LT5537EDDB#TR [Linear]

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C;
LT5537EDDB#TR
型号: LT5537EDDB#TR
厂家: Linear    Linear
描述:

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40°C to 85°C

射频 微波
文件: 总16页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5537  
Wide Dynamic Range  
RF/IF Log Detector  
U
FEATURES  
DESCRIPTIO  
The LT®5537 is a wide dynamic range RF/IF detector,  
operational from below 10MHz to 1000MHz. The lower  
limit of the operating frequency range can be extended to  
near DC by the use of an external capacitor. The input  
dynamic range at 200MHz with ±3dB nonlinearity is 90dB  
(from –76dBm to 14dBm, single-ended 50input). The  
detector output voltage slope is nominally 20mV/dB, and  
thetypicaltemperaturecoefficientis0.01dB/°Cat200MHz.  
Low Frequency to 1000MHz Operation  
83dB Dynamic Range with ±1dB Nonlinearity  
at 200MHz  
Sensitivity –76dBm or Better at 200MHz  
Log-Linear Transfer Slope of 20mV/dB  
Supply Voltage Range: 2.7V to 5.25V  
Supply Current: 13.5mA at 3V  
Tiny 8-Lead (3mm × 2mm) DFN Package  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
APPLICATIO S  
Linear-to-Log Signal Level Conversion  
Received Signal Strength Indication (RSSI)  
RF Power Control  
RF/IF Power Detection  
Receiver RF/IF Gain Control  
Envelope Detection  
ASK Receiver  
U
TYPICAL APPLICATIO  
OPTIONAL  
4
5
Output Voltage, Linearity Error  
vs Input Power at 200MHz  
+
CAP  
CAP  
7k  
7k  
2.4  
3
V
CC  
OFFSET  
CANCELLATION  
2.0  
2
6
85°C  
15nF  
15nF  
1nF  
1µF  
+
RF IN  
IN  
IN  
25°C  
2
3
1.6  
1.2  
1
0
–40°C  
0.8  
0.4  
0
–1  
–2  
–3  
OUT  
7.2k  
OUTPUT  
BUFFER  
8
7
DETECTOR CELLS  
V
= ENBL = 3V  
CC  
V
EE  
–80  
–60  
–40  
–20  
0
20  
ENBL  
INPUT POWER (dBm)  
BANDGAP REFERENCE  
AND BIASING  
1
5537 TA01b  
EXPOSED PAD  
9
5537 TA01a  
5537fa  
1
LT5537  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
PACKAGE/ORDER I FOR ATIO  
TOP VIEW  
Power Supply Voltage ........................................... 5.5V  
Enable Voltage ................................... –0.2V, VCC + 0.2V  
Input Power (Note 2) ......................................... 22dBm  
Operating Ambient Temperature Range.. 40°C to 85°C  
Storage Temperature Range ................ 65°C to 125°C  
Maximum Junction Temperature ......................... 125°C  
ENBL  
1
2
3
4
8
7
6
5
OUT  
+
IN  
V
EE  
9
IN  
V
CC  
+
CAP  
CAP  
DDB PACKAGE  
8-LEAD (3mm 2mm) PLASTIC DFN  
θJA = 76°C/W  
EXPOSED PAD (PIN 9) SHOULD BE SOLDERED TO PCB  
DDB PART MARKING  
LBJR  
ORDER PART NUMBER  
LT5537EDDB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
V
= 3V, ENBL = 3V, T = 25°C, unless otherwise specified. (Notes 3, 4)  
ELECTRICAL CHARACTERISTICS  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Signal Input  
Input Frequency Range  
Maximum Input Power for Monotonic Output  
(Note 5)  
10 to 1000  
MHz  
50Termination  
200MHz  
600MHz  
14.0  
11.6  
9.4  
dBm  
dBm  
dBm  
1GHz  
DC Common Mode Voltage  
Small-Signal Impedance  
f = 10MHz  
V
– 0.4  
V
CC  
Measured at 200MHz  
1.73k//1.45pF  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
88.8  
72.5  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
19.6  
–97  
mV/dB  
dBm  
Intercept  
V
= 0V, Extrapolated  
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–76.7  
–0.007  
dBm  
Temperature Coefficient  
f = 50MHz  
P
dB/°C  
IN  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
90.6  
81.0  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
20  
mV/dB  
dBm  
Intercept  
V
= 0V, Extrapolated  
–96  
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–77.2  
–0.005  
dBm  
Temperature Coefficient  
P
dB/°C  
IN  
5537fa  
2
LT5537  
V
= 3V, ENBL = 3V, T = 25°C, unless otherwise specified. (Notes 3, 4)  
ELECTRICAL CHARACTERISTICS  
CC  
A
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f = 100MHz  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
90.5  
82.8  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
= 0V, Extrapolated  
20.3  
–95  
mV/dB  
dBm  
Intercept  
V
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–77  
dBm  
Temperature Coefficient  
f = 200MHz  
P
–0.004  
dB/°C  
IN  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
90.3  
83.5  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
21.2  
–94  
mV/dB  
dBm  
Intercept  
V
= 0V, Extrapolated  
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–76.4  
0.010  
dBm  
Temperature Coefficient  
f = 400MHz  
P
dB/°C  
IN  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
88.2  
70.8  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
23.1  
–91  
mV/dB  
dBm  
Intercept  
V
= 0V, Extrapolated  
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–75.3  
0.019  
dBm  
Temperature Coefficient  
f = 600MHz  
P
dB/°C  
IN  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
85.8  
72.5  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
25.2  
–89  
mV/dB  
dBm  
Intercept  
V
= 0V, Extrapolated  
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–74.1  
0.026  
dBm  
Temperature Coefficient  
f = 1GHz  
P
dB/°C  
IN  
Linear Dynamic Range  
±3dB Error  
±1dB Error  
63.5  
51.7  
dB  
dB  
Slope  
R1 = 33k (Note 8)  
31.4  
–80  
mV/dB  
dBm  
Intercept  
V
= 0V, Extrapolated  
OUT  
Sensitivity  
(Notes 3, 7)  
= –20dBm  
–69.2  
0.031  
dBm  
Temperature Coefficient  
Output  
P
dB/°C  
IN  
Starting Voltage  
Response Time  
Baseband Modulation Bandwidth  
Shutdown Mode  
ENBL = High (On)  
ENBL = Low (Off)  
ENBL Input Current  
No RF Signal Present  
0.4  
110  
6
V
ns  
Input from –30dBm to 0dBm, C  
= 2.5pF  
LOAD  
Output Load Capacitance = 2.5pF  
MHz  
1
V
V
0.3  
V
V
= 3V  
= 0V  
100  
0
µA  
µA  
ENBL  
ENBL  
Turn-On Time  
Turn-Off Time  
100  
100  
µs  
µs  
5537fa  
3
LT5537  
V
= 3V, ENBL = 3V, T = 25°C, unless otherwise specified. (Notes 3, 4)  
A
ELECTRICAL CHARACTERISTICS  
CC  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
Supply Voltage  
Supply Current  
Shutdown Current  
(Note 6)  
= 3V  
2.7  
10  
5.25  
15  
V
mA  
µA  
V
13.5  
500  
CC  
ENBL = Low  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Maximum differential AC input voltage between IN and IN is 4V  
peak. Equivalent to 22dBm with 50input impedance or 16dBm with  
200input impedance (1:4 transformer used).  
Note 6: The maximum output voltage is limited to approximately V  
0.6V. Either the output slope should be reduced or input power level  
CC  
should be limited in order to avoid saturating the output circuit when V  
3V. See discussion in “Dynamic Range” section.  
Note 7: Sensitivity is defined as the minimum input power required for the  
output voltage to be within 3dB of the ideal log-linear transfer curve.  
Sensitivity can be improved by as much as 10dB by using a narrowband  
input impedance transformation network. See discussion in “Input  
Matching” section.  
<
CC  
+
Note 3: Tests are performed as shown in the configuration of Figure 13.  
Note 4: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
control.  
Note 8: The output slope is adjustable using an external pull-down resistor  
(R1). See Applications Information for description of the output circuit.  
Note 5: Operation at lower frequency is possible as described in the “Low  
Frequency Operation” section in Applications Information.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
ENBL Current vs Supply Voltage  
Supply Current vs Supply Voltage  
20  
18  
16  
14  
250  
200  
150  
100  
RF INPUT SIGNAL OFF  
RF INPUT SIGNAL OFF  
ENBL = V  
ENBL = V  
CC  
CC  
T
= 85°C  
A
T
= 85°C  
A
T
= 25°C  
T
= 25°C  
A
A
T
= –40°C  
A
T
= –40°C  
12  
10  
A
50  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
2.5  
3.5  
4.0  
4.5  
5.0  
5.5  
3.0  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
5537 G03  
5537 G02  
5537fa  
4
LT5537  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Voltage, Linearity Error  
vs Input Power at 10MHz  
V
Variation vs Input Power  
Output Voltage, Linearity Error  
OUT  
at 10MHz  
vs Input Power at 50MHz  
3
2
2.4  
2.0  
3
2
2.4  
2.0  
3
2
V
= ENBL = 3V  
NORMALIZED AT 25°C  
= ENBL = 3V  
V
= ENBL = 3V  
CC  
CC  
V
CC  
25°C  
85°C  
85°C  
25°C  
1
0
1.6  
1.2  
1
0
1.6  
1.2  
1
0
–40°C  
85°C  
–40°C  
–40°C  
–1  
–2  
–3  
0.8  
0.4  
0
–1  
–2  
–3  
0.8  
0.4  
0
–1  
–2  
–3  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
5537 G05  
5537 G04  
5537 G06  
Output Voltage, Linearity Error  
vs Input Power at 100MHz  
V
Variation vs Input Power  
V
Variation vs Input Power  
OUT  
OUT  
at 50MHz  
at 100MHz  
3
2.4  
2.0  
3
2
3
2
NORMALIZED AT 25°C  
= ENBL = 3V  
V
CC  
= ENBL = 3V  
NORMALIZED AT 25°C  
V
V
= ENBL = 3V  
CC  
CC  
2
85°C  
85°C  
85°C  
25°C  
1
0
1.6  
1.2  
1
0
1
0
–40°C  
–40°C  
–1  
–2  
–3  
0.8  
0.4  
0
–1  
–2  
–3  
–1  
–2  
–3  
–40°C  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
5537 G07  
5537 G08  
5537 G09  
Output Voltage, Linearity Error  
vs Input Power at 200MHz  
V
Variation vs Input Power  
OUT  
Typical Detector Characteristics  
at 200MHz  
2.4  
2.0  
3
2
3
2
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
NORMALIZED AT 25°C  
= ENBL = 3V  
T
= 25°C  
A
V
200MHz  
CC  
ENBL = V  
CC  
85°C  
25°C  
85°C  
1.6  
1.2  
1
0
1
0
5V  
3V  
–40°C  
0.8  
0.4  
0
–1  
–2  
–3  
–1  
–2  
–3  
–40°C  
V
CC  
= ENBL = 3V  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
5537 G10  
5537 G11  
5537 G12  
5537fa  
5
LT5537  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Output Voltage, Linearity Error  
vs Input Power at 600MHz  
Output Voltage, Linearity Error  
vs Input Power at 400MHz  
V
Variation vs Input Power  
OUT  
at 400MHz  
3.0  
2.5  
3
2
3
2
3.0  
2.5  
3
2
NORMALIZED AT 25°C  
= ENBL = 3V  
V
CC  
85°C  
25°C  
85°C  
25°C  
85°C  
2.0  
1.5  
1
0
1
0
2.0  
1.5  
1
0
–40°C  
–40°C  
1.0  
0.5  
0
–1  
–2  
–3  
–1  
–2  
–3  
1.0  
0.5  
0
–1  
–2  
–3  
–40°C  
V
= ENBL = 3V  
V
= ENBL = 3V  
CC  
CC  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
5537 G13  
5537 G15  
5537 G11  
Output Voltage, Linearity Error  
vs Input Power at 1GHz  
V
Variation vs Input Power  
V
Variation vs Input Power  
OUT  
OUT  
at 600MHz  
at 1GHz  
3
3
2
3.0  
2.5  
3
2
NORMALIZED AT 25°C  
V
NORMALIZED AT 25°C  
V
= ENBL = 3V  
= ENBL = 3V  
CC  
CC  
2
85°C  
25°C  
85°C  
85°C  
1
0
1
0
2.0  
1.5  
1
0
–40°C  
–1  
–2  
–3  
–1  
–2  
–3  
1.0  
0.5  
0
–1  
–2  
–3  
–40°C  
–40°C  
V
= ENBL = 3V  
CC  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
–80  
–60  
–40  
–20  
0
20  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
INPUT POWER (dBm)  
5537 G16  
5537 G18  
5537 G17  
Output Voltage Distribution vs Temperature at –20dBm  
Output Voltage Distribution vs Temperature at –50dBm  
25  
25  
20  
15  
10  
5
RF P = –20dBm at 200MHz  
IN  
RF P = –50dBm at 200MHz  
IN  
25°C  
25°C  
V
= ENBL = 3V  
V
= ENBL = 3V  
CC  
CC  
–40°C  
85°C  
–40°C  
85°C  
20  
15  
10  
5
0
0
1.45 1.475 1.5 1.525 1.55 1.575 1.6 1.625 1.65 1.675 1.7 1.725 1.75  
0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975  
OUTPUT VOLTAGE (V)  
1
1.025 1.05 1.075 1.1  
OUTPUT VOLTAGE (V)  
5537 G20  
5537 G19  
5537fa  
6
LT5537  
U
U
U
PI FU CTIO S  
ENBL (Pin 1): Enable Pin. When the input voltage is higher  
than1V, thecircuitisON. Whentheinputvoltageislessthan  
0.3V, or this pin is not connected, the chip is disabled (OFF).  
IN+, IN(Pins 2, 3): Differential Signal Input Pins. These  
pins are internally biased to VCC – 0.4V. The impedance  
between IN+ and INis approximately 1.73k//1.45pF at  
200MHz. The input pins should be AC coupled.  
VCC(Pin6):PowerSupplyPin.Thispinshouldbedecoupled  
using 1000pF and 0.1µF capacitors.  
VEE (Pin 7): Ground pin.  
OUT (Pin 8): Output pin.  
ExposedPad(Pin9):ShouldbeconnectedtoPCBground.  
CAP+,CAP(Pins4,5):ExternalFilterCapacitorPins. The  
minimum RF input frequency can be lowered by adding an  
optional external capacitor between CAP+ and CAP.  
W
BLOCK DIAGRA  
4
5
7k  
+
CAP  
CAP  
7k  
V
CC  
OFFSET  
CANCELLATION  
6
+
IN  
IN  
2
3
OUT  
OUTPUT  
BUFFER  
8
7
DETECTOR CELLS  
7.2k  
V
EE  
ENBL  
BANDGAP REFERENCE  
AND BIASING  
1
EXPOSED PAD  
7
5537 BD  
5537fa  
7
LT5537  
W U U  
U
APPLICATIO S I FOR ATIO  
150  
The LT5537 provides a log-linear relationship between an  
RF/IF input voltage and its output. The input signal is  
amplifiedsuccessivelybylimitingamplifierstages. Aseries  
of detector cells rectify the signals and produce an output  
current which is log-linearly related to the input power with  
140  
130  
120  
110  
100  
90  
a coefficient (I  
) of 3.4µA/dB at 200MHz (independent  
SLOPE  
of the input termination impedance). This coefficient is  
almost constant below 200MHz, but rises at higher fre-  
quency. The normalized slope variation plot in Figure 1 can  
be used to determine the log-linear coefficient at any  
frequency. The slope of the output voltage curve is deter-  
mined by the total load resistance at the output terminal.  
80  
70  
60  
50  
1
50  
100 200 400 600 1000  
FREQUENCY (MHz)  
5537 F01  
Figure 1. Slope Variation over Frequency  
VSLOPE = ISLOPE • RLOAD  
The on-chip pull-down resistor is 7.2k. The total load  
resistance (RLOAD) can be adjusted by adding external  
load resistance to change the output slope. For example,  
to achieve a log-linear rate of 20mV/dB, a 33k resistor is  
connected between the output pin and ground.  
V
CC  
Slope = 3.4µA/dB • (7.2//33)k= 20.1mV/dB  
Additionally, an off-chip capacitor may be used to reduce  
the output time domain voltage ripple.  
DETECTOR  
OUTPUT  
8
OUT  
7.2k  
5537 F02  
Figure 2. Simplified Output Circuit  
5537fa  
8
LT5537  
W U U  
APPLICATIO S I FOR ATIO  
Dynamic Range  
U
Input Matching  
The LT5537 is capable of detecting and log-converting an The LT5537 has a high impedance input (Figure 3). The  
input signal over a wide dynamic range. The range of the differentialinputimpedanceisderivedfromS11measure-  
output voltage may be limited, however, and the monoto- mentwithoneoftheinputpinsACgrounded(Figure 4). At  
nicity of the output versus input at high input level may be 200MHz,theinputisequivalentto1.73k//1.45pF(Table 1).  
affectedifthesupplyvoltageislowandthelog-linearslope  
The input dynamic range is constant in voltage terms,  
is set too high. The minimum VCC to support 90dB  
ranging from approximately –89dBVrms to 1dBVrms at  
dynamicrangewith20mV/dBslopeis2.8Vundernominal  
200MHz. The dynamic range expressed in power is  
conditions at 25°C. The data shown in the Typical Perfor-  
dependent on the actual impedance selected in the ap-  
plication design.  
mance Characteristics plots was taken with VCC = 3V. If  
there is difficulty encountered in achieving the desired  
Table 1. Parallel Equivalent RC of the LT5537 Input  
dynamic range, then the user is advised to increase the  
supply voltage or else to decrease the output slope by  
connecting a smaller valued resistor between the output  
and ground.  
FREQUENCY  
100MHz  
200MHz  
400MHz  
600MHz  
800MHz  
1000MHz  
R
C
1.85kΩ  
1.73kΩ  
1.07kΩ  
673Ω  
435Ω  
303Ω  
1.51pF  
1.45pF  
1.48pF  
1.52pF  
1.65pF  
1.78pF  
V
CC  
+
CAP CAP  
TO 2ND  
STAGE  
7k  
7k  
+
IN  
IN  
The simplest way of input matching the LT5537 is to  
terminate the input signal with a 50resistor and AC  
couple it to one of the input pins while AC grounding the  
other input pin (Figure 13). The sensitivity (defined as the  
minimum input power required for the output to be within  
3dB of the ideal log-linear response) is –76.4dBm at  
200MHz in this case.  
5537 F04  
V
BIAS  
Figure 3. Simplified Input Circuit  
To achieve the best sensitivity, the input termination  
impedance should be increased and the input pins should  
be differentially driven. An example application circuit is  
shown in Figure 5 which uses a transformer to step up the  
impedance and perform the balun function. The 240Ω  
resistor (R2) sets the impedance at the input of the chip to  
200. A 1:4 transformer is used to match the 50signal  
source impedance to the circuit input impedance. C1 and  
C2 are DC blocking capacitors. This application circuit has  
a (3dB error) sensitivity of –82.4dBm at 200MHz.  
M/A-COM  
ETC4-1-2  
+
C1  
IN  
J1  
INPUT  
2
R2  
240  
N/C  
C2  
IN  
3
(1:4)  
5537 F06  
Figure 4. Input Admittance  
Figure 5. Differential Input Matching to 200  
5537fa  
9
LT5537  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 2. Matching Network Component Values for 200MHz  
Center Frequency  
The 1:4 input transformer can also be replaced with a  
narrow band discrete balun circuit using three compo-  
nents as shown in Figure 6. Capacitors C11, C12 and  
inductor L1 form a tank circuit having a transformer-like  
function over a narrow bandwidth. The increased power-  
to-voltagetransformationandthenarrowerinputpassband  
servetoimprovethesensitivityofthelogarithmicdetector.  
10dB  
RETURN  
SENSITIVITY LOSS BW  
EFFECTIVE  
C11,  
C12  
(pF) ()  
INPUT  
RESISTANCE  
()  
L1  
(nH)  
R2  
(dBm)  
–82.4  
–86.1  
(MHz)  
Q
55  
82  
15  
330  
2k  
2.1  
3.9  
264  
828  
18  
120  
7.5  
The resonant balun circuit using discrete components can  
be custom designed for a range of different input imped-  
ance or sensitivity requirements.  
TheexamplesgiveninTable2covertwodifferenttransfor-  
mation ratios. The first one transforms single-ended 50Ω  
to differential 264. The VOUT vs PIN transfer curves in  
Figure 7 indicate that the input power range for linear  
logarithmic detection is shifted downward by 7dB with a  
sensitivity improvement of 6dB compared with a simple  
50termination. The input return loss is 30dB at the  
design frequency of 200MHz. Bandwidth for better than  
10dB return loss is 55MHz. The second example has a  
higher Q of 3.9 and a corresponding transformed imped-  
ance of 828. The input power range for linear operation  
is shifted downward by 12dB with a sensitivity improve-  
ment of 10dB compared with a simple 50termination.  
The input return loss is 25dB at the design frequency.  
Bandwidth for better than 10dB return loss is 18MHz.  
+
C11  
C1  
IN  
J1  
INPUT  
2
R
S
R
IN  
L1  
R2  
C12  
C2  
IN  
3
5537 F07  
Figure 6. Input Matching Network  
2.5  
T
= 25°C  
A
200MHz  
= ENBL = 3V  
V
CC  
2.0  
BALUN  
264  
1.5  
SINGLE ENDED  
50Ω  
1.0  
0.5  
0
–100 –80  
–60  
–40  
–20  
0
20  
INPUT POWER (dBm)  
5537 F10  
Figure 7. Measured Output with R = 264Ω  
IN  
5537fa  
10  
LT5537  
W U U  
APPLICATIO S I FOR ATIO  
U
AGILENT  
E4436B  
SIGNAL  
GENERATOR  
J1  
J2  
J3  
POWER  
DIVIDER  
–30dB  
ATTENUATOR  
RF OUT  
J1  
MINICIRCUIT  
SPDT  
J2  
J3  
RF1  
RF2  
POWER  
DIVIDER  
INPUT  
RF IN  
ZYSW-2-50DR  
LT5537  
DEMO  
BOARD  
TTL  
50  
OUT  
OUTPUT  
HP33120A  
FUNCTION  
GENERATOR  
PM8943A  
FET PROBE  
10:1  
–30dB  
ATTENUATOR  
SYNC  
CH3  
CH4  
HP 83480A  
DIGITAL COMMUNICATIONS  
ANALYZER WITH  
TRIG  
–6dB  
ATTENUATOR  
HP 54751A  
ELECTRONIC PLUG-IN  
5537 F14  
Figure 8. Timing Test Setup  
Baseband Response  
The unloaded bandwidth of the LT5537 output buffer is  
10MHz. With 2.5pF loading, the output bandwidth is  
approximately6MHz.ThebasebandresponseoftheLT5537  
was characterized with a pulsed RF input using the setup  
shown in Figure 8. The input to the LT5537 is a 200MHz  
CW RF signal switched between –30dBm and –60dBm at  
arateof600kHz. TheoutputwasconnectedtoaFETprobe  
(Fluke PM8943A, 10:1 tip) which has a capacitive loading  
of2.5pF. The10%to90%riseandfalltimesare109nsand  
115ns, respectively. The input signal and output response  
are shown in Figure 9.  
Figure 9. Response Time (–30dBm to –60dBm)  
5537fa  
11  
LT5537  
W U U  
U
APPLICATIO S I FOR ATIO  
Table 3. Application Design Examples  
LOWEST  
OPERATING  
FREQUENCY  
DESIGN  
NUMBER  
INPUT  
POLE  
INTERNAL  
POLE  
DC  
DC  
LOOP PM  
C1, C2  
15nF  
100pF  
5pF  
C6  
REJECTION BW  
APPLICATIONS  
1
2
3
4
Open  
33nF  
390pF  
2.2µF  
8.5kHz  
1.3MHz  
20MHz  
2.8kHz  
414kHz  
740Hz  
50kHz  
10Hz  
1.13MHz  
160kHz  
10MHz  
2kHz  
75°  
1.13MHz  
1.3MHz  
20MHz  
2.8kHz  
Minimal Component Count  
General Purpose  
84°  
60°  
HF, Fast Settling  
47nF  
57°  
Very Low Frequency  
Bold = dominant pole  
Low Frequency Operation  
The optional capacitance (C6) placed between CAP+ (Pin  
4) and CAP(Pin 5) together with the input DC blocking  
capacitors C1 and C2 are used to adjust the operating  
frequencyrange. TheDCoffsetcancellationloopcontains  
twopolesandonezero(inthelowfrequencyregionforthe  
purpose of this analysis). The loop filter capacitance (C6  
+ CINT) generates one of the two poles, the input AC  
coupling capacitors (C1 and C2) determine the other pole  
and the input termination resistance leads to the zero.  
(The pole associated with the input AC coupling capacitor  
also sets the lower corner frequency of the signal path).  
The presence of the two poles in the circuit enables two  
approaches to the design of the application circuit for a  
desired frequency response. But stability margin has to  
be ensured in order to avoid ringing in response to any  
input transient. Table 3 lists four low frequency loop  
designs suitable for different applications.  
BecausethelimitingamplifierstagesoftheLT5537areDC  
coupled, the high overall gain requires DC offset control.  
TheLT5537hasinternalDCoffsetcancellationcircuitry.The  
voltage at the output of the limiting amplifier is low-pass  
filtered, inverted and fed back to the input of the limiting  
amplifier. The DC cancellation also reduces the gain of the  
amplifier at low frequency. As a result, the LT5537 has a  
bandpassfrequencyresponsewithalowerenddetermined  
by the bandwidth of the offset cancellation feedback loop.  
The equivalent circuit of the loop filter is shown in Fig-  
ure 10. C1 and C2 are the external DC blocking capacitors  
of the differential inputs; C6 is an optional external filter  
capacitor which is in parallel with an on-chip filter capaci-  
tor (CINT = 60pF). For analysis purposes only, the values  
for C6 and the on-chip filter capacitor are doubled when a  
single-ended equivalent circuit is derived from a differen-  
tial implementation.  
Design 1 is the simplest application circuit. The external  
capacitor C6 is not used. The input pole is set by the AC  
coupling capacitors (C1, C2) and is the dominant pole at  
8.5kHz.Thezerogeneratedbytheinputcouplingcapacitor  
and the termination resistor is at 60 times the input pole  
frequency. The second pole set by the on-chip filter  
capacitor (CINT) should be at approximately the same  
frequency as that of the zero. This design has a stability  
phase margin (PM) of 75 degrees.  
C1 OR C2  
5.5k  
7k  
2 • C6  
2 • C  
1.5k  
R /2  
S
INT  
5537 F16  
Figure 10. Offset Cancellation Loop Filter  
5537fa  
12  
LT5537  
W U U  
APPLICATIO S I FOR ATIO  
U
Design 2 is the application circuit (Figure 13) used for  
characterization in this data sheet. This is a robust general  
purpose design which can operate as low as 1.3MHz.  
Optional filter capacitor (C6 = 33nF) together with the on-  
chip capacitor set the dominant pole at 740Hz. The input  
pole associated with the AC coupling capacitors (C1, C2 =  
100pF) is at 1.3MHz which is beyond the loop cut-off  
frequency of 160kHz. The zero is at an even higher  
frequency and can be safely ignored. This design has a  
stability phase margin of 84 degrees, resulting in a very  
well damped response to any input biasing transients.  
Offset Cancellation Loop and the Timing Response  
The input of the LT5537 is AC coupled, and the on-chip DC  
biasing is automatically regulated as described above. But  
if the DC component of the input signal has any transient  
stepwithsufficientlyshortriseorfalltime(forexamplethe  
output of an active RF switch has a biasing shift between  
switching states), a transient voltage pulse is induced by  
the displacement current needed to charge the input AC  
coupling capacitor. Also, if the pulse frequency or the  
repetition rate is within the loop bandwidth of the offset  
cancellation circuit, the LT5537 will respond to the in-  
ducedvoltagepulseinthesamewayitnullsoutitsinternal  
DC offset, even though the chip is DC isolated from the  
input signal.  
Design 3 features fast settling. This design is appropriate  
when fast response in the presence of input biasing  
transients is required, and very low frequency operation is  
not needed.  
If the external capacitor (C6) is used to extend the low  
frequency response of the LT5537, then this will also  
lengthen the response time of the DC offset cancellation  
circuit. In the presence of DC steps or glitches at the input,  
the transient response of the slowed offset cancellation  
loopwillbesuperimposedonthefasterlogarithmicdetec-  
toroutput,degradingtheoverallresponsetimeofthechip.  
Design 4 demonstrates the possibility of operating the  
LT5537atverylowfrequency(<10kHz)byconfiguringthe  
offset cancellation loop for very low bandwidth. The re-  
sponse of this circuit at 10kHz is plotted in Figure 11.  
2.5  
T
= 25°C  
CC  
A
The sensitivity of the LT5537 is very high. An input biasing  
step with amplitude of 0.5mV can generate a output  
voltage response of 400mV before the input voltage tran-  
sientdissipatesortheoffsetcancellationloopnullsoutthe  
transient, whichever occurs first.  
V
= ENBL = 3V  
2.0  
1.5  
1.0  
One way to prevent the input signal containing a biasing  
transient from degrading the timing response is to design  
the offset cancellation loop to have a high bandwidth,  
allowing faster settling. Design 3 in Table 3 is suitable for  
this purpose, but will not operate below 20MHz.  
0.5  
0
–100  
–60  
–40  
–20  
0
20  
–80  
INPUT POWER (dBm)  
5537 F17  
Figure 11. 10kHz Operation  
5537fa  
13  
LT5537  
W U U  
U
APPLICATIO S I FOR ATIO  
ENBL  
Enable Pin Operation  
25k  
The enable circuit of the LT5537 is shown in a simplified  
forminFigure12.WhenthevoltageattheENBLpinis1V,  
the enable circuit biases the chip up for normal operation.  
The current drawn by the ENBL pin is dependent on the  
voltage on that pin. At VCC = ENBL = 3V, the ENBL current  
is typically 100µA. At VCC = ENBL = 5V, the ENBL current  
increases to about 200µA. When the voltage at the ENBL  
pin is 0.3V, or if the pin is not connected, the chip is  
disabled and draws a reduced supply current of about  
500µA, with VCC = 3V.  
5537 F04  
Figure 12. Equivalent ENBL Input Circuit  
ENBL  
LT5537  
C1  
100pF  
1
2
8
7
INPUT  
OUTPUT  
ENBL  
OUT  
R1  
+
IN  
V
EE  
33k  
R2  
51  
3
4
6
5
V
IN  
V
CC  
CC  
C3  
1nF  
C4  
1µF  
+
C2  
CAP  
CAP  
100pF  
5537 F19  
C6  
33nF  
Figure 13. Application Board Schematic  
Figure 14. Layout of the Evalulation Board  
5537fa  
14  
LT5537  
U
PACKAGE DESCRIPTIO  
DDB Package  
8-Lead Plastic DFN (3mm × 2mm)  
(Reference LTC DWG # 05-08-1702)  
0.61 ±0.05  
(2 SIDES)  
R = 0.115  
0.38 ± 0.10  
3.00 ±0.10  
(2 SIDES)  
TYP  
5
8
0.56 ± 0.05  
(2 SIDES)  
0.675 ±0.05  
2.50 ±0.05  
1.15 ±0.05  
2.00 ±0.10  
(2 SIDES)  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
CHAMFER OF  
PACKAGE  
OUTLINE  
EXPOSED PAD  
4
1
(DDB8) DFN 1103  
0.25 ± 0.05  
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.20 ±0.05  
(2 SIDES)  
0.50 BSC  
2.15 ±0.05  
(2 SIDES)  
0 – 0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
BOTTOM VIEW—EXPOSED PAD  
1. DRAWING CONFORMS TO VERSION (WECD-1) IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE TOP AND BOTTOM OF PACKAGE  
5537fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
15  
LT5537  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5514  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC-3GHz High Signal Level Downconverting Mixer DC to 3GHz, 17dBm IIP3, Integrated LO Buffer  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature  
Demodulator  
20dBm IIP3, Integrated LO Quadrature Generator  
21.5dBm IIP3, Integrated LO Quadrature Generator  
21dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature  
Demodulator  
LT5517  
LT5519  
40MHz to 900MHz Quadrature Demodulator  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Matching,  
Single-Ended LO and RF Ports Operation  
LT5520  
LT5521  
LT5522  
LT5524  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Matching,  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended  
LO Port Operation  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Single-Ended RF  
and LO Ports  
Low Power, Low Distortion ADC Driver with Digitally 450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
Programmable Gain  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
LT5527  
LT5528  
400MHz to 3.7GHz High Linearity,  
Downconverting Mixer  
23.5dBm IIP3, 12.5dB NF at 1.9GHz, 50Single-Ended RF and LO Ports  
1.5GHz to 2.4GHz High Linearity Direct I/Q  
Modulator  
21.8dBm OIP3 at 2GHz, –159dBm/Hz Noise Floor, 50Interface at All Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz RF Power Detector with 60dB  
Dynamic Range  
±1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
Precision 600MHz to 7GHz RF Detector  
with Fast Comparator Output  
25ns Response Time, Comparator Reference Input, Latch Enable Input,  
–26dBm to +12dBm Input Range  
Low Voltage RF Building Block  
LT5546 500MHz Quadrature Demodulator with VGA and  
17MHz Baseband Bandwidth  
Wide Bandwidth ADCs  
17MHz Baseband Bandwidth, 40MHz to 500MHz IF, 1.8V to 5.25V Supply, –7dB to  
56dB Linear Power Gain  
LTC1749  
LTC1750  
12-Bit, 80Msps  
500MHz BW S/H, 71.8dB SNR  
500MHz BW S/H, 75.5dB SNR  
14-Bit, 80Msps  
5537fa  
LT 0306 REV A • PRINTED IN THE USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
© LINEAR TECHNOLOGY CORPORATION 2005  

相关型号:

LT5537EDDB#TRMPBF

LT5537 - Wide Dynamic Range RF/IF Log Detector; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5538

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5538IDD#PBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
ADI

LT5538IDD#PBF

LT5538 - 40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5538IDD#TRPBF

LT5538 - 40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5538IDD-PBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5538IDD-TRPBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5546

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
Linear

LT5546EUF

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
Linear

LT5546EUF#PBF

LT5546 - 40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5546EUF#TRPBF

LT5546 - 40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554

Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer
Linear