRFinputisinternallymatched  
from 1.7GHz to 3GHz. Operation down to 400MHz or up  
to 3700MHz is possible with simple external matching.  
+
IF , IF (Pins 10, 11): Differential Outputs for the IF  
Signal. An impedance transformation may be required to  
match the outputs. These pins must be connected to V  
EN (Pin 5): Enable Pin. When the input enable voltage is  
higher than 3V, the mixer circuits supplied through Pins 6,  
7, 10 and 11 are enabled. When the input voltage is less  
than 0.3V, all circuits are disabled. Typical input current  
is 50μA for EN = 5V and 0μA when EN = 0V. The EN pin  
should not be left floating. Under no conditions should the  
CC  
through impedance matching inductors, RF chokes or a  
transformer center tap.  
LO (Pin 15): Single-Ended Input for the Local Oscillator  
Signal. This pin is internally connected to the primary side  
of the LO transformer, which is internally DC blocked. An  
external blocking capacitor is not required. The LO input is  
internally matched from 1.2GHz to 5GHz. Operation down  
to 380MHz is possible with simple external matching.  
EN pin voltage exceed V + 0.3V, even at start-up.  
CC  
V
(Pin 6): Power Supply Pin for the Bias Circuits.  
CC2  
Typical current consumption is 2.8mA. This pin should  
be externally connected to the V  
with 1000pF and 1μF capacitors.  
pin and decoupled  
CC1  
Exposed Pad (Pin 17): Circuit Ground Return for the  
Entire IC. This must be soldered to the printed circuit  
board ground plane.  
V
(Pin 7): Power Supply Pin for the LO Buffer Circuits.  
CC1  
Typical current consumption is 23.2mA. This pin should  
BLOCK DIAGRAM  
15  
LO  
REGULATOR  
EXPOSED  
PAD  
LIMITING  
AMPLIFIERS  
17  
V
CC1  
12  
11  
GND  
LINEAR  
AMPLIFIER  
+
IF  
RF  
IF  
3
10  
9
DOUBLE-BALANCED  
MIXER  
GND  
BIAS  
EN  
V
V
7
CC2  
CC1  
5
6
5527 BD  
5527fa  
7
LT5527  
TEST CIRCUITS  
LO  
IN  
L4  
C4  
RF  
GND  
ER = 4.4  
0.018"  
0.062"  
0.018"  
BIAS  
GND  
16  
15 14  
13  
EXTERNAL MATCHING  
FOR LOW FREQUENCY  
LO ONLY  
NC LO NC NC  
1
2
12  
11  
T1  
NC  
NC  
GND  
L1  
L2  
+
3
2
1
4
5
IF  
Z
O
C3  
LT5527  
RF  
IN  
50Ω  
3
4
10  
9
IF  
OUT  
240MHz  
IF  
GND  
NC  
RF  
L (mm)  
C5  
NC  
EN  
V
V
CC2 CC1  
EXTERNAL MATCHING  
FOR LOW BAND OR  
HIGH BAND ONLY  
5
6
7
8
EN  
V
CC  
C2  
C1  
APPLICATION  
RF LO  
450MHz High Side 6.8nH  
900MHz Low Side 3.9nH  
LO MATCH  
RF MATCH  
GND  
L4  
C4  
L
C5  
12pF  
5527 F01  
10pF  
4.5mm  
5.6pF 1.3mm 3.9pF  
2.7pF 1.3mm 3.9pF  
900MHz High Side  
3500MHz Low Side  
4.5mm 0.5pF  
REF DES  
C1  
VALUE  
SIZE PART NUMBER  
REF DES  
L4, C4, C5  
L1, L2  
VALUE  
SIZE PART NUMBER  
1000pF 0402 AVX 04025C102JAT  
0402 See Applications Information  
0603 Toko LLQ1608-A82N  
C2  
1μF  
0603 AVX 0603ZD105KAT  
0402 AVX 04025A2R7CAT  
82nH  
4:1  
C3  
2.7pF  
T1  
M/A-Com ETC4-1-2 (2MHz to 800MHz)  
Figure 1. Downmixer Test Schematic—Standard IF Matching (240MHz IF)  
LO  
IN  
L4  
C4  
DISCRETE  
IF BALUN  
16  
15 14  
13  
EXTERNAL MATCHING  
FOR LOW FREQUENCY  
LO ONLY  
NC LO NC NC  
1
2
12  
11  
C6  
L1  
NC  
NC  
GND  
+
IF  
C3  
IF  
OUT  
240MHz  
Z
O
L3  
LT5527  
RF  
IN  
50Ω  
C7  
3
4
10  
9
IF  
GND  
NC  
RF  
L (mm)  
C5  
NC  
L2  
EN  
V
V
CC2 CC1  
EXTERNAL MATCHING  
FOR LOW BAND OR  
HIGH BAND ONLY  
5
6
7
8
EN  
V
CC  
C1  
C2  
GND  
5527 F02  
REF DES  
C1, C3  
C2  
VALUE  
SIZE PART NUMBER  
REF DES  
L4, C4, C5  
L1, L2  
VALUE  
SIZE PART NUMBER  
1000pF 0402 AVX 04025C102JAT  
0402 See Applications Information  
0603 Toko LLQ1608-AR10  
0603 Toko LLQ1608-AR22  
1μF  
0603 AVX 0603ZD105KAT  
0402 AVX 04025A4R7CAT  
100nH  
220nH  
C6, C7  
4.7pF  
L3  
Figure 2. Downmixer Test Schematic—Discrete IF Balun Matching (240MHz IF)  
5527fa  
8
LT5527  
APPLICATIONS INFORMATION  
Introduction  
at Pin 3, which improves the 1.7GHz return loss to greater  
than 20dB. Likewise, the 2.7GHz match can be improved  
to greater than 30dB with a series 1.5nH inductor. A series  
1.5nH/2.7pFnetworkwillsimultaneouslyoptimizethelower  
and upper band edges and expand the RF input bandwidth  
to 1.1GHz-3.3GHz. Measured RF input return losses for  
these three cases are also plotted in Figure 4a.  
The LT5527 consists of a high linearity double-balanced  
mixer, RF buffer amplifier, high speed limiting LO buffer  
amplifier and bias/enable circuits. The RF and LO inputs  
are both single ended. The IF output is differential. Low  
side or high side LO injection can be used.  
Two evaluation circuits are available. The standard evalua-  
tion circuit, shown in Figure 1, incorporates transformer-  
based IF matching and is intended for applications that  
require the lowest LO-IF leakage levels and the widest  
IF bandwidth. The second evaluation circuit, shown in  
Figure 2, replaces the IF transformer with a discrete IF  
balun for reduced solution cost and size. The discrete  
IF balun delivers comparable noise figure and linearity,  
higher conversion gain, but degraded LO-IF leakage and  
reduced IF bandwidth.  
Alternatively, the input match can be shifted down, as low  
as400MHzorupto3700MHz, byaddingashuntcapacitor  
(C5)totheRFinput.A450MHzinputmatchisrealizedwith  
C5=12pF,located4.5mmawayfromPin3ontheevaluation  
board’s50Ωinputtransmissionline.A900MHzinputmatch  
requires C5 = 3.9pF, located at 1.3mm. A 3500MHz input  
match is realized with C5 = 0.5pF, located at 4.5mm. This  
0
NO EXTERNAL  
MATCHING  
–5  
RF Input Port  
–10  
–15  
The mixer’s RF input, shown in Figure 3, consists of an  
integrated transformer and a high linearity differential  
amplifier. The primary terminals of the transformer are  
connected to the RF input pin (Pin 3) and ground. The  
secondary side of the transformer is internally connected  
to the amplifier’s differential inputs.  
–20  
SERIES 1.5nH  
SERIES 2.7pF  
SERIES 2.7pF  
–25  
–30  
SERIES 1.5nH  
2.7 3.2  
FREQUENCY (GHz)  
0.2 0.7 1.2 1.7 2.2  
3.7 4.2  
One terminal of the transformer’s primary is internally  
grounded. If the RF source has DC voltage present, then  
a coupling capacitor must be used in series with the RF  
input pin.  
5527 F04a  
(4a) Series Reactance Matching  
0
–5  
The RF input is internally matched from 1.7GHz to 3GHz,  
requiring no external components over this frequency  
range. The input return loss, shown in Figure 4a, is typi-  
cally 10dB at the band edges. The input match at the lower  
band edge can be optimized with a series 2.7pF capacitor  
–10  
–15  
–20  
–25  
–30  
NO EXTERNAL  
MATCHING  
3.5GHz  
900MHz  
C5 = 3.9pF  
L = 1.3mm  
EXTERNAL MATCHING  
FOR LOW BAND OR  
C5 = 0.5pF  
450MHz  
C5 = 12pF  
L = 4.5mm  
L = 4.5mm  
HIGH BAND ONLY  
TO  
MIXER  
Z
= 50Ω  
O
RF  
IN  
L = L (mm)  
2.7 3.2  
0.2 0.7 1.2 1.7 2.2  
RF FREQUENCY (GHz)  
3.7 4.2  
RF  
3
5527 F04b  
C5  
5527 F03  
(4b) Series Shunt Matching  
Figure 4. RF Input Return Loss With  
and Without External Matching  
Figure 3. RF Input Schematic  
5527fa  
9
LT5527  
APPLICATIONS INFORMATION  
series transmission line/shunt capacitor matching topol-  
ogy allows the LT5527 to be used for multiple frequency  
standards without circuit board layout modifications. The  
series transmission line can also be replaced with a series  
chip inductor for a more compact layout.  
TheLOinputisinternallymatchedfrom1.2GHzto5GHz,al-  
thoughthemaximumusefulfrequencyislimitedto3.5GHz  
by the internal amplifiers. The input match can be shifted  
down, as low as 750MHz, with a single shunt capacitor  
(C4) on Pin 15. One example is plotted in Figure 6 where  
C4 = 2.7pF produces an 850MHz to 1.2GHz match.  
Input return loss for these three cases (450MHz, 900MHz  
and 3500MHz) are plotted in Figure 4b. The input return  
loss with no external matching is repeated in Figure 4b  
for comparison.  
LOinputmatchingbelow750MHzrequirestheseriesinduc-  
tor (L4)/shunt capacitor (C4) network shown in Figure 5.  
Two examples are plotted in Figure 6 where L4 = 3.9nH/C4  
= 5.6pF produces a 650MHz to 830MHz match and L4 =  
6.8nH/C4 = 10pF produces a 540MHz to 640MHz match.  
The evaluation boards do not include pads for L4, so the  
circuit trace needs to be cut near Pin 15 to insert L4. A low  
cost multilayer chip inductor is adequate for L4.  
RF input impedance and S11 versus frequency (with no  
external matching) is listed in Table 1 and referenced to  
Pin 3. The S11 data can be used with a microwave circuit  
simulator to design custom matching networks and simu-  
late board-level interfacing to the RF input filter.  
The optimum LO drive is –3dBm for LO frequencies above  
1.2GHz, although the amplifiers are designed to accom-  
modate several dB of LO input power variation without  
significant mixer performance variation. Below 1.2GHz,  
Table 1. RF Input Impedance vs Frequency  
S11  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
MAG  
0.825  
0.708  
0.644  
0.600  
0.529  
0.467  
0.386  
0.275  
0.193  
0.175  
0.209  
0.297  
0.431  
0.564  
0.745  
ANGLE  
173.9  
152.5  
144.3  
137.2  
123.2  
107.4  
89.3  
50  
4.8 + j2.6  
9.0 + j11.9  
11.9 + j15.3  
14.3 + j18.2  
19.4 + j23.8  
26.1 + j29.8  
37.3 + j33.9  
57.4 + j29.7  
71.3 + j10.1  
64.6 – j13.9  
53.0 – j21.8  
35.0 – j21.2  
20.7 – j9.0  
14.2 + j6.2  
10.4 + j31.9  
300  
EXTERNAL  
MATCHING  
FOR LOW BAND  
450  
600  
ONLY  
L4  
C4  
TO  
MIXER  
900  
LO  
IN  
LO  
1200  
1500  
1850  
2150  
2450  
2650  
3000  
3500  
4000  
5000  
15  
V
BIAS  
LIMITER  
60.6  
V
CC2  
20.6  
5527 F05  
–36.8  
–70.3  
–111.2  
–155.8  
164.8  
113.3  
Figure 5. LO Input Schematic  
0
–5  
L4 = 0nH  
L4 = 6.8nH  
C4 = 2.7pF  
C4 = 10pF  
–10  
–15  
–20  
–25  
–30  
NO  
EXTERNAL  
MATCHING  
LO Input Port  
The mixer’s LO input, shown in Figure 5, consists of an  
integratedtransformerandhighspeedlimitingdifferential  
amplifiers. The amplifiers are designed to precisely drive  
the mixer for the highest linearity and the lowest noise  
figure. An internal DC blocking capacitor in series with the  
transformer’s primary eliminates the need for an external  
blocking capacitor.  
L4 = 3.9nH  
C4 = 5.6pF  
0.1  
1
5
LO FREQUENCY (GHz)  
5527 F06  
Figure 6. LO Input Return Loss  
5527fa  
10  
LT5527  
APPLICATIONS INFORMATION  
0dBmLOdriveisrecommendedforoptimumnoisegure,  
although –3dBm will still deliver good conversion gain  
and linearity.  
8. Frequency-dependent differential IF output impedance  
is listed in Table 3. This data is referenced to the package  
pins (with no external components) and includes the ef-  
fects of IC and package parasitics. The IF output can be  
matched for IF frequencies as low as several kHz or as  
high as 600MHz.  
Custommatchingnetworkscanbedesignedusingtheport  
impedance data listed in Table 2. This data is referenced  
to the LO pin with no external matching.  
Table 3. IF Output Impedance vs Frequency  
DIFFERENTIAL OUTPUT  
Table 2. LO Input Impedance vs Frequency  
S11  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
FREQUENCY (MHz)  
IMPEDANCE (RIF || XIF)  
MAG  
0.977  
0.847  
0.740  
0.635  
0.463  
0.330  
0.209  
0.093  
0.032  
0.052  
0.101  
0.124  
0.120  
0.096  
0.226  
ANGLE  
–15.9  
–86.7  
–124.8  
–158.7  
146.7  
106.9  
78.5  
1
415||-j64k  
50  
30.4 – j355.7  
8.7 – j52.2  
9.4 – j25.4  
11.5 – j8.9  
19.7 + j12.8  
34.3 + j24.3  
49.8 + j21.3  
53.8 + j8.9  
50.4 + j3.2  
45.1 + j0.3  
41.1 + j2.4  
41.9 + j8.1  
49.0 + j12.0  
55.4 + j8.6  
33.2 + j8.7  
10  
415||-j6.4k  
415||-j909  
300  
70  
450  
140  
240  
300  
380  
450  
500  
413||-j453  
600  
407||-j264  
900  
403||-j211  
1200  
1500  
1850  
2150  
2450  
2650  
3000  
3500  
4000  
5000  
395||-j165  
387||-j138  
61.7  
381||-j124  
80.5  
176.5  
163.1  
129.8  
87.9  
Thefollowingthreemethodsofdifferentialtosingle-ended  
IF matching will be described:  
• Direct 8:1 transformer  
53.2  
• Lowpass matching + 4:1 transformer  
• Discrete IF balun  
146.7  
IF Output Port  
L1  
+
4:1  
IF  
IF  
IF  
+
OUT  
11  
10  
The IF outputs, IF and IF , are internally connected to the  
collectorsofthemixerswitchingtransistors(seeFigure 7).  
Both pins must be biased at the supply voltage, which  
can be applied through the center tap of a transformer or  
through matching inductors. Each IF pin draws 26mA of  
supply current (52mA total). For optimum single-ended  
performance, these differential outputs should be com-  
bined externally through an IF transformer or a discrete IF  
balun circuit. The standard evaluation board (see Figure  
1) includes an IF transformer for impedance transforma-  
tion and differential to single-ended transformation. A  
second evaluation board (see Figure 2) realizes the same  
functionality with a discrete IF balun circuit.  
50Ω  
C3  
V
CC  
L2  
V
CC  
5527 F07  
Figure 7. IF Output with External Matching  
0.7nH  
2.5pF  
+
IF  
IF  
11  
10  
R
S
415Ω  
0.7nH  
TheIFoutputimpedancecanbemodeledas415Ωinparallel  
with 2.5pF at low frequencies. An equivalent small-signal  
model(includingbondwireinductance)isshowninFigure  
5527 F08  
Figure 8. IF Output Small-Signal Model  
5527fa  
11  
LT5527  
APPLICATIONS INFORMATION  
Direct 8:1 IF Transformer Matching  
frequencies are listed in Table 4. High-Q wire-wound chip  
inductors(L1andL2)improvethemixer’sconversiongain  
by a few tenths of a dB, but have little effect on linearity.  
Measured output return losses for each case are plotted  
in Figure 10 for the simple 8:1 transformer method and  
for the lowpass/4:1 transformer method.  
ForIFfrequenciesbelow100MHz,thesimplestIFmatching  
technique is an 8:1 transformer connected across the IF  
pins. The transformer will perform impedance transfor-  
mation and provide a single-ended 50Ω output. No other  
matching is required. Measured performance using this  
technique is shown in Figure 9. This matching is easily  
implemented on the standard evaluation board by short-  
ing across the pads for L1 and L2 and replacing the 4:1  
transformer with an 8:1 (C3 not installed).  
Table 4. IF Matching Element Values  
IF FREQUENCY  
(MHz)  
L1, L2  
(nH)  
C3  
(pF)  
IF  
PLOT  
TRANSFORMER  
1
2
3
4
5
6
1 to 100  
140  
Short  
120  
110  
82  
TC8-1 (8:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
ETC4-1-2 (4:1)  
25  
190  
2.7  
2.7  
2.2  
2.2  
23  
240  
IIP3  
21  
RF = 900MHz  
380  
56  
19  
17  
15  
13  
11  
9
HIGH SIDE LO AT 0dBm  
V
= 5V DC  
450  
43  
CC  
A
T
= 25°C  
C4 = 2.7pF, C5 = 3.9pF  
SSB NF  
0
–5  
7
5
G
C
–10  
–15  
3
1
10 20 30 40 50 60 70 80 90 100  
IF OUTPUT FREQUENCY (MHz)  
5527 F09  
–20  
–25  
2
Figure 9. Typical Conversion Gain, IIP3 and  
SSB NF Using an 8:1 IF Transformer  
4
5
6
3
1
–30  
0
50 100 150 200 250 300 350 400 450 500  
Lowpass + 4:1 IF Transformer Matching  
IF FREQUENCY (MHz)  
5527 F10  
The lowest LO-IF leakage and wide IF bandwidth are real-  
ized by using the simple, three element lowpass matching  
network shown in Figure 7. Matching elements C3, L1 and  
L2, in conjunction with the internal 2.5pF capacitance,  
form a 400Ω to 200Ω lowpass matching network which  
is tuned to the desired IF frequency. The 4:1 transformer  
then transforms the 200Ω differential output to a 50Ω  
single-ended output.  
Figure 10. IF Output Return Losses  
with Lowpass/Transformer Matching  
Discrete IF Balun Matching  
For many applications, it is possible to replace the IF  
transformer with the discrete IF balun shown in Figure 2.  
The values of L1, L2, C6 and C7 are calculated to realize  
a 180 degree phase shift at the desired IF frequency and  
provide a 50Ω single-ended output, using the equations  
listed below. Inductor L3 is calculated to cancel the in-  
ternal 2.5pF capacitance. L3 also supplies bias voltage  
This matching network is most suitable for IF frequencies  
above 40MHz or so. Below 40MHz, the value of the series  
inductors (L1 and L2) becomes unreasonably high, and  
could cause stability problems, depending on the induc-  
tor value and parasitics. Therefore, the 8:1 transformer  
technique is recommended for low IF frequencies.  
+
to the IF pin. Low cost multilayer chip inductors are  
adequate for L1 and L2. A high Q wire-wound chip induc-  
tor is recommended for L3 to maximize conversion gain  
+
and minimize DC voltage drop to the IF pin. C3 is a DC  
SuggestedlowpassmatchingelementvaluesforseveralIF  
blocking capacitor.  
5527fa  
12  
LT5527  
APPLICATIONS INFORMATION  
0
RIF ROUT  
L1, L2 =  
–5  
ωIF  
–10  
–15  
1
C6,C7 =  
ωIF • RIF ROUT  
190MHz  
240MHz  
–20  
–25  
–30  
XIF  
L3 =  
380MHz  
ωIF  
450MHz  
Compared to the lowpass/4:1 transformer matching tech-  
nique, this network delivers approximately 0.8dB higher  
conversion gain (since the IF transformer loss is elimi-  
nated) and comparable noise figure and IIP3. At a 15ꢀ  
offset from the IF center frequency, conversion gain and  
noise figure degrade about 1dB. Beyond 15ꢀ, conver-  
sion gain decreases gradually but noise figure increases  
rapidly. IIP3 is less sensitive to bandwidth. Other than IF  
bandwidth,themostsignificantdifferenceisLO-IFleakage,  
which degrades to approximately –38dBm compared to  
the superior performance realized with the lowpass/4:1  
transformer matching.  
50 100 150 200 250 300 350 400 450 500 550  
IF FREQUENCY (MHz)  
5527 F11  
Figure 11. IF Output Return Losses with Discrete Balun Matching  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
0
IIP3  
–10  
–20  
–30  
–40  
–50  
–60  
190IF  
240IF  
380IF  
450IF  
LOW SIDE LO (–3dBm)  
= 25°C  
T
A
LO-IF  
Discrete IF balun element values for four common IF fre-  
quenciesarelistedinTable5.Thecorrespondingmeasured  
IF output return losses are shown in Figure 11. The values  
listed in Table 5 differ from the calculated values slightly  
due to circuit board and component parasitics. Typical  
conversion gain, IIP3 and LO-IF leakage, versus RF input  
frequency, for all four IF frequency examples is shown in  
Figure 12. Typical conversion gain, IIP3 and noise figure  
versusIFoutputfrequencyforthesamecircuitsareshown  
in Figure 13.  
6
G
C
4
2
1700  
1900  
2100  
2300  
2500  
2700  
RF INPUT FREQUENCY (MHz)  
5527 F12  
Figure 12. Conversion Gain, IIP3 and LO-IF Leakage vs RF Input  
Frequency Using Discrete IF Balun Matching  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
LOW SIDE LO (–3dBm)  
= 25°C  
Table 5. Discrete IF Balun Element Values (ROUT = 50Ω)  
T
A
IF FREQUENCY  
(MHz)  
L1, L2  
(nH)  
C6, C7  
(pF)  
L3  
(nH)  
190  
240  
380  
450  
120  
100  
56  
6.8  
4.7  
3
220  
220  
68  
SSB NF  
190IF  
240IF  
380IF  
450IF  
6
4
2
G
C
47  
2.7  
47  
0
350 400  
150 200 250 300  
450 500 550  
ForfullydifferentialIFarchitectures,theIFtransformercan  
be eliminated. An example is shown in Figure 14, where  
the mixer’s IF output is matched directly into a SAW filter.  
Supply voltage to the mixer’s IF pins is applied through  
IF OUTPUT FREQUENCY (MHz)  
5527 F13  
Figure 13. Conversion Gain, IIP3 and SSB NF vs IF Output  
Frequency Using Discrete IF Balun Matching  
5527fa  
13  
LT5527  
APPLICATIONS INFORMATION  
matching inductors in a band-pass IF matching network.  
The values of L1, L2 and C3 are calculated to resonate at  
the desired IF frequency with a quality factor that satisfies  
the required IF bandwidth. The L and C values are then  
adjusted to account for the mixer’s internal 2.5pF capaci-  
tance and the SAW filter’s input capacitance. In this case,  
the differential IF output impedance is 400Ω since the  
bandpass network does not transform the impedance.  
SAW  
FILTER  
IF  
L1  
L2  
AMP  
+
IF  
C3  
5527 F14  
IF  
V
CC  
SUPPLY  
DECOUPLING  
Figure 14. Bandpass IF Matching for Differential IF Architectures  
Discrete IF Evaluation Board Layout  
Additional matching elements may be required if the SAW  
filter’s input impedance is less than or greater than 400Ω.  
Contact the factory for application assistance.  
Standard Evaluation Board Layout  
5527fa  
14  
LT5527  
PACKAGE DESCRIPTION  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5527fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5527  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
1kHz to 3GHz High Signal Level Active Mixer  
Optimized for HF/VHF/UHF Applications, 20dBm IIP3 11dB NF  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
Ultralow Distortion, IF Amplifier/ADC Driver with  
Digitally Controlled Gain  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature  
Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature  
Demodulator  
LT5517  
LT5519  
40MHz to 900MHz Quadrature Demodulator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
LT5520  
LT5521  
LT5522  
LT5524  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended  
LO Port Operation  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with Digitally 450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
Programmable Gain  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
LT5557  
400MHz to 3.8GHz, 3.3V High Signal Level  
Downconverting Mixer  
Single-Ended RF and LO Ports, 24.7dBm IIP3 at 1950MHz, NF = 11.7dB  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz RF Power Detector with 60dB  
Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
Precision 600MHz to 7GHz RF Detector with Fast  
Compatator Output  
25ns Response Time, Comparator Reference Input, Latch Enable Input,  
–26dBm to +12dBm Input Range  
Low Voltage RF Building Block  
LT5546 500MHz Quadrature Demodulator with VGA and  
17MHz Baseband Bandwidth  
Wide Bandwidth ADCs  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply,  
–7dB to 56dB Linear Power Gain  
LTC1749  
LTC1750  
12-Bit, 80Msps  
500MHz BW S/H, 71.8dB SNR  
500MHz BW S/H, 75.5dB SNR  
14-Bit, 80Msps  
5527fa  
LT 1108 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5527EUF-TRPBF

400MHz to 3.7GHz 5V High Signal Level Downconverting Mixer
Linear

LT5528

400MHz to 3.7GHz High Signal Level Downconverting Mixer
Linear

LT5528EUF

1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator
Linear

LT5528EUF#PBF

LT5528 - 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT5528EUF#TRPBF

暂无描述
Linear

LT5534

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6#PBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT5534ESC6#TR

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT5534ESC6#TRMPBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40°C to 85°C
Linear

LT5534ESC6PBF

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN
Linear

LT5534ESC6TRPBF

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN
Linear