LT5557EUF#TRPBF [Linear]

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C;
LT5557EUF#TRPBF
型号: LT5557EUF#TRPBF
厂家: Linear    Linear
描述:

LT5557 - 400MHz to 3.8GHz 3.3V Active Downconverting Mixer; Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总20页 (文件大小:341K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Electrical Specifications Subject to Change  
LTC5590  
Dual 600MHz to 1.7GHz  
High Dynamic Range  
Downconverting Mixer  
FeaTures  
DescripTion  
The LTC®5590 is part of a family of dual-channel high dy-  
namic range, high gain downconverting mixers covering  
the 600MHz to 4GHz RF frequency range. The LTC5590  
is optimized for 600MHz to 1.7GHz RF applications. The  
LO frequency must fall within the 700MHz to 1.5GHz  
range for optimum performance. A typical application  
is a LTE or GSM receiver with a 700MHz to 915MHz RF  
input and high side LO.  
n
Conversion Gain: 8.7dB at 900MHz  
n
IIP3: 26dBm at 900MHz  
n
Noise Figure: 9.7dB at 900MHz  
n
15.6dB NF Under 5dBm Blocking  
n
High Input P1dB; 14.1dBm at 5V  
n
53dB Channel-to-Channel Isolation  
n
1.25W Power Consumption at 3.3V  
n
Low Current Mode for <800mW Consumption  
n
Enable Pins for Each Channel  
The LTC5590’s high conversion gain and high dynamic  
range enable the use of lossy IF filters in high selectivity  
receiver designs, while minimizing the total solution cost,  
board space and system-level variation. A low current  
mode is provided for additional power savings and each  
of the mixer channels has independent shutdown control.  
n
50Ω Single-Ended RF and LO Inputs  
n
LO Input Matched In All Modes  
n
0dBm LO Drive Level  
n
Small Package and Solution Size  
n
–40°C to 105°C Operation  
applicaTions  
High Dynamic Range Dual Downconverting Mixer Family  
PART NUMBER  
LTC5590  
RF RANGE  
LO RANGE  
n
3G/4G Wireless Infrastructure Diversity Receivers  
600MHz to 1.7GHz  
1.3GHz to 2.3GHz  
1.6GHz to 2.7GHz  
2.3GHz to 4GHz  
700MHz to 1.5GHz  
1.4GHz to 2.1GHz  
1.7GHz to 2.5GHz  
2.4GHz to 3.6GHz  
(LTE, CDMA, GSM)  
LTC5591  
n
MIMO Infrastructure Receivers  
LTC5592  
n
High Dynamic Range Downmixer Applications  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
LTC5593  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
Wideband Receiver  
Wideband Conversion Gain  
NF and IIP3 vs IF Frequency  
(Mixer Only, Measured on  
Evaluation Board)  
190MHz  
SAW  
190MHz  
BPF  
1nF  
V
IF  
CCIF  
1nF  
150nH  
ADC  
AMP  
3.3V or 5V  
200mA  
150nH  
22pF  
1µF  
27  
26  
25  
24  
23  
22  
21  
20  
19  
13  
12  
11  
10  
9
V
3.3V  
CC  
IIP3  
22pF  
1µF  
180mA  
V
+
IFA  
CCA  
IFA  
IF  
AMP  
IMAGE  
BIAS  
ENA  
LO  
ENA  
(0V/3.3V)  
BPF 100pF  
NF  
RF  
RFA  
700MHz TO  
915MHz  
LNA  
LNA  
LO  
LO 1090MHz  
10pF  
AMP  
G
C
8
SYNTH  
IMAGE  
BPF 100pF  
7
T
= 25°C  
C
LO  
LO = 1090MHz  
AMP  
RF  
700MHz TO  
915MHz  
RFB  
6
RF = 900 30MHz  
TEST CIRCUIT IN FIGURE 1  
ENB  
ENB  
(0V/3.3V)  
5
IF  
BIAS  
V
160 170  
180  
190  
200  
210  
220  
AMP  
+
IFB  
IF FREQUENCY (MHz)  
IFB  
CCB  
5590 TA01b  
V
V
CC  
CCIF  
22pF  
150nH  
150nH  
1nF  
190MHz  
SAW  
190MHz  
BPF  
1nF  
22pF  
IF  
AMP  
ADC  
5590 TA01a  
5590p  
1
LTC5590  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Note 1)  
TOP VIEW  
Mixer Supply Voltage (V )......................................4.0V  
CC  
IF Supply Voltage (V  
).........................................5.5V  
CCIF  
Enable Voltage (ENA, ENB) ..............–0.3V to V + 0.3V  
CC  
24 23 22 21 20 19  
Power Select Voltage (I ) .............–0.3V to V + 0.3V  
SEL  
CC  
RFA  
CTA  
GND  
GND  
CTB  
RFB  
1
2
3
4
5
6
18  
17  
16  
I
SEL  
LO Input Power (1GHz to 3GHz).............................9dBm  
LO Input DC Voltage............................................... 0.1V  
RFA, RFB Input Power (1GHz to 3GHz) ................15dBm  
RFA, RFB Input DC Voltage.................................... 0.1V  
ENA  
LO  
25  
GND  
15 GND  
ENB  
14  
13 GND  
Operating Temperature Range (T )........ –40°C to 105°C  
C
7
8
9 10 11 12  
Storage Temperature Range .................. –65°C to 150°C  
Junction Temperature (T ) .................................... 150°C  
J
UH PACKAGE  
24-LEAD (5mm × 5mm) PLASTIC QFN  
= 150°C, θ = 7°C/W  
T
JMAX  
JC  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
24-Lead (5mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 105°C  
LTC5590IUH#PBF  
LTC5590IUH#TRPBF  
5590  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C,  
Dc elecTrical characTerisTics  
unless otherwise noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
Power Supply Requirements (V , V , V  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
, V  
)
CCA CCB CCIFA CCIFB  
V
V
, V  
Supply Voltage (Pins 12, 19)  
3.1  
3.1  
3.3  
3.3  
3.5  
5.3  
V
V
CCA CCB  
, V  
Supply Voltage (Pins 9, 10, 21, 22)  
CCIFA CCIFB  
Mixer Supply Current (Pins 12, 19)  
IF Amplifier Supply Current (Pins 9, 10, 21, 22)  
Total Supply Current (Pins 9, 10, 12, 19, 21, 22)  
Total Supply Current – Shutdown  
Enable Logic Input (ENA, ENB) High = On, Low = Off  
ENA, ENB Input High Voltage (On)  
ENA, ENB Input Low Voltage (Off)  
ENA, ENB Input Current  
188  
191  
379  
TBD  
TBD  
TBD  
500  
mA  
mA  
mA  
µA  
ENA = ENB = Low  
2.5  
V
V
0.3  
30  
–0.3V to V + 0.3V  
–20  
µA  
CC  
Turn On Time  
1
µs  
Turn Off Time  
1.5  
µs  
5590p  
2
LTC5590  
Dc elecTrical characTerisTics VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C,  
unless otherwise noted. Test circuit shown in Figure 1. (Note 2)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Low Current Mode Logic Input (I ) High = Low Power, Low = Normal Power Mode  
SEL  
I
I
I
Input High Voltage  
Input Low Voltage  
Input Current  
2.5  
V
V
SEL  
SEL  
SEL  
0.3  
30  
–0.3V to V + 0.3V  
–20  
µA  
CC  
Low Current Mode Current Consumption (I = High)  
SEL  
Mixer Supply Current (Pins 12, 19)  
123  
116  
239  
TBD  
TBD  
TBD  
mA  
mA  
mA  
IF Amplifier Supply Current (Pins 9, 10, 21, 22)  
Total Supply Current (Pins 9, 10, 12, 19, 21, 22)  
ac elecTrical characTerisTics VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C,  
PLO = 0dBm, PRF = –3dBm (∆f = 2MHz for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
LO Input Frequency Range  
RF Input Frequency Range  
700 to 1500  
MHz  
Low Side LO  
High Side LO  
1100 to 1700  
600 to 1100  
MHz  
MHz  
IF Output Frequency Range  
RF Input Return Loss  
LO Input Return Loss  
IF Output Impedance  
LO Input Power  
Requires External Matching  
5 to 500  
>12  
MHz  
dB  
Z = 50Ω, 700MHz to 1600MHz  
O
Z = 50Ω, 700MHz to 1500MHz  
O
>12  
dB  
Differential at 190MHz  
300Ω||2.3pF  
0
R||C  
dBm  
dBm  
dBm  
dB  
f
LO  
f
LO  
f
LO  
f
RF  
f
RF  
f
RF  
= 700MHz to 1500MHz  
= 700MHz to 1500MHz  
= 700MHz to 1500MHz  
= 600MHz to 1700MHz  
= 600MHz to 1700MHz  
= 600MHz to 1700MHz  
–4  
6
LO to RF Leakage  
<–36  
<–26  
>57  
LO to IF Leakage  
RF to LO Isolation  
RF to IF Isolation  
>17  
dB  
Channel-to-Channel Isolation  
53  
dB  
High Side LO Downmixer Application: ISEL = Low, RF = 700MHz to 1100MHz, IF = 190MHz, fLO = fRF + fIF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 700MHz  
RF = 900MHz  
RF = 1100MHz  
8.6  
8.7  
8.5  
dB  
dB  
dB  
TBD  
Conversion Gain Flatness  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
RF = 900 30MHz, LO = 1090MHz, IF = 190 30MHz  
0.25  
dB  
T = –40ºC to 105ºC, RF = 1950MHz  
C
–0.006  
dB/°C  
RF = 700MHz  
RF = 900MHz  
RF = 1100MHz  
25.3  
26.0  
24.8  
dBm  
dBm  
dBm  
TBD  
SSB Noise Figure  
RF = 700MHz  
RF = 900MHz  
RF = 1100MHz  
9.3  
9.7  
9.9  
dB  
dB  
dB  
TBD  
5590p  
3
LTC5590  
ac elecTrical characTerisTics VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, TC = 25°C, PLO = 0dBm,  
PRF = –3dBm (∆f = 2MHz for two tone IIP3 tests), unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3)  
High Side LO Downmixer Application: ISEL = Low, RF = 700MHz to 1100MHz, IF = 190MHz, fLO = fRF + fIF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
SSB Noise Figure Under Blocking  
f
= 900MHz, f = 1090MHz, f  
= 800MHz  
RF  
P
P
LO  
BLOCK  
= 5dBm  
15.6  
21.2  
dB  
dB  
BLOCK  
BLOCK  
= 10dBm  
2LO-2RF-Output Spurious Product  
f
f
= 995MHz at –10dBm, f = 1090MHz,  
–77  
dBc  
RF  
IF  
LO  
(f = f – f /2)  
= 190MHz  
RF  
LO  
IF  
3LO-3RF Output Spurious Product  
(f = f – f /3)  
f
f
= 1026.67MHz at –10dBm, f = 1090MHz,  
–77  
dBc  
RF  
IF  
LO  
= 190MHz  
RF  
LO  
IF  
Input 1dB Compression  
f
RF  
f
RF  
= 900MHz, V  
= 900MHz, V  
= 3.3V  
= 5V  
10.7  
14.1  
dBm  
dBm  
CCIF  
CCIF  
Low Power Mode, High Side LO Downmixer Application: ISEL = High, RF = 700MHz to 1100MHz, IF = 190MHz, fLO = fRF + fIF  
PARAMETER  
CONDITIONS  
RF = 900MHz  
RF = 900MHz  
RF = 900MHz  
MIN  
TYP  
7.7  
MAX  
UNITS  
dB  
Conversion Gain  
Input 3rd Order Intercept  
SSB Noise Figure  
21.5  
9.9  
dBm  
dB  
Input 1dB Compression  
RF = 900MHz, V  
RF = 900MHz, V  
= 3.3V  
= 5V  
10.4  
10.9  
dBm  
dBm  
CCIF  
CCIF  
Low Side LO Downmixer Application: ISEL = Low, RF = 1100MHz to 1600MHz, IF = 190MHz, fLO = fRF – fIF  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
RF = 1200MHz  
RF = 1400MHz  
RF = 1600MHz  
8.6  
8.4  
7.7  
dB  
dB  
dB  
Conversion Gain Flatness  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
RF = 1600 30MHz, LO = 1790MHz, IF = 190 30MHz  
0.22  
dB  
T = –40ºC to 105ºC, RF = 1600MHz  
C
–0.008  
dB/°C  
RF = 1200MHz  
RF = 1400MHz  
RF = 1600MHz  
27.5  
27.3  
27.2  
dBm  
dBm  
dBm  
SSB Noise Figure  
RF = 1200MHz  
RF = 1400MHz  
RF = 1600MHz  
9.9  
9.7  
10.4  
dB  
dB  
dB  
SSB Noise Figure Under Blocking  
f
= 1400MHz, f = 1210MHz, f  
= 1500MHz  
RF  
P
P
LO  
BLOCK  
= 5dBm  
15.0  
20.8  
dB  
dB  
BLOCK  
BLOCK  
= 10dBm  
2RF-2LO Output Spurious Product  
f
RF  
f
IF  
= 1305MHz at –10dBm, f = 1210MHz,  
–72  
dBc  
LO  
(f = f + f /2)  
= 190MHz  
RF  
LO  
IF  
3RF-3LO Output Spurious Product  
(f = f + f /3)  
f
RF  
f
IF  
= 1273.33MHz at –10dBm, f = 1210MHz,  
–72  
dBc  
LO  
= 190MHz  
RF  
LO  
IF  
Input 1dB Compression  
RF = 1400MHz, V  
RF = 1400MHz, V  
= 3.3V  
= 5V  
11.0  
14.4  
dBm  
dBm  
CCIF  
CCIF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: SSB Noise Figure measured with a small-signal noise source,  
bandpass filter and 6dB matching pad on RF input, bandpass filter and  
6dB matching pad on the LO input, and no other RF signals applied.  
Note 4: Channel A to channel B isolation is measured as the relative IF  
output power of channel B to channel A, with the RF input signal applied to  
channel A. The RF input of channel B is 50Ω terminated and both mixers  
are enabled.  
Note 2: The LTC5590 is guaranteed functional over the case operating  
temperature range of –40°C to 105°C. (θ = 7°C/W)  
JC  
5590p  
4
LTC5590  
Typical ac perForMance characTerisTics  
∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
High Side LO  
VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests,  
Conversion Gain and IIP3 vs  
RF Frequency  
SSB NF vs RF Frequency  
Channel Isolation vs RF Frequency  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
17  
16  
15  
14  
13  
12  
11  
10  
9
60  
55  
50  
45  
40  
35  
30  
16  
15  
14  
13  
12  
11  
10  
9
–40°C  
25°C  
85°C  
IIP3  
105°C  
–40°C  
25°C  
85°C  
105°C  
8
8
G
C
7
7
6
6
6
600 700  
800  
900 1000 1100 1200  
600 700  
800  
900 1000 1100 1200  
600 700  
800  
900 1000 1100 1200  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5590 G01  
5590 G03  
5590 G02  
700Mhz Conversion Gain, IIP3  
and NF vs LO Input Power  
1100MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
900MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
IIP3  
–40°C  
25°C  
85°C  
–40°C  
–40°C  
25°C  
85°C  
25°C  
85°C  
NF  
NF  
NF  
6
6
6
G
C
G
4
4
4
C
G
C
2
2
2
6
0
6
0
6
0
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5590 G06  
5590 G05  
5590 G04  
Conversion Gain, IIP3 and NF vs  
Supply Voltage (Single Supply)  
Conversion Gain, IIP3 and RF Input  
P1dB vs Temperature  
Conversion Gain, IIP3 and NF vs  
Supply Voltage (Dual Supply)  
22  
20  
18  
16  
14  
12  
10  
8
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
28  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
IIP3  
–40°C  
–40°C  
25°C  
85°C  
V
CCIF  
V
CCIF  
= 3.3V  
= 5V  
25°C  
85°C  
NF  
NF  
6
P1dB  
50  
6
G
C
4
G
C
4
2
G
C
2
6
0
6
6
0
3
3.1  
V
3.2  
3.3  
3.4  
3.5  
3.6  
–40  
–10  
20  
80  
110  
3
3.5  
4
4.5  
5
5.5  
, V  
SUPPLY VOLTAGE (V)  
CASE TEMPERATURE (°C)  
V
SUPPLY VOLTAGE (V)  
CC CCIF  
CCIF  
5590 G07  
5590 G09  
5590 G08  
5590p  
5
LTC5590  
Typical ac perForMance characTerisTics High Side LO  
VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests,  
∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
2-Tone IF Output Power, IM3 and  
IM5 vs RF Input Power  
Single-Tone IF Output Power, 2 × 2  
and 3 × 3 Spurs vs RF Input Power  
2 × 2 and 3 × 3 Spur Suppression  
vs LO Input Power  
20  
10  
20  
10  
–60  
–65  
–70  
–75  
–80  
–85  
IF  
OUT  
RF = 900MHz  
RF = 900MHz  
P
= –10dBm  
IN  
LO = 1090MHz  
0
0
IF  
OUT  
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
–50  
–60  
2LO-2RF  
RF = 995MHz  
3LO-3RF  
RF = 1026.67MHz  
LO = 1090MHz  
LO  
P
= 0dBm  
3LO-3RF  
RF = 1026.67MHz  
–50  
–60  
–70  
IM3  
–6  
IM5  
2LO-2RF  
RF = 995MHz  
–70  
–80  
–80  
–12  
–9  
–3  
0
3
6
–12  
–9  
–6  
RF INPUT POWER (dBm)  
6
–6  
–3  
0
3
6
–3  
0
3
RF INPUT POWER (dBm/TONE)  
LO INPUT POWER (dBm)  
5590 G10  
5590 G11  
5590 G12  
SSB Noise Figure vs RF Blocker  
Power  
LO Leakage vs LO Frequency  
RF Isolation vs RF Frequency  
70  
60  
50  
40  
30  
20  
10  
0
24  
22  
20  
18  
16  
14  
12  
10  
8
0
P
LO  
P
LO  
P
LO  
P
LO  
= –3dBm  
= 0dBm  
= 3dBm  
= 6dBm  
RF-LO  
–10  
–20  
–30  
–40  
–50  
–60  
RF = 900MHz  
BLOCKER = 800MHz  
LO-IF  
RF-IF  
LO-RF  
600  
700  
800  
900 1000 1100 1200  
–20  
–15  
–10  
–5  
0
5
10  
800  
900 1000 1100 1200 1300 1400  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF BLOCKER POWER (dBm)  
5590 G15  
5590 G13  
5590 G14  
TBD  
TBD  
TBD  
5590p  
6
LTC5590  
Typical ac perForMance characTerisTics Low Power Mode, High Side LO  
VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = High, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests,  
∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain and IIP3 vs  
RF Frequency  
2-Tone IF Output Power, IM3 and  
IM5 vs RF Input Power  
SSB NF vs RF Frequency  
16  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
16  
14  
12  
10  
8
20  
10  
–40°C  
25°C  
15  
14  
IFOUT  
85°C  
0
105°C  
13  
12  
11  
10  
9
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
IIP3  
RF1 = 899MHz  
RF2 = 901MHz  
LO = 1090MHz  
–40°C  
25°C  
IM3  
IM5  
85°C  
105°C  
8
7
6
G
C
5
6
600 700  
800  
900 1000 1100 1200  
600 700  
800  
900 1000 1100 1200  
–12  
–9  
–6  
–3  
0
3
6
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
RF INPUT POWER (dBm/tone)  
5590 G19  
5590 G20  
5590 G21  
700MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
900MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
1100MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20  
24  
22  
24  
22  
24  
22  
IIP3  
18  
16  
14  
12  
10  
8
IIP3  
IIP3  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
NF  
NF  
–40°C  
25°C  
85°C  
NF  
6
6
6
G
G
C
G
C
C
4
4
4
2
2
6
6
2
6
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5590 G22  
5590 G23  
5590 G24  
Conversion Gain, IIP3 and NF vs  
Supply Voltage (Single Supply)  
Conversion Gain, IIP3 and NF vs  
Supply Voltage (Dual Supply)  
Conversion Gain, IIP3 and RF  
Input P1dB vs Temperature  
20  
18  
16  
14  
12  
10  
8
20  
24  
22  
24  
24  
22  
18  
16  
14  
12  
10  
8
22  
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
20  
18  
16  
14  
12  
10  
8
IIP3  
–40°C  
IIP3  
–40°C  
IIP3  
V
CCIF  
V
CCIF  
= 3.3V  
= 5V  
25°C  
85°C  
25°C  
85°C  
NF  
NF  
P1dB  
6
6
G
C
G
C
4
4
G
C
2
3.6  
6
2
5.5  
6
6
3
3.1  
V
3.2  
, V  
3.3  
3.4  
3.5  
3
3.5  
V
4
4.5  
5
–40  
–10  
20  
50  
80  
110  
Supply Voltage (V)  
, V  
Supply Voltage (V)  
CASE TEMPERATURE (°C)  
CC CCIF  
CC CCIF  
5590 G25  
5590 G26  
5590 G27  
5590p  
7
LTC5590  
Typical ac perForMance characTerisTics Low Side LO  
VCC = 3.3V, VCCIF = 3.3V, ENA = ENB = High, ISEL = Low, TC = 25°C, PLO = 0dBm, PRF = –3dBm (–3dBm/tone for two-tone IIP3 tests,  
∆f = 2MHz), IF = 190MHz, unless otherwise noted. Test circuit shown in Figure 1.  
Conversion Gain and IIP3 vs  
RF Frequency  
SSB Noise Figure vs RF Blocker  
Level  
SSB NF vs RF Frequency  
30  
28  
26  
24  
22  
20  
18  
16  
14  
12  
10  
8
16  
15  
14  
13  
12  
16  
15  
14  
13  
12  
11  
10  
9
24  
22  
20  
18  
P
LO  
P
LO  
P
LO  
P
LO  
= –3dBm  
= 0dBm  
= 3dBm  
= 6dBm  
–40°C  
25°C  
85°C  
IIP3  
105°C  
–40°C  
25°C  
85°C  
RF = 1400MHz  
BLOCKER = 1500MHz  
105°C 11  
16  
14  
12  
10  
8
10  
9
G
C
8
8
7
7
6
6
1100 1200 1300 1400 1500 1600 1700  
RF FREQUENCY (MHz)  
1100 1200 1300  
1500 1600 1700  
–20 –15  
–10  
–5  
0
5
10  
1400  
RF FREQUENCY (MHz)  
RF BLOCKER LEVEL (dBm)  
5590 G28  
5590 G29  
5590 G30  
1200MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
1400MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
1600MHz Conversion Gain, IIP3  
and NF vs LO Input Power  
30  
24  
30  
24  
30  
24  
26  
22  
18  
14  
10  
6
20  
16  
12  
8
26  
22  
18  
14  
10  
6
20  
16  
12  
8
26  
22  
18  
14  
10  
6
20  
16  
12  
8
IIP3  
IIP3  
IIP3  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
NF  
NF  
NF  
G
C
G
C
4
4
4
G
C
0
0
0
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
–6  
–4  
–2  
0
2
4
6
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5590 G31  
5590 G32  
5590 G33  
Conversion Gain, IIP3 and NF vs  
Supply Voltage (Single Supply)  
Conversion Gain, IIP3 and NF vs  
Supply Voltage (Dual Supply)  
Conversion Gain, IIP3 and  
RF Input P1dB vs Temperature  
30  
24  
30  
24  
30  
26  
22  
18  
14  
10  
6
20  
16  
12  
8
26  
22  
20  
16  
26  
22  
18  
14  
10  
6
IIP3  
IIP3  
IIP3  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
V
V
= 3.3V  
CCIF  
CCIF  
= 5V  
18  
14  
10  
6
12  
8
NF  
NF  
P1dB  
50  
G
C
G
C
4
4
G
C
0
3.6  
0
5.5  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3
3.5  
V
4
4.5  
SUPPLY VOLTAGE (V)  
CCIF  
5
–40  
–10  
20  
80  
110  
V
, V  
SUPPLY VOLTAGE (V)  
CASE TEMPERATURE (°C)  
CC CCIF  
5590 G34  
5590 G35  
5590 G36  
5590p  
8
LTC5590  
Typical Dc perForMance characTerisTics ENA = ENB = High, test circuit shown in Figure 1.  
ISEL = Low  
VCC Supply Current vs Supply  
Voltage (Mixer and LO Amplifier)  
VCCIF Supply Current vs  
Supply Voltage (IF Amplifier)  
Total Supply Current vs  
Temperature (VCC + VCCIF  
)
196  
260  
240  
220  
480  
460  
440  
420  
400  
380  
360  
340  
320  
300  
280  
V
= V  
CC  
V
= 3.3V  
CCIF  
CC  
105°C  
85°C  
194  
192  
190  
188  
186  
184  
182  
180  
105°C  
25°C  
V
= 3.3V, V  
= 5V  
CCIF  
CC  
(DUAL SUPPLY)  
85°C  
200  
180  
160  
140  
120  
25°C  
V
= V  
= 3.3V  
CCIF  
CC  
(SINGLE SUPPLY)  
–40°C  
–40°C  
3.3 3.6  
3.9 4.2 4.5 4.8 5.1 5.4  
SUPPLY VOLTAGE (V)  
–40  
–10  
20  
50  
80  
110  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
V
SUPPLY VOLTAGE (V)  
V
CCIF  
CASE TEMPERATURE (°C)  
CC  
5590 G37  
5590 G38  
5590 G39  
ISEL = High  
CC Supply Current vs Supply  
Voltage (Mixer and LO Amplifier)  
V
VCCIF Supply Current vs Supply  
Voltage (IF Amplifier)  
Total Supply Current vs  
Temperature (VCC + VCCIF  
)
130  
128  
126  
124  
122  
120  
118  
116  
170  
150  
130  
300  
V
= V  
CC  
V
= 3.3V  
CCIF  
CC  
280  
260  
240  
220  
200  
180  
105°C  
105°C  
V
= 3.3V, V  
= 5V  
CCIF  
CC  
(DUAL SUPPLY)  
85°C  
85°C  
25°C  
V
= V  
= 3.3V  
CCIF  
CC  
25°C  
110  
90  
(SINGLE SUPPLY)  
–40°C  
–40°C  
70  
3
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4  
SUPPLY VOLTAGE (V)  
–40  
–10  
20  
50  
80  
110  
V
SUPPLY VOLTAGE (V)  
V
CASE TEMPERATURE (°C)  
CC  
CCIF  
5590 G40  
5590 G41  
5590 G42  
5590p  
9
LTC5590  
pin FuncTions  
RFA, RFB (Pins 1, 6): Single-Ended RF Inputs for Chan-  
nels A and B. These pins are internally connected to the  
primary sides of the RF input transformers, which have  
low DC resistance to ground. Series DC-blocking capaci-  
tors should be used to avoid damage to the integrated  
transformerwhenDCvoltageispresentattheRFinputs.  
The RF inputs are impedance matched when the LO input  
is driven with a 0 6dBm source between 700MHz and  
1.5GHz and the channels are enabled.  
IFBB, IFBA (Pins 11, 20): Bias Adjust Pins for the IF  
Amplifiers. These pins allow independent adjustment  
of the internal IF buffer currents for channels B and A,  
respectively. The typical DC voltage on these pins is 2.2V.  
If not used, these pins must be DC isolated from ground  
and V .  
CC  
V
and V  
(Pins 12, 19): Power Supply Pins for the  
CCA  
CCB  
LO Buffers and Bias Circuits. These pins must be con-  
nected to a regulated 3.3V supply with bypass capacitors  
located close to the pins. Typical current consumption is  
94mA per pin.  
CTA, CTB (Pins 2, 5): RF Transformer Secondary Center-  
Tap on Channels A and B. These pins may require bypass  
capacitors to ground to optimize IIP3 performance. Each  
pin has an internally generated bias voltage of 1.2V and  
ENB, ENA (Pins 14, 17): Enable Pins. These pins allow  
Channels B and A, respectively, to be independently en-  
abled. An applied voltage of greater than 2.5V activates  
the associated channel while a voltage of less than 0.3V  
disables the channel. Typical input current is less than  
10μA. These pins must not be allowed to float.  
must be DC-isolated from ground and V .  
CC  
GND (Pins 3, 4, 7, 13, 15, 24, Exposed Pad Pin 25):  
Ground. These pins must be soldered to the RF ground  
plane on the circuit board. The exposed pad metal of the  
package provides both electrical contact to ground and  
good thermal contact to the printed circuit board.  
LO (Pin 16): Single-Ended Local Oscillator Input. This  
pin is internally connected to the primary side of the LO  
input transformer and has a low DC resistance to ground.  
Series DC-blocking capacitors should be used to avoid  
damage to the integrated transformer when DC voltage  
present at LO input. The LO input is internally matched  
to 50Ω for all states of ENA and ENB.  
IFGNDB, IFGNDA(Pins8, 23):DCGroundReturnsforthe  
IF Amplifiers. These pins must be connected to ground to  
complete the DC current paths for the IF amplifiers. Chip  
inductors may be used to tune LO-IF and RF-IF leakage.  
Typical DC current is 95mA for each pin.  
+
+
IFB ,IFB ,IFA ,IFA (Pins9,10,21,22):Open-Collector  
DifferentialOutputsfortheIFAmplifiersofChannelsBand  
A. These pins must be connected to a DC supply through  
impedancematchinginductors,ortransformercenter-taps.  
Typical DC current consumption is 48mA into each pin.  
I
(Pin 18): Low Current Select Pin. When this pin is  
SEL  
pulled low (<0.3V), both mixer channels are biased at  
the normal current level for best RF performance. When  
greater than 2.5V is applied, both channels operate at  
reduced current, which provides reasonable performance  
at lower power consumption.  
5590p  
10  
LTC5590  
block DiagraM  
24  
23  
IFGNDA  
22  
IFA  
21  
IFA  
20  
IFBA  
19  
V
+
GND  
CCA  
I
SEL  
18  
17  
IF  
BIAS  
AMP  
ENA  
LO  
RFA  
1
2
LO  
PASS  
MIX  
CTA  
AMP  
16  
GND  
3
4
5
GND  
CTB  
GND 15  
LO  
PASS  
MIX  
AMP  
RFB  
6
ENB  
14  
IF  
BIAS  
IFBB  
AMP  
GND 13  
+
IFGNDB  
IFB  
IFB  
10  
V
CCB  
GND  
7
8
9
11  
12  
5590 BD  
5590p  
11  
LTC5590  
TesT circuiT  
T1A  
4:1  
IFA  
50Ω  
C7A  
L2A  
RF  
0.015”  
0.062”  
0.015”  
L1A  
GND DC1710A  
BOARD  
BIAS  
V
CCIF  
V
3.3V  
180mA  
CC  
3.3V TO 5V  
200mA  
STACK-UP  
(NELCO N4000-13)  
C6  
C5A  
GND  
C3A  
ISEL  
C4  
24  
GND IFGNDA  
RFA  
23  
22  
21  
20  
19  
+
C1A  
IFA  
IFA  
IFBA  
V
CCA  
RFA  
50Ω  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
I
SEL  
(0V/3.3V)  
ENA  
(0V/3.3V)  
CTA  
GND  
GND  
CTB  
RFB  
ENA  
LO  
C2  
LO  
50Ω  
LTC5590  
GND  
ENB  
GND  
ENB  
(0V/3.3V)  
C1B  
RFB  
50Ω  
+
IFB  
9
IFB  
10  
IFBB  
11  
V
CCB  
12  
GND IFGNDA  
7
8
5590 TC01  
C3B  
C5B  
L1B  
L2B  
C7B  
IFB  
50Ω  
4:1  
T1B  
REF DES  
C1A, C1B  
C2  
VALUE  
100pF  
10pF  
SIZE  
0402  
0402  
0402  
COMMENTS  
AVX  
L1, L2 vs IF FREQUENCIES  
IF (MHz)  
140  
L1, L2 (nH)  
AVX  
270  
150  
100  
56  
C3A, C3B  
C5A, C5B  
22pF  
AVX  
190  
240  
C4, C6  
C7A, C7B  
L1, L2  
1µF  
0603  
0402  
0603  
AVX  
AVX  
300  
1000pF  
150nH  
380  
33  
Coilcraft  
Mini-Circuits  
450  
22  
T1A, T2B  
TC1-1W-7ALN+  
Figure 1. Standard Downmixer Test Circuit Schematic (190MHz)  
5590p  
12  
LTC5590  
applicaTions inForMaTion  
Introduction  
The secondary winding of the RF transformer is internally  
connectedtothechannelApassivemixercore.Thecenter-  
tap of the transformer secondary is connected to Pin 2  
(CTA) to allow the connection of bypass capacitor, C8A.  
The value of C8A is LO frequency-dependent and is not  
required for most applications, though it can improve IIP3  
in some cases. When used, it should be located within  
2mm of Pin 2 for proper high frequency decoupling. The  
nominal DC voltage on the CTA pin is 1.2V.  
The LTC5590 consists of two identical mixer channels  
driven by a common LO input signal. Each high linearity  
mixer consists of a passive double-balanced mixer core,  
IF buffer amplifier, LO buffer amplifier and bias/enable  
circuits.SeethePinFunctionsandBlockDiagramsections  
for a description of each pin. Each of the mixers can be  
shutdownindependentlytoreducepowerconsumptionand  
low current mode can be selected that allows a trade-off  
betweenperformanceandpowerconsumption.TheRFand  
LO inputs are single-ended and are internally matched to  
50Ω. Low side or high side LO injection can be used. The  
IF outputs are differential. The evaluation circuit, shown in  
Figure 1, utilizes bandpass IF output matching and an IF  
transformer to realize a 50Ω single-ended IF output. The  
evaluation board layout is shown in Figure 2.  
For the RF inputs to be properly matched, the appropriate  
LO signal must be applied to the LO input. A broadband  
input match is realized with C1A = 100pF. The measured  
input return loss is shown in Figure 4 for LO frequencies  
of 0.7GHz, 1.09GHz and 1.5GHz. These LO frequencies  
correspond to lower, middle and upper values in the LO  
range. As shown in Figure 4, the RF input impedance is  
dependent on LO frequency, although a single value of  
C1A is adequate to cover the 700MHz to 1.5GHz RF band.  
LTC5590  
TO CHANNEL A  
MIXER  
RFA C1A  
RFA  
1
CTA  
2
C8A  
5590 F03  
Figure 3. Channel A RF Input Schematic  
5590 F02  
0
LO = 700MHz  
LO = 1090MHz  
LO = 1500MHz  
–5  
Figure 2. Evaluation Board Layout  
–10  
–15  
–20  
RF Inputs  
The RF inputs of channels A and B are identical. The RF  
input of channel A, shown in Figure 3, is connected to the  
primarywindingofanintegratedtransformer.A50Ωmatch  
is realized when a series external capacitor, C1A, is con-  
nected to the RF input. C1A is also needed for DC blocking  
if the source has DC voltage present, since the primary  
side of the RF transformer is internally DC-grounded. The  
DC resistance of the primary is approximately 4.5Ω.  
C1 = 100pF  
–25  
600 700 800 900 1000 1100 1200 1300 1400  
FREQUENCY (MHz)  
5590 F04  
Figure 4. RF Port Return Loss  
5590p  
13  
LTC5590  
applicaTions inForMaTion  
The RF input impedance and input reflection coefficient,  
versus RF frequency, are listed in Table 1. The reference  
plane for this data is Pin 1 of the IC, with no external  
matching, and the LO is driven at 1.09GHz.  
The secondary of the transformer drives a pair of high  
speed limiting differential amplifiers for channels A and B.  
TheLTC5590’sLOamplifiersareoptimizedforthe700MHz  
to 1.5GHz LO frequency range; however, LO frequencies  
outside this frequency range may be used with degraded  
performance.  
Table 1. RF Input Impedance and S11  
(at Pin 1, No External Matching, fLO = 1.09GHz)  
FREQUENCY  
(GHz)  
RF INPUT  
S11  
The LO port is always 50Ω matched when V is applied,  
CC  
IMPEDANCE  
MAG  
0.33  
0.26  
0.18  
0.10  
0.06  
0.22  
0.29  
0.29  
0.29  
0.28  
0.26  
0.23  
ANGLE  
107  
even when one or both of the channels is disabled. This  
helps to reduce frequency pulling of the LO source when  
the mixer is switched between different operating states.  
Figure 6 illustrates the LO port return loss for the different  
operating modes.  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
34.2 + j24.5  
41.3 + j22.4  
48.5 + j18.1  
54.3 + j10.1  
54.2 – j4.6  
38.4 – j16  
29.3 – j9.4  
27.7 – j4.5  
27.4 – j1.6  
27.8 – j0.1  
29.4 + j0.2  
31.2 –j0.5  
97  
84  
61  
–45  
0
BOTH CHANNELS ON  
ONE CHANNEL ON  
BOTH CHANNELS OFF  
–116  
–149  
–165  
–175  
–180  
179  
–5  
–10  
–15  
–20  
–25  
–178  
C2 = 10pF  
I
SEL  
18  
700 800 900 1000 1100 1200 1300 1400 1500  
FREQUENCY (MHz)  
BIAS  
LTC5590  
ENA  
LO  
5590 F06  
17  
16  
Figure 6. LO Input Return Loss  
TO  
MIXER A  
C2  
LO  
The nominal LO input level is 0dBm, though the limiting  
amplifierswilldeliverexcellentperformanceovera 6dBm  
input power range. Table 2 lists the LO input impedance  
and input reflection coefficient versus frequency.  
TO  
MIXER B  
ENB  
14  
BIAS  
Table 2. LO Input Impedance vs Frequency  
(at Pin 16, No External Matching, ENA = ENB = High)  
5590 F05  
S11  
FREQUENCY  
(GHz)  
INPUT  
Figure 5. LO Input Schematic  
IMPEDANCE  
MAG  
0.46  
0.37  
0.26  
0.15  
0.07  
0.12  
0.19  
0.26  
0.33  
ANGLE  
97  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
29.7 + j34.7  
39.9 + j34.1  
48.7 + j26.6  
50.8 + j15.1  
46.5 + j6.2  
39.9 + j2.5  
34.0 + j1.4  
29.2 + j2.1  
25.6 + j3.8  
LO Input  
86  
The LO input, shown in Figure 5, is connected to the  
primary winding of an integrated transformer. A 50Ω  
impedance match is realized at the LO port by adding  
an external series capacitor, C2. This capacitor is also  
needed for DC blocking if the LO source has DC voltage  
present, since the primary side of the LO transformer is  
DC-grounded internally. The DC resistance of the primary  
is approximately 4.5Ω.  
78  
78  
116  
165  
174  
173  
168  
5590p  
14  
LTC5590  
applicaTions inForMaTion  
IF Outputs  
For optimum single-ended performance, the differential  
IF output must be combined through an external IF  
transformer or a discrete IF balun circuit. The evaluation  
board (see Figures 1 and 2) uses a 4:1 IF transformer for  
impedancetransformationanddifferentialtosingle-ended  
conversion.ItisalsopossibletoeliminatetheIFtransformer  
and drive differential filters or amplifiers directly.  
The IF amplifiers in channels A and B are identical. The IF  
amplifier for channel A, shown in Figure 7, has differen-  
+
tial open collector outputs (IFA and IFA ), a DC ground  
return pin (IFGNDA), and a pin for adjusting the internal  
bias (IFBA). The IF outputs must be biased at the sup-  
ply voltage (V  
), which is applied through matching  
CCIFA  
inductors L1A and L2A. Alternatively, the IF outputs can  
be biased through the center tap of a transformer (T1A).  
The common node of L1A and L2A can be connected to  
the center tap of the transformer. Each IF output pin draws  
approximately 48mA of DC supply current (96mA total).  
An external load resistor, R2A, can be used to improve  
impedance matching if desired.  
AtIFfrequencies, theIFoutputimpedancecanbemodeled  
as 300Ω in parallel with 2.3pF. The equivalent small-signal  
model,includingbondwireinductance,isshowninFigure8.  
Frequency-dependent differential IF output impedance is  
listed in Table 3. This data is referenced to the package  
pins (with no external components) and includes the ef-  
fects of IC and package parasitics.  
IFGNDA (Pin 23) must be grounded or the amplifier will  
not draw DC current. Inductor L3A may improve LO-IF  
and RF-IF leakage performance in some applications, but  
is otherwise not necessary. Inductors should have small  
resistance for DC. High DC resistance in L3A will reduce  
the IF amplifier supply current, which will degrade RF  
performance.  
22  
21  
+
IFA  
IFA  
LTC5590  
0.9nH  
0.9nH  
R
C
IF  
IF  
5590 F08  
T1A  
IFA  
4:1  
Figure 8. IF Output Small-Signal Model  
C7A  
L1A  
L2A  
R1A  
(OPTION TO  
REDUCE  
V
CCIFA  
Bandpass IF Matching  
L3A (OR SHORT)  
100mA  
C5A  
ThebandpassIFmatchingconfiguration,showninFigures  
1 and 7, is best suited for IF frequencies in the 90MHz to  
500MHz range. Resistor R2A may be used to reduce the IF  
outputresistanceforgreaterbandwidthandinductorsL1A  
and L2A resonate with the internal IF output capacitance  
at the desired IF frequency. The value of L1A, L2A can be  
estimated as follows:  
DC POWER)  
R2A  
23  
22  
IFA  
21  
IFA  
20  
IGNDA  
IFBA  
+
V
CCA  
IF  
AMP  
4mA  
1
LTC5590  
L1A =L2A =  
2πf 2 2 CIF  
BIAS  
(
)
IF  
5590 F07  
where C is the internal IF capacitance (listed in Table 3).  
Figure 7. IF Amplifier Schematic with Bandpass Match  
IF  
5590p  
15  
LTC5590  
applicaTions inForMaTion  
Values of L1A and L2A are tabulated in Figure 1 for vari-  
ous IF frequencies. The measured IF output return loss  
for bandpass IF matching is plotted in Figure 9.  
T1A  
IFA  
50Ω  
V
CCIFA  
4:1  
3.1 TO 5.3V  
C7A  
C5A  
L1A  
IFA  
L2A  
Table 3. IF Output Impedance vs Frequency  
DIFFERENTIAL OUTPUT  
R2A  
C9A  
||  
X (C ))  
IF IF  
FREQUENCY (MHz)  
IMPEDANCE (R  
IF  
90  
403 || – j610 (2.9pF)  
384 || – j474 (2.4pF)  
379 || – j381 (2.2pF)  
380 || – j316 (2.1pF)  
377 || – j253 (2.1pF)  
376 || – j210 (2.0pF)  
360 || – j177 (2.0pF)  
22  
21  
+
140  
190  
240  
300  
380  
450  
IFA  
LTC5590  
5590 F10  
Figure 10. IF Output with Lowpass Matching  
0
–5  
–10  
–15  
–20  
–25  
–30  
180nH  
0
68nH  
–5  
82nH + 1k  
–10  
270nH  
100nH  
–15  
–20  
–25  
150nH  
100nH  
56nH  
50  
100  
150  
FREQUENCY (MHz)  
200  
250  
22nH  
33nH  
5590 F11  
50 100 150 200 250 300 350 400 450 500  
FREQUENCY (MHz)  
Figure 11. IF Output Return Loss with Lowpass Matching  
5590 F09  
has been laid out to accommodate this matching topology  
with only minor modifications.  
Figure 9. IF Output Return Loss with Bandpass Matching  
Lowpass IF Matching  
IF Amplifier Bias  
For IF frequencies below 90MHz, the inductance values  
become unreasonably high and the lowpass topology  
shown in Figure 9 is preferred. This topology also can  
The IF amplifier delivers excellent performance with V  
CCIF  
= 3.3V, which allows a single supply to be used for V and  
CC  
V
. At V  
= 3.3V, the RF input P1dB of the mixer is  
CCIF  
CCIF  
limited by the output voltage swing. For higher P1dB, in  
this case, resistor R2A (Figure 7) can be used to reduce  
the output impedance and thus the voltage swing, thus  
improving P1dB. The trade-off for improved P1dB will be  
lower conversion gain.  
provide improved RF to IF and LO to IF isolation. V  
CCIFA  
is supplied through the center tap of the 4:1 transformer.  
A lowpass impedance transformation is realized by shunt  
elements R2A and C9A (in parallel with the internal RIF  
and CIF), and series inductors L1A and L2A. Resistor  
R2A is used to reduce the IF output resistance for greater  
bandwidth, or it can be omitted for the highest conver-  
sion gain. The final impedance transformation to 50Ω is  
realized by transformer T1A. The measured return loss  
is shown in Figure 11 for different values of inductance  
(C9A = OpF). The case with 82nH inductors and R2A = 1k  
is also shown. The LTC5590 demo board (see Figure 2)  
With V  
increased to 5V the P1dB increases by over  
CCIF  
3dB, at the expense of higher power consumption. Mixer  
P1dB performance at 900MHz is tabulated in Table 4 for  
V
values of 3.3V and 5V. For the highest conversion  
CCIF  
gain,high-Qwire-woundchipinductorsarerecommended  
for L1A and L2A. Low cost multilayer chip inductors may  
be substituted, with a slight reduction in conversion gain.  
5590p  
16  
LTC5590  
applicaTions inForMaTion  
Table 4. Performance Comparison with VCCIF = 3.3V and 5V  
(RF = 900MHz, High Side LO, IF = 190MHz)  
When I  
is set low (<0.3V), both channels operate at  
SEL  
nominal DC current. When I is set high (>2.5V), the DC  
SEL  
current in both channels is reduced, thus reducing power  
consumption. The performance in low power mode and  
normal power mode are compared in Table 6.  
V
R2A  
(Ω)  
I
G
C
P1dB  
IIP3  
NF  
CCIF  
CCIF  
(V)  
(mA)  
191  
191  
200  
(dB)  
8.7  
7.5  
8.7  
(dBm)  
(dBm)  
(dB)  
3.3  
Open  
1k  
10.7  
11.4  
14.1  
26.0  
26.0  
25.5  
9.7  
9.75  
9.8  
5
Open  
LTC5590  
V
CCA  
19  
The IFBA pin (Pin 20) is available for reducing the DC  
current consumption of the IF amplifier, at the expense of  
IIP3. The nominal DC voltage at Pin 20 is 2.1V, and this pin  
should be left open-circuited for optimum performance.  
The internal bias circuit produces a 4mA reference for the  
IF amplifier, which causes the amplifier to draw approxi-  
mately 100mA. If resistor R1A is connected to Pin 20 as  
shown in Figure 7, a portion of the reference current can  
be shunted to ground, resulting in reduced IF amplifier  
current. For example, R1A = 1k will shunt away 1.5mA  
from Pin 20 and the IF amplifier current will be reduced  
by 38% to approximately 62mA. Table 5 summarizes RF  
performance versus IF amplifier current.  
I
SEL  
500Ω  
18  
BIAS A  
V
CCB  
BIAS B  
5590 F13  
Figure 12. ISEL Interface Schematic  
Table 6. Performance Comparison Between Different Power Modes  
RF = 900MHz, High Side LO, IF = 190MHz, V = V  
= 3.3V  
CCIF  
CC  
I
G
C
IIP3  
(dBm)  
P1dB  
(dBm)  
NF  
(dB)  
CCIF  
I
(mA)  
(dB)  
SEL  
Low  
High  
376  
8.7  
26.0  
21.5  
10.7  
10.4  
9.7  
9.9  
Table 5. Mixer Performance with Reduced IF Amplifier Current  
239  
7.7  
RF = 900MHz, High Side LO, IF = 190MHz, V = V  
= 3.3V  
CCIF  
CC  
I
G
IIP3  
P1dB  
(dB)  
NF  
Enable Interface  
CCIF  
C
R1  
(mA)  
95.5  
86.5  
78.3  
68.6  
(dB)  
8.7  
8.7  
8.6  
8.5  
(dBm)  
(dB)  
Figure 13 shows a simplified schematic of the ENA pin  
interface (ENB is identical). To enable channel A, the ENA  
voltage must be greater than 2.5V. If the enable function  
is not required, the enable pin can be connected directly  
Open  
4.7kΩ  
2.2kΩ  
1kΩ  
26.0  
25.6  
25.0  
24.1  
10.7  
10.6  
10.6  
10.5  
9.7  
9.7  
9.6  
9.6  
to V . The voltage at the enable pin should never exceed  
CC  
the power supply voltage (V ) by more than 0.3V. If this  
RF = 1400MHz, Low Side LO, IF = 190MHz, V = V  
= 3.3V  
CCIF  
CC  
CC  
I
G
IIP3  
P1dB  
NF  
CCIF  
C
R1  
(mA)  
95.5  
86.4  
78.2  
68.5  
(dB)  
8.4  
8.5  
8.5  
8.4  
(dBm)  
(dBm)  
(dB)  
LTC5590  
V
CCA  
Open  
4.7kΩ  
2.2kΩ  
1kΩ  
27.3  
26.8  
26.2  
25.1  
11  
9.7  
9.6  
9.6  
9.6  
19  
10.9  
10.9  
10.8  
ESD  
CLAMP  
ENA  
17  
500Ω  
Low Current Mode  
Both mixer channels can be set to low current mode us-  
ing the I pin. This allows flexibility to select a reduced  
SEL  
5590 F13  
current mode of operation when lower RF performance is  
acceptable, reducing power consumption by 36%. Figure  
Figure 13. ISEL Interface Schematic  
12 shows a simplified schematic of the I pin interface.  
SEL  
5590p  
17  
LTC5590  
applicaTions inForMaTion  
shouldoccur,thesupplycurrentcouldbesourcedthrough  
the ESD diode, potentially damaging the IC.  
age transient that exceeds the maximum rating. A supply  
voltage ramp time of greater than 1ms is recommended.  
The Enable pins must be pulled high or low. If left float-  
ing, the on/off state of the IC will be indeterminate. If a  
three-state condition can exist at the enable pins, then a  
pull-up or pull-down resistor must be used.  
Spurious Output Levels  
Mixer spurious output levels versus harmonics of the RF  
and LO are tabulated in Tables 7 and 8 for frequencies up  
to 10GHz. The spur levels were measured on a standard  
evalution board using the test circuit shown in Figure 1.  
The spur frequencies can be calculated using the follow-  
ing equation:  
Supply Voltage Ramping  
Fast ramping of the supply voltage can cause a current  
glitchintheinternalESDprotectioncircuits.Dependingon  
the supply inductance, this could result in a supply volt-  
f
= (M • f ) – (N • f )  
RF LO  
SPUR  
Table 7. IF Output Spur Levels (dBc), High Side LO  
(RF = 900MHz, P = –3dBm, P = 0dBm, V = V  
= 3.3V, T = 25°C)  
RF  
LO  
CC  
CCIF  
C
N
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
9
-
–40.0  
0
–63.0  
–42  
–49.0  
–78.6  
–54.8  
–47.4  
–73.9  
–81.5  
–55.7  
–72.2  
–87.7  
–66.5  
–64.0  
–87.8  
–81.37  
–88.5  
82.3  
*
*
*
*
*
*
–73.07  
–70.3  
–74.33  
–81.6*  
–72.53  
–81.2*  
–31.8  
–68.6  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–78.0  
M
*
*
*
*
*
*
*
*
10  
*Less than –100dBc  
Table 8. IF Output Spur Levels (dBc), Low Side LO  
(RF = 1400MHz, P = –3dBm, P = 0dBm, V = V  
= 3.3V, T = 25°C)  
RF  
LO  
CC  
CCIF  
C
N
0
1
2
3
4
5
6
7
8
9
10  
0
1
2
3
4
5
6
7
8
-
–46.2  
0
–74.4  
–88.74  
*
*
*
*
*
–42.2  
–44.5  
–69.3  
*
*
*
*
*
*
–55.9  
–52.2  
–71.7  
–76.8  
*
*
*
*
–93.69  
*
–56.9  
–75.0  
*
–71.3  
–67.5  
–86.4  
*
*
*
*
*
*
–67.39  
–78.3  
–83.2  
–85.33  
–73.42  
–69.93  
*
–93.16  
–40.8  
–77.5  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
–89.21  
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
M
9
10  
–95.59  
–94.52  
*Less than –100dBc  
5590p  
18  
LTC5590  
package DescripTion  
UH Package  
24-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1747 Rev A)  
0.75 ±0.05  
5.40 ±0.05  
3.90 ±0.05  
3.20 ± 0.05  
3.25 REF  
3.20 ± 0.05  
PACKAGE OUTLINE  
0.30 ± 0.05  
0.65 BSC  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 × 45°  
CHAMFER  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
R = 0.150  
R = 0.05  
TYP  
0.75 ± 0.05  
5.00 ± 0.10  
TYP  
23 24  
0.00 – 0.05  
0.55 ± 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.20 ± 0.10  
5.00 ± 0.10  
3.25 REF  
3.20 ± 0.10  
(UH24) QFN 0708 REV A  
0.200 REF  
0.30 ± 0.05  
0.65 BSC  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5590p  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC5590  
Typical applicaTion  
Downconverting Mixer with Lowpass IF Matching  
Conversion Gain, NF and IIP3  
vs RF Frequency  
T1A  
4:1  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
IFA  
50Ω  
V
CCIF  
IIP3  
T
= 25°C  
C
V
3.3V  
188mA  
CC  
3.3V TO 5V  
191mA  
IF = 140MHz  
1µF  
22pF  
82nH  
82nH  
20  
1k  
22pF  
1µF  
TO  
CHANNEL B  
(96mA)  
NF  
TO  
24  
GND IFGNDA  
RFA  
23  
22  
21  
19  
CHANNEL B  
(94mA)  
+
100pF  
IFA  
IFA IFBA V  
G
C
CCA  
I
RFA  
50Ω  
8
1
2
3
4
I
SEL  
18  
17  
16  
15  
SEL  
7
700  
800  
900  
1000  
1100  
1200  
ENA  
CTA  
ENA  
LO  
RF FREQUENCY (MHz)  
LTC5590  
CHANNEL A  
5590 TA02b  
10pF  
LO  
GND  
GND  
50Ω  
GND  
5590 TA02  
CHANNEL B NOT SHOWN  
relaTeD parTs  
PART  
NUMBER  
Infrastructure  
LT5527  
DESCRIPTION  
COMMENTS  
2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply  
2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply  
40.25dBm OIP3 to 300MHz, Programmable Fast Recovery Output Clamping  
35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB  
8dB Gain, >25dBm IIP3, 10dB NF, 3.3V/200mA Supply  
48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps  
27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Transformer  
27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports  
400MHz to 3.7GHz, 5V Downconverting Mixer  
400MHz to 3.8GHz, 3.3V Downconverting Mixer  
2GHz 16-Bit ADC Buffer  
31dB Linear Analog VGA  
600MHz to 4GHz Downconverting Mixer Family  
Ultralow Distort IF Digital VGA  
LT5557  
LTC6416  
LTC6412  
LTC554X  
LT5554  
LT5578  
LT5579  
400MHz to 2.7GHz Upconverting Mixer  
1.5GHz to 3.8GHz Upconverting Mixer  
RF Power Detectors  
LTC5581  
LTC5582  
LTC5583  
6GHz Low Power RMS Detector  
10GHz RMS Power Detector  
40dB Dynamic Range, 1dB Accuracy Overtemperature, 1.5mA Supply Current  
40MHz to 10GHz, Up to 57dB Dynamic Range, 0.5dB Accuracy Overtemperature  
Dual 6GHz RMS Power Detector Measures VSWR 40MHz to 6GHz, Up to 60dB Dynamic Range, >40dB Channel-to-Channel Isolation,  
Difference Output for vs WR Measurement  
ADCs  
LTC2285  
LTC2185  
14-Bit, 125Msps Dual ADC  
16-Bit, 125Msps Dual ADC Ultralow Power  
72.4dB SNR, >88dB SFDR, 790mW Power Consumption  
74.8dB SNR, 185mW/Channel Power Consumption  
65.4dB SNR, 78dB SFDR, 740mW Power Consumption  
LTC2242-12 12-Bit, 250Msps ADC  
5590p  
LT 0311 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2011  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5557EUF-PBF

400MHz to 3.8GHz 3.3V High Signal Level Downconverting Mixer
Linear

LT5558

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF

600MHz to 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5558EUF#PBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TR

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5558EUF#TRBPF

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, LEAD FREE, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit
Linear

LT5558EUF#TRPBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560

0.01MHz to 4GHz Low Power Active Mixer
Linear

LT5560EDD

0.01MHz to 4GHz Low Power Active Mixer
Linear

LT5560EDD#PBF

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560EDD#TR

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560EDD#TRPBF

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear