LT5538IDD-PBF [Linear]

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range; 40MHz至3.8GHz的RF功率检波器与75分贝动态范围
LT5538IDD-PBF
型号: LT5538IDD-PBF
厂家: Linear    Linear
描述:

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
40MHz至3.8GHz的RF功率检波器与75分贝动态范围

文件: 总12页 (文件大小:233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5538  
40MHz to 3.8GHz  
RF Power Detector with  
75dB Dynamic Range  
FEATURES  
DESCRIPTION  
The LT®5538 is a 40MHz to 3800MHz monolithic logarith-  
mic RF power detector, capable of measuring RF signals  
over a wide dynamic range, from –75dBm to 10dBm. The  
RF signal in an equivalent decibel-scaled value is precisely  
convertedintoDCvoltageonalinearscale. Thewidelinear  
dynamic range is achieved by measuring the RF signal us-  
ing cascaded RF limiters and RF detectors. Their outputs  
are summed to generate an accurate linear DC voltage  
proportional to the input RF signal in dBm. The LT5538  
delivers superior temperature stable output (within 1dB  
over full temperature range) from 40MHz to 3.8GHz. The  
output is buffered with a low impedance driver.  
Frequency Range: 40MHz to 3.8GHz  
75dB Log Linear Dynamic Range  
Exceptional Accuracy over Temperature  
Linear DC Output vs. Input Power in dBm  
–72dBm Detection Sensitivity  
Single-ended RF Input  
Low Supply Current: 29mA  
Supply Voltage: 3V to 5.25V  
8-lead DFN 3mm × 3mm package  
APPLICATIONS  
Received Signal Strength Indication (RSSI)  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
RF Power Measurement and Control  
RF/IF Power Detection  
Receiver RF/IF Gain Control  
Envelope Detection  
ASK Receiver  
TYPICAL APPLICATION  
Output Voltage and Linearity Error  
vs Input Power  
40MHz - 3.8GHz Logarithmic RF Detector  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
V
= 5V AT 880 MHz  
CC  
LT5538  
EN  
V
OUT  
ENBL  
OUT  
2
RF  
INPUT  
+
+
IN  
CAP  
1nF  
1nF  
IN  
CAP  
1
56  
5V  
GND  
V
CC  
0
5538 TA01  
9
0.1μF  
100pF  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
5538 TA02  
5538f  
1
LT5538  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Power Supply Voltage..............................................5.5V  
Enable Voltage .....................................–0.3V, V + 0.3V  
CC  
ENBL  
1
2
3
4
8
7
6
5
OUT  
RF Input Power....................................................15dBm  
Operating Ambient Temperature ............ –40°C to +85°C  
Storage Temperature Range................. –65°C to +125°C  
Maximum Junction Temperature........................... 150°C  
+
+
IN  
CAP  
CAP  
IN  
GND  
V
CC  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
= 43°C/W  
θ
JA  
EXPOSED PAD (PIN 9) SHOULD BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
8-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5538IDD#PBF  
LT5538IDD#TRPBF  
LCVG  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ENBL = 5V. (Note 2)  
SYMBOL  
RF Input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Frequency Range  
DC Common Mode Voltage  
Input Resistance  
40 to 3800  
MHz  
V
V
CC  
–0.5  
394  
Ω
f
= 40 MHZ  
RF  
RF Input Power Range  
Linear Dynamic Range  
Output Slope  
–75 to 10  
76  
dBm  
dB  
1dB Linearity Error (Note 3)  
(Note 5)  
19.9  
mV/dB  
dBm  
dBm  
Logarithmic Intercept  
Sensitivity  
–87.5  
–72  
Output Variation vs Temperature  
Normalized to Output at 25°C  
P
IN  
P
IN  
P
IN  
= –50dBm; –40°C < T < 85°C  
0.1/0.6  
–0.1/0.6  
–0.2/0.6  
dB  
dB  
dB  
A
A
= –30dBm; –40°C < T < 85°C  
= –10dBm; –40°C < T < 85°C  
A
5538f  
2
LT5538  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ENBL = 5V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–62  
–61  
MAX  
UNITS  
dBc  
2nd Order Harmonic Distortion  
3rd Order Harmonic Distortion  
Pin = –10dBm; At RF Input  
Pin = –10dBm; At RF Input  
dBc  
f
= 450 MHz  
RF  
RF Input Power Range  
Linear Dynamic Range  
Output Slope  
–75 to 10  
75  
dBm  
dB  
1 dB Linearity Error (Note 3)  
(Note 5)  
19.6  
mV/dB  
dBm  
dBm  
Logarithmic Intercept  
Sensitivity  
–87.3  
–71.5  
Output Variation vs Temperature  
Normalized to Output at 25°C  
P
IN  
P
IN  
P
IN  
= –50dBm; –40°C < T < 85°C  
0.1/0.6  
0.1/0.5  
–0.1/0.5  
dB  
dB  
dB  
A
A
= –30dBm; –40°C < T < 85°C  
= –10dBm; –40°C < T < 85°C  
A
2nd Order Harmonic Distortion  
3rd Order Harmonic Distortion  
Pin = –10dBm; At RF Input  
Pin = –10dBm; At RF Input  
–43  
–44  
dBc  
dBc  
f
= 880 MHz  
RF  
RF Input Power Range  
Linear Dynamic Range  
Output Slope  
–75 to 10  
75  
dBm  
dB  
1 dB Linearity Error (Note 3)  
(Note 5)  
19.0  
mV/dB  
dBm  
dBm  
Logarithmic Intercept  
Sensitivity  
–88.8  
–71.5  
Output Variation vs Temperature  
Normalized to Output at 25°C  
P
IN  
P
IN  
P
IN  
= –50dBm; –40°C < T < 85°C  
0.1/0.7  
0.1/0.4  
0.1/0.4  
dB  
dB  
dB  
A
A
= –30dBm; –40°C < T < 85°C  
= –10dBm; –40°C < T < 85°C  
A
2nd Order Harmonic Distortion  
3rd Order Harmonic Distortion  
Pin = –10dBm; At RF Input  
Pin = –10dBm; At RF Input  
–37  
–40  
dBc  
dBc  
f
= 2140 MHz  
RF  
RF Input Power Range  
Linear Dynamic Range  
Output Slope  
–72 to 10  
70  
dBm  
dB  
1 dB Linearity Error (Note 3)  
(Note 5)  
17.7  
mV/dB  
dBm  
dBm  
Logarithmic Intercept  
Sensitivity  
–89.0  
–69.0  
Output Variation vs Temperature  
Normalized to Output at 25°C  
P
IN  
P
IN  
P
IN  
= –50dBm; –40°C < T < 85°C  
0.3/0.4  
0.4/0.1  
0.7/0.5  
dB  
dB  
dB  
A
A
= –30dBm; –40°C < T < 85°C  
= –10dBm; –40°C < T < 85°C  
A
f
= 2700 MHz  
RF  
RF Input Power Range  
Linear Dynamic Range  
Output Slope  
–72 to 10  
65  
dBm  
dB  
1 dB Linearity Error (Note 3)  
(Note 5)  
17.6  
mV/dB  
dBm  
Logarithmic Intercept  
–87.5  
5538f  
3
LT5538  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, ENBL = 5V. (Note 2)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Sensitivity  
–69.5  
dBm  
Output Variation vs Temperature  
Normalized to Output at 25°C  
P
IN  
P
IN  
P
IN  
= –50dBm; –40°C < T < 85°C  
0.3/0.3  
0.7/–0.3  
1.1/–0.9  
dB  
dB  
dB  
A
A
= –30dBm; –40°C < T < 85°C  
= –10dBm; –40°C < T < 85°C  
A
f
= 3600 MHz  
RF  
RF Input Power Range  
Linear Dynamic Range  
Output Slope  
–65 to 10  
57  
dBm  
dB  
1 dB Linearity Error (Note 3)  
(Note 5)  
18  
mV/dB  
dBm  
dBm  
Logarithmic Intercept  
Sensitivity  
–81.4  
–63  
Output Variation vs Temperature  
Normalized to Output at 25°C  
P
P
P
= –45dBm; –40°C < T < 85°C  
0.6/–0.3  
0.9/–0.6  
1.4/–1.2  
dB  
dB  
dB  
IN  
IN  
IN  
A
A
= –25dBm; –40°C < T < 85°C  
= –5dBm; –40°C < T < 85°C  
A
Output Interface  
Output DC Voltage  
Output Impedance  
Source Current  
Sink Current  
No RF Signal Present  
0.350  
150  
10  
V
Ω
mA  
μA  
ns  
200  
100  
180  
Rise Time  
0.5V to 1.6V, 10% to 90%, f = 880 MHz  
RF  
Fall Time  
1.6V to 0.5V, 10% to 90%, f = 880 MHz  
ns  
RF  
Power Up/Down  
ENBL = High (On)  
ENBL = Low (Off)  
ENBL Input Current  
Turn ON time  
1
3
V
V
0.3  
VENBL = 5V  
205  
300  
1
μA  
ns  
μs  
Turn OFF Time  
Power Supply  
Supply Voltage  
Supply Current  
Shutdown Current  
5.25  
36  
V
mA  
μA  
29  
1
ENBL = Low  
100  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
to –20dBm. The dynamic range is defined as the range over which the  
linearity error is within 1dB.  
Note 4: Sensitivity is defined as the minimum input power required for the  
linearity error within 3dB of the ideal log-linear transfer curve.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
control.  
Note 5: Logarithmic Intercept is an extrapolated input power level from the  
best-fitted log-linear straight line, where the output voltage is 0V.  
Note 3: The linearity error is calculated by the difference between the  
incremental slope of the output and the average slope from –50dBm  
5538f  
4
LT5538  
TYPICAL PERFORMANCE CHARACTERISTICS (Test Circuit shown in Figure 5)  
Output Voltage, Linearity Error vs  
Input Power at 40MHz  
VOUT Variation vs Input Power at  
40MHz  
Supply Current vs Supply Voltage  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
3
2
40  
35  
30  
25  
20  
15  
10  
V
CC  
= 5V  
V
CC  
= 5V  
NORMALIZED AT 25°C  
2
1
1
0
0
–1  
–2  
–3  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
A
A
A
T
T
= –40°C  
= 85°C  
A
A
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
2.5  
3.5  
4
4.5  
5
5.5  
3
SUPPLY VOLTAGE V (V)  
CC  
5538 G02  
5538 G03  
5538 G01  
VOUT Variation vs Input Power at  
450MHz  
Output Voltage, Linearity Error vs  
Input Power at 880MHz  
Output Voltage, Linearity Error vs  
Input Power at 450MHz  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
2
1
0
3
2
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
NORMALIZED AT 25°C  
2
1
1
0
0
–1  
–1  
–2  
–3  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
T
T
= –40°C  
= 25°C  
= 85°C  
–2  
–3  
A
A
A
A
A
A
T
T
= –40°C  
= 85°C  
A
A
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
–65  
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
5538 G04  
5538 G05  
5538 G06  
VOUT Variation vs Input Power at  
2.14GHz  
Output Voltage, Linearity Error vs  
Input Power at 2.14GHz  
VOUT Variation vs Input Power at  
880MHz  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
3
2
3
2
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
NORMALIZED AT 25°C  
NORMALIZED AT 25°C  
2
1
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
T
T
= –40°C  
= 85°C  
T
T
= –40°C  
= 85°C  
A
A
A
A
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
–75 –65  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–75 –65  
5538 G08  
5538 G09  
5538 G07  
5538f  
5
LT5538  
TYPICAL PERFORMANCE CHARACTERISTICS (Test Circuit shown in Figure 5)  
Output Voltage, Linearity Error vs  
Input Power at 2.7GHz  
VOUT Variation vs Input Power at  
2.7GHz  
Output Voltage, Linearity Error vs  
Input Power at 3.6GHz  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
3
3
2
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
3
V
CC  
= 5V  
V
CC  
= 5V  
V
CC  
= 5V  
NORMALIZED AT 25°C  
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
A
A
A
T
T
= –40°C  
= 85°C  
A
A
–70  
–50 –40 –30 –20 –10  
INPUT POWER (dBm)  
0
10  
–60  
–50 –40 –30 –20 –10  
INPUT POWER (dBm)  
0
10  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–70 –60  
–65  
5538 G10  
5538 G11  
5538 G12  
VOUT Variation vs Input Power at  
3.6GHz  
Slope Distribution vs  
Logarithmic Intercept Distribution  
vs Temperature at 2.14GHz  
Temperature at 2.14GHz  
3
2
16  
14  
12  
10  
8
40  
35  
30  
25  
20  
15  
10  
5
T
T
T
= –40°C  
= 25°C  
= 85°C  
T
T
T
= –40°C  
= 25°C  
= 85°C  
V
= 5V  
A
A
A
A
A
A
CC  
NORMALIZED AT 25°C  
1
0
6
–1  
–2  
–3  
4
2
T
T
= –40°C  
= 85°C  
A
A
0
0
–98 –96 –94 –92 –90 –88 –86 –84 –82 –80 –78  
LOGARITHMIC INTERCEPT (dBm)  
–50 –40 –30 –20 –10  
INPUT POWER (dBm)  
0
10  
16 16.8 17.6 18.4 19.2 20 20.8  
SLOPE (mV/dB)  
–70 –60  
5538 G15  
5538 G13  
5538 G14  
Output Voltage, Linearity Error vs  
VCC @40MHz  
Output Voltage, Linearity Error vs  
VCC @2140MHz  
Output Voltage, Linearity Error vs  
VCC @3600MHz  
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
3
2.0  
1.7  
1.4  
1.1  
0.8  
0.5  
0.2  
3
NORMALIZED AT 5V  
V
CC  
= 5V  
NORMALIZED AT 5V  
2
2
2
1
1
1
0
0
0
–1  
–2  
–3  
–1  
–2  
–3  
–1  
–2  
–3  
V
CC  
V
CC  
= 5V  
= 3V  
V
CC  
= 5V  
= 3V  
V
CC  
V
CC  
= 5V  
= 3V  
CC  
V
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
–75  
–55 –45 –35 –25 –15 –5  
INPUT POWER (dBm)  
5
–65  
5538 G16  
5538 G18  
5538 G17  
5538f  
6
LT5538  
PIN FUNCTIONS  
ENBL (Pin 1): Enable Pin. An applied voltage above 1V will  
activate the bias for the IC. For an applied voltage below  
0.3V, the circuits will be shut down (disabled) with a cor-  
respondingreductioninpowersupplycurrent.Iftheenable  
function is not required, then this pin can be connected  
This pin should be connected to ground with an external  
ac-decoupling capacitor for low frequency operation.  
GND (Pin 4, Exposed Pad Pin 9): Circuit Ground Return  
for the entire IC. This pin must be soldered to the printed  
circuit board ground plane.  
to V . Typical enable pin input currents are 100ꢀA for  
CC  
V
(Pin 5): Power Supply Pin. This pin should be de-  
EN = 3V and 200ꢀA for EN = 5V, respectively. Note that at  
CC  
coupled using 100pF and 0.1μF capacitors.  
no time should the ENBL pin voltage be allowed to exceed  
+
V
CC  
by more than 0.3V.  
CAP , CAP (Pins 6, 7): Optional Filter Capacitor Pins.  
Thesepinsareinternallyconnectedtothedetectoroutputs  
infrontoftheoutputbufferamplifier. Anexternallow-pass  
filtering can be formed by connecting a capacitor to Vcc  
from each pin for filtering a low frequency modulation sig-  
nal. See the Applications Information section for detail.  
+
IN (Pin 2): RF Input Pin. The pin is internally biased to  
V
–0.5V and should be DC blocked externally. The input  
CC  
isconnectedviainternal394ΩresistortotheIN pinwhich  
should be connected to ground with an ac-decoupling  
capacitor.  
OUT (Pin 8): Detector DC Output Pin.  
IN (Pin 3): AC Ground Pin. The pin is internally biased to  
V –0.5Vandcoupledtogroundviainternal20pFcapacitor.  
CC  
BLOCK DIAGRAM  
5
1
V
CC  
DC OFFSET CANCELLATION  
ENBL  
+
IN  
2
3
RF LIMITER  
RF LIMITER  
RF LIMITER  
RF LIMITER  
RF LIMITER  
IN  
8
RF DETECTOR CELLS  
OUT  
4
9
6
7
5538 BD01  
+
GND  
CAP CAP  
5538f  
7
LT5538  
APPLICATIONS INFORMATION  
The LT5538 is a 40MHz to 3.8 GHz logarithmic RF power  
detector. It consists of cascaded limiting amplifiers and  
RF detectors. The output currents from every RF detector  
are combined and low-pass filtered before applied to the  
output buffer amplifier. As a result, the final DC output  
voltageapproximatesthelogarithmoftheamplitudeofthe  
input signal. The LT5538 is able to accurately measure an  
RF signal over a 70dB dynamic range (–68dBm to 2dBm  
at 2.1GHz) with 50Ω single-ended input impedance. The  
slope of linear to log transfer function is about 17.7mV/dB  
at 2.1GHz. Within the linear dynamic range, very stable  
output is achieved over the full temperature range from  
–40°C to 85°C and over the full operating frequency  
range from 40MHz to 3.8GHz. The absolute variation over  
temperature is typically within 1dB over 65dB dynamic  
range at 2.1GHz.  
matching elements are needed for a proper impedance  
matching to a 50Ω source as shown in Figure 2. Refer to  
Figure 6 for the circuit schematic of the input matching  
network.TheinputimpedancevsfrequencyoftheRFinput  
+
port IN is detailed in Table 1.  
Table 1. RF Input Impedance  
FREQUENCY  
(MHz)  
RF INPUT  
IMPEDANCE (Ω)  
S11  
MAG  
0.800  
0.790  
0.785  
0.772  
0.756  
0.737  
0.720  
0.707  
0.697  
0.687  
0.678  
0.669  
0.659  
0.649  
0.638  
0.627  
0.615  
0.602  
0.589  
0.574  
0.560  
ANGLE(°)  
38.5  
40  
47.3 + j129.7  
246.6 + j210.7  
408.7 – j37.8  
192.9 – j190.9  
105.6 – j158.4  
69.3 – j127.4  
51.8 – j106.2  
41.5 – j90.9  
34.2 – j78.7  
29.2 – j60.0  
25.4 – j60.7  
22.6 – j53.8  
20.5 – j47.7  
18.9 – j42.4  
17.9 – j37.6  
17.1 – j33.4  
16.4 – j29.5  
16.1 – j26.0  
15.9 – j22.8  
15.9 – j20.0  
15.9 – j17.5  
100  
11.5  
200  
–1.5  
400  
–14.9  
–25.3  
–34.4  
–42.7  
–50.6  
–58.2  
–65.6  
–73.1  
–80.4  
–87.7  
–94.6  
–101.5  
–108.2  
–114.7  
–121.0  
–127.0  
–132.8  
–137.9  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
2800  
3000  
3200  
3400  
3600  
3800  
RF INPUT  
The simplified schematic of the input circuit is shown in  
+
Figure 1. The IN and IN pins are internally biased to  
CC  
V
–0.5V. The IN pin is internally coupled to ground via  
20pF capacitor. An external capacitor of 1nF is needed to  
connect this pin to ground for low frequency operation.  
+
The impedance between IN and IN is about 394Ω. The  
+
RF input pin IN should be DC blocked when connected  
to ground or other matching components. A 56Ω resistor  
(R1) connected to ground will provide better than 10dB  
input return loss over the operating frequency range up  
to 1.5GHz. At higher operating frequency, additional LC  
0
V
CC  
–5  
5.3k  
394  
5.3k  
–10  
–15  
–20  
–25  
–30  
+
IN  
IN  
W/O L1 AND C8  
20p  
+
L1 = 1.5nH, C8 = 1pF  
C4, C11 = 12pF, C8 = 0.7pF  
0
0.8 1.2 1.6  
2
2.4 2.8 3.2 3.6 4.0  
0.4  
5538 F01  
FREQUENCY (GHz)  
5538 F02  
Figure 1. Simplified Schematic of the Input Circuit  
Figure 2. Input Return Loss with Additional LC Matching Network  
5538f  
8
LT5538  
APPLICATIONS INFORMATION  
OUTPUT INTERFACE  
When the part is enabled, the output impedance is about  
150Ω. When it is disabled, the output impedance is about  
29.5kΩ referenced to ground.  
The output interface of the LT5538 is shown in Figure 3.  
This output buffer circuit can source 10mA current to the  
load and sink 200 μA current from the load. The small-  
signal output bandwidth is approximately 4MHz when the  
output is resistively terminated or open. The full-scaled  
10% to 90% rise and fall times are 100nS and 180nS,  
respectively. The output transient responses at varied  
input power levels are shown in Figure 4.  
+
EXTERNAL FILTERING AT CAP , CAP  
+
TheCAP andCAP PinsareinternallybiasedatV 0.36V  
CC  
via a 200Ω resistor from voltage supply V as shown in  
CC  
Figure 3. These two pins are connected to the differential  
outputs of the internal RF detector cells. In combination  
with the 20pF in parallel, a low-pass filter is formed with  
–3dB corner frequency of 20MHz. The high frequency  
rectified signals (particularly second-order harmonic of  
the RF signal) from the detector cells are filtered and then  
the DC output is amplified by the output buffer amplifier. In  
some applications, the LT5538 may be used to measure a  
modulatedRFsignalwithlowfrequencyAMcontent(lower  
than 20MHz), a large modulation signal may be present  
at these two pins due to insufficient low-pass filtering,  
resulting in output voltage fluctuation at the LT5538’s  
output. Its DC content may also vary depending upon the  
modulation frequency. To assure stable DC output of the  
LT5538, external capacitors C6 and C9 can be connected  
V
CC  
+
200  
20p  
200  
100μA  
C6  
C9  
OUT  
+
CAP  
CAP  
150  
+
+
OUTPUT CURRENTS  
FROM RF DETECTORS  
200μA  
LT5538  
5538 F03  
+
from CAP and CAP to V to filter out this low frequency  
CC  
Figure 3. Simplified Schematic of the Output Interface  
AM modulation signal. Assume the modulation frequency  
of the RF signal is f  
, the capacitor value in Farads of  
MOD  
C6 and C9 can be chosen by the following formula:  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
6
AT 880MHZ  
RF PULSE ON  
2
C6 (or C9) ≥ 10/(2π • 200 • f  
)
MOD  
RF PULSE OFF  
RF PULSE OFF  
–2  
–6  
–10  
–14  
–18  
PIN = 0dBm  
PIN = 10dBm  
PIN = 20dBm  
PIN = 30dBm  
PIN = 40dBm  
PIN = 50dBm  
Do not connect these two filtering capacitors to ground  
or any other low voltage reference at any time to avoid an  
abnormal start-up condition.  
0
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
TIME (μs)  
0.2  
5538 F04  
Figure 4. Simplified Circuit Schematic of the Output Interface  
5538f  
9
LT5538  
APPLICATIONS INFORMATION  
ENBL (ENABLE) PIN OPERATION  
μA. To disable or turn off the chip, this voltage should be  
below 0.3V. It is important that the voltage applied to the  
A simplified circuit schematic of the ENBL Pin is shown  
in Figure 5. The enable voltage necessary to turn on the  
LT5538 is 1V. The current drawn by the ENBL pin varies  
with the voltage applied at the pin. When the ENBL volt-  
age is 3V, the ENBL current is typically 100 μA. When the  
ENBL voltage is 5V, the ENBL current is increased to 200  
ENBL pin should never exceed V by more than 0.3V.  
CC  
Otherwise,thesupplycurrentmaybesourcedthroughthe  
upper ESD protection diode connected at the ENBL pin.  
Under no circumstances should voltage be applied to the  
ENBL Pin before the supply voltage is applied to the V  
pin. If this occurs, damage to the IC may result.  
CC  
V
CC  
ENBL  
42k  
42k  
5538 F05  
Figure 5. Simplified Schematic of the Enable Circuit  
TEST CIRCUIT  
R4  
ENABLE  
LT5538  
R5  
O
4.99k  
1
2
3
4
8
7
6
5
C4  
V
OUT  
ENBL  
OUT  
L1  
C7  
OPT  
RF  
INPUT  
+
+
IN  
CAP  
1.5nH  
C6  
OPT  
1nF  
IN  
CAP  
R1  
56Ω  
C8  
1pF  
C5  
1nF  
C9  
OPT  
GND  
V
CC  
5V  
5538 TC01  
9
C10  
100pF  
C1  
0.1μF  
C2  
100pF  
Figure 6. Evaluation Board Circuit Schematic  
3.6GHz to 3.8GHz  
40MHz to 2.7GHz  
REF DES  
C1  
VALUE  
SIZE  
PART NUMBER  
REF DES  
C4, C11  
C8  
VALUE  
12pF  
SIZE  
PART NUMBER  
0.1μF  
100pF  
1nF  
0603  
0402  
0603  
0402  
0402  
0402  
0402  
AVX 0603ZC104KAT  
0402  
0402  
MURATA, GRM155C1H120JZ01B  
MURATA, GJR155C1HR70BB01  
C2, C10  
C4, C5  
C8  
AVX 0402YC101KAT  
0.7pF  
OPEN  
AVX 0402ZC102K  
C5  
1pF  
AVX 0402YA1ROCAT  
VISHAY, CRCW040256ROFKED  
VISHAY, CRCW04024K99FKED  
TOKO, LL1005-FH2IN5S  
NOTE: Replace L with C  
1
11.  
R1  
56  
R4  
4.99k  
1.5nH  
L1  
5538f  
10  
LT5538  
TEST CIRCUIT  
5538 TC02  
Figure 7. Component Side of Evalution Board  
PACKAGE DESCRIPTION  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
PACKAGE  
OUTLINE  
(DD8) DFN 1203  
4
1
0.25 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.25 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
5538f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
11  
LT5538  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5514  
Ultralow Distortion, IF Amplifier/ADC Driver with Digitally 850MHz Bandwidth, 47 dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control  
Controlled Gain Range  
LT5515  
LT5516  
LT5517  
LT5518  
1.5GHz to 2.5GHz Direct Conversion Quadrature Demodulator 20dBm IIP3, Integrated LO Quadrature Generator  
0.8GHz to 1.5GHz Direct Conversion Quadrature Demodulator 21.5dBm IIP3, Integrated LO Quadrature Generator  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
1.5GHz to 2.4GHz High Linearity Direct Quadrature  
Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF  
and LO Ports, 4-Channel W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
0.7GHz to 1.4GHz High Linearity Upconverting Mixer  
1.3GHz to 2.3GHz High Linearity Upconverting Mixer  
10MHz to 3700MHz High Linearity Upconverting Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω  
Matching, Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-  
Ended LO Port Operation  
600 MHz to 2.7GHz High Signal Level Downconverting  
Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-  
Ended RF and LO Ports  
Low Power, Low Distortion ADC Driver with Digitally  
Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer  
High Linearity, Low Power Downconverting Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB,  
I
CC  
= 28mA, –65dBm LO-RF Leakage  
LT5527  
LT5528  
LT5557  
400MHz to 3.7GHz High Signal Level Downconverting  
Mixer  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply,  
= 78mA, Conversion Gain = 2dB  
I
CC  
1.5GHz to 2.4GHz High Linearity Direct Quadrature  
Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = –66dBc at 2.14GHz  
400MHz to 3.8GHz, 3.3V High Signal Level  
Downconverting Mixer  
IIP3 = 23.7dBm at 2600MHz, 23.5dBm at 3600MHz, I = 82mA at 3.3V  
CC  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
700MHz to 1050MHz High Linearity Direct Quadrature  
Modulator  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V  
DC  
Baseband Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
1.5GHz to 2.5GHz High Linearity Direct Quadrature  
Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V  
Baseband Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
DC  
800MHz to 2.7GHz High Linearity Direct Conversion I/Q  
Demodulator  
50Ω, Single-Ended RF and LO Inputs. 28dBm IIP3 at 900MHz, 13.2dBm  
P1dB, 0.04dB I/Q Gain Mismatch, 0.4° I/Q Phase Mismatch  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1GHz, Temperature Compensated, 2.7 to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz Log RF Power Detector with 60dB  
Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
Precision 600Mhz to 7GHz RF Power Detector with Fast  
Comparator Output  
25ns Response Time, Comparator Reference Input, Latch Enable Input,  
–26dBm to +12dBm Input Range  
LT5537  
LT5570  
Wide Dynamic Range Log RF/IF Detector  
2.7GHz RMS Power Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
Fast Responding, up to 60dB Dynamic Range, 0.3dB Accuracy Over  
Temperature and Dynamic Range  
5538f  
LT 0408 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5538IDD-TRPBF

40MHz to 3.8GHz RF Power Detector with 75dB Dynamic Range
Linear

LT5546

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
Linear

LT5546EUF

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
Linear

LT5546EUF#PBF

LT5546 - 40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5546EUF#TRPBF

LT5546 - 40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554

Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer
Linear

LT5554IUH#PBF

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554IUH#TRPBF

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554IUH-PBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5554IUH-TRPBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5557

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5557EUF#PBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear