LT5560 [Linear]

0.01MHz to 4GHz Low Power Active Mixer; 0.01MHz至4GHz低功率有源混频器
LT5560
型号: LT5560
厂家: Linear    Linear
描述:

0.01MHz to 4GHz Low Power Active Mixer
0.01MHz至4GHz低功率有源混频器

文件: 总28页 (文件大小:446K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5560  
0.01MHz to 4GHz  
Low Power Active Mixer  
U
DESCRIPTIO  
FEATURES  
The LT®5560 is a low power, high performance broad-  
band active mixer. This double-balanced mixer can be  
driven by a single-ended LO source and requires only  
–2dBm of LO power. The balanced design results in  
low LO leakage to the output, while the integrated input  
amplifier provides excellent LO to IN isolation. The sig-  
nal ports can be impedance matched to a broad range  
of frequencies, which allows the LT5560 to be used as  
an up- or down-conversion mixer in a wide variety of  
applications.  
Up or Downconverting Applications  
Noise Figure: 9.3dB Typical at 900MHz Output  
Conversion Gain: 2.4dB Typical  
IIP3: 9dBm Typical at I = 10mA  
CC  
Adjustable Supply Current: 4mA to 13.4mA  
Low LO Drive Level: –2dBm  
Single-Ended or Differential LO  
High Port-to-Port Isolation  
Enable Control with Low Off-State Leakage Current  
Single 2.7V to 5V Supply  
Small 3mm × 3mm DFN Package  
U
TheLT5560ischaracterizedwithasupplycurrentof10mA;  
however, the DC current is adjustable, which allows the  
performance to be optimized for each application with a  
single resistor. For example, when biased at its maximum  
supply current (13.4mA), the typical upconverting mixer  
IIP3 is +10.8dBm for a 900MHz output.  
APPLICATIO S  
Portable Wireless  
CATV/DBS Receivers  
WiMAX Radios  
PHS Basestations  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
RF Instrumentation  
Microwave Data Links  
VHF/UHF 2-Way Radios  
U
TYPICAL APPLICATIO  
Low Cost 900MHz Downconverting Mixer  
2.7V TO 5.3V  
IF  
and IM3 Levels  
LO  
IN  
OUT  
1µF  
760MHz  
vs RF Input Power  
10  
0
IF  
1nF  
OUT  
100pF  
15nH  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
100pF  
1
8
7
6
+
LO  
LO  
4.7pF  
4.7pF  
270nH  
4.7pF  
270nH  
33pF  
IM3  
2
3
V
EN  
EN  
T
A
= 25°C  
CC  
+
IF  
OUT  
U1  
LT5560  
V
= 3V  
140MHz  
CC  
I
f
f
= 13.3mA  
= 760MHz  
= 140MHz  
CC  
LO  
+
IN  
OUT  
RF  
IN  
900MHz  
6.8nH  
IF  
100pF  
270nH  
4
5
–20 –18 –16 –14 –12 –10 –8 –6 –4 –2  
RF INPUT POWER (dBm)  
0
IN  
OUT  
PGND  
9
5560 TA02  
4.7pF  
15nH  
6.8nH  
5560 TA01  
5560f  
1
LT5560  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................5.5V  
Enable Voltage ................................ –0.3V to V + 0.3V  
+
CC  
LO  
1
2
3
4
8
7
6
5
LO  
LO Input Power (Differential).............................+10dBm  
EN  
+
V
CC  
9
+
IN  
OUT  
OUT  
Input Signal Power (Differential)........................+10dBm  
+
IN  
IN , IN DC Currents..............................................10mA  
+
OUT , OUT DC Current.........................................10mA  
.................................................................... 125°C  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX  
T
JMAX  
= 125°C, θ = 43°C/W  
EXPOSED PAD (PIN 9) IS GND  
MUST BE SOLDERED TO PCB  
Operating Temperature Range .................–40°C to 85°C  
Storage Temperature Range...................–65°C to 125°C  
JA  
ORDER PART NUMBER  
DD PART MARKING  
LCBX  
LT5560EDD  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
DC ELECTRICAL CHARACTERISTICS  
V
= 3V, EN = 3V, T = 25°C, unless otherwise noted. Test circuit  
CC  
A
shown in Figure 1. (Note 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
)
CC  
Supply Voltage  
2.7  
3
5.3  
12  
10  
V
mA  
µA  
Supply Current  
V
= 3V, R1 = 3Ω  
10  
0.1  
CC  
Shutdown Current  
EN = 0.3V, V = 3V  
CC  
Enable (EN) Low = Off, High = On  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
Enable Pin Input Current  
2
V
V
0.3  
EN = 3V  
EN = 0.3V  
25  
0.1  
µA  
µA  
Turn On Time  
Turn Off Time  
2
5
µs  
µs  
AC ELECTRICAL CHARACTERISTICS  
(Notes 2 and 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
Signal Input Frequency Range (Note 4)  
LO Input Frequency Range (Note 4)  
Signal Output Frequency Range (Note 4)  
Requires External Matching  
Requires External Matching  
Requires External Matching  
< 4000  
< 4000  
< 4000  
MHz  
MHz  
5560f  
2
LT5560  
AC ELECTRICAL CHARACTERISTICS  
V
= 3V, EN = 3V, T = 25°C, P = –20dBm (–20dBm/tone for 2-tone  
A IN  
CC  
IIP3 tests, Δf = 1MHz), P = –2dBm, unless otherwise noted. Test circuits are shown in Figures 1, 2 and 3. (Notes 2 and 3)  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
15  
MAX  
UNITS  
dB  
Signal Input Return Loss  
LO Input Return Loss  
Signal Output Return Loss  
LO Input Power  
Z = 50Ω, External Match  
Z = 50Ω, External Match  
Z = 50Ω, External Match  
15  
dB  
15  
dB  
–6 to 1  
dBm  
Upconverting Mixer Configuration: V = 3V, EN = 3V, T = 25°C, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), P =  
LO  
CC  
A
IN  
–2dBm, unless otherwise noted. High side LO for 450MHz tests, low side LO for 900MHz and 1900MHz tests. Test circuits are shown in  
Figures 1 and 3. (Notes 2, 3 and 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
OUT  
2.7  
2.4  
1.2  
dB  
dB  
dB  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
OUT  
OUT  
= 1900MHz  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = 40°C to 85°C, f  
= 900MHz  
– 0.015  
dB/°C  
A
OUT  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
9.6  
9.0  
8.0  
dBm  
dBm  
dBm  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
OUT  
OUT  
= 1900MHz  
Input 2nd Order Intercept  
Single Sideband Noise Figure  
IN to LO Isolation (with LO Applied)  
LO to IN Leakage  
f
f
f
= 70MHz, f  
= 450MHz  
46  
47  
30  
dBm  
dBm  
dBm  
IN  
IN  
IN  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
OUT  
OUT  
= 1900MHz  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
8.8  
9.3  
10.3  
dB  
dB  
dB  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
= 1900MHz  
OUT  
OUT  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
69  
64  
64  
dB  
dB  
dB  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
= 1900MHz  
OUT  
OUT  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
–63  
–54  
–36  
dBm  
dBm  
dBm  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
= 1900MHz  
OUT  
OUT  
LO to OUT Leakage  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
–44  
–41  
–36  
dBm  
dBm  
dBm  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
OUT  
OUT  
= 1900MHz  
Input 1dB Compression Point  
f
IN  
f
IN  
f
IN  
= 70MHz, f  
= 450MHz  
0.4  
–2.8  
–0.8  
dBm  
dBm  
dBm  
OUT  
= 140MHz, f  
= 140MHz, f  
= 900MHz  
OUT  
OUT  
= 1900MHz  
Downconverting Mixer Configuration: V = 3V, EN = 3V, T = 25°C, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz),  
CC  
A
IN  
P
LO  
= –2dBm, unless otherwise noted. High side LO for 450MHz tests, low side LO for 900MHz and 1900MHz tests. Test circuits are  
shown in Figures 2 and 3. (Notes 2, 3 and 5)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
2.7  
2.6  
2.3  
dB  
dB  
dB  
OUT  
OUT  
= 140MHz  
= 1900MHz, f  
= 140MHz  
OUT  
Conversion Gain vs Temperature  
Input 3rd Order Intercept  
T = – 40°C to 85°C, f = 900MHz  
0.015  
dB/°C  
A
IN  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
10.1  
9.7  
5.6  
dBm  
dBm  
dBm  
OUT  
OUT  
= 140MHz  
= 1900MHz, f  
= 140MHz  
OUT  
Single Sideband Noise Figure  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
10.5  
10.1  
10.8  
dB  
dB  
dB  
OUT  
OUT  
= 140MHz  
= 1900MHz, f  
= 140MHz  
OUT  
5560f  
3
LT5560  
AC ELECTRICAL CHARACTERISTICS  
low side LO for 900MHz and 1900MHz tests. Test circuits are shown in Figures 2 and 3. (Notes 2, 3 and 5)  
Downconverting Mixer Configuration: V = 3V, EN = 3V, T = 25°C,  
CC  
A
P
IN  
= –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), P = –2dBm, unless otherwise noted. High side LO for 450MHz tests,  
LO  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
IN to LO Isolation (with LO Applied)  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
52  
52  
25  
dB  
dB  
dB  
OUT  
OUT  
= 140MHz  
= 1900MHz, f  
= 140MHz  
OUT  
LO to IN Leakage  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
–52  
–57  
–37  
dBm  
dBm  
dBm  
OUT  
OUT  
= 140MHz  
= 1900MHz, f  
= 140MHz  
OUT  
LO to OUT Leakage  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
–47  
–63  
–24  
dBm  
dBm  
dBm  
OUT  
OUT  
= 140MHz  
= 1900MHz, f  
= 140MHz  
OUT  
2RF – 2LO Output Spurious (Half IF)  
450MHz: f = 485MHz, f  
= 70MHz  
–68  
–69  
–47  
dBc  
dBc  
dBc  
IN  
OUT  
OUT  
Product (f = f + f /2)  
900MHz: f = 830MHz, f  
= 140MHz  
IN  
LO  
OUT  
IN  
1900MHz: f = 1830MHz, f  
= 140MHz  
IN  
OUT  
3RF – 3LO Output Spurious (1/3 IF)  
Product (f = f + f /3)  
450MHz: f = 496.7MHz, f  
= 69.9MHz  
–79  
–76  
–62  
dBc  
dBc  
dBc  
IN  
OUT  
OUT  
900MHz: f = 806.7MHz, f  
= 140.1MHz  
IN  
LO  
OUT  
IN  
1900MHz: f = 1806.7MHz, f  
= 140.1MHz  
OUT  
IN  
Input 1dB Compression Point  
f
IN  
f
IN  
f
IN  
= 450MHz, f  
= 900MHz, f  
= 70MHz  
–0.8  
0
–2.2  
dBm  
dBm  
dBm  
OUT  
OUT  
= 140MHz  
= 140MHz  
= 1900MHz, f  
OUT  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: Operation over a wider frequency range is possible with reduced  
performance. Consult the factory for information and assistance.  
Note 5: SSB Noise Figure measurements are performed with a small-  
signal noise source and bandpass filter on the RF input (downmixer) or  
output (upmixer), and no other RF input signal applied.  
Note 2: Each set of frequency conditions requires an appropriate test board.  
Note 3: Specifications over the –40°C to +85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
U W  
TYPICAL DC PERFOR A CE CHARACTERISTICS  
(Test Circuit Shown in Figure 1)  
Supply Current  
vs Supply Voltage  
Shutdown Current  
vs Supply Voltage  
12  
11  
10  
9
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
25°C  
85°C  
25°C  
85°C  
–40°C  
–40°C  
8
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
VOLTAGE (V)  
VOLTAGE (V)  
5560 G01  
5560 G02  
5560f  
4
LT5560  
U W  
TYPICAL AC PERFOR A CE CHARACTERISTICS  
900MHz Upconverting Mixer Application:  
V
P
= 3V, I = 10mA, EN = 3V, T = 25°C, f = 140MHz, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), f = 760MHz,  
CC  
LO  
CC  
A
IN  
IN  
LO  
= –2dBm, output measured at 900MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain, IIP3 and SSB NF  
vs RF Output Frequency  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
11  
10  
9
15  
14  
13  
12  
11  
10  
9
10  
8
17  
16  
15  
14  
13  
12  
11  
10  
9
IIP3  
25°C  
85°C  
–40°C  
IIP3  
8
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
6
7
6
SSB NF  
4
GAIN  
5
4
8
2
GAIN  
3
7
2
6
0
8
1
5
0
4
–2  
7
850  
870  
890  
910  
930  
950  
–10  
–6  
–4  
–2  
0
2
–10  
–6  
–4  
–2  
0
2
–8  
–8  
RF OUTPUT FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5560 G03  
5560 G04  
5560 G05  
LO-IN and LO-OUT Leakage  
vs LO Frequency  
Conversion Gain and IIP3  
vs Supply Voltage  
RF , IM3 and IM2 vs  
OUT  
IF Input Power (Two Input Tones)  
12  
11  
10  
9
0
0
–20  
–40  
–60  
–80  
–100  
RF  
25°C  
85°C  
–40°C  
OUT  
–10  
–20  
IIP3  
IM3  
25°C  
85°C  
–40°C  
8
7
–30  
–40  
–50  
–60  
6
LO-OUT  
LO-IN  
IM2  
5
4
GAIN  
3
2
1
0
–70  
2.5  
3.5  
4
4.5  
5
5.5  
3
–20  
–15  
–10  
IF INPUT POWER (dBm)  
–5  
740 760 780 800  
860  
0
700 720  
820 840  
VOLTAGE (V)  
LO FREQUENCY (MHz)  
5560 G07  
5560 G08  
5560 G06  
SSB Noise Figure Distribution  
at 900MHz  
Gain Distribution at 900MHz  
IIP3 Distribution at 900MHz  
60  
50  
40  
30  
20  
10  
0
45  
40  
35  
30  
25  
20  
15  
10  
5
60  
50  
40  
30  
20  
10  
0
–45°C  
+25°C  
+90°C  
–45°C  
+25°C  
+90°C  
–45°C  
+25°C  
+90°C  
0
1.7 1.9 2.1 2.3 2.5 2.7  
GAIN (dB)  
3.1 3.3 3.5  
2.9  
7.6 8.0 8.4 8.8 9.2 9.5  
SSB NOISE FIGURE (dB)  
10.4  
10.0  
7.8  
8.2  
8.6  
9.0  
9.4  
9.8  
10.2  
IIP3 (dBm)  
5560 G09  
5560 G10  
5560 G11  
5560f  
5
LT5560  
U W  
TYPICAL AC PERFOR A CE CHARACTERISTICS 450MHz Upconverting Mixer Application:  
V
P
= 3V, I = 10mA, EN = 3V, T = 25°C, f = 70MHz, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), f = 520MHz,  
CC A IN IN LO  
= –2dBm, output measured at 450MHz, unless otherwise noted. (Test circuit shown in Figure 3)  
CC  
LO  
Conversion Gain and IIP3  
vs RF Output Frequency  
SSB Noise Figure  
RF , IM3 and IM2 vs IF Input  
OUT  
vs RF Output Frequency  
Power (Two Input Tones)  
14  
13  
12  
11  
10  
9
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
25°C  
85°C  
–40°C  
RF  
IIP3  
OUT  
IM3  
8
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
7
6
IM2  
5
8
GAIN  
4
7
3
6
2
5
1
4
0
–90  
350  
400  
450  
500  
550  
350  
400  
450  
500  
550  
–15  
–10  
–5  
–20  
0
RF OUTPUT FREQUENCY (MHz)  
RF OUTPUT FREQUENCY (MHz)  
IF INPUT POWER (dBm)  
5560 G13  
5560 G12  
5560 G14  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
LO-IN and LO-OUT Leakage  
vs LO Frequency  
vs LO Input Power  
16  
15  
14  
13  
12  
11  
10  
9
12  
10  
8
0
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
IIP3  
6
LO-OUT  
LO-IN  
4
GAIN  
8
2
7
6
0
–10  
–6  
–4  
–2  
0
2
–10  
–6  
LO INPUT POWER (dBm)  
–4  
–2  
0
2
350  
450  
LO FREQUENCY (MHz)  
500  
550  
600  
650  
–8  
–8  
400  
LO INPUT POWER (dBm)  
5560 G15  
5560 G17  
5560 G16  
1900MHz Upconverting Mixer Application: V = 3V, I = 10mA, EN = 3V, T = 25°C, f = 140MHz, P = –20dBm (–20dBm/tone for  
CC  
CC  
A
IN  
IN  
2-tone IIP3 tests, Δf = 1MHz), f = 1760MHz, P = –2dBm, output measured at 1900MHz, unless otherwise noted. (Test circuit shown  
LO  
LO  
in Figure 1)  
Conversion Gain and IIP3  
vs RF Output Frequency  
SSB Noise Figure  
vs RF Output Frequency  
RF , IM3 and IM2 vs IF Input  
OUT  
Power (Two Input Tones)  
11  
10  
9
14  
13  
12  
11  
10  
9
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
25°C  
85°C  
RF  
OUT  
IIP3  
–40°C  
8
25°C  
85°C  
7
IM3  
IM2  
6
–40°C  
25°C  
85°C  
5
4
–40°C  
8
3
GAIN  
7
2
6
1
5
0
–1  
1800  
4
1900  
RF OUTPUT FREQUENCY (MHz)  
1950  
2000  
1800  
1850  
RF OUTPUT FREQUENCY (MHz)  
1900  
1950  
2000  
–20  
–15  
–10  
–5  
0
1850  
IF INPUT POWER (dBm)  
5560 018  
5560 G19  
5560 G20  
5560f  
6
LT5560  
U W  
TYPICAL AC PERFOR A CE CHARACTERISTICS 1900MHz Upconverting Mixer Application:  
V
CC  
P
LO  
= 3V, I = 10mA, EN = 3V, T = 25°C, f = 140MHz, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), f = 1760MHz,  
CC A IN IN LO  
= –2dBm, output measured at 1900MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
LO-IN and LO-OUT Leakage  
vs LO Frequency  
10  
8
19  
17  
15  
13  
11  
9
0
–10  
–20  
–30  
–40  
–50  
25°C  
85°C  
–40°C  
IIP3  
6
25°C  
85°C  
–40°C  
4
GAIN  
LO-OUT  
LO-IN  
2
0
–2  
–4  
7
–2  
LO INPUT POWER (dBm)  
2
1710  
1760  
1810  
–10  
–8  
–6  
–4  
0
–10  
–6  
–4  
–2  
0
2
1660  
–8  
1860  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
5560 G22  
5560 G21  
5560 G23  
900MHz Downconverting Mixer Application: V = 3V, I = 10mA, EN = 3V, T = 25°C, f = 900MHz, P = –20dBm (–20dBm/tone for  
CC  
CC  
A
IN  
IN  
2-tone IIP3 tests, Δf = 1MHz), f = 760MHz, P = –2dBm, output measured at 140MHz, unless otherwise noted. (Test circuit shown in  
LO  
LO  
Figure 2)  
Conversion Gain, IIP3 and SSB NF  
vs RF Input Frequency  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
11  
9
15  
13  
11  
9
17  
15  
13  
11  
12  
10  
8
IIP3  
25°C  
85°C  
–40°C  
IIP3  
7
SSB NF  
25°C  
85°C  
–40°C  
6
25°C  
85°C  
5
GAIN  
–40°C  
4
GAIN  
3
7
2
9
7
1
5
0
–1  
3
–2  
700  
900  
1000  
1100  
1200  
10  
–6  
–4  
–2  
0
2
800  
–8  
–2  
LO INPUT POWER (dBm)  
2
–10  
–8  
–6  
–4  
0
RF INPUT FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5560 G24  
5560 G26  
5560 G25  
LO-IN and LO-OUT Leakage  
vs LO Frequency  
IF , 2 × 2 and 3 × 3 Spurs vs  
2 × 2 and 3 × 3 Spurs vs  
LO Input Power (Single Input Tone)  
OUT  
RF Input Power (Single Input Tone)  
10  
0
–50  
–60  
0
–10  
–20  
–30  
T
= 25°C  
A
IF  
OUT  
f
f
= 760MHz  
LO  
IF  
f
RF  
= 900MHz  
= 140MHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
3RF – 3LO  
RF  
–70  
f
= 806.7MHz  
2RF – 2LO  
RF  
f
= 830MHz  
–40  
–50  
–80  
LO-IN  
2RF – 2LO  
RF  
–90  
f
= 830MHz  
3RF – 3LO  
= 806.7MHz  
–60  
–70  
–80  
f
RF  
T
= 25°C  
LO-OUT  
A
–100  
f
f
= 760MHz  
LO  
IF  
= 140MHz  
–110  
–20  
–15  
–10  
–5  
0
600  
700  
900  
–10  
–8  
–6  
–4  
–2  
0
2
500  
1000 1100  
800  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
5560 G28  
5560 G29  
5560 G27  
5560f  
7
LT5560  
U W  
TYPICAL AC PERFOR A CE CHARACTERISTICS 900MHz Downconverting Mixer Application:  
V
P
= 3V, I = 10mA, EN = 3V, T = 25°C, f = 900MHz, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz), f = 760MHz,  
CC A IN IN LO  
= –2dBm, output measured at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2)  
CC  
LO  
Conversion Gain and IIP3  
vs Supply Voltage  
IF  
and IM3 vs RF Input Power  
OUT  
(Two Input Tones)  
12  
11  
10  
9
10  
0
25°C  
85°C  
–40°C  
IIP3  
IF  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
8
25°C  
85°C  
–40°C  
IM3  
7
6
5
GAIN  
4
3
2
1
0
2.5  
3.5  
4
4.5  
5
5.5  
3
–20 –18 –16 –14 –12 –10 –8 –6 –4 –2  
RF INPUT POWER (dBm)  
0
VOLTAGE (V)  
5560 G30  
5560 G31  
450MHz Downconverting Mixer Application: V = 3V, I = 10mA, EN = 3V, T = 25°C, f = 450MHz, P = –20dBm (–20dBm/tone for  
CC  
CC  
A
IN  
IN  
2-tone IIP3 tests, Δf = 1MHz), f = 520MHz, P = –2dBm, output measured at 70MHz, unless otherwise noted. (Test circuit shown in  
LO  
LO  
Figure 3)  
Conversion Gain, IIP3 and SSB NF  
vs RF Input Frequency  
Conversion Gain and IIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
13  
11  
9
17  
12  
10  
8
17  
15  
13  
11  
25°C  
85°C  
–40°C  
IIP3  
IIP3  
15  
13  
11  
9
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
SSB NF  
GAIN  
7
6
GAIN  
5
4
3
7
2
9
7
1
5
0
–2  
–1  
3
–2  
LO INPUT POWER (dBm)  
2
–10  
–8  
–6  
–4  
0
350  
400  
450  
500  
550  
10  
–6  
–4  
–2  
0
2
–8  
RF INPUT FREQUENCY (MHz)  
LO INPUT POWER (dBm)  
5560 G32  
5560 G33  
5560 G34  
LO-IN and LO-OUT Leakage  
vs LO Frequency  
IF , 2 × 2 and 3 × 3 Spurs vs  
2 × 2 and 3 × 3 Spurs vs  
LO Input Power (Single Input Tone)  
OUT  
RF Input Power (Single Input Tone)  
10  
–10  
0
–50  
–60  
T
f
= 25°C  
IF  
A
OUT  
= 520MHz  
f
= 450MHz  
LO  
IF  
RF  
–10  
f
= 70MHz  
3RF – 3LO  
RF  
–20  
f
= 496.7MHz  
–30  
–70  
2RF – 2LO  
= 485MHz  
RF  
–30  
–40  
–50  
–60  
f
–50  
–80  
LO-OUT  
LO-IN  
2RF – 2LO  
= 485MHz  
f
RF  
–70  
–90  
–110  
–90  
3RF – 3LO  
f
= 496.7MHz  
RF  
T
= 25°C  
–100  
A
f
f
= 520MHz  
LO  
IF  
= 70MHz  
–70  
–110  
470  
520  
570  
620  
420  
–20  
–15  
–10  
–5  
0
–10  
–6  
–4  
–2  
0
2
–8  
RF INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
5560 G36  
5560 G35  
5560 G37  
5560f  
8
LT5560  
U W  
TYPICAL AC PERFOR A CE CHARACTERISTICS 1900MHz Downconverting Mixer Application:  
V
LO  
= 3V, I = 10mA, EN = 3V, T = 25°C, f = 1900MHz, P = –20dBm (–20dBm/tone for 2-tone IIP3 tests, Δf = 1MHz),  
CC A IN IN  
CC  
f
= 1760MHz, P = –2dBm, output measured at 140MHz, unless otherwise noted. (Test circuit shown in Figure 2)  
LO  
Conversion Gain, IIP3 and SSB NF  
vs RF Input Frequency  
Conversion Gain and IIP3  
vs LO Input Power  
12  
10  
8
10  
8
8
IIP3  
SSB NF  
6
25°C  
85°C  
–40°C  
25°C  
85°C  
–40°C  
6
4
IIP3  
6
4
2
GAIN  
4
2
0
GAIN  
0
–2  
–4  
2
0
–2  
1900  
INPUT FREQUENCY (MHz)  
2000  
1700 1750 1800 1850  
1950  
–10  
–6  
–4  
–2  
0
2
–8  
LO INPUT POWER (dBm)  
5560 G39  
5560 G38  
SSB Noise Figure  
vs LO Input Power  
LO-IN and LO-OUT Leakage  
vs LO Frequency  
17  
15  
13  
11  
0
–10  
–20  
–30  
–40  
–50  
LO-OUT  
LO-IN  
9
7
25°C  
85°C  
–40°C  
10  
–6  
–4  
–2  
0
2
1560  
1660 1710 1760 1810 1860  
–8  
1610  
LO INPUT POWER (dBm)  
LO FREQUENCY (MHz)  
5560 G41  
5560 G40  
IF , 2 × 2 and 3 × 3 Spurs vs  
2 × 2 and 3 × 3 Spurs vs  
LO Input Power (Single Input Tone)  
OUT  
RF Input Power (Single Input Tone)  
–40  
–50  
–60  
–70  
10  
–10  
–30  
–50  
–70  
–90  
T
= 25°C  
A
IF  
OUT  
f
f
= 1760MHz  
LO  
IF  
f
= 1900MHz  
RF  
= 140MHz  
2RF – 2LO  
= 1830MHz  
f
RF  
2RF – 2LO  
= 1830MHz  
3RF – 3LO  
f
RF  
f
= 1806.7MHz  
RF  
–80  
–90  
–100  
T
= 25°C  
A
3RF – 3LO  
= 1806.7MHz  
f
f
= 1760MHz  
LO  
IF  
f
RF  
= 140MHz  
–10  
–6  
–4  
–2  
0
2
–8  
–20  
–15  
–10  
–5  
0
LO INPUT POWER (dBm)  
RF INPUT POWER (dBm)  
5560 G43  
5560 G42  
5560f  
9
LT5560  
U
U
U
PI FU CTIO S  
+
LO , LO (Pins 1, 8): Differential Inputs for the Local  
Oscillator Signal. The LO input impedance is approxi-  
mately 180Ω, thus external impedance matching is  
required. The LO pins are internally biased to approxi-  
Each pin requires a DC current path to ground. Resistance  
to ground will cause a decrease in the mixer current. With  
0Ω resistance, approximately 6mA of DC current flows  
out of each pin. For lowest LO leakage to the output, the  
DC resistance from each pin to ground should be equal.  
An impedance transformation is required to match the  
differential input to the desired source impedance.  
mately 1V below V ; therefore, DC blocking capacitors  
CC  
are required. The LT5560 is characterized and production  
tested with a single-ended LO drive, though a differential  
LO drive can be used.  
+
OUT , OUT (Pins 5, 6): Differential Outputs. An imped-  
EN (Pin 2): Enable Pin. An applied voltage above 2V will  
ancetransformationmayberequiredtomatchtheoutputs.  
These pins require a DC current path to V  
activate the IC. For V below 0.3V, the IC will be shut  
.
EN  
CC  
down. If the enable function is not required, then this pin  
V
(Pin 7): Power Supply Pin for the Bias Circuits.  
CC  
should be connected to V . The typical enable pin input  
CC  
Typical current consumption is 1.5mA. This pin should  
current is 25µA for EN = 3V. The enable pin should not be  
allowedtooatbecausethemixermaynotturnonreliably.  
Note that at no time should the EN pin voltage be allowed  
be externally bypassed with a 1nF chip capacitor.  
Exposed Pad (Pin 9): PGND. Circuit Ground Return for  
the Entire IC. This must be soldered to the printed circuit  
board ground plane.  
to exceed V by more than 0.3V.  
CC  
+
IN ,IN (Pins3,4):DifferentialInputs.Thesepinsshouldbe  
driven with a differential signal for optimum performance.  
5560f  
10  
LT5560  
W
BLOCK DIAGRA  
+
PGND  
9
LO  
1
LO  
8
INPUT BUFFER  
AMPLIFIER  
+
+
6
5
3
4
IN  
OUT  
OUT  
IN  
DOUBLE-  
BALANCED  
MIXER  
BIAS  
7
2
5560 BD  
EN  
V
CC  
5560f  
11  
LT5560  
TEST CIRCUITS  
LO  
IN  
C3  
C7  
C4  
L5  
C5  
V
CC  
C9  
C6  
C8  
1
2
3
8
7
6
+
LO  
EN  
LO  
V
EN  
CC  
LT5560  
PGND  
OUT  
IN  
T1  
T2  
L1  
L2  
L3  
6
4
1
2
+
+
IN  
IN  
OUT  
3
1
5
C1  
C10  
3
L4  
2
4
4
5
OUT  
R1  
5560 F01  
Component Values for f  
= 900MHz, f = 140MHz and f = 760MHz  
OUT  
IN  
LO  
REF DES  
C1  
VALUE  
22pF  
100pF  
1pF  
SIZE  
0402  
0402  
0402  
0402  
0603  
0402  
PART NUMBER  
REF DES  
L1, L2  
L3, L4  
L5  
VALUE  
18nH  
27nH  
12nH  
3Ω  
SIZE  
PART NUMBER  
AVX 04025A220JAT  
AVX 04025A101JAT  
AVX 04025A1R0BAT  
AVX 04023C102JAT  
1005  
1005  
1005  
0402  
Toko LL1005-FH18NJ  
Toko LL1005-FH27NJ  
Toko LL1005-FH12NJ  
C3, C5  
C4  
C6, C9  
C8  
1nF  
R1  
1µF  
Taiyo Yuden LMK107BJ105MA T1  
AVX 04025A2R2BAT T2  
1:1  
Coilcraft WBC1-1TL  
TDK HHM1515B2  
C10  
2.2pF  
4:1  
Note: C7 not used.  
Component Values for f  
= 1900MHz, f = 140MHz and f = 1760MHz  
OUT  
IN  
LO  
REF DES  
C1  
VALUE  
22pF  
100pF  
1.5pF  
1nF  
SIZE  
0402  
0402  
0402  
0402  
0603  
0402  
PART NUMBER  
REF DES  
L1, L2  
L3, L4  
L5  
VALUE  
18nH  
3.9nH  
5.6nH  
3Ω  
SIZE  
1005  
1005  
1005  
0402  
PART NUMBER  
AVX 04025A220JAT  
AVX 04025A101JAT  
AVX 04025A1R5BAT  
AVX 04023C102JAT  
Toko LL1005-FH18NJ  
Toko LL1005-FH3N9S  
Toko LL1005-FH5N6S  
C3  
C7  
C6, C9  
C8  
R1  
1µF  
Taiyo Yuden LMK107BJ105MA T1  
AVX 04025A1R0BAT T2  
1:1  
Coilcraft WBC1-1TL  
TDK HHM1525  
C10  
1pF  
1:1  
Note: C4 and C5 are not used.  
Figure 1. Test Schematic for 900MHz and 1900MHz Upconverting  
Mixer Applications with 140MHz Input  
5560f  
12  
LT5560  
TEST CIRCUITS  
LO  
IN  
C3  
C7  
C4  
L5  
C5  
V
CC  
C6  
C8  
1
2
3
8
7
6
+
LO  
EN  
LO  
V
EN  
CC  
LT5560  
PGND  
OUT  
IN  
T1  
T2  
L1  
L2  
L3  
L4  
1
5
4
2
+
+
IN  
IN  
OUT  
3
4
6
C1  
C2  
3
2
1
4
5
OUT  
R1  
5560 F02  
Component Values for f = 900MHz, f  
= 140MHz and f = 760MHz  
LO  
IN  
OUT  
PART NUMBER  
REF DES  
C1  
VALUE  
2.2pF  
1.2pF  
100pF  
1pF  
SIZE  
0402  
0402  
0402  
0402  
0402  
0603  
REF DES  
L1, L2  
L3, L4  
L5  
VALUE  
0Ω  
SIZE  
PART NUMBER  
AVX 04025A2R2BAT  
AVX 04025A1R2BAT  
AVX 04025A101JAT  
AVX 04025A1R0BAT  
AVX 04023C102JAT  
1005  
1608  
0402  
0402  
0Ω Resistor  
C2  
220nH  
12nH  
3Ω  
Toko LL1608-FSR22J  
Toko LL1005-FH12NJ  
C3, C5  
C4  
R1  
C6  
1nF  
T1  
1:1  
TDK HHM1522B1  
C8  
1µF  
Taiyo Yuden LMK107BJ105MA T2  
4:1  
M/A-COM MABAES0061  
Note: C7 not used.  
Component Values for f = 1900MHz, f  
= 140MHz and f = 1760MHz  
LO  
IN  
OUT  
REF DES  
C1  
VALUE  
1.0pF  
1.2pF  
100pF  
1.5pF  
1nF  
SIZE  
0402  
0402  
0402  
0402  
0402  
0603  
PART NUMBER  
REF DES  
L1, L2  
L3, L4  
L5  
VALUE  
0Ω  
SIZE  
1005  
1608  
1005  
0402  
PART NUMBER  
AVX 04025A1R0BAT  
AVX 04025A1R2BAT  
AVX 04025A101JAT  
AVX 04025A1R5BAT  
AVX 04023C102JAT  
0Ω Resistor  
C2  
220nH  
5.6nH  
3Ω  
Toko LL1608-FSR22J  
Toko LL1005-FH5N6S  
C3  
C7  
R1  
C6  
T1  
2:1  
TDK HHM1526  
C8  
1µF  
Taiyo Yuden LMK107BJ105MA T2  
4:1  
M/A-COM MABAES0061  
Note: C4 and C5 are not used.  
Figure 2. Test Schematic for 900MHz and 1900MHz Downconverting  
Mixer Applications with 140MHz Input  
5560f  
13  
LT5560  
TEST CIRCUITS  
LO  
IN  
C3  
L5  
C4  
C5  
V
CC  
C6  
C8  
8
7
6
+
LO  
EN  
LO  
V
2
3
EN  
CC  
LT5560  
PGND  
OUT  
IN  
C11  
T1  
T2  
L1  
L2  
L3  
6
4
1
2
+
+
IN  
OUT  
3
4
6
C1  
C10  
3
L4  
2
1
4
5
IN  
OUT  
R1  
5560 F03  
Upconverting Mixer Component Values for f = 70MHz, f  
= 450MHz and f = 520MHz  
LO  
IN  
OUT  
REF DES  
C1  
VALUE  
39pF  
1nF  
SIZE  
0402  
0402  
0402  
0603  
0402  
PART NUMBER  
REF DES  
L1, L2  
L3, L4  
L5  
VALUE  
SIZE  
1005  
1608  
1005  
0402  
PART NUMBER  
AVX 04025390JAT  
AVX 04023C102JAT  
AVX 04025A1R5BAT  
33nH  
68nH  
22nH  
3Ω  
Toko LL1005-FH33NJ  
Toko LL1608-FS68NJ  
Toko LL1005-FH22NJ  
C3, C5, C6  
C4  
1.5pF  
1µF  
C8  
Taiyo Yuden LMK107BJ105MA R1  
C10  
1.5pF  
AVX 04025A1R5BAT  
T1  
T2  
1:1  
Coilcraft WBC1-1TL  
4:1  
M/A-COM MABAES0061  
Note: C11 is not used.  
Downconverting Mixer Component Values for f = 450MHz, f  
= 70MHz and f = 520MHz  
LO  
IN  
OUT  
REF DES  
C3, C5, C6  
C4  
VALUE  
1nF  
SIZE  
0402  
0402  
0603  
0603  
0402  
PART NUMBER  
REF DES  
L3, L4  
L5  
VALUE  
0Ω  
SIZE  
0402  
0402  
0402  
PART NUMBER  
0Ω Resistor  
AVX 04023C102JAT  
AVX 04025A1R5BAT  
1.5pF  
1µF  
22nH  
3Ω  
Toko LL1005-FH22NJ  
C8  
Taiyo Yuden LMK107BJ105MA R1  
C11  
5.6pF  
0Ω  
AVX 06035A5R6BAT  
T1  
1:1  
Coilcraft WBC1-1TL  
Coilcraft WBC16-1TL  
L1, L2  
0Ω Resistor  
T2  
16:1  
Note: C1 and C10 not used.  
Figure 3. Test Schematic for 450MHz Upconverting  
Mixer and Downconverting Mixer Applications  
5560f  
14  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5560 consists of a double-balanced mixer, a com-  
mon-base input buffer amplifier, and bias/enable circuits.  
TheIChasbeendesignedforfrequencyconversionapplica-  
tionsupto4GHz, thoughoperationoverawiderfrequency  
rangemaybepossiblewithreducedperformance.Forbest  
performance, the input and output should be connected  
differentially. TheLOinputcanbedrivenbyasingle-ended  
source with either low side or high side LO operation. The  
LT5560 is characterized and production tested using a  
single-ended LO drive.  
provided through the center-tap of an input transformer,  
as shown, or through matching inductors or chokes con-  
nected from pins 3 and 4 to ground.  
LT5560  
+
INPUT  
IN  
L1  
L2  
T1  
3
4
C1  
IN  
V
BIAS  
The quiescent DC current of the LT5560 can be adjusted  
from less than 4mA to approximately 13.5mA through  
the use of an external resistor. This functionality gives the  
user the ability to make application dependent trade-offs  
between IIP3 performance and DC current.  
R1  
5560 F04  
Figure 4. Input Port with Lowpass  
External Matching Topology  
Three demo boards, as described in Table 1, are available  
depending on the desired application. The listed input  
and output frequency ranges are based on measured  
12dB return loss bandwidths and the LO port frequency  
ranges are based on 10dB return loss bandwidths. The  
general circuit topologies are shown in Figures 1, 2 and  
3 for DC963B, DC991A and DC1027A, respectively. The  
board layouts are shown in Figures 23, 24 and 25. The  
low frequency board, DC1027A, can be reconfigured for  
upconverting applications.  
The lowpass impedance matching topology shown may  
be used to transform the differential input impedance  
at pins 3 and 4 to match that of the signal source. The  
differential input impedances for several frequencies are  
listed in Table 2.  
Table 2. Input Signal Port Differential Impedance  
INPUT  
REFLECTION COEFFICIENT (Z = 50Ω)  
O
FREQUENCY IMPEDANCE  
MAG  
ANGLE (DEG.)  
(MHz)  
(Ω)  
70  
28.5 + j0.8  
28.5 + j1.6  
28.6 + j2.7  
28.6 + j4.0  
28.6 + j4.9  
28.8 + j8.2  
28.8 + j9.8  
29.1 + j16.3  
29.4 + j20.8  
29.6 + j23.6  
29.9 + j27.0  
31.7 + j42.1  
0.274  
0.274  
0.275  
0.276  
0.278  
0.287  
0.294  
0.328  
0.357  
0.376  
0.399  
0.499  
177  
174  
171  
167  
163  
153  
148  
138  
120  
114  
107  
86.2  
140  
Table 1. LT5560 Demo Board Descriptions  
DEMO  
BOARD  
NUMBER  
INPUT  
FREQ.  
(MHz)  
OUTPUT  
FREQ.  
(MHz)  
LO  
FREQ.  
(MHz)  
240  
MIXER  
DESCRIPTION  
360  
450  
Upconverting,  
Cellular Band  
DC963B  
DC991A  
DC1027A  
50-190  
710-1300  
115-295  
850-940  
110-170  
3-60  
530-930  
530-930  
180-310  
750  
Downconverting  
Cellular Band  
900  
1500  
1900  
2150  
2450  
3600  
Downconverting,  
VHF Band  
Note: Consult factory for demo boards for UMTS, WLAN and other bands.  
Signal Input Port  
Figure 4 shows a simplified schematic of the differential  
input signal port and an example topology for the external  
impedance matching circuit. Pins 3 and 4 each source  
up to 6mA of DC current. This current can be reduced by  
the addition of resistor R1 (adjustable mixer current is  
discussed in a later section). The DC ground path can be  
5560f  
15  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Theinternalinductancehasbeenaccountedforbysubtract-  
The following example demonstrates the design of a  
lowpass impedance transformation network for a signal  
input at 900MHz.  
ing the internal reactance (X ) from the total reactance  
INT  
(X ). Small inductance values may be realized using high-  
L
impedance printed transmission lines instead of lumped  
inductors. The equations above provide good starting  
values, though the values may need to be optimized to  
account for layout and component parasitics.  
The simplified input circuit is shown in Figure 5. For this  
example, the input transformer has a 1:1 impedance ratio,  
so R = 50Ω. From Table 2, at 900MHz, the differential  
S
input impedance is: R + jX = 28.8 + j9.8Ω. The internal  
L
INT  
reactance will be used as part of the impedance matching  
network. Thematchingcircuitconsistsofadditionalexter-  
nal series inductance (L1 and L2) and a capacitance (C1)  
in parallel with the 50Ω source impedance. The external  
capacitance and inductance are calculated below.  
LT5560  
L1  
EXT  
X
X
/2  
/2  
X
X
/2  
/2  
INT  
3
4
R
R
L
S
C1  
First, calculate the impedance transformation ratio (n)  
and the network Q:  
L2  
EXT  
50Ω  
28.1Ω  
INT  
RS  
RL 28.8  
50  
n =  
=
= 1.74  
5560 F05  
Q = n 1 = 0.858  
(
)
Figure 5. Small Signal Circuit for the Input Port  
Next, the capacitance and inductance can be calculated  
as follows:  
RS  
Q
XC =  
C1=  
= 58.3Ω  
1
= 3.03pF  
ω • XC  
X = R • Q = 24.7Ω  
L
L
X
= X – X = 14.9Ω  
L INT  
EXT  
LEXT XEXT  
L1= L2 =  
=
= 1.32nH  
2
2ω  
5560f  
16  
LT5560  
Table 3 lists actual component values used on the LT5560  
evaluation boards for impedance matching at various  
frequencies. The measured Input Return Loss vs Fre-  
quency performance is plotted for several of the cases  
in Figure 6.  
LO Input Port  
Figure 7 shows a simplified schematic of the LO input. The  
LO input connections drive the bases of the mixer transis-  
tors, while a 200Ω resistor across the inputs provides the  
impedancetermination.Theinternal1kΩbiasresistorsare  
in parallel with the input resistor resulting in a net input  
DC resistance of approximately 180Ω. The pins are biased  
by an internally generated voltage at approximately  
Table 3. Component Values for Input Matching  
FREQ.  
C1  
L1, L2 MATCH BW  
CASE (MHz)  
T1  
(pF)  
(nH)  
180  
33  
18  
12  
0
(@12dB RL)  
1
2
3
4
5
6
7
8
9
10  
70  
WBC1-1TL 1:1  
WBC1-1TL 1:1  
WBC1-1TL 1:1  
WBC1-1TL 1:1  
WBC1-1TL 1:1  
HHM1522B1 1:1  
HHM1526 2:1  
HHM1520A2 2:1  
HHM1583B1 2:1  
220  
39  
22  
15  
NA  
2.2  
1
6-18  
1V below V ; thus external DC blocking capacitors are  
CC  
required. If desired, the LO inputs can be driven differen-  
29-102  
tially. The required LO drive at the IC is 240mV  
(typ)  
140  
240  
50-190  
RMS  
whichcancomefroma50Ωsourceorahigherimpedance  
115-295  
390-560  
710-1630  
1660-2500  
1640-2580  
3330-3840  
1
such as PECL.  
450  
900  
0
LT5560  
1900  
2450  
3600  
0
V
BIAS  
1
0
1k  
1k  
0.5  
0
C5  
+
LO  
Note 1: Series 5.6pF capacitor is used at the input (see Figure 3).  
8
1
200Ω  
V
CC  
LO  
50Ω  
0
IN  
C3  
L5  
7
5
4
–5  
–10  
–15  
–20  
–25  
–30  
1
3
LO  
2
9
C7  
C4  
5560 F07  
6
Figure 7. LO Input Schematic  
10  
100  
1000  
4000  
FREQUENCY (MHz)  
5560 F06  
Figure 6. Input Return Loss vs Frequency  
for Different Matching Values  
5560f  
17  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Reactive matching from the LO source to the LO input is  
recommended to take advantage of the resulting voltage  
gain. To assist in matching, Table 4 lists the single-ended  
input impedances of the LO input port. Actual com-  
ponent values, for several LO frequencies, are listed in  
Table 5. Figure 8 shows the typical return loss response  
for each case.  
Table 5. Component Values for LO Input Matching  
FREQ.  
(MHz)  
C4  
L5  
C7  
C3, C5 MATCH BW  
CASE  
(pF)  
(nH)  
(pF)  
(pF)  
1000  
1000  
1000  
100  
(@12dB RL)  
1
2
3
4
5
6
7
8
150  
250  
8.2  
4.7  
1.5  
1
68  
47  
22  
12  
6.8  
4.7  
1
-
-
120-180  
195-300  
520  
-
390-605  
760  
-
590-890  
1200  
1760  
2900  
3150  
-
-
100  
850-1430  
1540-1890  
2690-3120  
2990-3480  
Table 4. Single-Ended LO Input Impedance (Parallel Equivalent)  
1
-
1
1
-
100  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
(Ω)  
REFLECTION COEFFICIENT (Z = 50Ω)  
O
-
10  
10  
MAG  
ANGLE (DEG.)  
-
0
150  
520  
161 || –j679  
142 || –j275  
130 || –j192  
74 || –j98  
0.529  
0.494  
0.475  
0.347  
0.330  
0.308  
0.266  
0.235  
0.472  
–9.3  
–23.3  
–33.5  
–74.5  
–80.1  
–90.1  
–104  
–104  
–138  
Note 1: C5 is not used at 1760MHz  
0
760  
1660  
1760  
2040  
2210  
3150  
3340  
–5  
4
6
8
69 || –j94  
–10  
60 || –j89  
2
3
1
51 || –j91  
–15  
–20  
–25  
–30  
50 || –j103  
33 || –j41  
100  
1000  
FREQUENCY (MHz)  
4000  
5560 F08  
Figure 8. Typical LO Input Return Loss vs  
Frequency for Different Matching Values  
5560f  
18  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Signal Output Port  
using the impedance parameters listed in Table 6 along  
with similar equations as used for the input matching net-  
work. As an example, at an output frequency of 140MHz  
A simplified schematic of the output circuit is shown in  
+
Figure 9. The output pins, OUT and OUT , are internally  
connectedtothecollectorsofthemixertransistors. These  
pins must be biased at the supply voltage, which can be  
applied through a transformer center-tap, impedance  
matching inductors, RF chokes, or pull-up resistors. With  
external resistor R1 = 3Ω (Figures 1 to 3), each OUT pin  
draws about 4.5mA of supply current. For optimum per-  
formance, these differential outputs should be combined  
externally through a transformer or balun.  
and R = 200Ω (using a 4:1 transformer for T2),  
L
RS 1082  
n =  
=
= 5.41  
RL  
200  
Q = n 1 = 2.10  
(
)
RS  
Q
XC =  
C =  
= 515Ω  
An equivalent small-signal model for the output is shown  
in Figure 10. The output impedance can be modeled as  
a 1.2kΩ resistor in parallel with a 0.7pF capacitor. For  
low frequency applications, the 0.7nH series bond-wire  
inductances can be ignored.  
1
= 2.21pF  
ω • XC  
C2 = C – C = 1.51pF  
INT  
The external components, C2, L3 and L4, form a lowpass  
impedance transformation network to match the mixer  
output impedance to the input impedance of transformer  
T2. The values for these components can be estimated  
X = R • Q = 420Ω  
L L  
XL  
L3 = L4 =  
= 239nH  
2ω  
LT5560  
LT5560  
OUT  
+
L3  
L4  
T2  
OUT  
0.7nH  
6
5
6
+
OUT  
OUT  
1.2k  
R
1.2k  
C
INT  
0.7pF  
INT  
C2  
V
C10  
CC  
0.7pF  
0.7nH  
5
OUT  
V
CC  
5560 F09  
5560 F10  
Figure 9. Output Port Schematic  
Figure 10. Output Port Small-Signal Model  
with External Matching  
5560f  
19  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 7 lists actual component values used on the  
LT5560 evaluation boards for impedance matching at  
several frequencies. The measured output return loss  
vs frequency performance is plotted for several of the  
cases in Figure 11.  
Table 6. Output Port Differential Impedance (Parallel Equivalent)  
OUTPUT  
REFLECTION COEFFICIENT (Z = 50Ω)  
O
FREQUENCY IMPEDANCE  
MAG  
ANGLE (DEG.)  
(MHz)  
(Ω)  
70  
1098 || –j3185  
1082 || –j1600  
1082 || –j974  
1093 || –j646  
1083 || –j522  
1037 || –j320  
946 || –j269  
655 || –j162  
592 || –j122  
662 || –j108  
612 || –j95.7  
188 || –j53.1  
0.913  
0.912  
0.912  
0.913  
0.913  
0.910  
0.903  
0.870  
0.865  
0.883  
0.879  
0.756  
–1.8  
–3.6  
140  
Table 7. Component Values for Output Matching  
MATCH  
240  
–5.9  
360  
–8.9  
FREQ.  
CASE (MHz)  
C2 L3, L4 C10  
BW  
450  
–11.0  
–17.8  
–21.1  
–34.5  
–44.6  
–50.0  
–55.4  
–88.7  
T2  
(pF)  
(nH)  
(pF) (@12dB RL)  
750  
1
2
3
10  
70  
WBC16-1TL 16:1  
WBC16-1TL 16:1  
-
0
-
3-60  
3-60  
1
900  
-
0
-
1500  
1900  
2150  
2450  
3600  
140  
MABAES0061  
4:1  
1.5  
220  
-
-
110-170  
4
5
6
240  
380  
450  
MABAES0061  
4:1  
0.5  
120  
68  
175-300  
290-490  
360-540  
MABAES0061  
4:1  
-
-
-
MABAES0061  
4:1  
68  
1.5  
In cases where the calculated value of C2 is less than the  
internal output capacitance, capacitor C10 can be used to  
improve the impedance match.  
7
8
900 HHM1515B2 4:1  
1900 HHM1525 1:1  
-
-
27  
2.2  
1
850-940  
3.9  
1820-2000  
Note 1: A better 70MHz match can be realized by adding a shunt 180nH  
inductor at the C10 location.  
0
–5  
6
7
8
–10  
–15  
–20  
–25  
–30  
4
3
0
500  
1000  
1500  
2000  
2500  
FREQUENCY (MHz)  
5560 F11  
Figure 11. Output Return Loss vs Frequency  
for Different Matching Values  
5560f  
20  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Enable Interface  
vs current of a 900MHz downconverting mixer is plotted  
in Figure 15. In this example, a 1nF capacitor has been  
placed in parallel to R1 for best noise figure.  
Figure 12 shows a simplified schematic of the EN pin  
interface. The voltage necessary to turn on the LT5560 is  
2V. To disable the chip, the enable voltage must be less  
than0.3V. IftheENpinisallowedtooat, thechipwilltend  
to remain in its last operating state, thus it is not recom-  
mended that the enable function be used in this manner.  
If the shutdown function is not required, then the EN pin  
14  
T
= 25°C  
A
13  
12  
11  
10  
9
V
= 3V  
CC  
should be connected directly to V .  
CC  
8
7
The voltage at the EN pin should never exceed the power  
6
supply voltage (V ) by more than 0.3V. If this should  
CC  
5
occur, the supply current could be sourced through the  
EN pin ESD diode, potentially damaging the IC.  
4
0
5
15  
20  
25  
30  
10  
R1 ()  
5560 F13  
LT5560  
Figure 13. Typical Supply Current vs R1 Value  
V
CC  
14  
12  
EN  
2
60k  
10  
SSB NF  
8
6
IIP3  
4
GAIN  
2
5560 F12  
T
= 25°C  
f
= 140MHz  
P = –2dBm  
LO  
A
IF  
0
V
= 3V  
Figure 12. Enable Input Circuit  
CC  
f
LO  
= 760MHz  
–2  
6
8
12  
4
14  
10  
Adjustable Supply Current  
SUPPLY CURRENT (mA)  
5560 F14  
The LT5560 offers a direct trade-off between power sup-  
ply current and linearity. This capability allows the user  
to optimize the performance and power dissipation of  
the mixer for a particular application. The supply current  
can be adjusted by changing the value of resistor R1 at  
the center-tap of the input balun. For downconversion  
applications, a bypass capacitor in parallel with R1 may  
be desired to minimize noise figure. The bypass capacitor  
has a greater effect on noise figure at larger values of R1.  
In upmixer configurations, adding a capacitor across R1  
has little effect.  
Figure 14. 900MHz Upconverting Mixer Gain,  
Noise Figure and IIP3 vs Supply Current  
14  
MEASURED WITH InF CAP ACROSS R1  
12  
SSB NF  
10  
8
IIP3  
6
4
GAIN  
2
0
T
= 25°C  
f
= 140MHz  
P = –2dBm  
LO  
A
IF  
V
= 3V  
Figure 13 shows the supply current as a function of R1.  
Note that the current will also be affected by parasitic  
resistance in the matching components. Figure 14 il-  
lustrates the effect of supply current on Gain, IIP3 and  
NF of a 900MHz upconverting mixer. The performance  
CC  
f
= 760MHz  
LO  
–2  
6
8
12  
4
14  
10  
SUPPLY CURRENT (mA)  
5560 F15  
Figure 15. 900MHz Downconverting Mixer Gain,  
Noise Figure and IIP3 vs Supply Current  
5560f  
21  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
11  
9
14  
12  
10  
8
Application Examples  
IIP3  
The LT5560 may be used as an upconverting or  
downconverting mixer in a wide variety of applications,  
in addition to those identified in the datasheet. The fol-  
lowing examples illustrate the versatility of the LT5560.  
(The component values for each case can be found in  
Tables 3, 5 and 7).  
SSB NF  
7
f
f
f
= 140MHz  
= 10MHz  
LO  
RF  
IF  
5
= 150MHz  
GAIN  
–4  
3
6
Figure 16 demonstrates gain, IIP3 and IIP2 performance  
versus RF Output Frequency for the LT5560 when used  
as a 240MHz upconverting mixer. The input frequency  
is 10MHz, with an LO frequency of 250MHz. The circuit  
uses the topology shown in Figure 1.  
1
4
0
2
–10  
–8  
–6  
–2  
LO INPUT POWER (dBm)  
5560 F17  
Figure 17. LT5560 Performance in 140MHz  
Downconverting Mixer Application  
58  
56  
54  
52  
50  
48  
46  
44  
14  
12  
The LT5560 operation at higher frequencies is demon-  
stratedinFigure18, wheretheperformanceofa3600MHz  
downconvertingmixerisshown.Theconversiongain,IIP3  
and DSB NF are plotted for an RF input frequency range  
of 3300 to 3800MHz and an IF frequency of 450MHz. The  
circuit is the same topology as shown in Figure 2.  
IIP3  
IIP2  
10  
8
6
f
f
= 10MHz  
LO RF IF  
IF  
= f + f  
4
GAIN  
2
11  
10  
0
250  
290 310  
170 190 210 230  
270  
DSB NF  
9
OUTPUT FREQUENCY (MHz)  
5560 F16  
8
IIP3  
7
Figure 16. LT5560 Performance in 240MHz  
Upconverting Mixer Application  
6
5
4
The performance in a 140MHz downconverting mixer  
application is plotted in Figure 17. In this case the gain,  
IIP3 and NF are shown as a function of LO power with an  
IF output frequency of 10MHz. The circuit topology for  
this case is shown in Figure 3.  
3
GAIN  
2
1
3300  
3400  
3500  
3600  
3700  
3800  
RF INPUT FREQUENCY (MHz)  
5560 F18  
Figure 18. LT5560 Performance as a  
3600MHz Downconverting Mixer  
5560f  
22  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Lumped Element Matching  
The applications described so far have employed external  
transformers or hybrid baluns to realize single-ended to  
differential conversions and, in some cases, impedance  
transformations. An alternate approach is to use lumped-  
element baluns to realize the input or output matching  
networks.  
L
O
C
O
C
DC  
R
B
L
O
R
A
L
DC  
A lumped element balun topology is shown in Figure 19.  
The desired component values can be estimated using  
C
O
the equations below, where R and R are the terminat-  
A
B
ing resistances on the unbalanced and balanced ports,  
5560 F19  
respectively. Variable f is the desired center frequency.  
C
Figure 19. Lumped Element Balun  
(The resistances of the LT5560 input and output can be  
found in Tables 2 and 6).  
In some applications, C is useful for optimizing the  
DC  
impedance match.  
RA RB  
LO =  
The circuit shown on page 1 illustrates the use of lumped  
element baluns. In this example, the LT5560 is used to  
convert a 900MHz input signal down to 140MHz using a  
2 • π • fC  
1
760MHz L signal.  
CO =  
O
2 • π • fC RA • RB  
For the 900MHz input, R = 50Ω and R = 28Ω (from  
A
B
Table 2). The actual values used for C and L are 4.7pF  
O
O
The computed values are approximate, as they don’t ac-  
count for the effects of parasitics of the IC and external  
components.  
and 6.8nH, which agree very closely with the calculated  
values of 4.7pF and 6.6nH. The 15nH shunt inductor, in  
thiscase,hasbeenusedtooptimizetheimpedancematch,  
while the 100pF cap provides DC decoupling.  
Inductor L is used to provide a DC path to ground or to  
DC  
V
depending on whether the circuit is used at the input  
CC  
At the 140MHz output, the values used for R and R  
A
B
or output of the LT5560. In some cases, it is desirable to  
make the value of L as large as practical to minimize  
loading on the circuit; however, the value can also be op-  
timized to tune the impedance match. The shunt inductor,  
L , provides the DC path for the other balanced port.  
are 50Ω and 1080Ω (from Table 6), respectively, which  
DC  
result in calculated values of C = 4.9pF and L = 265nH.  
O
O
These values are very close to the actual values of 4.7pF  
and 270nH. A shunt inductor (L ) of 270nH is used here  
DC  
O
and the 33pF blocking cap has been used to optimize the  
Capacitor C may be required for DC blocking but  
impedance.  
DC  
can often be omitted if DC decoupling is not required.  
5560f  
23  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
Measured IF  
and IM3 levels vs RF input power for the  
op-amp to demonstrate performance with an output fre-  
quency of 450KHz. Pull-up resistors R3 and R4 are used  
at the open-collector IF outputs instead of large inductors.  
The op-amp provides gain and converts the mixer dif-  
ferential outputs to single-ended. At low frequencies, the  
LO port can be easily matched with a shunt resistor and  
a DC blocking cap. This IF interface circuit can be used  
for signals up to 1MHz.  
OUT  
mixer with lumped element baluns are shown on page 1.  
AdditionalperformanceparametersvsRFinputfrequency  
are plotted in Figure 20.  
13  
12  
IIP3  
SSB NF  
11  
10  
9
Figure 21 shows an input match that uses a transformer  
to present a differential signal to the mixer. A possible  
alternative, shown in Figure 22, is to use a single-ended  
drive on one input pin, with the other pin grounded. This  
approach is more cost effective than the transformer,  
however, some performance is sacrificed. Another option  
is to use a lumped-element balun, which requires only one  
morecomponentthanthesingle-endedimpedancematch,  
but could provide better performance. Measured data for  
the examples below are summarized in Table 8.  
8
7
6
GAIN  
5
4
800  
1000  
850  
900  
950  
INPUT FREQUENCY (MHz)  
5560 F20  
Figure 20. Performance of 900MHz Downconverting  
Mixer with Lumped Element Baluns  
Table 8. Low-Frequency Performance  
Low Frequency Applications  
f
f
G
IIP3  
(dBm)  
DSB NF  
(dB)  
I
CC  
(mA)  
IN  
OUT  
C
(MHz)  
200  
90  
(MHz)  
(dB)  
AtlowIFfrequencies,wheretransformerscanbeimpracti-  
cal due to their large size and cost, alternate methods can  
be used to achieve desired differential to single-ended  
conversions. The examples in Figures 21 and 22 use an  
0.45  
9
3.8  
3.3  
11.6  
22  
14  
0.45  
6.8  
18  
LO  
IN  
R2  
160Ω  
200.45MHz  
C5  
10nF  
C3  
10nF  
5V  
R8  
C6  
1nF  
C8  
1
5.1kΩ  
8
7
6
+
1µF  
LO  
LO  
V
R3  
200Ω  
R4  
R5  
200Ω  
V
R9  
5.1kΩ  
EN  
C13  
1µF  
2
200Ω  
EN  
CC  
RF  
200MHz  
C11  
1µF  
IN  
T1  
1:1  
L1  
12nH  
U1  
C14  
1µF  
IF  
LT5560  
OUT  
450kHz  
3
4
+
+
R7  
51Ω  
+
IN  
OUT  
C12  
1µF  
U2  
LT6202  
L2  
12nH  
C1  
15pF  
5
IN  
OUT  
PGND  
9
R1  
3Ω  
WBC4-6TL  
R6  
200Ω  
5560 F21  
Figure 21. A 200MHz to 450KHz Downconverter with Active IF Interface  
5560f  
24  
LT5560  
U
W U U  
APPLICATIO S I FOR ATIO  
LO  
90.45MHz  
IN  
R2  
160Ω  
C5  
10nF  
C3  
10nF  
5V  
R8  
C6  
1nF  
C8  
1
5.1kΩ  
8
7
6
+
1µF  
LO  
LO  
V
R3  
200Ω  
R4  
R5  
200Ω  
V
R9  
5.1kΩ  
EN  
C13  
1µF  
2
200Ω  
EN  
CC  
RF  
90MHz  
C11  
1µF  
IN  
L1  
12nH  
U1  
C14  
1µF  
IF  
LT5560  
OUT  
450kHz  
3
4
+
+
R7  
51Ω  
+
IN  
OUT  
C12  
1µF  
U2  
LT6202  
C1  
56pF  
L2  
82nH  
5
IN  
OUT  
PGND  
9
R6  
200Ω  
5560 F22  
Figure 22. 90MHz Downconverter with a Low Cost Discrete  
Balun Input and a 450kHz Active IF Interface  
Figure 23. Upconverting Mixer Evaluation Board (DC963B)—See Table 1  
5560f  
25  
LT5560  
U
TYPICAL APPLICATIO S  
Figure 24. Downconverting Mixer Evaluation Board (DC991A)—See Table 1  
Figure 25. HF/VHF/UHF Upconverting or Downconverting  
Mixer Evaluation Board (DC1027A)—See Table 1  
5560f  
26  
LT5560  
U
PACKAGE DESCRIPTIO  
DD8 Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
0.675 0.05  
3.5 0.05  
1.65 0.05  
(2 SIDES)  
2.15 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.50  
BSC  
2.38 0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 0.10  
TYP  
5
8
3.00 0.10  
(4 SIDES)  
1.65 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 1203  
4
1
0.25 0.05  
0.75 0.05  
0.200 REF  
0.50 BSC  
2.38 0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
5560f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LT5560  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5511  
DESCRIPTION  
COMMENTS  
High Linearity Upconverting Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
20dBm IIP3, Integrated LO Buffer, HF/VHF/UHF Optimized  
LT5512  
1KHz to 3GHz High Signal Level  
Downconverting Mixer  
LT5514  
LT5515  
LT5516  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended LO and  
RF Ports, 4-Ch W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5525  
LT5526  
LT5527  
LT5528  
LT5568  
0.7GHz to 1.4GHz High Linearity Upconverting 17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting 15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Mixer  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended  
LO Port Operation  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended  
RF and LO Ports  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting  
Mixer  
50Ω Single-Ended LO and RF Ports, 17.6 dBm IIP3 at 1900MHz, I = 28mA  
CC  
High Linearity, Low Power Active Mixer  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dB at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Single-Ended LO and RF Ports  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –66dBc at 2.14GHz  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
22.9dBm OIP3, –160dBm/Hz Noise Floor, –46dBc Image Rejection,  
–43dBm LO Leakage  
RF Power Detectors  
LTC®5505  
RF Power Detectors with >40dB Dynamic  
Range  
300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
LTC5507  
LTC5508  
LTC5509  
LTC5532  
LT5534  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Linear Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Adjustable Gain and Offset  
OUT  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
LT5537  
Precision 600MHz to 7GHz RF Detector with  
Fast Comparater  
25ns Response Time, Comparator Reference Input, Latch Enable Input, –26dBm to  
+12dBm Input Range  
Wide Dynamic Range Log RF/IF Detector  
Low Frequency to 800MHz, 83dB Dynamic Range, 2.7V to 5.25V Supply  
5560f  
LT 0406 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5560EDD

0.01MHz to 4GHz Low Power Active Mixer
Linear

LT5560EDD#PBF

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560EDD#TR

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560EDD#TRPBF

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568

200MHz to 6000MHz Quadrature Modulator with Ultrahigh OIP3
Linear

LT5568-2

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear

LT5568-2EUF#PBF

LT5568-2 - GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568-2EUF#TRPBF

LT5568-2 - GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568-2EUF-PBF

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear

LT5568-2EUF-TRPBF

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear

LT5568EUF

RF/Microwave Modulator/Demodulator, 700 MHz - 1050 MHz RF/MICROWAVE I/Q MODULATOR, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16
Linear

LT5568EUF#PBF

LT5568 - 700MHz to 1050MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear