LT5528EUF#PBF [Linear]

LT5528 - 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LT5528EUF#PBF
型号: LT5528EUF#PBF
厂家: Linear    Linear
描述:

LT5528 - 1.5GHz to 2.4GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总30页 (文件大小:676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC5588-1  
200MHz to 6000MHz  
Quadrature Modulator  
with Ultrahigh OIP3  
FEATURES  
DESCRIPTION  
The LTC®5588-1 is a direct conversion I/Q modulator  
designed for high performance wireless applications. It  
allows direct modulation of an RF signal using differential  
baseband I and Q signals. It supports LTE, GSM, EDGE,  
TD-SCDMA, CDMA, CDMA2000, W-CDMA, WiMax and  
other communication standards. It can also be config-  
ured as an image reject upconverting mixer, by applying  
90° phase-shifted signals to the I and Q inputs. The I/Q  
baseband inputs drive double-balanced mixers. An on-  
chipbalunconvertsthedifferentialmixersignalstoa50Ω  
single-ended RF output. Four balanced I and Q baseband  
input ports are DC-coupled with a common mode volt-  
age level of 0.5V. The LO path consists of an LO buffer  
with single-ended or differential inputs and precision  
quadrature generators to drive the mixers. The supply  
voltage range is 3.15V to 3.45V. An external voltage can  
be applied to the LINOPT pin to further improve 3rd-order  
linearity performance. Accurate temperature dependent  
calibrationscanbeperformedusingtheon-chipthermistor.  
n
Frequency Range: 200MHz to 6000MHz  
n
OutputIP3:+31dBmTypicalat2140MHz(Uncalibrated)  
+35dBmTypical(UserOptimized)  
n
Single Pin Calibration to Optimize OIP3  
n
Low Output Noise Floor at 6MHz Offset:  
No RF: –160.6dBm/Hz  
P
= 5dBm: –155.5dBm/Hz  
OUT  
n
n
Integrated LO Buffer and LO Quadrature Phase  
Generator  
High Impedance DC Interface to Baseband Inputs  
with 0.5V Common Mode Voltage*  
50Ω Single-Ended LO and RF Ports  
3.3V Operation  
n
n
n
n
n
Fast Turn-Off/On: 10ns/17ns  
Temperature Sensor (Thermistor)  
24-Lead UTQFN 4mm × 4mm Package  
APPLICATIONS  
n
LTE, GSM/EDGE, W-CDMA, TD-SCDMA, CDMA2K,  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
*Contact LTC Marketing for other common mode voltage versions.  
WiMax Basestations  
n
Image Reject Upconverters  
Point-to-Point Microwave Links  
Broadcast Modulator  
Military Radio  
n
n
n
ACPR, AltCPR and ACPR, AltCPR  
with Optimized LINOPT Voltage vs RF  
Output Power at 2.14GHz for  
TYPICAL APPLICATION  
200MHz to 6000MHz Direct Conversion Transmitter Application  
W-CDMA 1, 2 and 4 Carriers  
–40  
–50  
–60  
–70  
–80  
–90  
3.3V  
ACPR  
1nF + 4.7μF  
s2  
4C  
2C  
ACPR (OPT)  
AltCPR  
V
CC  
LTC5588-1  
RF = 200MHz  
TO 6000MHz  
1C  
I-DAC  
VmI  
I-CHANNEL  
AltCPR (OPT)  
6.8pF  
DOWNLINK TEST  
MODEL 64 DPCH  
= 140MHz,  
= 2280MHz  
PA  
0o  
f
f
BB  
LO  
EN  
0.2pF  
90o  
Q-CHANNEL  
Q-DAC  
VmI  
LINOPT  
BASEBAND  
GENERATOR  
LTC2630  
1nF  
50Ω  
1nF  
55881 TA01a  
–20  
–15  
–10  
–5  
0
5
55881 TA01b  
RF OUTPUT POWER PER CARRIER (dBm)  
VCO/SYNTHESIZER  
55881fb  
1
LTC5588-1  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................3.8V  
Common Mode Level of BBPI, BBMI,  
and BBPQ, BBMQ...................................................0.55V  
24 23 22 21 20 19  
Voltage on Any Pin...........................–0.3V to V + 0.3V  
EN  
GND  
LOP  
LOM  
GND  
NC  
1
2
3
4
5
6
18  
17  
16  
V
CC2  
CC  
G
N
GNDRF  
RF  
T
JMAX  
.................................................................... 150°C  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
GND  
25  
D
R
F
26  
15 NC  
14 GNDRF  
13 NC  
7
8
9
10 11 12  
PF24 PACKAGE  
VARIATION: PF24MA  
24-LEAD (4mm s 4mm) PLASTIC UTQFN  
T
= 150°C, θ = 43°C/W, θ = 7°C/W (AT EXPOSED PAD)  
JA JC  
JMAX  
EXPOSED PADS (PINS 25, 26) ARE GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC5588IPF-1#PBF  
LTC5588IPF-1#TRPBF  
5881T  
–40°C to 85°C  
24-Lead (4mm × 4mm) Plastic UTQFN  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP AC-terminated with 50Ω to ground,  
BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 0.5VDC, I and Q baseband input signal = 100kHz CW, 1VP-P(DIFF) each, I  
and Q 90° shifted, lower sideband selection, LINOPT pin floating, unless otherwise noted. Test circuit is shown in Figure 8.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
f
f
= 240MHz, f = 239.9MHz, P = 10dBm, C7 = 4.7nH, C8 = 33pF, Using U2 = Anaren P/N B0310J50100A00 Balun  
LO  
RF  
LO  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
RF Output Noise Floor  
S22 < –10dB (Note 10)  
S11 < –10dB  
200 to 244  
200 to 1500  
–5.9  
MHz  
MHz  
RF(MATCH)  
LO(MATCH)  
G
20 • Log (V  
/V  
)
dB  
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
P-P(DIFF)  
CW Signal, I and Q  
–1.9  
dBm  
dBm  
dBm  
dBm  
dBm/Hz  
dBc  
OUT  
OP1dB  
OIP2  
OIP3  
NFloor  
IR  
5.1  
(Notes 4, 5)  
(Notes 4, 6)  
77.3  
28  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–168.3  
–27  
Image Rejection  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
–53  
dBm  
55881fb  
2
LTC5588-1  
ELECTRICAL CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP AC-terminated with 50Ω to ground,  
BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 0.5VDC, I and Q baseband input signal = 100kHz CW, 1VP-P(DIFF) each, I  
and Q 90° shifted, lower sideband selection, LINOPT pin floating, unless otherwise noted. Test circuit is shown in Figure 8.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
f
f
= 450MHz, f = 449.9MHz, P = 10dBm, C7 = 2.7nH, C8 = 10pF, U2 = Anaren P/N B0310J50100A00 Balun  
LO  
RF  
LO  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
S22 < –10dB (Note 10)  
S11 < –10dB  
350 to 468  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
200 to 1500  
G
20 • Log (V  
/V  
)
–2.6  
1.4  
8.6  
72  
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
CW Signal, I and Q  
P-P(DIFF)  
dBm  
dBm  
dBm  
dBm  
OUT  
OP1dB  
OIP2  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
RF Output Noise Floor  
(Notes 4, 5)  
(Notes 4, 6)  
OIP3  
30  
NFloor  
No Baseband AC Input Signal (Note 3)  
= 1dBm (Note 3)  
–165.2  
–159.8  
dBm/Hz  
dBm/Hz  
P
OUT  
IR  
Image Rejection  
(Note 7)  
–53  
–45  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
= 900MHz, f = 899.9MHz, P = 0dBm, C7 = 6.8pF, C8 = 0.2pF  
RF LOM  
dBm  
f
f
f
LO  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
S22 < –10dB  
S11 < –10dB  
700 to 5000  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
600 to 6000  
G
20 • Log (V  
/V  
)
0
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
OUT  
1V  
CW Signal, I and Q  
P-P(DIFF)  
4.0  
dBm  
dBm  
dBm  
OP1dB  
OIP2  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
12.1  
73.6  
(Notes 4, 5)  
OIP3  
(Notes 4, 6)  
Optimized (Notes 4, 6, 11)  
31.3  
35.1  
dBm  
dBm  
NFloor  
RF Output Noise Floor  
Image Rejection  
No Baseband AC Input Signal (Note 3)  
= 5dBm (Note 3) P = 10dBm  
–161.6  
–155.1  
dBm/Hz  
dBm/Hz  
P
OUT  
LOM  
IR  
(Note 7)  
–45.5  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
EN = Low (Note 7)  
–43.1  
–68.9  
dBm  
dBm  
f
f
f
= 1900MHz, f = 1899.9MHz, P  
LOM  
= 0dBm, C7 = 6.8pF, C8 = 0.2pF  
S22 < –10dB  
LO  
RF  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
700 to 5000  
600 to 6000  
0.4  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
S11 < –10dB  
G
20 • Log (V  
/V  
)
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
CW Signal, I and Q  
P-P(DIFF)  
4.4  
dBm  
dBm  
dBm  
OUT  
OP1dB  
OIP2  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
12.4  
(Notes 4, 5)  
58.8  
OIP3  
(Notes 4, 6)  
Optimized (Notes 4, 6, 11)  
30.3  
32.7  
dBm  
dBm  
NFloor  
IR  
RF Output Noise Floor  
Image Rejection  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–160.6  
–54.4  
–40.9  
dBm/Hz  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
dBm  
55881fb  
3
LTC5588-1  
ELECTRICAL CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP AC-terminated with 50Ω to ground,  
BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 0.5VDC, I and Q baseband input signal = 100kHz CW, 1VP-P(DIFF) each, I  
and Q 90° shifted, lower sideband selection, LINOPT pin floating, unless otherwise noted. Test circuit is shown in Figure 8.  
SYMBOL  
PARAMETER  
= 2140MHz, f = 2139.9MHz, P  
LOM  
CONDITIONS  
= 0dBm, C7 = 6.8pF, C8 = 0.2pF  
S22 < –10dB  
MIN  
TYP  
MAX  
UNITS  
f
f
f
LO  
RF  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
700 to 5000  
600 to 6000  
0.2  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
S11 < –10dB  
G
20 • Log (V  
/V  
)
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
CW Signal, I and Q  
P-P(DIFF)  
4.2  
dBm  
dBm  
dBm  
OUT  
OP1dB  
OIP2  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
12.0  
(Notes 4, 5)  
58.5  
OIP3  
(Notes 4, 6)  
Optimized (Notes 4, 6, 11)  
30.9  
35.1  
dBm  
dBm  
NFloor  
RF Output Noise Floor  
No Baseband AC Input Signal (Note 3)  
= 5dBm (Note 3) P = 10dBm  
–160.6  
–155.5  
dBm/Hz  
dBm/Hz  
P
OUT  
LOM  
IR  
Image Rejection  
(Note 7)  
–56.6  
–39.6  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
dBm  
f
f
f
= 2600MHz, f = 2599.9MHz, P  
LOM  
= 0dBm, C7 = 6.8pF, C8 = 0.2pF  
S22 < –10dB  
LO  
RF  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
700 to 5000  
600 to 6000  
–0.2  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
S11 < –10dB  
G
20 • Log (V  
/V  
)
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
CW Signal, I and Q  
P-P(DIFF)  
3.8  
dBm  
dBm  
dBm  
OUT  
OP1dB  
OIP2  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
11.4  
(Notes 4, 5)  
61.1  
OIP3  
(Notes 4, 6)  
Optimized (Notes 4, 6, 11)  
29.2  
39.5  
dBm  
dBm  
NFloor  
IR  
RF Output Noise Floor  
Image Rejection  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–160.5  
–48.8  
–35.5  
dBm/Hz  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
dBm  
f
f
f
= 3500MHz, f = 3499.9MHz, P  
LOM  
= 0dBm, C7 = 6.8pF, C8 = 0.2pF  
S22 < –10dB  
LO  
RF  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
700 to 5000  
600 to 6000  
–1.0  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
S11 < –10dB  
G
20 • Log (V  
/V  
)
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
CW Signal, I and Q  
P-P(DIFF)  
3.0  
dBm  
dBm  
dBm  
OUT  
OP1dB  
OIP2  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
10.5  
(Notes 4, 5)  
67.6  
OIP3  
(Notes 4, 6)  
Optimized (Notes 4, 6, 11)  
23.5  
27.5  
dBm  
dBm  
NFloor  
IR  
RF Output Noise Floor  
Image Rejection  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–160.1  
–36.8  
–37.5  
dBm/Hz  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
dBm  
f
f
f
= 5800MHz, f = 5799.9MHz, P  
LOM  
= 0dBm, C7 = 6.8pF, C8 = 0.2pF  
S22, < –10dB  
LO  
RF  
RF Match Frequency Range  
LO Match Frequency Range  
Conversion Voltage Gain  
Absolute Output Power  
700 to 5000  
600 to 6000  
–9.1  
MHz  
MHz  
dB  
RF(MATCH)  
LO(MATCH)  
S11, < –10dB  
G
20 • Log (V  
/V  
)
V
RF(OUT)(50Ω) IN(DIFF)(I or Q)  
P
1V  
CW Signal, I and Q  
P-P(DIFF)  
–5.1  
dBm  
OUT  
55881fb  
4
LTC5588-1  
ELECTRICAL CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP AC-terminated with 50Ω to ground,  
BBPI, BBMI, BBPQ, BBMQ common mode DC voltage VCMBB = 0.5VDC, I and Q baseband input signal = 100kHz CW, 1VP-P(DIFF) each, I  
and Q 90° shifted, lower sideband selection, LINOPT pin floating, unless otherwise noted. Test circuit is shown in Figure 8.  
SYMBOL  
OP1dB  
OIP2  
PARAMETER  
CONDITIONS  
MIN  
TYP  
1.9  
MAX  
UNITS  
dBm  
Output 1dB Compression  
Output 2nd-Order Intercept  
Output 3rd-Order Intercept  
RF Output Noise Floor  
Image Rejection  
(Notes 4, 5)  
35.4  
dBm  
OIP3  
(Notes 4, 6)  
17.9  
dBm  
NFloor  
IR  
No Baseband AC Input Signal (Note 3)  
(Note 7)  
–156.7  
–32.3  
–30.2  
dBm/Hz  
dBc  
LOFT  
Carrier Leakage (LO Feedthrough) (Note 7)  
dBm  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
Baseband Input Current  
Input Resistance  
–1dB Bandwidth, R  
= 25Ω, Single Ended  
SOURCE  
430  
–136  
–3  
MHz  
μA  
kΩ  
V
BB  
I
Single Ended  
b(BB)  
R
Single Ended  
IN(SE)  
CMBB  
SWING  
V
V
DC Common Mode Voltage  
Amplitude Swing  
Externally Applied  
0.5  
No Hard Clipping, Single Ended  
0.86  
V
P-P  
Power Supply (V , V  
)
CC1 CC2  
V
Supply Voltage  
3.15  
275  
3.3  
303  
33  
3.45  
325  
900  
V
CC  
I
I
t
t
t
t
t
Supply Current  
EN = High  
mA  
μA  
ns  
ns  
ns  
ns  
ns  
CC(ON)  
CC(OFF)  
ON  
Supply Current, Sleep Mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Notes 8, 13)  
EN = High to Low (Notes 9, 13)  
EN = Low to High, <–60dBc (Note 13)  
EN = Low to High, <–60dBm (Note 13)  
17  
Turn-Off Time  
10  
OFF  
Image Rejection Settling  
LO Suppression Settling  
Phase Settling  
80  
ON(IR)  
ON(LO)  
ON(PHASE)  
85  
EN = Low to High, Phase < 0.5°, f  
Constant Board Temperature  
= f = 2.14GHz,  
RF  
70  
LOM  
V
V
LINOPT Voltage  
Floating LINOPT Pin, EN = High  
Floating LINOPT Pin, EN = Low  
2.56  
3.3  
V
V
LINOPT(ON)  
LINOPT Voltage, Sleep Mode  
LINOPT(OFF)  
Enable Pin  
Enable  
Input High Voltage  
Input High Current  
EN = High  
EN = 3.3V  
2
V
80  
33  
nA  
Sleep  
Input Low Voltage  
Input Low Current  
EN = Low  
EN = 0V  
1
V
μA  
Temperature Sensor (Thermistor) (Note 14)  
R
Thermistor Resistance  
Temperature Slope  
EN = Low, I = 100μA  
1.385  
11  
kΩ  
T
RT  
EN = Low, I = 100μA  
Ω/°C  
RT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC5588-1 is guaranteed functional over the operating  
temperature range from –40°C to 85°C.  
Note 3: At 6MHz offset from the LO signal frequency. 100nF between BBPI  
and BBMI, 100nF between BBPQ and BBMQ.  
Note 4: Baseband inputs are driven with 4.5MHz and 5.5MHz tones.  
Note 8: RF power is within 10% of final value.  
Note 9: RF power is at least 30dB down from its ON state.  
Note 10: RF matching center frequency is set below band center  
frequency in order to align RF passband center frequency with band center  
frequency.  
Note 11: An external voltage is optimally set at the LINOPT pin for best  
output 3rd-order intercept.  
Note 12: I and Q baseband Input signal = 10MHz CW, 0.8V  
I and Q 0° shifted.  
each,  
P-P, DIFF  
Note 5: IM2 is measured at f – 10MHz.  
LO  
Note 13: f  
= 2.14GHz, P = 0dBm, f = 134MHz; LO feedthrough  
LOM BB  
LOM  
Note 6: IM3 is measured at f – 3.5MHz and f – 6.5MHz.  
and image rejection is nulled during previous EN = high cycles, C5 = C6 =  
10pF; C13 = 0; Extra 680μF capacitors (SANYO 6SEPC680M) from TP1 to  
ground and TP2 to ground, RF noise filter with 93MHz bandwidth is used.  
LO  
LO  
OIP3 = lowest of (1.5 • P{f -5.5MHz} – 0.5 • P{f -6.5MHz})  
LO  
LO  
and (1.5 • P{f -4.5MHz} – 0.5 • P{f -3.5MHz}).  
LO  
LO  
Note 7: Without image or LO feedthrough nulling (unadjusted).  
Note 14: Thermistor performance is guaranteed by Design.  
55881fb  
5
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS  
VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Floating LINOPT Voltage  
vs Temperature  
Voltage Gain vs RF Frequency  
(PLOM = 0dBm or PLOM = 10dBm)  
Supply Current vs Temperature  
320  
310  
300  
290  
280  
2.7  
2.6  
2.5  
2.4  
2
0
3.45V  
3.45V  
3.3V  
–2  
–4  
–6  
–8  
–10  
3.3V  
3.15V  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.15V  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
0
2
3
4
5
6
1
TEMPERATURE (°C)  
RF FREQUENCY (GHz)  
TEMPERATURE (°C)  
55881 G01  
55881 G02  
55881 G03  
Output IP3 vs RF Frequency  
(PLOM = 0dBm)  
Output IP3 vs RF Frequency  
(PLOM = 10dBm)  
Output IP2 vs RF Frequency  
(PLOM = 0dBm)  
90  
80  
70  
60  
50  
40  
30  
40  
30  
20  
10  
40  
30  
20  
10  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
0
0
0
1
2
3
4
5
6
0
2
3
4
5
6
0
1
2
3
4
5
6
1
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
55881 G04  
55881 G06  
55881 G05  
Output IP2 vs RF Frequency  
(PLOM = 10dBm)  
P1dB vs RF Frequency  
LO Feedthrough to RF Output vs  
LO Frequency (PLOM = 0dBm)  
(PLOM = 0dBm or PLOM = 10dBm)  
14  
12  
10  
8
90  
80  
70  
60  
50  
40  
30  
–20  
–30  
–40  
–50  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
6
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
4
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
2
0
–60  
4
6
0
1
2
3
5
0
2
3
4
5
6
0
1
2
3
4
5
6
1
LO FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
55881 G08  
55881 G07  
55881 G09  
55881fb  
6
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
LO Feedthrough to RF Output  
vs LO Frequency (PLOM = 10dBm)  
LO Feedthrough to RF Output  
vs LO Frequency for EN = Low  
Image Rejection vs LO Frequency  
(PLOM = 0dBm)  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
P
= 10dBm  
LOM  
P
= 0dBm  
LOM  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–60  
–60  
0
2
3
4
5
6
0
1
2
3
4
5
6
1
0
1
2
3
4
5
6
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
55881 G12  
55881 G10  
55881 G11  
LO Feedthrough to RF Output  
vs RF Power (PLOM = 0dBm,  
fRF = 900MHz)  
LO Feedthrough to RF Output  
vs RF Power (PLOM = 0dBm,  
fRF = 2140MHz)  
Image Rejection vs RF Power  
(PLOM = 0dBm, fRF = 900MHz)  
–40  
–41  
–42  
–43  
–40  
–45  
–50  
–55  
–36  
–38  
–40  
–42  
–44  
–46  
–48  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–44  
–45  
–15  
–5  
0
5
10  
15  
–15  
–5  
0
5
10  
15  
–10  
–10  
–15  
–5  
0
5
10  
15  
–10  
RF POWER (dBm)  
RF POWER (dBm)  
RF POWER (dBm)  
55881 G13  
55881 G14  
55881 G15  
Image Rejection vs RF Power  
(PLOM = 0dBm, fRF = 2140MHz)  
Output IP3 vs LINOPT Voltage  
(fLO = 450MHz, PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fLO = 900MHz, PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
5 PARTS SHOWN  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–15  
–5  
0
5
10  
15  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
–10  
LINOPT VOLTAGE (V)  
LINOPT VOLTAGE (V)  
RF POWER (dBm)  
55881 G16  
55881 G17  
55881 G18  
55881fb  
7
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Output IP3 vs LINOPT Voltage  
(fLO = 1900MHz, PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fLO = 2140MHz, PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fLO = 2600MHz, PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
5 PARTS SHOWN  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 40°C  
5 PARTS SHOWN  
3.0 3.5  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
2.0  
2.5  
3.0  
3.5  
LINOPT VOLTAGE (V)  
55881 G20  
55881 G19  
LINOPT VOLTAGE (V)  
LINOPT VOLTAGE (V)  
55881 G21  
Output IP3 vs RF Frequency for High  
Side LO Injection (fBB1 = 140MHz,  
fBB2 = 141MHz, PLOM = 0dBm)  
Output IP3 vs RF Frequency for High  
Side LO Injection (fBB1 = 140MHz,  
fBB2 = 141MHz, PLOM = 10dBm)  
Output IP3 vs LINOPT Voltage  
(fLO = 3500MHz, PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
f = f + f  
LO RF BB1  
5 PARTS SHOWN  
f
= f + f  
LO RF BB1  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
0
0
2.0  
2.5  
3.0  
3.5  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
55881 G22  
LINOPT VOLTAGE (V)  
RF FREQUENCY (GHz)  
55881 G24  
RF FREQUENCY (GHz)  
55881 G23  
Output IP3 vs LINOPT Voltage  
(fRF1 = 449MHz, fRF2 = 450MHz,  
PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
Output IP3 vs LINOPT Voltage  
(fRF1 = 899MHz, fRF2 = 900MHz,  
PLOM = 0dBm)  
(fRF1 = 1899MHz, fRF2 = 1900MHz,  
PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
f = 2040MHz  
LO  
5 PARTS SHOWN  
f
= 590MHz  
f
= 1040MHz  
LO  
LO  
5 PARTS SHOWN  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
LINOPT VOLTAGE (V)  
55881 G27  
55881 G26  
55881 G25  
LINOPT VOLTAGE (V)  
LINOPT VOLTAGE (V)  
55881fb  
8
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Output IP3 vs LINOPT Voltage  
(fRF1 = 2139MHz, fRF2 = 2140MHz,  
PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fRF1 = 2599MHz, fRF2 = 2600MHz,  
PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fRF1 = 3499MHz, fRF2 = 3500MHz,  
PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
f
= 2280MHz  
f
= 2740MHz  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
f
= 3640MHz  
LO  
LO  
LO  
5 PARTS SHOWN  
5 PARTS SHOWN  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
LINOPT VOLTAGE (V)  
55881 G28  
55881 G29  
55881 G30  
LINOPT VOLTAGE (V)  
LINOPT VOLTAGE (V)  
Output IP3 vs RF Frequency for Low  
Side LO Injection (fBB1 = 140MHz,  
fBB2 = 141MHz, PLOM = 0dBm)  
Output IP3 vs RF Frequency for Low  
Side LO Injection (fBB1 = 140MHz,  
fBB2 = 141MHz, PLOM = 10dBm)  
Output IP3 vs LINOPT Voltage  
(fRF1 = 450MHz, fRF2 = 451MHz,  
PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
f
= f – f  
LO RF BB1  
f
= 310MHz  
LO  
f
= f – f  
LO RF BB1  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
0
0
0
1
2
3
4
5
6
2.0  
2.5  
3.0  
3.5  
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
LINOPT VOLTAGE (V)  
55881 G31  
RF FREQUENCY (GHz)  
55881 G33  
55881 G32  
Output IP3 vs LINOPT Voltage  
Output IP3 vs LINOPT Voltage  
(fRF1 = 1900MHz, fRF2 = 1901MHz,  
PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fRF1 = 2140MHz, fRF2 = 2141MHz,  
PLOM = 0dBm)  
(fRF1 = 900MHz, fRF2 = 901MHz,  
PLOM = 0dBm)  
40  
30  
20  
10  
40  
30  
20  
10  
40  
30  
20  
10  
f
= 760MHz  
f
= 1760MHz  
LO  
f
= 2000MHz  
LO  
LO  
5 PARTS SHOWN  
5 PARTS SHOWN  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
2.0  
2.5  
3.0  
3.5  
LINOPT VOLTAGE (V)  
55881 G35  
LINOPT VOLTAGE (V)  
55881 G34  
LINOPT VOLTAGE (V)  
55881 G36  
55881fb  
9
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Output IP3 vs LINOPT Voltage  
(fRF1 = 2600MHz, fRF2 = 2601MHz,  
PLOM = 0dBm)  
Output IP3 vs LINOPT Voltage  
(fRF1 = 3500MHz, fRF2 = 3501MHz,  
PLOM = 0dBm)  
Gain Distribution at 2140MHz  
40  
30  
20  
10  
40  
30  
20  
10  
50  
40  
30  
85°C  
25°C  
–40°C  
f
= 3360MHz  
LO  
5 PARTS SHOWN  
20  
10  
0
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
f
= 2460MHz  
LO  
5 PARTS SHOWN  
2.0  
2.5  
3.0  
3.5  
–0.6 –0.4 –0.2  
0
0.2  
0.4  
0.6  
2.0  
2.5  
3.0  
3.5  
55881 G37  
LINOPT VOLTAGE (V)  
LINOPT VOLTAGE (V)  
55881 G38  
GAIN (dB)  
55881 G39  
LO Feedthrough Distribution at  
2140MHz  
Image Rejection Distribution at  
2140MHz  
Output IP3 Distribution at 2140MHz  
30  
20  
10  
0
30  
20  
10  
0
40  
30  
20  
10  
0
85°C  
25°C  
–40°C  
NOTE 12  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
30.4  
31.2  
32  
32.8  
33.6  
34.4  
–44 –43 –42 –41 –40 –39 –38 –37  
–44 –43 –42 –41 –40 –39 –38 –37  
55881 G40  
OIP3 (dBm)  
LO FEEDTHROUGH (dBm)  
IMAGE REJECTION (dBc)  
55881 G41  
55881 G41  
Output Noise Floor vs RF Output  
Power and LOM Port Input Power  
(fLO = 2140MHz)  
Output Noise Floor vs RF Output  
Power and Differential LO Input  
Power (fLO = 2140MHz)  
Output Noise Floor Distribution at  
2140MHz  
60  
50  
40  
30  
20  
10  
0
–135  
–140  
–145  
–150  
–155  
–160  
–135  
–140  
–145  
–150  
–155  
–160  
85°C  
25°C  
–40°C  
–10dBm  
–5dBm  
0dBm  
f
BB  
= 2kHz, CW (NOTE 3)  
–10dBm LO BALUN =  
–5dBm  
0dBm  
5dBm  
USING BD1631J50100A  
= 2kHz, CW (NOTE 3)  
f
BB  
5dBm  
10dBm  
15dBm  
10dBm  
15dBm  
20dBm  
–161.2  
–160.8  
–160.4  
–160.0  
–159.6  
–15  
–10  
–5  
0
5
10  
–15  
–10  
–5  
0
5
10  
NOISE FLOOR (dBm/Hz)  
55881 G43  
55881 G44  
55881 G45  
RF OUTPUT POWER (dBm)  
RF OUTPUT POWER (dBm)  
55881fb  
10  
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
Output  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Output Noise Floor vs RF  
Frequency (No AC Baseband Input  
Signal, PLOM = 0dBm)  
Output Noise Floor vs RF  
Frequency (No AC Baseband Input  
Signal, PLOM = 10dBm)  
Return Loss vs Frequency  
0
–5  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
–156  
–158  
–160  
–162  
–164  
–166  
–168  
–170  
LOM PORT, EN = HIGH  
LOP PORT, EN = HIGH  
RF PORT, EN = HIGH  
RF PORT, EN = LOW  
NOTE 3  
NOTE 3  
–10  
–15  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
LO PORT WITH  
–20  
–25  
BD1631J50100A00  
LOM PORT, EN = LOW  
LOP PORT, EN = LOW  
0
2
3
4
5
6
0
3
4
5
6
1
0
1
3
4
5
6
1
2
2
FREQUENCY (GHz)  
55881 G46  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
55881 G48  
55881 G47  
LO Feedthrough to RF Output vs  
LO Frequency After Nulling at 25°C  
(PLOM = 0dBm)  
LO Feedthrough to RF Output vs  
LO Frequency After Nulling at 25°C  
(PLOM = 10dBm)  
Image Rejection vs LO Frequency  
After Nulling at 25°C  
(PLOM = 0dBm)  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.15V, 25°C 5 PARTS SHOWN  
3.15V, 25°C 5 PARTS SHOWN  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
55881 G50  
55881 G49  
55881 G51  
Image Rejection vs LO Frequency  
After Nulling at 25°C  
(PLOM = 10dBm)  
LO Feedthrough to RF Output vs  
LO Frequency (PLOM = –10dBm)  
–40  
–50  
–60  
–70  
–80  
–90  
–20  
–30  
–40  
–50  
3.3V, 85°C  
3.3V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.15V, 25°C 5 PARTS SHOWN  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–60  
0
1
2
3
4
0
1
2
3
4
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
55881 G51  
55881 G53  
55881fb  
11  
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
LO Feedthrough to RF Output vs  
LO Frequency (PLOM = –5dBm)  
LO Feedthrough to RF Output vs  
LO Frequency (PLOM = 5dBm)  
LO Feedthrough to RF Output vs  
LO Frequency (PLOM = 10dBm)  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–60  
–60  
–60  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
55881 G54  
LO FREQUENCY (GHz)  
55881 G56  
55881 G55  
LO Feedthrough to RF Output vs  
LO Frequency (PLOM = 15dBm)  
Image Rejection vs LO Frequency  
(PLOM = –10dBm)  
Image Rejection vs LO Frequency  
(PLOM = –5dBm)  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–60  
–60  
–60  
0
1
2
3
4
0
1
2
3
4
0
1
2
3
4
LO FREQUENCY (GHz)  
55881 G57  
LO FREQUENCY (GHz)  
LO FREQUENCY (GHz)  
55881 G58  
55881 G59  
Image Rejection vs LO Frequency  
(PLOM = 5dBm)  
Image Rejection vs LO Frequency  
(PLOM = 10dBm)  
–20  
–30  
–40  
–50  
–20  
–30  
–40  
–50  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–60  
–60  
0
1
2
3
4
0
1
2
3
4
LO FREQUENCY (GHz)  
55881 G61  
LO FREQUENCY (GHz)  
55881 G60  
55881fb  
12  
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Output IP3 vs RF Frequency  
(PLOM = 0dBm, fIM3 = fLO  
14.5MHz)  
+
Output IP2 vs RF Frequency  
(PLOM = 0dBm, fIM2 = fLO + 10MHz)  
Image Rejection vs LO Frequency  
(PLOM = 15dBm)  
–20  
–30  
–40  
–50  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–60  
0
0
1
2
3
4
0
1
2
3
4
5
6
0
1
2
3
4
5
6
LO FREQUENCY (GHz)  
55881 G62  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
55881 G64  
55881 G63  
Output IP2 vs RF Frequency  
Output IM3 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 900MHz,  
Note 6)  
Output IP3 vs RF Frequency  
(PLOM = 10dBm, fIM2 = fLO  
10MHz)  
+
(PLOM = 10dBm, fIM3 = fLO  
14.5MHz)  
+
–20  
–30  
40  
30  
20  
10  
90  
80  
70  
60  
50  
40  
30  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–40  
–50  
–60  
–70  
–80  
–90  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
0
–5  
0
10  
–10  
5
0
1
2
3
4
5
6
0
1
2
3
4
5
6
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
55881 G66  
55881 G65  
RF POWER PER TONE (dBm) 55881 G67  
Output IM2 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 900MHz,  
fIM2 = 890MHz)  
Output IM3 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 900MHz,  
fIM3 = 914.5MHz)  
–20  
–30  
–20  
–30  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–5  
0
10  
–5  
0
10  
–10  
5
–10  
5
RF POWER PER TONE (dBm)  
RF POWER PER TONE (dBm) 55881 G69  
55881 G68  
55881fb  
13  
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
Output IM2 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 900MHz,  
fIM2 = 910MHz)  
Output IM3 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 2140MHz,  
Note 6)  
Output IM2 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 2140MHz,  
fIM2 = 2130MHz)  
–20  
–30  
–20  
–30  
–20  
–30  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
–5  
0
10  
–5  
0
10  
–10  
–5  
0
10  
–10  
5
–10  
5
–15  
5
55881 G72  
RF POWER PER TONE (dBm)  
RF POWER PER TONE (dBm) 55881 G71  
RF POWER PER TONE (dBm)  
55881 G70  
Output IM3 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 2140MHz,  
fIM3 = 2154.5MHz)  
Output IM2 vs RF 2-Tone Power  
(PLOM = 0dBm, fRF = 2140MHz,  
fIM2 = 2150MHz)  
Supply Current vs LINOPT Voltage  
320  
310  
300  
290  
280  
–20  
–30  
–20  
–30  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–40  
–50  
–60  
–70  
–80  
–90  
–40  
–50  
–60  
–70  
–80  
–90  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.0  
3.5  
–5  
0
10  
2.0  
–10  
5
2.5  
–10  
–5  
0
10  
–15  
5
55881 G75  
LINOPT VOLTAGE (V)  
RF POWER PER TONE (dBm) 55881 G73  
RF POWER PER TONE (dBm) 55881 G74  
OutputIP2vsRFFrequencyforHigh  
SideLOInjection(fBB1 =140MHz,  
fBB2 =141MHz,PLOM =0dBm  
LINOPT Current vs LINOPT Voltage  
10  
5
90  
80  
70  
60  
50  
40  
30  
f
f
= f + f  
IM2 RF BB2  
LO RF BB1  
= f – f  
0
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–5  
3.0  
2.5  
LINOPT VOLTAGE (V)  
3.5  
55881 G76  
0
2
1
3
4
5
6
2.0  
RF FREQUENCY (GHz)  
55881 G77  
55881fb  
14  
LTC5588-1  
TYPICAL PERFORMANCE CHARACTERISTICS VCC = 3.3V, EN = 3.3V, TA = 25°C, LOP input  
AC-terminated with 50Ω to ground, BBPI, BBMI, BBPQ, BBMQ inputs 0.5VDC, and 1VP-P(DIFF), baseband input frequencies = 4.5MHz  
and 5.5MHz for OIP3 and OIP2, or else baseband input frequency = 100kHz, I and Q 90° shifted, lower sideband selection, LINOPT pin  
floating, unless otherwise noted. Test circuit is shown in Figure 8.  
OutputIP2vsRFFrequencyforHigh  
SideLOInjection(fBB1 =140MHz,  
fBB2 =141MHz,PLOM =10dBm  
OutputIP2vsRFFrequencyforLow  
SideLOInjection(fBB1 =140MHz,  
fBB2 =141MHz,PLOM =0dBm  
OutputIP2vsRFFrequencyforLow  
SideLOInjection(fBB1 =140MHz,  
fBB2 =141MHz,PLOM =10dBm  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
90  
80  
70  
60  
50  
40  
30  
f
f
= f + f  
IM2 RF BB2  
f
f
= f – f  
IM2 RF BB2  
f
f
= f – f  
LO RF BB1  
= f + f  
IM2 RF BB2  
LO RF BB1  
LO RF BB1  
= f – f  
= f + f  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
0
2
3
4
5
6
0
2
3
4
5
6
0
2
3
4
5
6
1
1
1
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
RF FREQUENCY (GHz)  
55881 G78  
55881 G79  
55881 G80  
GNDRFtoGNDThermistorDC  
ResistancevsTemperature  
(IGNDRF(DC) =100μA)  
GNDRFtoGNDThermistorDC  
ResistancevsTemperature  
(IGNDRF(DC) =200μA)  
3.0  
2.5  
3.0  
V
> V  
V
> V  
GNDRF GND  
GNDRF  
GND  
2.5  
2.0  
1.5  
2.0  
1.5  
1.0  
0.5  
0
1.0  
0.5  
0
V
CC  
V
CC  
V
CC  
V
CC  
= 3.45V  
= 3.3V  
= 3.15V  
= 0V  
V
CC  
V
CC  
V
CC  
V
CC  
= 3.45V  
= 3.3V  
= 3.15V  
= 0V  
–40  
0
40  
80  
120  
–40  
0
40  
80  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
55881 G81  
55881 G82  
55881fb  
15  
LTC5588-1  
PIN FUNCTIONS  
EN (Pin 1): Enable Input. When the enable pin voltage is  
higher than 2V, the IC is on. When the input voltage is less  
than 1V, the IC is off.  
LINOPT (Pin 7): Linearity Optimization Input. An external  
voltage can be applied to this pin to optimize the linearity  
(OIP3)underaspecificapplicationcondition. Itsoptimum  
voltagedependsontheLOfrequency,temperature,supply  
voltage, baseband frequency and signal bandwidth. The  
typical input voltage range is from 2V to 3.7V. The pin can  
be left floating for good overall linearity performance.  
GND (Pins 2, 5, 8, 11, 12, 14, 17, 19, 20, 23, Exposed  
Pad Pins 25 and 26): Ground. Pins 2, 5, 8, 11, 20, 23  
and exposed pad Pin 25 (group 1) are connected together  
internallywhilePins12,14,17,19andexposedpadPin 26  
(group 2) are tied together and serve as the ground return  
for the RF balun. For best overall performance all ground  
pins should be connected to RF ground. For best OIP2  
performance it is recommended to connect group 1 and  
group 2 only at second and lower level ground layers  
of the PCB, not the top layer. A thermistor (temperature  
BBMQ,BBPQ(Pins9,10):BasebandInputsoftheQChan-  
nel. The input impedance of each input is about –3kΩ. It  
should be externally biased to a 0.5V common mode level.  
Do not apply common mode voltage beyond 0.55V .  
DC  
RF (Pin 16): RF Output. The RF output is a DC-coupled  
single-ended output with 50Ω output impedance at RF  
frequencies.AnAC-couplingcapacitorof6.2pF(C7),should  
be used at this pin for 0.7GHz to 3.5GHz operation.  
variable resistor) of 1.4kΩ at 25°C and V = 3.3V with  
CC  
temperature coefficient of 11Ω/°C is connected between  
group 1 and group 2.  
V
,V (Pins24,18):PowerSupply.Itisrecommended  
CC1 CC2  
LOP (Pin 3): Positive LO Input. An AC-coupling capacitor  
(1nF) in series with 50Ω to ground provides the best OIP2  
performance.  
to use 2 × 1nF and 2 × 4.7μF capacitors for decoupling to  
ground on these pins.  
BBPI, BBMI (Pins 21, 22): Baseband Inputs of the  
I Channel. The input impedance of each input is about  
–3kΩ. It should be externally biased to a 0.5V common  
mode level. Do not apply common mode voltage beyond  
LOM (Pin 4): Negative LO Input. An AC-coupled 50Ω LO  
signal source can be applied to this pin.  
NC (Pins 6, 13, 15): No Electrical Connection.  
0.55V .  
DC  
BLOCK DIAGRAM  
V
V
GND  
23  
NC  
CC1 CC2  
20  
25  
24  
18  
13  
15  
BBPI 21  
BBMI 22  
VqI  
I CHANNEL  
16 RF  
0°  
90°  
GND  
BBPQ 10  
1
EN  
VqI  
Q CHANNEL  
BBMQ  
9
2
5
8
11  
3
4
6
7
12 14 17 19 26  
GND  
LOP LOM NC LINOPT  
GNDRF  
55881 BD  
55881fb  
16  
LTC5588-1  
APPLICATIONS INFORMATION  
The LTC5588-1 consists of I and Q input differential volt-  
age-to-current converters, I and Q upconverting mixers,  
an RF output balun, an LO quadrature phase generator  
and LO buffers.  
recommended. Note that the frequency of the best match  
issetlowerthanthebandcenterfrequencytocompensate  
the gain roll-off of the on-chip RF output balun at lower  
frequency. At 240MHz and 450MHz operations, the image  
rejection and the large-signal noise performance is better  
using higher LO drive levels. However, if the drive level  
causes internal clipping, the LO leakage degrades. Using  
a balun such as Anaren P/N B0310J50100A00 increases  
the LO drive level without internal clipping and provides  
a relatively broadband LO port impedance match.  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
upconverting mixers. The mixer outputs are combined at  
the inputs of the RF output balun, which also transforms  
the output impedance to 50Ω. The center frequency of  
the resulting RF signal is equal to the LO signal frequency.  
The LO input drives a phase shifter which splits the LO  
signal into in-phase and quadrature signals. These LO  
signals are then applied to on-chip buffers which drive the  
upconverting mixers. In most applications, the LOM input  
is driven by the LO source via a 1nF coupling capacitor,  
while the LOP input is terminated with 50Ω to RF ground  
via a 1nF coupling capacitor. The RF output is single ended  
and internally 50Ω matched across a wide RF frequency  
range from 700MHz to 5GHz with better than 10dB return  
loss using C7 = 6.8pF and C8 = 0.2pF (S22 < –10dB). See  
Figure 8.  
Baseband Interface  
The baseband inputs (BBPI, BBMI, BBPQ, BBMQ) present  
a single-ended input impedance of about –3kΩ. Because  
ofthenegativeinputimpedance, itisimportanttokeepthe  
sourceresistanceateachbasebandinputlowenoughsuch  
that the total input impedance remains positive across the  
basebandfrequency. Eachofthefourbasebandinputshas  
a capacitor of 4pF in series with 14Ω connected to ground  
and a PNP emitter follower in parallel (see Figure 1). The  
basebandbandwidthdependsonthesourceimpedance.For  
a 25Ω source impedance (50Ω terminated with 50Ω), the  
baseband bandwidth (–1dB) is about 430MHz. If a 2.7nH  
series inductor is inserted at each of the four baseband  
inputs, the –1dB baseband bandwidth can be increased  
to about 650MHz.  
For 240MHz operation, C7 = 4.7nH and C8 = 33pF is rec-  
ommended. For 450MHz, C7 = 2.7nH and C8 = 10pF is  
LTC5588-1  
RF  
V
V
= 3.3V  
= 3.3V  
CC2  
BALUN  
CC1  
FROM  
Q CHANNEL  
LOMI  
LOPI  
GNDRF  
BBPI  
14Ω  
4pF  
V
= 0.5V  
CM  
4pF  
14Ω  
BBMI  
55881 F01  
GND  
Figure 1. Simplified Circuit Schematic of the LTC5588-1 (Only I Channel is Shown)  
55881fb  
17  
LTC5588-1  
APPLICATIONS INFORMATION  
It is recommended to compensate the baseband input  
impedance in the baseband lowpass filter design in order  
to achieve best gain flatness vs baseband frequency. The  
S-parameters for (each of) the baseband inputs is given  
in Table 1.  
The circuit is optimized for a common mode voltage of  
0.5V which should be externally applied. The baseband  
pins should not be left floating to cause the internal PNP’s  
base current to pull the common mode voltage higher  
than the 0.55V limit, generating excessive current flow. If  
it occurs for an extended period, damage to the IC may  
result. In shutdown mode it is recommended to terminate  
to ground or to a 0.5V source with a value lower than  
200Ω. The PNP’s base current is about –136μA ranging  
from –250μA to –50μA.  
Table 1. Single-Ended BB Input Impedance vs Frequency for  
EN = High and VDC = 0.5V  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
BB INPUT  
IMPEDANCE  
MAG  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.03  
1.04  
1.03  
1.02  
1.01  
0.99  
0.96  
0.94  
0.90  
0.87  
0.82  
0.77  
0.74  
0.71  
0.69  
ANGLE  
–0.13  
–0.13  
–0.37  
–0.68  
–1.38  
–2.79  
–5.3  
0.1  
1
–3700  
–3900-j340  
–3700-j950  
–3200-j1500  
–2100-j1900  
–860-j1600  
–300-j990  
–87-j520  
–35-j308  
–16-j226  
–6-j154  
It is recommended to drive the baseband inputs differen-  
tiallytoreduceeven-orderdistortionproducts.WhenaDAC  
is used as the signal source, a reconstruction filter should  
be placed between the DAC output and the LTC5588-1  
baseband inputs to avoid aliasing.  
2
4
8
16  
30  
Figure 2 shows a typical baseband interface for zero-IF  
repeater application. A 5th-order lowpass ladder filter is  
used with –0.3dB cut-off of 60MHz. C1A, C1B, C3A and  
C3B are configured in a single-ended fashion in order to  
suppress common mode noise. L3A and L3B (0402 size)  
are used to compensate for passband droop due to the  
finite quality factor of the inductors L1A, L1B, L2A and  
L2B (0603 size). R3A and R3B improves the out-of-band  
noise performance. R3A = R3B = 0Ω (L3A and L3B omit-  
ted) provides best out-of-band noise performance but no  
passband droop compensation. In that case, L1A, L1B,  
L2A and L2B may have to be increased in size (higher  
quality factor) to limit passband droop.  
60  
–10.6  
–18.2  
–24.8  
–36  
100  
140  
200  
250  
300  
350  
400  
450  
500  
600  
700  
800  
900  
1000  
–1.4-j120  
1.4-j102  
4.4-j87  
–45  
–52  
–59  
5.4-j74  
–67  
7-j66  
–73  
8.3-j58  
–80  
9.4-j47  
–92  
10-j38  
–102  
–113  
–122  
–129  
10-j32  
10.5-j27  
10.5-j23  
L1A  
250nH  
L2A  
250nH  
L3A  
100nH  
0.5V  
DC  
10mA 10mA  
BBPI  
R3A  
71.57  
R1A  
R2A  
C1A  
C3A  
71.57  
1657  
47pF  
47pF  
R2C  
2497  
C2  
DAC  
R3B  
71.57  
39pF  
C1B  
47pF  
L1B  
250nH  
C3B  
47pF  
R2B  
1657  
R1B  
71.57  
L2B  
250nH  
L3B  
100nH  
BBMI  
10mA 10mA  
55881 F02  
0.5V  
DC  
GND  
Figure 2: Baseband Interface with 5th-Order Filter and 0.5VCM DAC (Only I Channel is Shown)  
55881fb  
18  
LTC5588-1  
APPLICATIONS INFORMATION  
At each baseband pin, a 0.146V to 0.854V swing is de-  
veloped corresponding to a DAC output current of 0mA  
to 20mA. A 3dB lower gain can be achieved using R1A =  
R1B = 49.9Ω; R2A = R2B = Open; R2C = 100Ω; R3A =  
R3B = 51Ω; L1A = L1B = L2A = L2B = 180nH; C1A = C1B  
= C3A = C3B = 68pF; C2 = 56pF.  
ferential LO drive (using BD1631J50100A00) with a LO  
power below 10dBm. The balun (U2) can be installed  
by removing C5 and C6 (see Figure 8). Using Anaren  
P/N B0310J50100A00 improves image, LO leakage and  
large-signal noise performance at 240MHz and 450MHz.  
For this particular balun, an external blocking capacitor  
is required.  
LO Section  
Figure 4 shows the return loss vs RF frequency for the  
240MHz and 450MHz frequency bands. Figure 5 shows  
the corresponding gain vs RF frequency where the gain  
curve peaks at a higher frequency compared to the fre-  
quency with best match. Note that the overall bandwidth  
degrades tuning the matching frequency lower. A similar  
technique can be used for 700MHz and 900MHz if gain  
flatness is important.  
The internal LO chain consists of a quadrature phase  
shifter followed by LO buffers. The LOM input can be  
driven single ended with 50Ω input impedance, while the  
LOP input should be terminated with 50Ω through a DC  
blocking capacitor.  
The LOP and LOM inputs can also be driven differentially  
when an exceptionally low large-signal output noise floor  
is required.  
Table 2. LOM Port Input Impedance vs Frequency for EN = High  
and PLOM = 0dBm (LOP Terminated with 50Ω AC to Ground)  
A simplified circuit schematic for the LOP and LOM inputs  
is given in Figure 3. Table 2 lists LOM port input imped-  
REFLECTION COEFFICIENT  
FREQUENCY  
(GHz)  
LOM INPUT  
IMPEDANCE  
MAG  
0.499  
0.462  
0.421  
0.354  
0.296  
0.256  
0.225  
0.203  
0.188  
0.18  
ANGLE  
–29.8  
–34.3  
–38.8  
–45.8  
–52.4  
–58.4  
–64.9  
–72.5  
–79.6  
–86.9  
–101  
–111  
–118  
–123  
–128  
–146  
–171  
176  
ance vs frequency at EN = High and P  
= 0dBm. For EN  
LOM  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
98-j65  
87-j58  
79-j51  
69-j40  
63-j32  
59-j27  
55-j24  
52-j21  
50-j19  
48-j18  
44-j16  
41-j15  
39-j14  
38-j13  
37-j12  
36-j7.8  
32-j2.4  
28+j1.0  
25+j2.4  
23+j4.1  
21+j6.2  
19+j7.9  
17+j8.7  
= Low and P  
= 0dBm the input impedance is given in  
LOM  
Table 3. The LOM port input impedance is shown for EN  
= High and Low at P = 10dBm in Table 4 and Table 5,  
LOM  
respectively. The circuit schematic of the demo board is  
shown in Figure 8. A 50Ω termination can be connected  
to the LOP port (J1).  
The LOM port (J2) can also be terminated with a 50Ω  
while the LO power is applied to the LOP (J1) port. In that  
case, the image rejection may be degraded. At 2.14GHz,  
the large-signal noise figure is about 2dB better for dif-  
0.178  
0.185  
0.194  
0.2  
V
CC1  
0.199  
0.189  
0.225  
0.288  
0.35  
LOP  
LOM  
2.35V  
+
(3.3V IN  
SHUTDOWN)  
173  
55881 F03  
0.372  
0.417  
0.472  
0.519  
168  
162  
Figure 3: Simplified Circuit Schematic  
for the LOP and LOM inputs  
159  
157  
55881fb  
19  
LTC5588-1  
APPLICATIONS INFORMATION  
Table 3. LOM Port Input Impedance vs Frequency for EN = Low  
and PLOM = 0dBm (LOP Terminated with 50Ω AC to Ground)  
Table 4. LOM Port Input Impedance vs Frequency for EN = High  
and PLOM = 10dBm (LOP Terminated with 50Ω AC to Ground)  
REFLECTION COEFFICIENT  
REFLECTION COEFFICIENT  
FREQUENCY  
(GHz)  
LOM INPUT  
IMPEDANCE  
FREQUENCY  
(GHz)  
LOM INPUT  
IMPEDANCE  
MAG  
0.511  
0.472  
0.43  
ANGLE  
–31.4  
–36.2  
–41  
MAG  
0.494  
0.455  
0.42  
ANGLE  
–30.6  
–35.1  
–40.2  
–46.6  
–54.1  
–59.1  
–66.6  
–73.1  
–80.6  
–87.5  
–102  
–112  
–119  
–123  
–128  
–146  
–170  
176  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
95-j69  
84-j61  
76-j53  
67-j41  
61-j33  
57-j28  
54-j24  
51-j21  
48-j19  
47-j18  
43-j16  
40-j15  
39-j14  
38-j13  
37-j12  
35-j7.6  
31-j2.2  
27+j1.3  
24+j2.9  
22+j4.7  
21+j7.0  
18+j8.7  
16+j9.7  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
96-j64  
86-j57  
77-j51  
69-j41  
62-j33  
58-j28  
55-j24  
52-j21  
50-j19  
48-j18  
44-j16  
41-j15  
39-j14  
38-j14  
37-j12  
36-j7.9  
32-j2.7  
28+j0.8  
24+j2.0  
23+j3.6  
21+j5.9  
19+j7.5  
16+j8.5  
0.36  
–48.5  
–55.6  
–61.9  
–68.7  
–76.5  
–83.6  
–90.9  
–105  
–114  
–121  
–125  
–131  
–149  
–172  
175  
0.356  
0.3  
0.3  
0.259  
0.228  
0.205  
0.191  
0.183  
0.182  
0.19  
0.258  
0.229  
0.203  
0.192  
0.179  
0.176  
0.185  
0.196  
0.202  
0.201  
0.188  
0.225  
0.292  
0.348  
0.373  
0.42  
0.2  
0.207  
0.205  
0.2  
0.238  
0.303  
0.363  
0.387  
0.427  
0.481  
0.524  
171  
172  
166  
168  
160  
162  
157  
0.468  
0.518  
159  
154  
157  
55881fb  
20  
LTC5588-1  
APPLICATIONS INFORMATION  
Table 5. LOM Port Input Impedance vs Frequency for EN = Low  
and PLOM = 10dBm (LOP Terminated with 50Ω AC to Ground)  
0
–2  
REFLECTION COEFFICIENT  
FREQUENCY  
(GHz)  
LOM INPUT  
IMPEDANCE  
MAG  
0.48  
ANGLE  
–32.1  
–36.9  
–42  
–4  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
92-j61  
83-j55  
75-j50  
66-j39  
60-j32  
56-j27  
53-j23  
50-j20  
48-j19  
46-j17  
42-j15  
40-j14  
38-j14  
37-j13  
36-j12  
35-j7.5  
31-j2.2  
27+j1.3  
24+j2.7  
22+j4.4  
20+j6.8  
18+j8.5  
16+j9.5  
0.444  
0.414  
0.345  
0.293  
0.251  
0.225  
0.199  
0.191  
0.18  
–6  
3.3V, 85°C  
3.3V, 25°C  
3.15V, 25°C  
3.45V, 25°C  
3.3V, 40°C  
–49.3  
–57.4  
–63.2  
–71.2  
–78.8  
–86.6  
–93.6  
–108  
–117  
–123  
–127  
–132  
–150  
–172  
175  
–8  
–10  
300  
400  
500  
600  
RF FREQUENCY (MHz)  
200  
55881 F05  
Figure 5. Low Band Voltage Gain vs RF Frequency  
Using Figure 4 Matching  
0.181  
0.192  
0.205  
0.211  
0.212  
0.202  
0.244  
0.31  
The third harmonic content of the LO can degrade image  
rejectionseverely,itisrecommendedtokeepthe3rd-order  
harmonic of the LO signal lower than the desirable image  
rejectionminus6dB.Althoughthesecondharmoniccontent  
of the LO is less sensitive, it can still be significant. The  
large-signal noise figure can be improved with higher LO  
input power. However, if the LO input power is too large to  
cause the internal LO signal clipping in the phase-shifter  
section, the image rejection can be degraded rapidly.  
This clipping point depends on the supply voltage, LO  
frequency,temperatureandsingleendedvsdifferentialLO  
drive. At f = 2140MHz, V = 3.3V, T = 25°C and single-  
0.363  
0.389  
0.433  
0.479  
0.525  
171  
166  
160  
157  
154  
LO  
CC  
ended LO drive, this clipping point is at about 16.7dBm.  
For 3.15V it lowers to 16.1dBm. For differential drive it is  
about 21.6dBm.  
0
–10  
–20  
–30  
RF PORT, EN = HIGH,  
C7 = 4.7nH, C8 = 33pF  
RF PORT, EN = LOW,  
C7 = 4.7nH, C8 = 33pF  
RF PORT, EN = HIGH,  
C7 = 2.7nH, C8 = 10pF  
RF PORT, EN = LOW,  
C7 = 2.7nH, C8 = 10pF  
LO PORT, EN = HIGH,  
USING B0310J50100A00  
LO PORT, EN = LOW,  
USING B0310J50100A00  
The differential LO port input impedance for EN = High  
and P = 10dBm is given in Table 6.  
LO  
–40  
200  
400  
500  
600  
300  
FREQUENCY (MHz)  
55881 F04  
Figure 4. RF and LO Port Return Loss vs Frequency for Low Band  
Match (See Figure 8)  
55881fb  
21  
LTC5588-1  
APPLICATIONS INFORMATION  
Table 6: Differential LO Input Impedance vs Frequency for  
EN = High and PLO = 10dBm  
Table 7: Differential LO Input Impedance vs Frequency for  
EN = Low and PLO = 10dBm  
LO  
REFLECTION COEFFICIENT  
LO  
REFLECTION COEFFICIENT  
DIFFERENTIAL  
INPUT  
DIFFERENTIAL  
INPUT  
FREQUENCY  
(MHz)  
FREQUENCY  
(MHz)  
IMPEDANCE  
MAG  
0.247  
0.247  
0.223  
0.215  
0.194  
0.181  
0.184  
0.186  
0.198  
0.198  
0.237  
0.243  
0.262  
0.254  
0.251  
0.199  
0.173  
0.197  
0.275  
0.338  
0.433  
0.515  
0.596  
ANGLE  
–43  
IMPEDANCE  
MAG  
0.243  
0.250  
0.221  
0.215  
0.197  
0.183  
0.186  
0.188  
0.200  
0.199  
0.237  
0.240  
0.259  
0.248  
0.245  
0.191  
0.172  
0.206  
0.293  
0.362  
0.459  
0.538  
0.619  
ANGLE  
–45  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
134-j48  
126-j51  
119-j46  
109-j45  
100-j40  
97-j36  
94-j36  
90-j35  
84-j34  
83-j33  
77-j36  
76-j37  
73-j38  
74-j37  
74-j35  
78-j28  
74-j15  
67-j2.9  
58+j7.3  
51+j15  
42+j18  
34+j20  
27+j16  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
131-j48  
125-j52  
117-j46  
107-j45  
98-j40  
95-j36  
92-j35  
88-j34  
83-j33  
82-j32  
75-j35  
76-j35  
72-j36  
74-j35  
73-j33  
77-j25  
73-j12  
66-j0.2  
56+j10  
49+j18  
39+j21  
32+j22  
25+j18  
–50  
–52  
–55  
–58  
–66  
–69  
–79  
–81  
–84  
–87  
–90  
–93  
–96  
–99  
–104  
–107  
–111  
–111  
–113  
–113  
–115  
–120  
–145  
–174  
168  
–107  
–110  
–114  
–113  
–115  
–115  
–118  
–125  
–152  
180  
164  
158  
154  
156  
153  
156  
153  
160  
158  
55881fb  
22  
LTC5588-1  
APPLICATIONS INFORMATION  
RF Section  
The RF port output impedance for EN = Low is given in  
Table 9.  
After upconversion, the RF outputs of the I and Q mixers  
are combined. An on-chip balun performs internal dif-  
ferential to single-ended conversion, while transforming  
the output signal to 50Ω as shown in Figure 1.  
Table 9. RF Output Impedance vs Frequency for EN = Low  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
RF OUTPUT  
IMPEDANCE  
MAG  
ANGLE  
Table 8 shows the RF port output impedance vs frequency  
for EN = High.  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
1.9  
2.0  
2.5  
3.0  
3.2  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
7.2+j11  
8.0+j13  
9.0+j16  
12+j21  
15+j25  
19+j29  
23+j32  
29+j34  
35+j35  
40+j34  
51+j28  
57+j18  
57+j7.0  
53+j0.4  
51-j2.4  
48-j4.0  
38-j4.9  
31-j0.7  
29+1.0  
27+j3.6  
24+j5.6  
22+j6.9  
19+j11  
17+j20  
15+j28  
0.761  
0.742  
0.720  
0.675  
0.622  
0.571  
0.518  
0.464  
0.414  
0.363  
0.266  
0.175  
0.090  
0.030  
0.025  
0.044  
0.153  
0.240  
0.266  
0.308  
0.365  
0.405  
0.478  
0.563  
0.628  
155  
149  
144  
133  
123  
115  
107  
99  
Table 8. RF Output Impedance vs Frequency for EN = High  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
RF OUTPUT  
IMPEDANCE  
MAG  
0.742  
0.723  
0.702  
0.660  
0.609  
0.560  
0.509  
0.457  
0.409  
0.359  
0.266  
0.180  
0.098  
0.042  
0.032  
0.043  
0.142  
0.227  
0.255  
0.298  
0.365  
0.406  
0.475  
0.541  
0.613  
ANGLE  
154  
149  
143  
133  
123  
114  
106  
98  
0.2  
0.25  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.2  
1.4  
1.6  
1.8  
1.9  
2.0  
2.5  
3.0  
3.2  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
7.8+j11  
8.7+j13  
9.7+j16  
12+j21  
16+j25  
19+j29  
24+j32  
30+j34  
35+j35  
41+j34  
52+j28  
58+j18  
58+j7.1  
55+j0.2  
52-j2.7  
50-j4.3  
39-j5.9  
32-j1.9  
30-j0.2  
27+j2.2  
23+j4.5  
22+j6.8  
19+j11  
17+j20  
15+j27  
92  
86  
72  
60  
43  
91  
7.0  
85  
–74  
–111  
–155  
–177  
–177  
169  
164  
161  
151  
132  
118  
70  
57  
39  
3.4  
–52  
–92  
–149  
–173  
–180  
172  
167  
161  
151  
133  
120  
55881fb  
23  
LTC5588-1  
APPLICATIONS INFORMATION  
Linearity Optimization  
For zero-IF systems the spectral regrowth is typically  
limited by the OIP2 performance. In that case, optimiz-  
ing the LINOPT pin voltage may not improve the spectral  
regrowth. The spectral regrowth for systems with an IF  
(forexample140MHz)willbesetbytheOIP3performance  
and optimizing LINOPT voltage can improve the spectral  
regrowth significantly (see Figure 13).  
The LINOPT pin (Pin 7) can be used to optimize the lin-  
earity of the RF circuitry. Figure 6 shows the simplified  
schematic of the LINOPT pin interface. The nominal DC  
bias voltage of the LINOPT pin is 2.56V and the typical  
voltage window to drive the LINOPT pin for optimum  
linearity is 2V to 3.7V. Since its input impedance for EN =  
High is about 150Ω, an external buffer may be required to  
output a current in the range of –2mA to 8mA. The LINOPT  
voltageforoptimumlinearityisafunctionofLOfrequency,  
temperature, supply voltage, baseband frequency, high  
side or low side LO injection, process, signal bandwidth  
and RF output level.  
Enable Interface  
Figure 7 shows a simplified schematic of the EN pin in-  
terface. The voltage necessary to turn on the LTC5588-1  
is 2V. To disable (shut down) the chip, the enable voltage  
must be below 1V. If the EN pin is not connected, the chip  
is enabled. This EN = High condition is assured by the  
100k on-chip pull-up resistor.  
V
CC1  
100Ω  
75Ω  
250Ω  
LINOPT  
INTERNAL  
ENABLE SIGNAL  
55881 F06  
Figure 6. LINOPT Pin Interface  
V
CC1  
100k  
INTERNAL  
ENABLE  
CIRCUIT  
EN  
55881 F07  
Figure 7. EN Pin Interface  
55881fb  
24  
LTC5588-1  
APPLICATIONS INFORMATION  
Evaluation Board  
voltage drop over R1 and R2 is about 0.15V. The supply  
voltages applied directly to the chip can be monitored  
by measuring at the test points TP1 and TP2. If a power  
supply is used that ramps up slower than 7V/μs and limits  
the overshoot on the supply below 3.8V, R1 and R2 can be  
omitted. To facilitate turn-on and turn-off time measure-  
ments, the microstrip between J5 and J7 can be used  
connecting J5 to a pulse generator, J7 to an oscilloscope  
with 50Ω input impedance, removing R5 and inserting a  
0Ω resistor for R3.  
Figure 8 shows the evaluation board schematic. A good  
ground connection is required for the exposed pad. If this  
is not done properly, the RF performance will degrade.  
Additionally, theexposedpadprovidesheatsinkingforthe  
part and minimizes the possibility of the chip overheat-  
ing. Resistors R1 and R2 reduce the charging current in  
capacitors C1 and C2 (see Figure 8) and will reduce supply  
ringing during a fast power supply ramp-up with induc-  
tive wiring connecting V and GND. For EN = High, the  
CC  
J9  
BBMI  
J8  
BBPI  
R6  
OPT  
C12  
C11  
R11  
OPT  
R10  
OPT  
OPT  
OPT  
J7  
EN  
R4  
OPT  
TP1  
EN  
V
CC  
C1  
4.7μF  
C3  
1nF  
R1  
J5  
1Ω  
R2  
1.3Ω  
EN  
R5  
0Ω  
R3  
OPT  
TP2  
C4  
1nF  
C2  
4.7μF  
24 23 22 21 20 19  
C5  
J1  
LOP  
1nF  
1
18  
17  
16  
15  
14  
13  
EN  
V
CC2  
C7  
6.8pF  
J6  
RF OUT  
2
3
4
5
6
6
5
4
GND  
LOP  
LOM  
GND  
NC  
GNDRF  
RF  
NC GND BP  
BALUN  
U2  
OPT  
U1  
LTC5588-1  
C8  
0.2pF  
UNBP GND BP  
NC  
1
2
3
GNDRF  
NC  
C14  
1nF  
J2  
LOM  
R12  
OPT  
C6  
1nF  
LINOPT  
R14  
1Ω  
25  
7
8
9
10 11 12  
26  
BOARD NUMBER: DC1524A  
GND  
C13  
100nF  
R13  
OPT  
J3  
BBMQ  
J4  
BBPQ  
C9  
OPT  
C10  
OPT  
R8  
OPT  
R9  
OPT  
R7  
OPT  
55881 F08  
Figure 8. Evaluation Circuit Schematic  
55881fb  
25  
LTC5588-1  
APPLICATIONS INFORMATION  
Figures 9 and 10 show the component side and the bot-  
tom side of the evaluation board. An enlarged view of the  
component side around the IC placement shows all pins  
related to GND (group 1) and all pins related to GNDRF  
(group 2) are not connected via the top layer of the com-  
ponent side in Figure 11. It is possible to use the part  
without a split-paddle PCB island, but this may degrade  
OIP2 by a few dB at some frequencies and reduce LO  
leakage slightly.  
Due to self heating, the board temperature on the bottom  
side underneath the exposed die paddle for EN = high  
and V = 3.3V is –29.5°C at –40°C, 37.8°C at 25°C and  
CC  
98.1°C at 85°C ambient temperatures.  
Theon-chiptemperaturecanbeobtainedusingthebuilt-in  
thermistor. The on-chip thermistor is internally connected  
between GNDRF and GND, requiring AC grounding Pins  
12, 14, 17, 19 and the exposed pad pin 26. The thermistor  
is 1.4kΩ at 25°C and V = 3.3V, and has a temperature  
CC  
coefficient of 11Ω/°C. Switching from EN = Low to EN  
= High causes a 1.5mV DC voltage increase on the (AC  
grounded) GNDRF due to the internal IR drop.  
Figure 10. Bottom Side of Evaluation Board  
Figure 11. Enlarged View of the Component Side  
of the Evaluation Board  
Figure 9. Component Side of Evaluation Board  
55881fb  
26  
LTC5588-1  
APPLICATIONS INFORMATION  
The LTC5588-1 is recommended for basestation applica-  
tions using various modulation formats. Figure 14 shows  
a typical application. The LTC2630 can be used to drive  
the LINOPT pin via a SPI interface. At 3.3V supply, the  
maximum LINOPT voltage is about 3.125V. Using an extra  
buffer like the LTC6246 in unity-gain configuration can  
increase the maximum LINOPT voltage to about 3.17V.  
An LTC2630 with a 5V supply can drive the full 2V to 3.7V  
range for the LINOPT pin.  
Figure12showstheACPR,AltCPRandACPR,AltCPRwith  
OptimizedLINOPTvoltagevsRFOutputPowerat2.14GHz  
for W-CDMA 1, 2 and 4 Carriers. A 4-Carriers W-CDMA  
spectrum is shown in Figure 13 with and without LINOPT  
voltage optimization.  
–40  
ACPR  
4C  
2C  
ACPR (OPT)  
1C  
AltCPR  
–50  
AltCPR (OPT)  
DOWNLINK TEST  
MODEL 64 DPCH  
–60  
f
BB  
f
LO  
= 140MHz,  
= 2280MHz  
–70  
–80  
–90  
–20  
–15  
–10  
–5  
0
5
55881 TA  
RF OUTPUT POWER PER CARRIER (dBm)  
Figure 12. ACPR, AltCPR and ACPR, AltCPR with Optimized LINOPT  
Voltage vs RF Output Power at 2.14GHz for W-CDMA 1, 2 and 4 Carriers  
–20  
DOWNLINK TEST MODEL 64 DPCH  
–40  
–60  
–80  
f
f
= 140MHz  
BB  
LO  
–100  
–120  
= 2280MHz  
OPTIMIZED  
NOT OPTIMIZED  
2.115  
2.125  
2.135  
2.145  
2.155  
2.165  
RF FREQUENCY (GHz)  
55881 F13  
Figure 13. 4-Carrier W-CDMA Spectrum with and without LINOPT  
Voltage Optimization  
55881fb  
27  
LTC5588-1  
PACKAGE DESCRIPTION  
PF Package  
Variation: PF24MA  
24-Lead Plastic UTQFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1834 Rev Ø)  
2.50 REF  
0.70 p 0.05  
0.41  
p 0.05  
0.41 p 0.05  
2.45 p 0.05  
4.50 p 0.05  
3.10 p 0.05  
1.24 p0.05  
0.41  
p 0.05  
PACKAGE OUTLINE  
0.25 p 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
PIN 1 NOTCH  
R = 0.20 TYP  
OR 0.25 s 45o  
CHAMFER  
BOTTOM VIEW—EXPOSED PAD  
2.50 REF  
0.55 p 0.05  
R = 0.05  
TYP  
4.00 p 0.10  
23  
24  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 p 0.10  
1
2
4.00 p 0.10  
2.45 p 0.10  
1.24 p 0.10  
0.41 p 0.10  
0.41  
R = 0.125  
TYP  
p 0.10  
(PF24MA) UTQFN 0908 REV Ø  
0.125 REF  
0.25 p 0.05  
0.50 BSC  
0.00 – 0.05  
0.41 p 0.10  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE, IF PRESENT  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
55881fb  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
28  
LTC5588-1  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
2/11  
Updated Features and Description sections  
1
Add θ value to Pin Configuration  
Additional information added to Electrical Characteristics section  
Added Typical Performance Characteristics curves  
2
5
JC  
14, 15  
17, 26  
5
Revised Applications Information to replace Figure 1 and text.  
Added Note 14 to Electrical Characteristics section.  
B
3/11  
55881fb  
29  
LTC5588-1  
TYPICAL APPLICATION  
3.3V  
24  
18  
1nF + 4.7μF  
s2  
V
LTC5588-1  
RF = 200MHz  
TO 6000MHz  
21  
22  
CC  
I-DAC  
VmI  
I-CHANNEL  
6.8pF  
PA  
1
0o  
12,14,17,  
19, 26  
EN  
0.2pF  
90o  
Q-CHANNEL  
10  
9
Q-DAC  
VmI  
3.3V  
4
LINOPT  
7
1
2
3
LD  
SCK  
SDI  
BASEBAND  
GENERATOR  
3
4
2, 5, 8, 11, 20  
23, 25  
6
DAC  
LTC2630  
1nF  
50Ω  
1nF  
5
VCO/SYNTHESIZER  
55881 F14  
Figure 14. 200MHz to 6000MHz Direct Conversion Transmitter Application  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT®5518  
DESCRIPTION  
COMMENTS  
1.5GHz to 2.4GHz High Linearity Direct Quadrature  
Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 3kΩ 2.1V  
Baseband Interface, 5V/128mA Supply  
DC  
LT5528  
LT5558  
LT5568  
LT5571  
LT5572  
LTC5598  
1.5GHz to 2.4GHz High Linearity Direct Quadrature  
Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω 0.5V  
Baseband Interface, 5V/128mA Supply  
DC  
600MHz to 1100MHz High Linearity Direct Quadrature  
Modulator  
22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ 2.1V  
Baseband Interface, 5V/108mA Supply  
DC  
700MHz to 1050MHz High Linearity Direct Quadrature  
Modulator  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω 0.5V  
Baseband Interface, 5V/117mA Supply  
DC  
620MHz to 1100MHz High Linearity Direct Quadrature  
Modulator  
21.7dBm OIP3 at 900MHz, –159dBm/Hz Noise Floor, Hi-Z 0.5V  
Baseband Interface, 5V/97mA Supply  
DC  
1.5GHz to 2.5GHz High Linearity Direct Quadrature  
Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, Hi-Z 0.5V  
Baseband Interface, 5V/120mA Supply  
DC  
5MHz to 1600MHz High Linearity Direct Quadrature  
Modulator  
27.7dBm OIP3 at 140MHz, –160dBm/Hz Noise Floor with P  
= 5dBm  
OUT  
LTC5540/LTC5541/ 600MHz to 4GHz High Linearity Downconverting Mixers  
LTC5542/LTC5543  
IIP3 = 26.4dBm, 8dB Conversion Gain, <10dB NF, 3.3V/190mA Supply  
Current  
LT5527  
400MHz to 3.7GHz, 5V Downconverting Mixer  
2.3dB Gain, 23.5dBm IIP3, 12.5dB NF at 1900MHz, 5V/78mA Supply  
Current  
LT5557  
400MHz to 3.7GHz, 3.3V Downconverting Mixer  
2.9dB Gain, 24.7dBm IIP3, 11.7dB NF at 1950MHz, 3.3V/82mA Supply  
Current  
RF Power Detector  
LT5581  
6GHz Low Power RMS Detector  
40dB Dynamic Range, 1dB Accuracy Over Temperature, 1.5mA Supply  
Current  
LTC5582  
40MHz to 10GHz RMS Power Detector  
57dB Dynamic Range, 1dB Accuracy Over Temperature, Single-Ended  
RF Input (No Transformer)  
55881fb  
LT 0311 REV B • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
30  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5528EUF#TRPBF

暂无描述
Linear

LT5534

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6

50MHz to 3GHz RF Power Detector with 60dB Dynamic Range
Linear

LT5534ESC6#PBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5534ESC6#TR

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5534ESC6#TRMPBF

LT5534 - 50MHz to 3GHz RF Power Detector with 60dB Dynamic Range; Package: SC70; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5534ESC6PBF

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN
Linear

LT5534ESC6TRPBF

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN
Linear

LT5537

Wide Dynamic Range RF/IF Log Detector
Linear

LT5537EDDB

Wide Dynamic Range RF/IF Log Detector
Linear

LT5537EDDB#TR

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5537EDDB#TRMPBF

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear