LT5546EUF [Linear]

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; 40MHz至500MHz的VGA及I / Q解调器, 17MHz基带带宽
LT5546EUF
型号: LT5546EUF
厂家: Linear    Linear
描述:

40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth
40MHz至500MHz的VGA及I / Q解调器, 17MHz基带带宽

文件: 总12页 (文件大小:314K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5546  
40MHz to 500MHz VGA  
and I/Q Demodulator with  
17MHz Baseband Bandwidth  
U
FEATURES  
DESCRIPTIO  
TheLT®5546isa40MHzto500MHzmonolithicintegrated  
quadraturedemodulatorwithvariablegainamplifier(VGA)  
and17MHzI/Qbasebandbandwidthdesignedforlowvolt-  
ageoperation.Itsupportsstandardsthatusealinearmodu-  
lationformat.ThechipconsistsofaVGA,quadraturedown-  
converting mixers and 17MHz lowpass noise filters (LPF).  
The LO port consists of a divide-by-two stage and LO  
buffers. The IC provides all building blocks for IF down-  
conversion to I and Q baseband signals with a single  
supplyvoltageof1.8Vto5.25V. TheVGAgainhasalinear-  
in-dB relationship to the control input voltage. Hard-clip-  
ping amplifiers at the mixer outputs reduce the recovery  
time from a signal overload condition. The lowpass filters  
reduce the out-of-band noise and spurious frequency  
components. The –3dB corner frequency of the noise  
filters is approximately 17MHz and has a first order roll-  
off. The standby mode provides reduced supply current  
andfasttransientresponseintothenormaloperatingmode  
when the I/Q outputs are AC-coupled to a baseband chip.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
17MHz I/Q Lowpass Output Noise Filters  
Wide Range 1.8V to 5.25V Supply Voltage  
Frequency Range: 40MHz to 500MHz  
THD < 0.14% (–57dBc)  
at 800mVP-P Differential Output Level  
IF Overload Detector  
Log Linear Gain Control Range: –7dB to 56dB  
Baseband I/Q Amplitude Imbalance: 0.2dB  
Baseband I/Q Phase Imbalance: 0.6°  
7.8dB Noise Figure at Max Gain  
Input IP3 at Low Gain: 1dBm  
Low Supply Current: 24mA  
Low Delay Shift Over Gain Control Range: 2ps/dB  
Outputs Biased Up While in Standby  
16-Lead QFN 4mm × 4mm Package with Exposed Pad  
U
APPLICATIO S  
GPS IF Receivers  
Satellite IF Receivers  
VHF/UHF Receivers  
Wireless Local Loop  
U
TYPICAL APPLICATIO  
Total Harmonic Distortion vs  
IF Input Level at 1.8V Supply  
1.8V  
280MHz  
IF INPUT  
C2  
C1  
+
–25  
1µF  
1nF  
IF  
L1  
15nH  
C3  
10pF  
L2  
15nH  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
IF, 1  
IF, 2  
2xLO  
V
–30  
–35  
–40  
–45  
–50  
–55  
–60  
CC  
+
I
I
OUT  
800mV DIFFERENTIAL OUT  
P-P  
IF  
OUT  
IF DET  
+
V
CTRL  
C3  
1.8pF  
GAIN CONTROL  
+
2xLO  
Q
OUT  
2xLO  
C4  
L3  
39nH  
560MHz  
3.3pF  
÷2  
Q
OUT  
INPUT  
2xLO  
LT5546  
EN  
ENABLE  
STBY  
STANDBY  
GND  
C5  
3.3pF  
5546 TA01  
–60  
–40  
–30  
–20  
–10  
–50  
IF INPUT POWER EACH TONE (dBm)  
5546 TA01b  
5546f  
1
LT5546  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
ORDER PART  
NUMBER  
Supply Voltage ....................................................... 5.5V  
Differential Voltage Between 2xLO+ and 2xLO.......... 4V  
IF+, IF............................................. –500mV to 500mV  
IOUT+, IOUT, QOUT+, QOUT..................VCC – 1.8V to VCC  
Operating Ambient Temperature  
16 15 14 13  
LT5546EUF  
GND  
1
2
3
4
12 STBY  
+
+
IF  
11 2xLO  
17  
IF  
2xLO  
EN  
10  
9
GND  
(Note 2) ...................................................–40°C to 85°C  
Storage Temperature Range ..................–65°C to 125°C  
Voltage on Any Pin  
5
6
7
8
UF PART MARKING  
5546  
Not to Exceed ........................ –500mV to VCC + 500mV  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
TJMAX = 125°C, θJA = 37°C/W  
EXPOSED PAD IS GND (PIN 17)  
(MUST BE SOLDERED TO PCB)  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
VCC = 3V, f2xLO = 570MHz, P2xLO = –5dBm (Note 5), fIF = 284MHz,  
PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC, unless otherwise noted. (Note 3)  
SYMBOL  
IF Input  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Frequency Range  
Nominal Input Level  
Input Impedance  
40 to 500  
MHz  
dBm  
IF  
R
= 200Differential  
–76 to –19  
SOURCE  
+
IF , IF to GND, EN = V  
IF , IF to GND, EN = GND  
100//1.2pF  
CC  
+
1pF  
NF  
Noise Figure at Max Gain  
Min Gain (Note 4)  
V
V
V
= 1.7V  
= 0.2V  
= 1.7V  
7.8  
1.6  
56  
dB  
dB  
dB  
CTRL  
CTRL  
CTRL  
G
G
6
L
Max Gain (Note 4)  
49  
H
IIP3  
Input IP3, Min Gain  
Input IP3, Max Gain  
P
P
= –22.5dBm (Note 7)  
= –75dBm (Note 7)  
–1  
–49  
dBm  
dBm  
IF  
IF  
IIP2  
Input IP2, Min Gain  
Input IP2, Max Gain  
V
V
= 0.2V (Note 9)  
= 1.7V (Note 9)  
36  
–25  
dBm  
dBm  
CTRL  
CTRL  
Demodulator I/Q Output  
Nominal Voltage Swing  
(Note 6)  
(Note 6)  
0.8  
V
V
P-P  
Clipping Level  
1.47  
P-P  
DC Common Mode Voltage  
I/Q Amplitude Imbalance  
I/Q Phase Imbalance  
DC Offset  
V
– 1.19  
V
CC  
(Note 8)  
0.14  
0.6  
3
dB  
(Note 8)  
0.6  
21  
Deg  
mV  
kΩ  
(Notes 6, 8)  
Single Ended, C  
(Note 6)  
Output Driving Capability  
Small-Signal Output Impedance  
STBY to Turn-On Delay  
I/Q Output 1dB Compression  
I/Q Output IM3  
10pF  
2
1.5  
LOAD  
r
180  
0.3  
o
µs  
–10  
49  
dBm  
dBc  
P
P
= –25.5dBm, 280MHz  
= –25.5dBm, 280.1MHz (Note 7)  
IF, 1  
IF, 2  
5546f  
2
LT5546  
ELECTRICAL CHARACTERISTICS  
VCC = 3V, f2×LO = 570MHz, P2×LO = –5dBm (Note 5), fIF = 284MHz,  
PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC, unless otherwise noted. (Note 3)  
SYMBOL  
Variable Gain Amplifier (VGA)  
Gain Slope Linearity Error  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 0V to 1.4V  
±0.5  
±0.4  
90  
dB  
dB  
CTRL  
Temperature Gain Shift  
T = –40°C to 85°C, V  
= 0V to 1.4V  
CTRL  
Gain Control Response Time  
Gain Control Voltage Range  
Gain Control Slope  
Settled within 10% of Final Value  
ns  
0 to 1.7  
41  
V
dB/V  
kΩ  
Gain Control Input Impedance  
Delay Shift Over Gain Control  
To Internal 0.2V Reference  
Measured Over 10dB Step  
25  
2
ps/dB  
Baseband Lowpass Filter (LPF)  
–3dB Cutoff Frequency  
Amplitude Roll-Off at 50MHz  
Group Delay Ripple  
13  
17  
–9  
1
MHz  
dB  
ns  
2xLO Input  
f
Frequency Range  
Input Power  
80 to 1000  
–5  
MHz  
dBm  
dBm  
2xLO  
P
1:2 Transformer with 240Shunt Resistor (Note 5)  
–20  
2xLO  
Input Power  
LC Balun (Note 5)  
–10  
+
Input Impedance  
DC Common Mode Voltage  
Differential Between 2xLO and 2xLO  
800//0.4pF  
V
– 0.4  
V
CC  
IF Detector  
IF Detector Range  
Referred to IF Input  
–30 to 8  
0.27 to 1.2  
80  
dBm  
V
Output Voltage Range  
Detector Response Time  
For P = –30dBm to 8dBm  
IF  
With External 1.8pF Load,  
ns  
Settling within 10% of Final Value  
Power Supply  
V
Supply Voltage  
Supply Current  
Shutdown Current  
Standby Current  
1.8  
5.25  
34  
30  
6
V
mA  
µA  
CC  
I
I
I
EN = High, STBY = Low or High  
EN, STBY < 350mV  
24  
0.2  
3.6  
CC  
OFF  
EN = Low; STBY = High  
mA  
STBY  
Mode  
Enable  
Enable Pin Voltage  
Enable Pin Voltage  
Standby Pin Voltage  
Standby Pin Voltage  
EN = High  
1
1
V
V
V
V
Disable  
Standby  
No Standby  
EN = Low  
0.5  
0.5  
STBY = High  
STBY = Low  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 5: If a narrow-band match is used in the 2xLO path instead of a 1:2  
transformer with 240shunt resistor, 2xLO input power can be reduced  
to –10dBm, without degrading the phase imbalance. See Figure 11 and  
Figure 6.  
of a device may be impaired.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 3: Tests are performed as shown in the configuration of Figure 6. The  
IF input transformer loss is substracted from the measured values.  
Note 4: Power gain is defined here as the I (or Q) output power into a 4kΩ  
differential load, divided by the IF input power in dB. To calculate the  
voltage gain between the differential I output (or Q output) and the IF  
input, including ideal matching network, 10 • log(4k/50) = 19dB has to  
be added to this power gain.  
+
Note 6: Differential between I  
and I  
(or differential between  
OUT  
OUT  
+
Q
and Q  
).  
OUT  
OUT  
Note 7: The gain control voltage V  
is set in such a way that the  
CTRL  
+
differential output voltage between I  
and I  
(or differential between  
OUT  
OUT  
+
Q
OUT  
and Q  
) is 800mV , with the given input power P . IF  
OUT  
P-P  
IF  
frequencies are 280MHz and 280.1MHz, with f  
= 570MHz.  
2xLO  
Note 8: The typical parameter is defined as the mean of the absolute  
values of the data distribution.  
Note 9: IF frequency is 125MHz, with f  
= 502MHz.  
2xLO  
5546f  
3
LT5546  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
VCC = 3V, f2×LO = 570MHz, P2×LO = –5dBm  
(Note 5), fIF = 284MHz, PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC  
,
unless otherwise noted. (Note 3)  
Gain and Noise Figure  
Supply Current vs Supply Voltage  
vs Control Voltage at 3V Supply  
28  
26  
24  
22  
20  
60  
50  
40  
30  
20  
10  
0
85°C  
25°C  
NF  
GAIN AT 25°C  
NF AT 25°C  
GAIN AT –40°C  
NF AT –40°C  
GAIN AT 85°C  
NF AT 85°C  
–40°C  
GAIN  
f
f
= 284MHz  
IF  
2xLO  
= 570MHz  
–10  
1.75  
2.75 3.25 3.75 4.25 4.75 5.25  
SUPPLY VOLTAGE (V)  
2.25  
0.3  
0.6  
0.9  
1.2  
1.8  
0
1.5  
V
(V)  
CTRL  
5546 G01  
5546 G02  
Gain and Noise Figure  
vs Control Voltage at 1.8V Supply  
Gain Flatness  
vs Control Voltage at 3V Supply  
0.5  
0.4  
60  
50  
40  
30  
20  
10  
0
–40°C  
0.3  
0.2  
85°C  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
25°C  
NF  
GAIN AT –40°C  
NF AT 25°C  
GAIN AT 25°C  
NF AT –40°C  
GAIN AT 85°C  
NF AT 85°C  
GAIN  
f
f
= 284MHz  
IF  
2xLO  
= 570MHz  
–10  
0
0.3  
0.9  
(V)  
1.2  
1.5  
0.6  
0.3  
0.6  
0.9  
1.2  
1.8  
0
1.5  
V
V
(V)  
CTRL  
CTRL  
5546 G04  
5546 G03  
Gain and Noise Figure  
vs IF Frequency at 3V Supply  
Gain and Noise Figure  
vs Control Voltage and VCC  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
10  
0
GAIN, V  
= 1.6V  
CTRL  
NF, V  
= 0.2V  
CTRL  
GAIN, V  
= 0.9V  
CTRL  
NF, V  
= 0.9V  
CTRL  
NF  
GAIN AT 1.8V  
NF AT 1.8V  
GAIN AT 3V  
NF AT 3V  
GAIN AT 5.25V  
NF AT 5.25V  
NF, V  
= 1.6V  
CTRL  
GAIN  
f
f
= 284MHz  
GAIN, V  
= 0.2V  
IF  
2xLO  
CTRL  
100  
= 570MHz  
–10  
–10  
0.3  
0.6  
0.9  
1.2  
1.8  
0
1.5  
10  
1000  
IF FREQUENCY (MHz)  
V
CTRL  
(V)  
5546 G06  
5546 G05  
5546f  
4
LT5546  
U W  
VCC = 3V, f2×LO = 570MHz, P2×LO = 5dBm  
TYPICAL PERFOR A CE CHARACTERISTICS  
(Note 5), fIF = 284MHz, PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC  
unless otherwise noted. (Note 3)  
,
Total Harmonic Distortion  
vs IF Input Power and IF  
Frequency  
Total Harmonic Distortion  
Total Harmonic Distortion  
vs IF Input Power at 3V Supply  
and 800mVP-P Differential Out  
vs IF Input Power at 1.8V Supply  
and 800mVP-P Differential Out  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
800mV DIFFERENTIAL OUT  
P-P  
3V SUPPLY  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
IF,1  
IF,2  
2xLO  
IF,1  
IF,2  
2xLO  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
f
= 280MHz  
IF  
f
= 40MHz  
IF  
f
IF  
= 500MHz  
–50  
–40  
–20  
–10  
–50  
–40  
–20  
–10  
–50  
–40  
–20  
–10  
–60  
–60  
–60  
–30  
–30  
–30  
IF INPUT POWER EACH TONE (dBm)  
IF INPUT POWER EACH TONE (dBm)  
IF INPUT POWER EACH TONE (dBm)  
5546 G07  
5546 G08  
5546 G09  
LPF Frequency Response  
vs Baseband Frequency  
and Temperature  
Total Harmonic Distortion  
vs IF Input Power at 500mVP-P  
Differential Out  
Total Harmonic Distortion vs IF  
Input Power and Supply Voltage  
–25  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–20  
–25  
–30  
0
800mV DIFFERENTIAL OUT  
P-P  
V
= 3V  
CC  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
IF,1  
IF,2  
f
f
f
= 280MHz  
= 280.1MHz  
= 570MHz  
–1  
–2  
–3  
IF,1  
IF,2  
2xLO  
2xLO  
V
CC  
= 3V  
–40°C  
–40°C  
–35  
–40  
–45  
–50  
–4  
–5  
3V  
25°C  
85°C  
–6  
–7  
25°C  
85°C  
1.8V  
–55  
–60  
–65  
5.25V  
–8  
–9  
–10  
–50  
–40  
–20  
–10  
–60  
–30  
0
10 15 20 25 30 35 40 45 50 55  
BASEBAND FREQUENCY (MHz)  
5
–40  
–35  
–30  
–25  
–20  
IF INPUT POWER EACH TONE (dBm)  
IF INPUT POWER EACH TONE (dBm)  
5546 G10  
5546 G12  
5546 G11  
LPF Frequency Response  
vs Baseband Frequency and  
Supply Voltage  
IF Detector Output Voltage vs  
IF Input CW Power at 3V Supply  
IF Detector Output Voltage vs  
IF Input CW Power at 1.8V Supply  
1.4  
1.2  
1.4  
1.2  
0
f
IF  
= 280MHz  
f
IF  
= 280MHz  
T
= 25°C  
A
–1  
–2  
–3  
1.8V  
1.0  
0.8  
1.0  
0.8  
85°C  
–4  
–5  
85°C  
3V  
25°C  
–6  
–7  
25°C  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
–8  
–9  
5.25V  
–40°C  
–40°C  
–40 –30  
–10  
–20  
–10  
0
10  
–40  
–30  
–20  
–10  
0
10  
0
10 15 20 25 30 35 40 45 50 55  
BASEBAND FREQUENCY (MHz)  
5
IF INPUT CW POWER (dBm)  
IF INPUT CW POWER (dBm)  
5546 G15  
5546 G14  
5546 G13  
5546f  
5
LT5546  
U W  
VCC = 3V, f2×LO = 570MHz, P2×LO = 5dBm  
TYPICAL PERFOR A CE CHARACTERISTICS  
unless otherwise noted. (Note 3)  
(Note 5), fIF = 284MHz, PIF = –30dBm, I and Q outputs 800mVP-P into 4kdifferential load, TA = 25°C, EN = VCC, STBY = VCC  
,
IF Detector Output Voltage  
vs IF Input CW Power and  
Supply Voltage  
IF Detector Output Voltage vs IF  
Input CW Power and IF Frequency  
Phase Relation Between I and Q  
Outputs vs LO Input Power  
1.4  
1.2  
1.0  
95  
94  
93  
92  
91  
90  
89  
88  
1.4  
f
IF  
f
IF  
f
IF  
f
IF  
f
IF  
= 284MHz, 25°C  
= 284MHz, –40°C  
= 284MHz, 85°C  
= 40MHz, 25°C  
= 500MHz, 25°C  
V
CC  
= 3V  
f
IF  
= 280MHz  
f
IF  
= 500MHz  
1.2  
f
IF  
= 280MHz  
5.25V  
1.8V  
1.0  
0.8  
3V  
f
IF  
= 40MHz  
0.8  
0.6  
0.4  
0.2  
0.6  
0.4  
0.2  
V
CC  
= 3V  
–30  
–20  
–10  
10  
–40  
0
0
10  
–20 –15  
–10  
–5  
5
–40  
–30  
–20  
–10  
0
10  
IF INPUT CW POWER (dBm)  
IF INPUT CW POWER (dBm)  
LO INPUT POWER (dBm)  
5546 G17  
5546 G18  
5546 G16  
U
U
U
PI FU CTIO S  
GND (Pins 1, 4 and 17): Ground. Pins 1 and 4 are  
connected to each other internally. The exposed pad (Pin  
17) is not connected internally to Pins 1 and 4. For chip  
functionality, the exposed pad and either Pin 1 or Pin 4  
must be connected to ground. For best RF performance,  
Pin 1, Pin 4 and the exposed pad should be connected to  
RF ground.  
IF+, IF(Pins 2, 3): Differential Inputs for the IF Signal.  
Each pin must be DC grounded through an external  
inductor or RF transformer with central ground tap. This  
pathshouldhaveaDCresistancelowerthan2toground.  
EN (Pin 9): Enable Input. When the enable pin voltage is  
higher than 1V, the IC is completely turned on. When the  
input voltage is less than 0.5V, the IC is turned off, except  
the part of the circuit associated with standby mode.  
2xLO, 2xLO+ (Pins 10, 11): Differential Inputs for the  
2xLO Input. The 2xLO input frequency must be twice that  
of the IF frequency. The internal bias voltage is VCC – 0.4V.  
STBY (Pin 12): Standby Input. When the STBY pin is  
higher than 1V, the standby mode circuit is turned on to  
prebias the I/Q buffers. When the STBY pin is less than  
0.5V, the standby mode circuit is turned off.  
VCC (Pins 5 and 8): Power Supply. These pins should be  
decoupled to ground using 1000pF and 0.1µF capacitors.  
+
QOUT, QOUT (Pins 13, 14): Differential Baseband Out-  
puts of the Q Channel. Internally biased at VCC – 1.19V.  
VCTRL (Pin 6): VGA Gain Control Input. This pin controls  
the IF gain and its typical input voltage range is 0.2V to  
1.7V. It is internally biased via a 25k resistor to 0.2V,  
setting a low gain if the VCTRL pin is left floating.  
IOUT, IOUT+ (Pins 15, 16): Differential Baseband Outputs  
of the I Channel. Internally biased at VCC – 1.19V.  
IF DET (Pin 7): IF Detector Output. For strong IF input  
signals, the DC level at this pin is a function of the IF input  
signal level.  
5546f  
6
LT5546  
W
BLOCK DIAGRA  
V
V
CC  
5
CC  
8
+
+
CLIPPER  
VGA  
16  
15  
I
I
2
3
IF  
OUT  
I-MIXER LPF  
IF  
OUT  
90°  
7
IF DET  
V
CTRL  
6
DETECTOR  
+
2×LO  
LPF  
Q-MIXER  
11  
+
Q
14  
13  
OUT  
÷2  
Q
0°  
OUT  
CLIPPER  
2×LO 10  
9
1
4
17  
12  
5546 BD  
STBY  
EN  
U
W
U U  
APPLICATIO S I FOR ATIO  
The LT5546 consists of a variable gain amplifier (VGA),  
I/Q demodulator, quadrature LO generator, lowpass fil-  
ters (LPFs), clipping amplifiers (clippers) and bias cir-  
cuitry.  
schematic is shown using a 1:4 transformer. The mea-  
suredinputsensitivityofthisboardisabout80.5dBmfor  
a 10dB signal-to-noise ratio. In the case of an L-C match-  
ing circuit, the circuit of Figure 1 can be used. In Table 1  
the matching network component values are given for a  
range of IF frequencies. The matching circuit of Figure 1  
approaches 180° phase shift between IF+ and IFin a  
broad range around its center frequency. However, some  
amplitudemismatchoccursifthecircuitisnottunedtothe  
center frequency. This leads to reduced circuit linearity  
performance, because one of the inputs carries a higher  
signal compared to the perfectly balanced case. A 10%  
frequency shift from the center frequency results in about  
a 2dB gain difference between the IF+ and IFinputs. This  
results in a 1.5dB higher IM3 contribution from the input  
stage which leads to a 0.75dB drop in IIP3. Moreover, the  
IIP2ofthecircuitisalsoreducedwhichcanleadtoahigher  
second order harmonic contribution. The circuit can be  
drivensingleended, butthisisnotrecommendedbecause  
it leads to a 3dB drop in gain and a considerable increase  
in IM5 and IM7 components. The single-ended noise  
figure increases by 4dB if one IF input is directly grounded  
and increases by 1.5dB if one IF input is grounded via a  
1µH inductor. An IF input cannot be left open or connected  
via a resistor to ground because this will disturb the  
internal biasing, reducing the gain, noise and linearity  
performance. For optimal performance, it is important to  
keep the DC impedance to ground of both IF inputs lower  
than 2. In the matching network of Figure 1, inductor L3  
is used for supplying the DC bias current to the IF+ input.  
The IF signal is fed to the inputs of the VGA. The VGA gain  
is typically set by an external signal in such a way that the  
amplified IF signal delivered to the I/Q mixers is constant.  
The IF signal is then converted into I/Q baseband signals  
using the I/Q down-converting mixers. The quadrature LO  
signals that drive the mixers are internally generated from  
the on-chip divide-by-two circuit. The I/Q signals are  
passed through first-order low-pass filters and subse-  
quently a pair of hard-clipping amplifiers (clippers). After  
externallysettingtherequiredgain,theseamplifiersshould  
notclip. However, intheeventofoverload, theyreducethe  
settlingtimeofany(optional)externalACcouplingcapaci-  
tors by preventing asymmetrical charging and discharg-  
ing effects. The I/Q baseband outputs are buffered by  
output drivers.  
VGA and Input Matching  
The VGA has a nominal 60dB gain control range with a  
frequency range of 40MHz to 500MHz. The inputs of the  
VGA must have a DC return to ground. This can be done  
using a transformer with a central tap (on the secondary)  
oranLCmatchingcircuitwithamatchedimpedanceatthe  
frequency of interest and near zero impedance at DC. The  
differential AC input impedance of the LT5546 is about  
200, thus a 1:4 (impedance ratio) RF transformer with  
center tap can be used. In Figure 6, the evaluation board  
5546f  
7
LT5546  
U
W
U U  
APPLICATIO S I FOR ATIO  
C3  
L1  
IF  
INPUT  
56pF  
+
V
TO IF  
C1  
10pF  
TO IF  
BIAS  
56nH  
IF  
INPUT  
+
TO IF  
TO IF  
75Ω  
1mA  
1mA  
75Ω  
L1  
15nH  
L2  
15nH  
C1  
5.6pF  
L3  
120nH  
L2  
56nH  
C2  
5.6pF  
+
IF  
IF  
5546 F02  
5546 F01  
(2a)  
(2b)  
Figure 2a. Simplified IF Input Matching Network at 280MHz  
and Figure 2b. Simplified Circuit Schematic of the IF Inputs  
Figure 1. Example L-C IF Input Matching Network at 280MHz  
Table 1. The Component Values of Matching Network L1, L2, L3,  
C1, C2 and C3.  
degrees, depending on the quality factor of the network.  
This will result in a reduction in the gain. The higher the  
chosen quality factor, the closer the phase difference will  
approach 180 degrees. However, a higher quality factor  
will reduce bandwidth and create more loss in the match-  
ing network. For minimum board space, 0402 compo-  
nents are used. The measured noise figure for maximum  
gain with this matching network is about 9.4dB, and the  
maximum gain is about 55dB. Assuming 0402 inductors  
with Q = 35, the insertion loss of this network is about  
2.5dB. The tolerance for the components in Figure 2a can  
be 10% for a return loss higher than 10dB and a gain  
reductionduetomismatchlessthan0.5dB. Themeasured  
input sensitivity for this matching network (see also Fig-  
ure 11) is about –78.3dBm for a 10dB signal-to-noise  
ratio.  
f (MHz)  
L1, L2(nH)  
C1, C2(pF)  
34  
L3(nH)  
1800  
470  
C3(pF)  
820  
220  
220  
220  
56  
IF  
50  
340  
159  
106  
80  
100  
150  
200  
250  
300  
350  
400  
450  
500  
15.9  
10.6  
8.0  
470  
470  
64  
6.4  
120  
53  
5.3  
120  
56  
45  
4.5  
120  
56  
40  
4.0  
120  
56  
35  
3.5  
120  
56  
32  
3.2  
120  
56  
To keep the DC resistance of L3 below 2, 120nH is used.  
Thisdisturbsthematchingnetworkslightlybycausingthe  
frequency where the S11 is minimal to be lower than the  
frequency where the amplitudes of IF+ and IFare equal.  
To compensate for this, the value of coupling capacitor C3  
is lowered and will contribute some correcting reactance.  
For low frequencies, it might not be possible to find any  
practical inductor value for L3 with DC resistance smaller  
than 2. In that case it is recommended to use a trans-  
formerwithacentertap.Thetoleranceforthecomponents  
in Figure 1 can be 10% for a return loss higher than 16dB  
and a gain reduction due to mismatch less than 0.3dB.  
The gain of the VGA is set by the voltage at the VCTRL pin.  
For high gain settings, both the noise figure and the input  
IP3 will be low. From a noise figure point of view, it is  
advantageous to work as closely as possible to the maxi-  
mum gain point. However, if the voltage at the VCTRL pin  
is increased beyond the maximum gain point (where  
additional increase in control voltage does not give an  
increase in gain), the response time of the gain control  
circuit is increased. If control speed is crucial, a few dB of  
gain margin should be allowed from the highest gain point  
to be sure that at all temperatures, the maximum gain  
settingisnotcrossed.Atlowgainsettings,thenoisefigure  
and the input IP3 will be high. Optionally, the control  
voltage VCTRL can be set lower than 0.2V. The normal  
range is from VCTRL = 0.2V to 1.7V, which results in a  
nominal gain range from 1.6dB to 56.8dB. The linear-in-  
dB gain relation with the VCTRL voltage still holds for  
control voltages as low as –0.35V. This results in an  
5546f  
It is possible to simplify the input matching circuit and  
compromise the performance. In Figure 2a, the simplified  
matching network is given.  
Thismatchingnetworkcandeliverequalamplitudestothe  
IF+ and IFinputs for a narrow frequency region, but the  
phasedifferencebetweentheinputswillnotbeexactly180  
degrees. In practice, the phase shift will be around 145  
8
LT5546  
W U U  
APPLICATIO S I FOR ATIO  
U
V
V
CC  
CC  
extended gain control range of –23dB to 57dB. The VCTRL  
pin is a very sensitive input because of its high input  
impedance and therefore should be well shielded. Signal  
pickup on the VCTRL pin can lead to spurs and increased  
noise floor in the I/Q baseband outputs. It can degrade the  
linearity performance and it can cause asymmetry in the  
two-tone test. If control speed is not important, 1µF  
bypass capacitors are recommended between VCTRL and  
ground.  
+
400mV  
+
8k  
8k  
2xLO  
2xLO  
IF DET  
1k  
3.8k  
5546 F03  
(3b)  
(3a)  
A fast responding peak detector is connected to the VGA  
input, sensitive to signal levels above the signal levels  
where the VGA is operating in the linear range. It is active  
from –22dBm up to 5dBm IF input signal levels. The DC  
output voltage of this detector (IF DET) can be used by the  
baseband controller to quickly determine the presence of  
a strong input level at the desired channel, and adjust gain  
accordingly. Figure 3a shows the simplified circuit sche-  
matic of the IF DET output.  
Figure 3a. Simplified Circuit Schematic of the  
IF DET Output and Figure 3b. The 2xLO Inputs  
3.3pF  
100pF  
2xLO  
INPUT  
2xLO  
INPUT  
+
+
TO 2xLO  
TO 2xLO  
56Ω  
39nH  
1:4  
2xLO  
INPUT  
+
TO 2xLO  
TO 2xLO  
100pF  
TO 2xLO  
240Ω  
3.3pF  
TO 2xLO  
5546 F04  
I/Q Demodulators  
(4b)  
(4c)  
(4a)  
The quadrature demodulators are double balanced mix-  
ers, down-converting the amplified IF signal from the VGA  
into I/Q baseband signals. The quadrature LO signals are  
generated internally from a double frequency external CW  
signal. The nominal output voltage of the differential I/Q  
baseband signals should be set to 0.8VP-P or lower,  
depending on the linearity requirements. The magnitudes  
of I and Q are well matched and their phases are 90° apart.  
Figure 4. 2xLO Input Matching Networks for 4a) Narrow Band  
Tuned to 570MHz, 4b) Wide Band, 4c) Single-Ended Wide Band  
dal waveforms of the 2xLO input signal. The phase rela-  
tion between I and Q is always 90°, i.e. I always leads Q by  
90°. Figure 3b shows the simplified circuit schematic of  
the 2xLO inputs. Depending on the application, different  
2xLO input matching networks can be chosen. In Figure  
4,threeexamplesaregiven.Thefirstnetworkprovidesthe  
best 2xLO input sensitivity because it can boost the 2xLO  
differentialinputsignalusinganarrow-bandresonantap-  
proach.Thesecondnetworkgivesawide-bandmatch,but  
the 2xLO input sensitivity is about 2dB lower. The third  
network gives a simple and less expensive wide-band  
match,but2xLOinputsensitivitydropsbyabout9dB.The  
IF input sensitivity doesn’t change significantly using any  
of the three 2xLO matching networks.  
Quadrature LO Generator  
The quadrature LO generator consists of a divide-by-two  
circuit and LO buffers. An input signal (2xLO) with twice  
the desired IF signal frequency is used as the clock for the  
divide-by-twocircuit,producingthequadratureLOsignals  
for the demodulators. The outputs are buffered and then  
drivethedown-convertingmixers. Withafullydifferential  
approach, the quadrature LO signals are well matched.  
Second harmonic content (or higher order even harmon-  
ics)intheexternal2xLOsignalcandegradethe90° phase  
shift between I and Q. Therefore, such content should be  
minimized. Indisableorstandbymode, thedivide-by-two  
stageispowereddown.Afterenablingthecircuit,thephase  
relation between the IF signal and the baseband (I or Q)  
signals can be either 0° or 180°, since the circuit cannot  
distinguishbetweenthetwosubsequentidenticalsinusoi-  
Baseband Circuit  
The baseband circuit consists of I/Q low-pass filters, I/Q  
hard limiters (clippers) and I/Q output buffers. The hard  
limiters operate as linear amplifiers normally. However, if  
a high level input temporarily overloads a linear amplifier,  
then the circuit will limit symmetrically, which will help to  
prevent the output buffer from overloading. This speeds  
5546f  
9
LT5546  
W U U  
U
APPLICATIO S I FOR ATIO  
up recovery from an overload event, which can occur  
during the gain settling. The clipping level is approxi-  
mately constant over temperature. The first order inte-  
grated lowpass filters are used for noise filtering of the  
down-converted baseband signals for both the I channel  
and the Q channel. These filters are well matched in gain  
response. The –3dB corner frequency is typically 17MHz.  
The I/Q outputs can drive 2kin parallel with a maximum  
capacitive loading of 10pF at 5MHz, from all four pins to  
ground. The outputs are internally biased at VCC – 1.19V.  
Figure 5 shows the simplified output circuit schematic of  
the I channel or Q channel.  
and standby mode, the maximum discharging current is  
about 300µA, and the maximum charging current is more  
than 4mA. In Figure 5 the simplified circuit schematic of  
the STBY (or EN) input is shown.  
Table 2. The Logic of Different Operating Modes  
EN  
STBY  
Comments  
Low  
Low  
High  
Low  
Shutdown Mode  
Standby Mode  
High  
Low or High  
Normal Operation Mode  
V
CC  
V
CC  
TheI/QbasebandoutputscanbeDC-coupledtotheinputs  
ofabasebandchip.ForAC-coupledapplicationswithlarge  
capacitors, the STBY pin can be used to pre-bias the  
outputs to nominal VCC – 1.19V at much reduced current.  
Thismodedrawsonly3.6mAsupplycurrent. WhentheEN  
pin is then driven high (>1V), the chip is quickly switched  
to normal operating mode, avoiding the introduction of  
large charging time constants. Table 2 shows the logic of  
the EN pin and STBY pin. In both normal operating mode  
+
I CHANNEL (OR  
Q CHANNEL):  
DIFFERENTIAL  
SIGNALS  
I
OUT  
+
(OR Q  
)
OUT  
I
OUT  
(OR Q  
)
OUT  
22k  
FROM LPF  
STBY  
(OR EN)  
300µA  
300µA  
5546 F05  
Figure 5. Simplified Circuit Schematic of I Channel  
(or Q Channel) Outputs and STBY (or EN) Input  
OPTIONAL  
+
+
I
I
Q
Q
OUT OUT  
OUT  
OUT  
V
5V  
CC3  
C37  
0.1µF  
C35  
4.7µF  
C36  
4.7µF  
C38  
0.1µF  
R43  
2k  
R50  
2k  
C34  
0.1µF  
C27  
0.1µF  
R45  
1k  
R41  
1k  
C31  
1µF  
C30  
1µF  
3
2
3
2
7
7
R47  
49.9Ω  
R44  
49.9Ω  
+
+
J1  
J2  
U3  
U2  
6
6
C1  
5.6pF  
C2  
5.6pF  
R46  
R39  
Q
I
OUT  
OUT  
LT1818CS  
LT1818CS  
3.09k  
3.09k  
4
4
R49  
2k  
R42  
2k  
C33  
0.1µF  
C28  
0.1µF  
C32  
1pF  
C29  
1pF  
R48  
R40  
3.09k  
3.09k  
16 15 14  
13  
+
+
I
I
Q
Q
OUT OUT  
OUT  
OUT  
V
CC2  
T1, 1:4,TR-R  
JTX-4-10T  
MINI-CIRCUITS  
C43  
22nF  
T2, 1:4, TR-R C45  
JTX-4-10T  
22nF J4  
MINI-CIRCUITS  
R35  
20k  
1
12  
J3  
GND  
STBY  
IF  
IN  
2XLO  
2
3
4
11  
10  
9
+
+
1
6
IF  
IF  
2XLO  
2XLO  
U1  
LT5546  
R52  
240Ω  
6
1
GND  
EN  
R36  
20k  
IF  
DET  
7
V
V
V
CC  
CC CTRL  
1 = EN  
2 = STBY  
5
6
8
17  
GND  
V
CC1  
C15  
1nF  
C22  
1µF  
C16  
1nF  
C39  
1µF  
5546 F04  
SW1  
V
CTRL  
OVERLOAD  
R51  
100Ω  
C25  
1.5pF  
C26  
1.8pF  
NOTE: OUTPUT BUFFERS U2 AND U3 WITH ASSOCIATED  
COMPONENTS ARE INCLUDED FOR EVALUATION ONLY.  
DEMO BOARD: DC696A  
C43, C45, C22, R51, C25, C26 AND C39 ARE OPTIONAL  
Figure 6. Evaluation Circuit Schematic with I/Q Output Buffers  
5546f  
10  
LT5546  
W U U  
APPLICATIO S I FOR ATIO  
U
Evaluation Board  
There is a unity voltage gain relationship for AC signals  
between the evaluation board outputs (I and Q) and the  
IOUT+, IOUTor QOUT+ and QOUToutputs of the LT5546  
when the evaluation board outputs are terminated in 50.  
The evaluation circuit schematic is drawn in Figure 6. The  
components associated with buffers U2 and U3 are in-  
cluded to drive a 50load for evaluation purposes only.  
Figure 8. Component Side Layout of Evaluation Board  
Figure 7. Component Side Silkscreen of Evaluation Board  
Figure 10. Bottom Side Layout of Evaluation Board  
Figure 9. Bottom Side Silkscreen of Evaluation Board  
15nH  
1.8V  
1nF  
RX INPUT:  
1µF  
2.4GHz TO 2.5GHz  
10pF  
280MHz  
V
2
5, 8  
CC  
IF SAW BP FILTER  
BASEBAND  
HARD  
VGA  
RX  
PROCESSOR  
CLIPPER  
I-MIXER LPF  
FRONT END  
16  
15  
15nH  
3
A/D  
I-OUTPUTS  
IF DET  
1ST LO,  
2.12GHz  
0°  
TO 2.22GHz  
7
A/D  
D/A  
MAIN  
SYNTHESIZER  
V
CTRL  
6
Q-MIXER  
14  
2ND LO,  
560MHz  
–10dBm  
A/D  
13 Q-OUTPUTS  
90°  
11  
AUX  
SYNTHESIZER  
LPF  
HARD  
CLIPPER  
3.3pF  
3.3pF  
39nH  
10  
f/2  
12  
9
STBY  
LT5546  
EN  
5546 F11  
1,4,17  
Figure 11. 2.4GHz to 2.5GHz Receiver Application (RX IF = 280MHz)  
5546f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LT5546  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
0.75 ± 0.05  
R = 0.115  
TYP  
0.55 ± 0.20  
4.00 ± 0.10  
(4 SIDES)  
15  
16  
0.72 ±0.05  
PIN 1  
TOP MARK  
1
2
4.35 ± 0.05  
2.90 ± 0.05  
2.15 ± 0.05  
(4 SIDES)  
2.15 ± 0.10  
(4-SIDES)  
PACKAGE  
OUTLINE  
(UF) QFN 0802  
0.30 ± 0.05  
0.65 BSC  
0.200 REF  
0.30 ±0.05  
0.65 BCS  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5511  
LT5512  
LT5515  
High Signal Level Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC-3GHz, 20dBm IIP3, Integrated LO Buffer  
High Signal Level Downconverting Mixer  
1.5GHz to 2.5GHz Direct-Conversion  
Quadrature Demodulator  
20dBm IIP3, NF =16.8dB, Integrated LO Quadrature Generator  
LT5516  
LT5522  
800MHz to 1.5GHz Direct-Conversion  
Quadrature Demodulator  
4V to 5.25V Supply, 21.5dBm IIP3, NF = 12.8dB,  
Integrated LO Quadrature Generator  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Single-Ended  
RF and LO Ports  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
2.7V to 5.25V Supply, 80dB Dynamic Range, Temperature Compensated  
LTC5505  
LTC5507  
LTC5508  
LTC5509  
LTC5532  
RF Power Detectors with >40dB Dynamic Range 2.7V to 6V Supply, 300MHz to 3.5GHz, Temperature Compensated  
100kHz to 1000MHz RF Power Detector  
0.3GHz to 7GHz RF Power Detector  
2.7V to 6V Supply, 48dB Dynamic Range, Temperature Compensated  
2.7V to 6V Supply, 44dB Dynamic Range, Temperature Compensated  
–30dBm to 6dBm, 600µA Supply Current, Temperature Compensated  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
RF Receiver Building Blocks  
LT5500  
LT5502  
LT5503  
LT5506  
1.8GHz to 2.7GHz Receiver Front End  
400MHz Quadrature IF Demodulator with RSSI  
1.8V to 5.25V Supply, Dual-Gain LNA, Mixer  
1.8V to 5.25V Supply, 70MHz to 400MHz IF, 84dB Limiting Gain, 90dB RSSI Range  
1.2GHz to 2.7GHz Direct IQ Modulator and Mixer 1.8V to 5.25V Supply, Four Step RF Power Control, 120MHz Modulation Bandwidth  
40MHz to 500MHz Quadrature IF Demodulator  
with VGA  
1.8V to 5.25V, I/Q Baseband Bandwidth 8.8MHz, –40dB to 57dB Linear Power Gain  
5546f  
LT/TP 1003 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2003  

相关型号:

LT5546EUF#PBF

LT5546 - 40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5546EUF#TRPBF

LT5546 - 40MHz to 500MHz VGA and I/Q Demodulator with 17MHz Baseband Bandwidth; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554

Dual 600MHz to 1.7GHz High Dynamic Range Downconverting Mixer
Linear

LT5554IUH#PBF

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554IUH#TRPBF

LT5554 - Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5554IUH-PBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5554IUH-TRPBF

Broadband Ultra Low Distortion 7-Bit Digitally Controlled VGA
Linear

LT5557

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5557EUF#PBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF#TR

IC SPECIALTY TELECOM CIRCUIT, PQCC16, 4 X 4 MM, PLASTIC, MO-220, QFN-20, Telecom IC:Other
Linear

LT5557EUF#TRPBF

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5557EUF-PBF

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear