LT5534ESC6TRPBF [Linear]

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN;
LT5534ESC6TRPBF
型号: LT5534ESC6TRPBF
厂家: Linear    Linear
描述:

RF/Microwave Detector, 50 MHz - 3000 MHz RF/MICROWAVE LINEAR DETECTOR, LEAD FREE, PLASTIC, SC-70, MO-203AB, 6 PIN

射频 微波
文件: 总10页 (文件大小:951K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5534  
50MHz to 3GHz  
RF Power Detector  
with 60dB Dynamic Range  
FEATURES  
DESCRIPTION  
The LT®5534 is a 50MHz to 3GHz monolithic RF power  
detector capable of measuring RF signals over a 60dB  
dynamic range. The RF signal in a decibel scale is pre-  
cisely converted into DC voltage on a linear scale. The  
60dB input dynamic range is achieved using cascaded RF  
detectors and RF limiters. Their outputs are summed to  
generate an accurate log-linear DC voltage proportional  
to the input RF signal in dB. The output is buffered with a  
lowoutputimpedancedriver.TheLT5534deliverssuperior  
temperature stability (typical output variation within ±±dB  
over the full temperature range). The output responds in  
less than 40ns to a large RF input signal.  
n
RF Frequency Range: 50MHz to 3GHz  
n
Linear Dynamic Range: 60dB  
n
Exceptional Accuracy over Temperature  
and Power Supply  
Fast Transient Response:  
n
38ns Full-Scale Settling Time  
n
Single 2.7V to 5.25V Supply  
n
Low Supply Current: 7mA  
n
Shutdown Current: 0.±µA  
n
Tiny 6-Lead SC70 Package  
APPLICATIONS  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
RF RSSI and ACC  
n
RF Power Control  
n
CATV Power Detection  
Optical Receiver Gain Control  
n
TYPICAL APPLICATION  
Output Voltage  
vs RF Input Power  
50MHz to 3GHz RF Power Detector  
3V  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
0.1µF  
100pF  
V
= 3V  
CC  
AT 900MHz  
2
V
LT5534  
DET  
CC  
1
DET  
DET  
DET  
DET  
V
OUT  
V
OUT  
1nF  
0
RF  
RF  
INPUT  
47Ω  
–1  
–2  
–3  
ENABLE  
EN  
GND  
T
T
= 25°C  
= 85°C  
A
A
5534 TA01  
TA = –40°C  
–60  
–40  
–30  
–20  
–10  
0
–50  
RF INPUT POWER (dBm)  
5534 TA01b  
5534fc  
1
LT5534  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Power Supply Voltage..............................................5.5V  
EN 1  
6 RF  
5 GND  
4 V  
Enable Voltage .....................................................0V, V  
CC  
GND 2  
RF Voltage (+±0dBm Equivalent) ..............................±±V  
Operating Ambient Temperature Range ...–40°C to 85°C  
Storage Temperature Range...................–65°C to ±25°C  
Lead Temperature (Soldering, ±0 sec) .................. 300°C  
V
3
OUT  
CC  
SC6 PACKAGE  
6-LEAD PLASTIC SC70  
= ±25°C, θ = 256°C/W  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5534ESC6#PBF  
LT5534ESC6#TRPBF  
LBGD  
6-Lead Plastic SC70  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS VCC = 3V, EN = 3V, TA = 25°C, source impedance = 50Ω, unless otherwise  
noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
RF Input  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Frequency Range  
Input Impedance  
50 to 3000  
2
MHz  
kΩ  
f
= 50MHz  
RF  
RF Input Power Range  
Dynamic Range (Note 3)  
Output Slope  
–58 to +2  
60  
dBm  
dB  
±3dB Linearity Error, T = 40°C to 85°C  
A
44  
mV/dB  
dB/°C  
Output Variation vs Temperature  
P
= –48dBm to –±4dBm, T = –40°C to 85°C  
0.007  
IN  
A
f
= 900MHz  
RF  
RF Input Power Range  
Dynamic Range (Note 3)  
Output Slope  
–60 to 0  
60  
dBm  
dB  
±3dB Linearity Error, T = 40°C to 85°C  
A
4±  
mV/dB  
dB/°C  
Output Variation vs Temperature  
P
= –48dBm to –±4dBm, T = –40°C to 85°C  
0.008  
IN  
A
f
= 1900MHz  
RF  
RF Input Power Range  
Dynamic Range (Note 3)  
Output Slope  
–63 to –2  
6±  
dBm  
dB  
±3dB Linearity Error, T = 40°C to 85°C  
A
3±  
36.6  
43  
mV/dB  
dB/°C  
dBm  
Output Variation vs Temperature  
Output Intercept  
P
= –48dBm to –±4dBm, T = –40°C to 85°C  
0.0±2  
–64  
IN  
A
50Ω External Termination, T = –40°C to 85°C  
–70  
–58  
A
f
= 2500MHz  
RF  
RF Input Power Range  
Dynamic Range (Note 3)  
–63 to –3  
60  
dBm  
±3dB Linearity Error, T = 40°C to 85°C  
dB  
A
5534fc  
2
LT5534  
ELECTRICAL CHARACTERISTICS VCC = 3V, EN = 3V, TA = 25°C, source impedance = 50Ω, unless otherwise  
noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
35  
MAX  
UNITS  
mV/dB  
dB/°C  
Output Slope  
Output Variation vs Temperature  
Output Interface  
P
= –48dBm to –±4dBm, T = –40°C to 85°C  
0.025  
IN  
A
Output DC Voltage  
Output Impedance  
Output Bandwidth  
Full-Scale Setting Time  
Sinking/Sourcing  
No RF Input Signal  
0
±42  
32  
380  
mV  
Ω
30  
MHz  
ns  
Input from No Signal to –2dBm, to 90%  
38  
±0/200  
mA/µA  
VCC = 3V, EN = 3V, TA = 25°C, unless otherwise noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Up/Down  
Turn-On Time  
Turn-Off Time  
EN = High (On)  
EN = Low (Off)  
Power Supply  
Supply Voltage  
Supply Current  
Shutdown Current  
200  
800  
ns  
ns  
V
0.9  
0.6  
V
2.7  
5
5.25  
9
V
mA  
µA  
EN = High  
EN = Low  
7
0.±  
±0  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The linearity error is calculated by the difference between the  
incremental slope of the output and the average output slope from  
–48dBm to –±4dBm. The dynamic range is defined as the range over  
which the linearity error is within ±3dB.  
Note 2: Specifications over the –40°C to 85°C temperature range are assured  
by design, characterization and correlation with statistical process control.  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Test circuit shown in Figure 1)  
Output Voltage vs Frequency  
Linearity Error vs Frequency  
Output Voltage vs RF Input Power  
2.8  
2.4  
3
2
1
0
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
V
A
= 3V  
V
T
= 3V  
V
= 3V  
CC  
CC  
CC  
A
50MHz  
T
= 25°C  
= 25°C  
AT 50MHz  
2
900MHz  
50MHz  
900MHz  
2.0  
1.6  
1.2  
0.8  
0.4  
1
1.9GHz  
2.5GHz  
0
2.5GHz  
1.9GHz  
–1  
–2  
–3  
–1  
–2  
–3  
T
T
= 25°C  
= 85°C  
A
A
TA = –40°C  
0
–30  
RF INPUT POWER (dBm)  
–10  
0
–30  
RF INPUT POWER (dBm)  
–10  
0
–70 –60 –50 –40  
–20  
–70 –60 –50 –40  
–20  
–60  
–40  
–30  
–20  
–10  
0
–50  
RF INPUT POWER (dBm)  
5534 G03  
5534 G02  
5534 G01  
5534fc  
3
LT5534  
TYPICAL PERFORMANCE CHARACTERISTICS (Test circuit shown in Figure 1)  
VOUT Variation vs RF Input Power  
Output Voltage vs RF Input Power  
3
2
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
V
= 3V AT 50MHz  
V
= 3V  
CC  
CC  
NORMALIZED AT 25°C  
AT 900MHz  
2
1
1
T
= –40°C  
= 85°C  
A
0
0
T
A
–1  
–2  
–3  
–1  
–2  
–3  
T
T
= 25°C  
= 85°C  
A
A
TA = –40°C  
–60  
–40  
–30  
–20  
–10  
0
0
0
–60  
–40  
–30  
–20  
–10  
0
–50  
–50  
RF INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5534 G05  
5534 G04  
VOUT Variation vs RF Input Power  
Output Voltage vs RF Input Power  
3
2
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
V
= 3V AT 900MHz  
NORMALIZED AT 25°C  
V
= 3V  
CC  
CC  
AT 1.9GHz  
2
1
1
T
= –40°C  
= 85°C  
A
0
0
T
A
–1  
–2  
–3  
–1  
–2  
–3  
T
T
= 25°C  
= 85°C  
A
A
TA = –40°C  
–60  
–40  
–30  
–20  
–10  
–60  
–50  
–40  
–30  
–20  
–10  
0
–50  
RF INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5534 G07  
5534 G06  
VOUT Variation vs RF Input Power  
Output Voltage vs RF Input Power  
3
2
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
3
V
= 3V AT 1.9GHz  
NORMALIZED AT 25°C  
V
= 3V  
AT 2.5GHz  
CC  
CC  
2
1
T
= 85°C  
1
A
0
0
T
= –40°C  
A
–1  
–2  
–3  
–1  
–2  
–3  
T
T
= 25°C  
= 85°C  
A
A
TA = –40°C  
–60  
–40  
–30  
–20  
–10  
–60  
–40  
–30  
–20  
–10  
0
–50  
–50  
RF INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5534 G09  
5534 G08  
5534fc  
4
LT5534  
TYPICAL PERFORMANCE CHARACTERISTICS (Test circuit shown in Figure 1)  
Output Voltage vs RF Input Power  
at VCC = 3V and 5V  
Output Voltage Distribution  
VOUT Variation vs RF Input Power  
vs Temperature  
3
2
2.8  
2.4  
35  
30  
RF P = –48dBm AT 1.9GHz  
IN  
T
T
T
= 25°C  
= –40°C  
= 85°C  
V
= 3V AT 2.5GHz  
T
= 25°C  
A
A
A
CC  
A
V
CC  
= 3V  
NORMALIZED AT 25°C  
50MHz  
= 3V, 5V  
25  
2.0  
1.6  
1.2  
0.8  
0.4  
V
CC  
1
T
= –40°C  
A
20  
15  
10  
5
1.9GHz  
V = 3V, 5V  
CC  
0
T
= 85°C  
A
–1  
–2  
–3  
0
0
–30  
RF INPUT POWER (dBm)  
–10  
0
–60  
–50  
–40  
–20  
–60  
–40  
–30  
–20  
–10  
0
–50  
0.58  
0.66  
0.68 0.7  
0.54 0.56  
0.6 0.62 0.64  
(V)  
RF INPUT POWER (dBm)  
V
5534 G11  
OUT  
5534 G10  
5534 G12  
Output Voltage Distribution  
vs Temperature  
Supply Voltage vs Supply Current  
10  
40  
35  
30  
25  
20  
15  
10  
5
RF P = –14dBm AT 1.9GHz  
CC  
T
T
T
= 25°C  
= –40°C  
= 85°C  
IN  
A
A
A
V
= 3V  
9
8
7
6
5
4
T
T
= 85°C  
= 25°C  
A
A
T
= –40°C  
A
0
2.5  
3.5  
4
4.5  
5
5.5  
3
1.83  
1.89 1.91 1.93  
1.79 1.81  
1.85 1.87  
(V)  
SUPPLY VOLTAGE (V)  
V
OUT  
5530 G14  
5534 G13  
Output Transient Response  
RF Input Return Loss vs Frequency  
0
–5  
1V/DIV  
V
OUT  
–10  
–15  
–20  
–25  
–30  
RF  
INPUT  
PULSED RF  
0dBm AT 100MHz  
0
1
1.5  
2
2.5  
3
0.5  
50ns/DIV  
5534 G16  
RF INPUT FREQUENCY (GHz)  
5534 G15  
5534fc  
5
LT5534  
PIN FUNCTIONS  
EN (Pin 1): Enable. When the input voltage is higher than  
0.9V, the circuit is completely turned on. When the input  
voltage is less than 0.6V, the circuit is turned off.  
V
(Pin 4): Power Supply. This pin should be decoupled  
CC  
using ±00pF and 0.±µF capacitors.  
RF (Pin 6): RF Input. This pin is internally biased to  
GND (Pins 2, 5): Ground.  
V
CC  
– 0.±8V. A coupling capacitor must be used to connect  
to the RF signal source.  
V
(Pin 3): RF Detector Output.  
OUT  
BLOCK DIAGRAM  
4
V
CC  
DET  
DET  
DET  
DET  
DET  
+
V
OUT  
RF LIMITER  
RF LIMITER  
RF LIMITER  
RF LIMITER  
3
RF  
6
V
REF  
OFFSET  
COMP  
BIAS  
1
GND  
EN  
2
5
5534 BD  
TEST CIRCUIT  
C1  
1nF  
1
2
3
6
5
4
J1  
RF  
EN  
EN  
RF  
R1  
LT5534  
R2  
47Ω  
GND  
GND  
0Ω  
OPTIONAL  
OPTIONAL  
V
V
V
V
CC  
CC  
OUT  
OUT  
C5  
OPTIONAL  
C3  
100pF  
C2  
0.1µF  
5534 F01  
REF DES VALUE SIZE PART NUMBER  
C1  
C2  
C3  
C5  
R1  
R2  
1nF  
0402 AVX 04025C102JAT2A  
0.1µF 0603 TAIYO YUDEN TMK107BJ104KA  
100pF 0603 AVX 06035C101KAT2A  
0603 OPTIONAL  
47Ω 0402 OPTIONAL  
0Ω  
0603 OPTIONAL  
Figure 1. Evaluation Circuit Schematic  
5534fc  
6
LT5534  
TEST CIRCUIT  
Figure 3. Component Side Layout of Evaluation Board  
Figure 2. Component Side Silkscreen of Evaluation Board  
APPLICATIONS INFORMATION  
Table 1. RF Input Impedance  
The LT5534 is a logarithmic-based detector, capable of  
measuring an RF signal over the frequency range from  
50MHz to 3GHz. The 60dB linear dynamic range is  
achieved with very stable output over the full temperature  
range from –40°C to 85°C. The absolute variation over  
temperature is typically within ±±dB over a 47dB dynamic  
range at ±.9GHz.  
S11  
ANGLE (DEG)  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE (Ω)  
MAG  
0.938  
0.934  
0.922  
0.908  
0.900  
0.896  
0.893  
0.889  
0.883  
0.879  
0.873  
0.866  
0.862  
0.848  
0.834  
0.826  
0.822  
50  
±429-j429  
947-j7±0  
509-j609  
250-j440  
±49-j344  
96.8-j278  
67.6-j229  
49.7-j±93  
38.4-j±65  
30.8-j±43  
25.4-j±25  
2±.4-j±09  
±8.5-j96.2  
±6.6-j85.0  
±5.2-j75.7  
±3.7-j67.5  
±2.±-j60.±  
–±.±  
–2.9  
±00  
200  
–5.6  
400  
–9.9  
600  
–±4.±  
–±8.3  
–22.7  
–27.3  
–32.3  
–37.3  
–42.6  
–48.0  
–53.6  
–59.6  
–65.6  
–7±.8  
–78.2  
RF Input Port  
800  
±000  
±200  
±400  
±600  
±800  
2000  
2200  
2400  
2600  
2800  
3000  
The RF port is internally biased at V -0.±8V. The pin  
CC  
should be DC blocked when connected to ground or other  
matching components. A 47Ω resistor (R±) connected to  
ground will provide better than ±0dB input return loss up  
to 2.5GHz. An additional 2nH inductance in series with  
R± will provide improved input matching up to 3GHz.  
The impedance vs frequency of the RF input is detailed  
in Table ±.  
TheapproximatelinearRFinputpowerrangeoftheLT5534  
is from –62dBm to –2dBm with a 50Ω source impedance.  
However, this range can be adjusted either upward or  
5534fc  
7
LT5534  
APPLICATIONS INFORMATION  
downward to tailor for a particular application need. By  
simply inserting an attenuator in front of the RF input, the  
power range is shifted higher by the amount of the attenu-  
ation. Moreover, due to the high RF input impedance of  
the LT5534, the detecting range can be moved downward  
for better detection sensitivity by using a narrow band  
L-C matching network. By this means, the sensitivity of  
the detector can be extended to as low as –75dBm. By  
changing the value of resistor R±, the sensitivity of the  
detector can be fine-tuned within the range from –75dBm  
to –62dBm. Though the range is adjustable, the overall  
linear dynamic range remains the same.  
When the output is terminated with a load capacitance  
C , the slew rate is then limited to 200µA/(C + ±.5pF).  
L
L
For example, the slew rate is reduced to ±7.4V/µs when  
C = ±0pF. A capacitive load may result in output voltage  
L
overshoot, which can be minimized with a series compen-  
sation resistor R2, as shown in Figure ±. The suggested  
resistor values for various capacitive loads are listed in  
Table 2.  
Table 2. Resistor Value for Capacitive Output  
C5 (pF)  
±.5  
5
R2 (kΩ)  
5
4
±0  
2.5  
2
Output Interface  
20  
The output interface of the LT5534 is shown in Figure 4.  
The output currents from the RF detectors are summed  
The optional RC network at the output (R2 and C5 on the  
demo board) can also provide further output filtering, if  
needed. The output bandwidth is primarily dictated by the  
RCconstantofthislowpassfilterwhenitscornerfrequency  
is less than 30MHz.  
When a large signal (e.g., –2dBm) is present at the RF  
input port, the output voltage swing can be as high as  
2.4V. To assure proper operation of the chip, the minimum  
resistive load at the output termination should be greater  
than ±8kΩ.  
andconvertedintoanoutputvoltage, V . Themaximum  
OUT  
charging current available to the output load is about  
200µA. The internal compensation capacitor C is used  
C
to guarantee stable operation for a large capacitive output  
load. Theslewrateis±33V/µs, andthesmall-signaloutput  
bandwidth is approximately 30MHz when the output is  
resistivelyterminatedoropen.Thefastestoutputtransient  
response is achieved when a large signal is applied to the  
RF input port. See the Output Transient Response plot in  
the Typical Performance Characteristics section.  
V
CC  
+
200µA  
C
C
+
V
OUT  
5534 F04  
OUTPUT CURRENTS  
FROM RF DETECTORS  
Figure 4. Simplified Circuit Schematic  
of the Output Interface  
5534fc  
8
LT5534  
REVISION HISTORY (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
8/±0  
Revised Output DC Voltage minimum and maximum values in Electrical Characteristics section  
Updated package drawing in Package Description section  
3
±0  
2
C
±2/±0 Corrected part numbers in Order Information  
5534fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
9
LT5534  
PACKAGE DESCRIPTION  
SC6 Package  
6-Lead Plastic SC70  
(Reference LTC DWG # 05-08-±638 Rev B)  
0.47  
MAX  
0.65  
REF  
1.80 – 2.20  
(NOTE 4)  
1.00 REF  
INDEX AREA  
(NOTE 6)  
1.15 – 1.35  
1.80 – 2.40  
2.8 BSC 1.8 REF  
(NOTE 4)  
PIN 1  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.15 – 0.30  
6 PLCS (NOTE 3)  
0.65 BSC  
0.10 – 0.40  
0.80 – 1.00  
0.00 – 0.10  
REF  
1.00 MAX  
GAUGE PLANE  
0.15 BSC  
0.26 – 0.46  
SC6 SC70 1205 REV B  
0.10 – 0.18  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
6. DETAILS OF THE PIN 1 IDENTIFIER ARE OPTIONAL,  
BUT MUST BE LOCATED WITHIN THE INDEX AREA  
7. EIAJ PACKAGE REFERENCE IS EIAJ SC-70  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
8. JEDEC PACKAGE REFERENCE IS MO-203 VARIATION AB  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V  
Supply  
LT5506  
500MHz Quadrature IF Demodulator with VGA  
±.8V to 5.25V Supply, 40MHz to 500MHz IF, 4dB to 57dB Linear  
Power Gain, 8.8MHz Baseband Bandwidth  
LT55±±  
LT55±2  
LT55±5  
LT55±6  
LT55±7  
LT55±9  
LT5520  
LT5522  
High Linearity Upconverting Mixer  
RF Output to 3GHz, ±7dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 2±dBm IIP3, Integrated LO Buffer  
20dBm IIP3, Integrated LO Quadrature Generator  
2±.5dBm IIP3, Integrated LO Quadrature Generator  
2±dBm IIP3, Integrated LO Quadrature Generator  
±7.±dBm IIP3, 50Ω Single-Ended RF and LO Ports  
±5.9dBm IIP3, 50Ω Single-Ended RF and LO Ports  
DC-3GHz High Signal Level Downconverting Mixer  
±.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator  
0.8GHz to ±.5GHz Direct Conversion Quadrature Demodulator  
40MHz to 900MHz Direct Conversion Quadrature Demodulator  
0.7GHz to ±.4GHz High Linearity Upconverting Mixer  
±.3GHz to 2.3GHz High Linearity Upconverting Mixer  
600MHz to 2.7GHz High Linearity Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = ±2.5dB,  
50Ω Single-Ended RF and LO Ports  
LTC®5532  
LT5546  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
500MHz Quadrature IF Demodulator with VGA and ±7MHz  
Baseband Bandwidth  
±7MHz Baseband Bandwidth, 40MHz to 500MHz IF, ±.8V to 5.25V  
Supply, –7dB to 56dB Linear Power Gain  
5534fc  
LT 1210 REV C • PRINTED IN USA  
LinearTechnology Corporation  
±630 McCarthy Blvd., Milpitas, CA 95035-74±7  
10  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-±900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5537

Wide Dynamic Range RF/IF Log Detector
Linear

LT5537EDDB

Wide Dynamic Range RF/IF Log Detector
Linear

LT5537EDDB#TR

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT5537EDDB#TRMPBF

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT5538

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5538IDD#PBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
ADI

LT5538IDD#PBF

LT5538 - 40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT5538IDD#TRPBF

LT5538 - 40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LT5538IDD-PBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5538IDD-TRPBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5546

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
Linear

LT5546EUF

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
Linear