LT5558EUF#TRBPF [Linear]

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, LEAD FREE, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit;
LT5558EUF#TRBPF
型号: LT5558EUF#TRBPF
厂家: Linear    Linear
描述:

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, LEAD FREE, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit

蜂窝
文件: 总16页 (文件大小:315K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5558  
600MHz to 1100MHz  
High Linearity Direct  
Quadrature Modulator  
FEATURES  
DESCRIPTION  
The LT®5558 is a direct I/Q modulator designed for high  
performance wireless applications, including wireless  
infrastructure. It allows direct modulation of an RF signal  
using differential baseband I and Q signals. It supports  
GSM, EDGE, CDMA, CDMA2000, and other systems. It  
may also be configured as an image reject upconverting  
mixer, by applying 90° phase-shifted signals to the I and  
Qinputs. ThehighimpedanceI/Qbasebandinputsconsist  
of voltage-to-current converters that in turn drive double-  
balancedmixers.Theoutputsofthesemixersaresummed  
and applied to an on-chip RF transformer, which converts  
thedifferentialmixersignalstoa50Ωsingle-endedoutput.  
The balanced I and Q baseband input ports are intended  
for DC coupling from a source with a common-mode  
voltage level of about 2.1V. The LO path consists of an LO  
buffer with single-ended input, and precision quadrature  
generators which produce the LO drive for the mixers.  
The supply voltage range is 4.5V to 5.25V.  
Direct Conversion from Baseband to RF  
High OIP3: + 22.4dBm at 900MHz  
Low Output Noise Floor at 20MHz Offset:  
No RF: –158dBm/Hz  
P
OUT  
= 4dBm: –152.7dBm/Hz  
Low Carrier Leakage: –43.7dBm at 900MHz  
High Image Rejection: –49dBc at 900MHz  
3 Channel CDMA2000 ACPR: –70.4dBc at 900MHz  
Integrated LO Buffer and LO Quadrature Phase  
Generator  
50Ω AC-Coupled Single-ended LO and RF Ports  
High Impedance Interface to Baseband Inputs  
with 2.1V Common Mode Voltage  
16-Lead QFN 4mm × 4mm Package  
APPLICATIONS  
RFID Single-Sideband Transmitters  
Infrastructure T for Cellular and ISM Bands  
X
Image Reject Up-Converters for Cellular Bands  
Low-Noise Variable Phase-Shifter for 600MHz to  
1100MHz Local Oscillator Signals  
Microwave Links  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
CDMA2000 ACPR, AltCPR and Noise vs  
RF Output Power at 900MHz for 1 and 3 Carriers  
600MHz to 1100MHz Direct Conversion Transmitter Application  
5V  
2 x 100nF  
V
CC  
8, 13  
–40  
–50  
–60  
–70  
–110  
–120  
–130  
–140  
DOWNLINK TEST  
MODEL 64 DPCH  
LT5558  
14  
16  
RF = 600MHz TO  
1100MHz  
3-CH ACPR  
3-CH ALTCPR  
IDAC  
V-1  
I-CH  
PA  
11  
O°  
1
1-CH ACPR  
1-CH NOISE  
EN  
90°  
BALUN  
Q-CH  
V-1  
7
5
QDAC  
1-CH ALTCPR  
3-CH NOISE  
–80  
–90  
–150  
–160  
BASEBAND  
GENERATOR  
–30  
–20  
–15  
–10  
–5  
0
–25  
RF OUTPUT POWER PER CARRIER (dBm)  
5558 TA01  
3
2, 4, 6, 9, 10,  
12, 15, 17  
5558 TA01b  
VCO/SYNTHESIZER  
5558fa  
1
LT5558  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
ORDER PART NUMBER  
Supply Voltage ........................................................5.5V  
Common-Mode Level of BBPI, BBMI and  
BBPQ, BBMQ .......................................................2.5V  
Voltage on any Pin  
LT5558EUF  
16 15 14 13  
EN  
GND  
LO  
1
2
3
4
12 GND  
11 RF  
Not to Exceed....................500mV to (V + 500mV)  
GND  
GND  
10  
9
CC  
GND  
Operating Ambient Temperature  
5
6
7
8
UF PART MARKING  
5558  
(Note 2) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
T
= 125°C, θ = 37°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 17) IS GND, MUST BE  
SOLDERED TO PCB  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz, f = 902MHz,  
DC  
CC  
A
LO  
RF  
P
LO  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1V , baseband input frequency = 2MHz, I and Q 90° shifted  
(upper sideband selection). P  
= –10dBm, unless otherwise noted. (Note 3)  
RF(OUT)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
RF Output (RF)  
f
RF  
RF Frequency Range  
–3 dB Bandwidth  
–1 dB Bandwidth  
600 to 1100  
680 to 960  
MHz  
MHz  
S
S
RF Output Return Loss  
RF Output Return Loss  
RF Output Noise Floor  
EN = High (Note 6)  
EN = Low (Note 6)  
–15.8  
–13.3  
dB  
dB  
22, ON  
22, OFF  
NFloor  
No Input Signal (Note 8)  
–158  
–152.7  
–152.3  
dBm/Hz  
dBm/Hz  
dBm/Hz  
P
RF  
P
RF  
= 4dBm (Note 9)  
= 4dBm (Note 10)  
G
G
Conversion Power Gain  
Conversion Voltage Gain  
Absolute Output Power  
3 • LO Conversion Gain Difference  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
Image Rejection  
P
/P  
9.7  
–5.1  
–1.1  
–26.5  
7.8  
dB  
dB  
P
OUT IN,I&Q  
20 • Log (V  
,
/V  
)
V
OUT 50Ω IN, DIFF, I or Q  
P
OUT  
1V  
CW Signal, I and Q  
dBm  
dB  
P-P DIFF  
G
(Note 17)  
(Note 7)  
3LO vs LO  
OP1dB  
OIP2  
OIP3  
IR  
dBm  
dBm  
dBm  
dBc  
dBm  
dBm  
%
(Notes 13, 14)  
(Notes 13, 15)  
(Note 16)  
65  
22.4  
–49  
–43.7  
–60  
0.6  
LOFT  
Carrier Leakage  
EN = High, P = 0dBm (Note 16)  
LO  
(LO Feedthrough)  
EN = Low, P = 0dBm (Note 16)  
LO  
EVM  
GSM Error Vector Magnitude  
P
RF  
= 2dBm  
LO Input (LO)  
f
LO Frequency Range  
LO Input Power  
600 to 1100  
0
MHz  
dBm  
LO  
P
–10  
5
LO  
5558fa  
2
LT5558  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz, f = 902MHz,  
A LO RF  
DC  
CC  
P
LO  
= 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1V , baseband input frequency = 2MHz, I and Q 90° shifted  
(upper sideband selection). P  
= –10dBm, unless otherwise noted. (Note 3)  
RF(OUT)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
–10.6  
–2.5  
14.6  
16.4  
–3.3  
MAX  
UNITS  
dB  
S
LO Input Return Loss  
LO Input Return Loss  
EN = High (Note 6)  
EN = Low (Note 6)  
11, ON  
S
dB  
11, OFF  
NF  
LO  
LO Input Referred Noise Figure  
LO to RF Small-Signal Gain  
LO Input 3rd Order Intercept  
(Note 5) at 900MHz  
(Note 5) at 900MHz  
(Note 5) at 900MHz  
dB  
G
LO  
dB  
IIP3  
dBm  
LO  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
–3dB Bandwidth  
400  
2.1  
MHz  
V
BB  
V
CMBB  
DC Common-mode Voltage  
Differential Input Resistance  
Common Mode Input Resistance  
(Note 4)  
R
R
Between BBPI and BBMI (or BBPQ and BBMQ)  
(Note 20)  
3
kΩ  
Ω
IN, DIFF  
IN, CM  
100  
I
Common Mode Compliance Current range (Notes 18, 20)  
–820 to 440  
–46  
μA  
dBm  
CM, COMP  
P
Carrier Feedthrough on BB  
Input 1dB compression point  
I/Q Absolute Gain Imbalance  
I/Q Absolute Phase Imbalance  
P
= 0 (Note 4)  
LO-BB  
OUT  
IP1dB  
Differential Peak-to-Peak (Notes 7, 19)  
3.4  
V
P-P,DIFF  
ΔG  
0.05  
0.2  
dB  
I/Q  
I/Q  
Δϕ  
Deg  
Power Supply (V  
)
CC  
V
Supply Voltage  
4.5  
5
5.25  
135  
50  
V
mA  
μA  
μs  
CC  
I
I
t
t
Supply Current  
EN = High  
108  
0.1  
0.3  
1.1  
CC(ON)  
CC(OFF)  
ON  
Supply Current, Sleep mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Note 11)  
EN = High to Low (Note 12)  
Turn-Off Time  
μs  
OFF  
Enable (EN), Low = Off, High = On  
Enable  
Input High Voltage  
Input High Current  
EN = High  
EN = 5V  
1
V
μA  
230  
Shutdown  
Input Low Voltage  
EN = Low  
0.5  
V
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Specifications over the –40°C to 85°C temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set  
in such a way that the two resulting RF tones are –10dBm each.  
Note 14: IM2 measured at LO frequency + 4.1MHz  
Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency +  
2.2MHz.  
Note 16: Amplitude average of the characterization data set without image  
or LO feedthrough nulling (unadjusted).  
Note 17: The difference in conversion gain between the spurious signal at  
f = 3 • LO - BB versus the conversion gain at the desired signal at f = LO +  
BB for BB = 2MHz and LO = 900MHz.  
Note 3: Tests are performed as shown in the configuration of Figure 7.  
Note 4: At each of the four baseband inputs BBPI, BBMI, BBPQ and BBMQ.  
Note 5: V  
- V  
BBMI  
= 1V , V  
- V  
= 1V .  
BBMQ DC  
BBPI  
DC BBPQ  
Note 6: Maximum value within –1dB bandwidth.  
Note 18: Common mode current range where the common mode (CM)  
feedback loop biases the part properly. The common mode current is the  
sum of the current flowing into the BBPI (or BBPQ) pin and the current  
flowing into the BBMI (or BBMQ) pin.  
Note 19: The input voltage corresponding to the output P1dB.  
Note 20: BBPI and BBMI shorted together (or BBPQ and BBMQ shorted  
Note 7: An external coupling capacitor is used in the RF output line.  
Note 8: At 20MHz offset from the LO signal frequency.  
Note 9: At 20MHz offset from the CW signal frequency.  
Note 10: At 5MHz offset from the CW signal frequency.  
Note 11: RF power is within 10% of final value.  
together).  
Note 12: RF power is at least 30dB lower than in the ON state.  
5558fa  
3
LT5558  
TYPICAL PERFORMANCE CHARACTERISTICS V  
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC  
A
LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1V , baseband input frequency = 2MHz, I and Q 90°  
LO DC  
shifted, without image or LO feedthrough nulling. f = f + f (upper side-band selection). P = –10dBm (–10dBm/tone for  
RF  
BB  
LO  
RF(OUT)  
2-tone measurements), unless otherwise noted. (Note 3)  
RF Output Power vs LO Frequency  
at 1V Differential  
Voltage Gain vs LO Frequency  
P-P  
Supply Current vs Supply Voltage  
Baseband Drive  
130  
2
0
–2  
–4  
120  
110  
100  
90  
–2  
–6  
85°C  
–4  
–6  
–8  
–10  
–12  
–14  
25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–8  
–40°C  
–10  
–12  
–16  
4.5  
4.75  
5
5.25  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
550  
1150 1250  
550  
1150 1250  
SUPPLY VOLTAGE (V)  
5558 G01  
5558 G02  
5558 G03  
Output 1dB Compression vs LO  
Frequency  
Output IP3 vs LO Frequency  
Output IP2 vs LO Frequency  
26  
24  
75  
70  
65  
60  
55  
50  
45  
10  
8
f
f
f
= f  
,
+ f  
,
+ f  
LO  
IM2 BB  
BB  
BB  
1
BB  
2
f
f
, 1 = 2MHz  
, 2 = 2.1MHz  
BB  
BB  
,
,
= 2MHz  
1
2
= 2.1MHz  
22  
6
20  
18  
16  
14  
4
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
2
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
0
12  
–2  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
550  
1150 1250  
550  
1150 1250  
550  
1150 1250  
5558 G04  
5558 G05  
5558 G06  
LO Feedthrough to RF Output vs  
LO Frequency  
2 • LO Leakage to RF Output vs  
2 • LO Frequency  
3 • LO Leakage to RF Output vs  
3 • LO Frequency  
–40  
–45  
–50  
–55  
–60  
–45  
–50  
–55  
–60  
–65  
–70  
–40  
–42  
–44  
–46  
–48  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
1.3 1.5 1.7 1.9 2.1  
2 • LO FREQUENCY (GHz)  
1.95 2.25 2.55 2.85 3.15  
3 • LO FREQUENCY (GHz)  
550  
1150 1250  
1.1  
2.3 2.5  
1.65  
3.5 3.75  
5558 G07  
5558 G08  
5558 G09  
5558fa  
4
LT5558  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
A LO  
TYPICAL PERFORMANCE CHARACTERISTICS  
CC  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1V , baseband input frequency = 2MHz, I and Q 90°  
LO DC  
shifted, without image or LO feedthrough nulling. f = f + f (upper side-band selection). P  
= –10dBm (–10dBm/tone for  
RF  
BB  
LO  
RF(OUT)  
2-tone measurements), unless otherwise noted. (Note 3)  
LO and RF Port Return Loss  
vs RF Frequency  
Noise Floor vs RF Frequency  
Image Rejection vs LO Frequency  
–157  
–158  
–159  
–160  
–161  
–162  
–30  
–35  
–40  
–45  
–50  
–55  
0
–10  
–20  
–30  
–40  
f
= 900MHz (FIXED)  
LO  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
LO PORT, EN = LOW  
NO BASEBAND SIGNAL  
LO PORT, EN = HIGH, P = 0dBm  
LO  
RF PORT, EN = LOW  
RF PORT, EN = HIGH,  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
P
= 0dBm  
LO  
LO PORT, EN = HIGH,  
= –10dBm  
P
LO  
RF PORT, EN = HIGH, NO LO  
650 750 850 950 1050  
1150 1250  
650 750 850 950 1050  
RF FREQUENCY (MHz)  
550  
1150 1250  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
550  
1150 1250  
550  
FREQUENCY (MHz)  
5558 G24  
5558 G10  
5558 G25  
Absolute I/Q Gain Imbalance vs  
LO Frequency  
Absolute I/Q Phase Imbalance vs  
LO Frequency  
Voltage Gain vs LO Power  
0.2  
4
–2  
–4  
–6  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
3
2
1
0
–8  
–10  
–12  
0.1  
–14  
–16  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
–18  
–20  
0
550  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
650 750 850 950 1050  
LO FREQUENCY (MHz)  
–16 –12 –8  
–4  
0
1150 1250  
550  
1150 1250  
–20  
4
8
LO INPUT POWER (dBm)  
5558 G11  
5558 G12  
5558 G13  
Output IP3 vs LO Power  
LO Feedthrough vs LO Power  
Image Rejection vs LO Power  
24  
22  
20  
18  
16  
14  
12  
10  
–40  
–42  
–44  
–46  
–48  
–50  
–35  
–40  
–45  
–50  
–55  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
f
= 2MHz  
BB, 1  
f
= 2.1MHz  
BB, 2  
–16 –12 –8  
–4  
0
–16 –12 –8  
–4  
0
–16 –12 –8  
–4  
0
–20  
4
8
–20  
4
8
–20  
4
8
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5558 G14  
5558 G15  
5558 G16  
5558fa  
5
LT5558  
TYPICAL PERFORMANCE CHARACTERISTICS V  
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC  
A
LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1V , baseband input frequency = 2MHz, I and Q 90°  
LO DC  
shifted, without image or LO feedthrough nulling. f = f + f (upper side-band selection). P  
= –10dBm (–10dBm/tone for  
RF  
BB  
LO  
RF(OUT)  
2-tone measurements), unless otherwise noted. (Note 3)  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage and  
Temperature  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage and  
Supply Voltage  
LO Feedthrough to RF Output vs  
CW Baseband Voltage  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
–30  
–35  
–40  
–45  
–50  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
0
0
RF  
RF  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
HD3  
HD3  
HD2  
HD2  
–40°C  
25°C  
85°C  
4.5V  
5V  
5.5V  
1
2
3
1
2
3
0
4
5
)
0
4
5
)
1
2
3
0
4
5
)
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
P-P, DIFF  
P-P, DIFF  
5558 G17  
P-P, DIFF  
5558 G18  
5558 G19  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
BB  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
BB  
LO  
BB  
LO  
LO  
BB  
LO  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
BB  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
BB  
LO  
BB  
LO  
LO  
BB  
LO  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Temperature  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Supply Voltage  
Image Rejection vs CW Baseband  
Voltage  
–40  
–45  
–50  
–55  
–60  
10  
0
10  
0
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
RF  
RF  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
IM2  
IM3  
IM2  
IM3  
–40°C  
25°C  
85°C  
4.5V  
5V  
5.5V  
1
2
3
0
4
5
)
0.1  
1
10  
0.1  
1
10  
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
)
I AND Q BASEBAND VOLTAGE (V  
)
P-P, DIFF  
P-P, DIFF, EACH TONE  
P-P, DIFF, EACH TONE  
5558 G21  
5558 G22  
5558 G20  
IM2 = POWER AT f + 4.1MHz  
LO  
IM2 = POWER AT f + 4.1MHz  
LO  
IM3 = MAX POWER AT f + 1.9MHz OR f + 2.2MHz  
IM3 = MAX POWER AT f + 1.9MHz OR f + 2.2MHz  
LO  
LO  
LO  
LO  
5558fa  
6
LT5558  
TYPICAL PERFORMANCE CHARACTERISTICS V  
= 5V, EN = High, T = 25°C, f = 900MHz,  
CC  
A
LO  
f
RF  
= 902MHz, P = 0dBm. BBPI, BBMI, BBPQ, BBMQ CM input voltage = 2.1V , baseband input frequency = 2MHz, I and Q 90°  
LO DC  
shifted, without image or LO feedthrough nulling. f = f + f (upper side-band selection). P = –10dBm (–10dBm/tone for  
RF  
BB  
LO  
RF(OUT)  
2-tone measurements), unless otherwise noted. (Note 3)  
LO Leakage Distribution  
Gain Distribution  
Noise Floor Distribution  
40  
30  
20  
10  
0
20  
15  
10  
5
30  
25  
V
= 400mV  
P-P  
–40°C  
25°C  
85°C  
V
= 400mV  
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
BB  
BB  
P-P  
20  
15  
10  
5
0
0
–6.5 –6 –5.5 –5  
GAIN (dB)  
–50  
–48 –46 –44 –42 –40 –38 –36  
8
–7.5 –7  
–4.5 –4 –3.5  
–158  
–157.5  
NOISE FLOOR (dBm/Hz)  
–157  
LO LEAKAGE (dBm)  
5558 G28  
5558 G26  
5558 G27  
LO Feedthrough and Image  
Rejection vs Temperature After  
Calibration at 25°C  
Image Rejection Distribution  
20  
15  
10  
5
–40  
–40°C  
25°C  
85°C  
V
= 400mV  
P-P  
CALIBRATED WITH P = –10dBm  
RF  
BB  
f
f
= 2MHz, 0°  
BBQ  
BBI  
= 2MHz, 90° + ϕ  
CAL  
–50  
–60  
–70  
LO FEEDTHROUGH  
5
–80  
–90  
IMAGE REJECTION  
0
<–66 –62 –58 –54 –50  
IMAGE REJECTION (dBc)  
–46 –42  
–40  
–20  
0
20  
40  
60  
80  
TEMPERATURE (°C)  
5558 G29  
5558 G30  
PIN FUNCTIONS  
EN (Pin 1): Enable Input. When the Enable pin voltage is  
higher than 1V, the IC is turned on. When the Enable volt-  
age is less than 0.5V or if the pin is disconnected, the IC  
is turned off. The voltage on the Enable pin should never  
other internally. Pins 2 and 4 are connected to each other  
internally and function as the ground return for the LO  
signal. Pins 10 and 12 are connected to each other inter-  
nally and function as the ground return for the on-chip RF  
balun. For best RF performance, Pins 2, 4, 6, 9, 10, 12,  
15 and the Exposed Pad, Pin 17, should be connected to  
the printed circuit board ground plane.  
exceed V by more than 0.5V, in order to avoid possible  
CC  
damage to the chip.  
GND (Pins 2, 4, 6, 9, 10, 12, 15, 17): Ground. Pins 6, 9,  
15 and the Exposed Pad, Pin 17, are connected to each  
5558fa  
7
LT5558  
PIN FUNCTIONS  
LO(Pin3):LOInput.TheLOinputisanAC-coupledsingle- 0.1μF capacitors for decoupling to ground on each of  
ended input with approximately 50Ω input impedance at these pins.  
RF frequencies. Externally applied DC voltage should be  
RF (Pin 11): RF Output. The RF output is an AC-coupled  
within the range –0.5V to (V + 0.5V) in order to avoid  
CC  
single-ended output with approximately 50Ω output im-  
turning on ESD protection diodes.  
pedance at RF frequencies. Externally applied DC voltage  
BBPQ, BBMQ (Pins 7, 5): Baseband Inputs for the should be within the range –0.5V to (V + 0.5V) in order  
Q-channel. Thedifferentialinputimpedanceis3kΩ. These to avoid turning on ESD protection diodes.  
pins are internally biased at about 2.1V. Applied common  
mode voltage must stay below 2.5V.  
CC  
BBPI, BBMI (Pins 14, 16): Baseband Inputs for the  
I-channel. The differential input impedance is 3kΩ. These  
V
(Pins 8, 13): Power Supply. Pins 8 and 13 are con- pins are internally biased at about 2.1V. Applied common  
CC  
nected to each other internally. It is recommended to use mode voltage must stay below 2.5V.  
BLOCK DIAGRAM  
V
CC  
8
13  
LT5558  
BBPI 14  
BBMI 16  
V-I  
0°  
11 RF  
90°  
BALUN  
BBPQ  
BBMQ  
7
5
1
EN  
V-I  
2
4
6
9
3
10  
12  
15  
GND  
17  
5558 BD  
LO  
GND  
APPLICATIONS INFORMATION  
The LT5558 consists of I and Q input differential voltage-  
to-current converters, I and Q up-conversion mixers, an  
RF output signal combiner/balun, an LO quadrature phase  
generator and LO buffers.  
are then applied to on-chip buffers which drive the up-  
conversion mixers. Both the LO input and RF output are  
single-ended, 50Ω-matched and AC coupled.  
Baseband Interface  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI, and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
up-converting mixers. The mixer outputs are combined  
in an RF output balun, which also transforms the output  
impedance to 50Ω. The center frequency of the resulting  
RF signal is equal to the LO signal frequency. The LO in-  
put drives a phase shifter which splits the LO signal into  
in-phase and quadrature LO signals. These LO signals  
The baseband inputs (BBPI, BBMI), (BBPQ, BBMQ) pres-  
ent a differential input impedance of about 3kΩ. At each  
of the four baseband inputs, a low-pass filter using 200Ω  
and 1.8pF to ground is incorporated (see Figure 1), which  
limits the baseband –1dB bandwidth to approximately  
250MHz. The common-mode voltage is about 2.1V and  
is slightly temperature dependent. At T = -40°C, the  
A
common-mode voltage is about 2.28V and at T = 85°C  
A
it is about 2.01V.  
5558fa  
8
LT5558  
APPLICATIONS INFORMATION  
V
4.5V TO 5.25V  
RF OUT  
CC  
C
LT5558  
RF  
C5  
8, 13 11  
1
V
CC  
= 5V  
BALUN  
C1  
C2  
C3  
V
RF EN  
CC  
14  
DC  
7
BBPI BBPQ  
2.1V  
2.1V  
FROM Q  
LOPI  
DC  
BB  
SOURCE  
BB  
SOURCE  
LT5558  
C4  
16  
5
2.1V  
LOMI  
BBMI BBMQ  
2.1V  
DC  
DC  
LO  
GND  
5558 F03  
2, 4, 6, 9, 10,  
12, 15, 17  
3
200  
BBPI  
V
REF  
= 0.5V  
1.3k  
1.3k  
1.8P  
1.8P  
CM  
Figure 3. AC-Coupled Baseband Interface  
low-frequencyhigh-passcornertogetherwiththeLT5558’s  
differential input impedance of 3kΩ. Usually, capacitors  
C1 to C4 will be chosen equal and in such a way that the  
200  
BBMI  
–3dBcornerfrequencyf  
=1/(πR ,  
C1)ismuch  
–3dB  
IN DIFF  
5558 F01  
GND  
lower than the lowest baseband frequency.  
Figure 1. Simplifed Circuit Schematic of the LT5558  
(Only I-Half is Drawn)  
DC coupling between the DAC outputs and the LT5558  
baseband inputs is recommended, because AC coupling  
willintroducealow-frequencytimeconstantthatmayaffect  
the signal integrity. Active level shifters may be required to  
adapt the common mode level of the DAC outputs to the  
common mode input voltage of the LT5558. Such circuits  
may, however, suffer degraded LO leakage performance  
as small DC offsets and variations over temperature  
accumulate. A better scheme is shown in Figure 16, where  
feedback is used to track out these variations.  
If the I/Q signals are DC-coupled to the LT5558, it is  
important that the applied common-mode voltage level  
of the I and Q inputs is about 2.1V in order to properly  
bias the LT5558. Some I/Q generators allow setting the  
common-mode voltage independently. In this case, the  
common-modevoltageofthosegeneratorsmustbesetto  
1.05VtomatchtheLT5558internalbiaswheretheinternal  
DC voltage of the signal generators is set to 2.1V due to  
the source-load voltage division (See Figure 2).  
LO Section  
The LT5558 baseband inputs should be driven differen-  
tially, otherwise, the even-order distortion products will  
degrade the overall linearity severely. Typically, a DAC  
will be the signal source for the LT5558. A pulse-shaping  
filter should be placed between the DAC outputs and the  
LT5558’s baseband inputs.  
The internal LO input amplifier performs single-ended to  
differential conversion of the LO input signal. Figure 4  
shows the equivalent circuit schematic of the LO input.  
The internal, differential LO signal is split into in-phase  
and quadrature (90° phase shifted) signals that drive  
LO buffer sections. These buffers drive the double bal-  
anced I and Q mixers. The phase relationship between  
An AC-coupled baseband interface with the LT5558 is  
drawn in Figure 3. Capacitors C1 to C4 will introduce a  
V
CC  
GENERATOR  
GENERATOR  
LT5558  
1.5k  
50Ω  
50Ω  
1.05V  
2.1V  
DC  
CC  
20pF  
50Ω  
LO  
INPUT  
+
+
+
DC  
2.1V  
2.1V  
2.1V  
DC  
DC  
50Ω  
5558 F02  
5558 F04  
Figure 2. DC Voltage Levels for a Generator Programmed at  
1.05VDC for a 50Ω Load and the LT5558 as a Load  
Figure 4. Equivalent Circuit Schematic of the LO Input  
5558fa  
9
LT5558  
APPLICATIONS INFORMATION  
the LO input and the internal in-phase LO and quadra-  
ture LO signals is fixed, and is independent of start-up  
conditions. The phase shifters are designed to deliver  
accurate quadrature signals for an LO frequency near  
900MHz. For frequencies significantly below 750MHz  
or above 1.1GHz, the quadrature accuracy will diminish,  
causing the image rejection to degrade. The LO pin input  
impedance is about 50Ω and the recommended LO input  
Table 2. LO Port Input Impedance vs Frequency for EN = Low  
and P = 0dBm  
LO  
FREQUENCY  
(MHz)  
S
11  
MAG  
0.464  
0.545  
0.630  
0.696  
0.737  
0.760  
0.768  
0.764  
ANGLE  
79.7  
INPUT IMPEDANCE (Ω)  
37.3 + j43.4  
500  
600  
72.1 + j74.8  
42.1  
700  
184.7 + j77.8  
203.6 – j120.8  
75.9 – j131.5  
36.7 – j99.0  
11.7  
800  
–12.7  
–32.6  
–48.8  
–62.4  
–74.3  
power window is –2dBm to + 2dBm. For P < –2dBm, the  
900  
LO  
gain, OIP2, OIP3, dynamic-range (in dBc/Hz) and image  
1000  
1100  
1200  
rejection will degrade, especially at T = 85°C.  
23.4 – j77.4  
A
17.8 – j62.8  
HarmonicspresentontheLOsignalcandegradetheimage  
rejection,becausetheyintroduceasmallexcessphaseshift  
in the internal phase splitter. For the second (at 1.8GHz)  
and third harmonics (at 2.7GHz) at –20dBc level, the in-  
troduced signal at the image frequency is about –61dBc  
or lower, corresponding to an excess phase shift much  
less than 1 degree. For the second and third harmonics at  
–10dBc, still the introduced signal at the image frequency  
isabout51dBc. Higherharmonicsthanthethirdwillhave  
less impact. The LO return loss typically will be better than  
10dB over the 750MHz to 1GHz range. Table 1 shows the  
LO port input impedance vs. frequency. The return loss  
RF Section  
Afterup-conversion,theRFoutputsoftheIandQmixersare  
combined. An on-chip balun performs internal differential  
tosingle-endedoutputconversion,whiletransformingthe  
output signal impedance to 50Ω. Table 3 shows the RF  
port output impedance vs frequency.  
Table 3. RF Port Output Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
FREQUENCY  
(MHz)  
S
22  
OUTPUT IMPEDANCE (Ω)  
22.8 + j4.9  
MAG  
0.380  
0.283  
0.159  
0.045  
0.101  
0.168  
0.206  
0.224  
ANGLE  
165.8  
141.9  
111.8  
37.2  
S
on the LO port can be improved at lower frequencies  
500  
600  
11  
by adding a shunt capacitor.  
30.2 + j11.4  
700  
42.7 + j12.9  
Table 1. LO Port Input Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
800  
53.7 + j3.0  
FREQUENCY  
(MHz)  
S
11  
900  
52.0 – j10.1  
–73.2  
–99.7  
–116.1  
–128.9  
MAG  
0.101  
0.127  
0.180  
0.237  
0.285  
0.295  
0.295  
0.318  
ANGLE  
81.3  
INPUT IMPEDANCE (Ω)  
50.5 + j10.3  
63.8 + j4.6  
1000  
1100  
1200  
44.8 – j15.2  
500  
600  
39.1 – j15.1  
16.0  
35.7 – j13.1  
700  
70.7 – j6.9  
–15.2  
–34.9  
–50.5  
–61.4  
–69.1  
–78.0  
800  
70.7 – j20.3  
63.9 – j30.6  
56.7 – j32.2  
52.1 – j31.3  
46.3 – j32.0  
900  
1000  
1100  
1200  
The input impedance of the LO port is different if the part  
is in shutdown mode. The LO input impedance for EN =  
Low is given in Table 2.  
5558fa  
10  
LT5558  
APPLICATIONS INFORMATION  
The RF output S22 with no LO power applied is given in  
Note that an ESD diode is connected internally from the  
RF output to the ground. For strong output RF signal  
levels (higher than 3dBm), this ESD diode can degrade  
the linearity performance if an external 50Ω termination  
impedanceisconnecteddirectlytoground.Topreventthis,  
a coupling capacitor can be inserted in the RF output line.  
This is strongly recommended during 1dB compression  
measurements.  
Table 4.  
Table 4. RF Port Output Impedance vs Frequency for EN = High  
and No LO Power Applied  
FREQUENCY  
(MHz)(  
S
22  
MAG  
0.367  
0.257  
0.118  
0.019  
0.118  
0.178  
0.209  
0.222  
ANGLE  
165.5  
OUTPUT IMPEDANCE (Ω)  
23.4 + j5.0  
500  
600  
31.7 + j10.7  
44.1 + j9.5  
142.0  
700  
116.1  
Enable Interface  
800  
50.9 – j1.7  
–60.8  
Figure 6 shows a simplified schematic of the EN pin inter-  
face. The voltage necessary to turn on the LT5558 is 1V.  
To disable (shut down) the chip, the enable voltage must  
be below 0.5V. If the EN pin is not connected, the chip is  
disabled. This EN = Low condition is guaranteed by the  
75kΩ on-chip pull-down resistor.  
900  
46.8 – j11.1  
40.8 – j13.5  
36.6 – j12.6  
34.3 – j10.5  
–99.3  
1000  
1100  
1200  
–115.5  
–128.1  
–139.0  
For EN = Low the S is given in Table 5.  
22  
It is important that the voltage at the EN pin does not  
To improve S for lower frequencies, a series capacitor  
22  
exceed V by more than 0.5V. If this should occur, the  
CC  
can be added to the RF output. At higher frequencies, a  
full-chip supply current could be sourced through the EN  
pin ESD protection diodes, which are not designed for this  
purpose. Damage to the chip may result.  
shunt inductor can improve the S . Figure 5 shows the  
22  
equivalent circuit schematic of the RF output.  
Table 5. RF Port Output Impedance vs Frequency for EN = Low  
V
FREQUENCY  
(MHz)  
S
22  
CC  
MAG  
0.398  
0.311  
0.200  
0.090  
0.092  
0.158  
0.203  
0.225  
ANGLE  
166.5  
142.9  
112.9  
58.1  
OUTPUT IMPEDANCE (Ω)  
21.8 + j4.8  
500  
600  
EN  
28.4 + j11.8  
40.2 + j15.4  
54.3 + j8.3  
75k  
25k  
700  
800  
900  
56.7 – j7.2  
–43.3  
–83.8  
–105.0  
–120.0  
5558 F06  
1000  
1100  
1200  
49.2 – j15.8  
41.9 – j17.0  
37.3 – j15.3  
Figure 6. EN Pin Interface  
Evaluation Board  
Figure 7 shows the evaluation board schematic. A good  
ground connection is required for the LT5558’s Exposed  
Pad. If this is not done properly, the RF performance will  
degrade.Additionally,theExposedPadprovidesheatsink-  
ing for the part and minimizes the possibility of the chip  
overheating. R1 (optional) limits the EN pin current in the  
V
CC  
21pF  
RF  
OUTPUT  
1pF  
7nH  
52Ω  
5558 F05  
event that the EN pin is pulled high while the V inputs  
CC  
are low. The application board PCB layouts are shown in  
Figures 8 and 9.  
Figure 5. Equivalent Circuit Schematic of the RF Output  
5558fa  
11  
LT5558  
APPLICATIONS INFORMATION  
J1  
J2  
BBIM  
BBIP  
V
CC  
C2  
16  
BBMI GND BBPI  
EN  
15  
14  
13  
R1  
100nF  
V
CC  
100  
1
2
3
4
12  
11  
10  
9
GND  
V
EN  
J3  
CC  
RF  
OUT  
GND  
LO  
RF  
GND  
GND  
GND  
J4  
LO  
IN  
LT5558  
GND  
17  
BBMQ GND BBPQ  
V
CC  
5
6
7
8
C1  
100nF  
J5  
BBQM  
J6  
GND  
BBQP  
BOARD NUMBER: DC1017A  
Figure 9. Bottom Side of Evaluation Board  
5558 F07  
Figure 7. Evaluation Circuit Schematic  
If the output power is high, the ACPR will be limited by the  
linearity performance of the part. If the output power is  
low, the ACPR will be limited by the noise performance of  
the part. In the middle, an optimum ACPR is obtained.  
BecauseoftheLT5558’sveryhighdynamic-range,thetest  
equipment can limit the accuracy of the ACPR measure-  
ment. Consult Design Note 375 or the factory for advice  
on ACPR measurement if needed.  
The ACPR performance is sensitive to the amplitude mis-  
match of the BBIP and BBIM (or BBQP and BBQM) inputs.  
This is because a difference in AC current amplitude will  
giverisetoadifferenceinamplitudebetweentheeven-order  
harmonic products generated in the internal V-I converter.  
As a result, they will not cancel out entirely. Therefore, it  
is important to keep the amplitudes at the BBIP and BBIM  
(or BBQP and BBQM) inputs as equal as possible.  
LO feedthrough and image rejection performance may  
be improved by means of a calibration procedure. LO  
feedthrough is minimized by adjusting the differential DC  
offset at the I and the Q baseband inputs. Image rejec-  
tion can be improved by adjusting the gain and the phase  
difference between the I and the Q baseband inputs. The  
LO feedthrough and Image Rejection can also change  
as a function of the baseband drive level, as depicted in  
Figure 14.  
Figure 8. Component Side of Evaluation Board  
Application Measurements  
TheLT5558isrecommendedforbase-stationapplications  
using various modulation formats. Figure 10 shows a  
typical application.  
Figure 11 shows the ACPR performance for CDMA2000  
usingoneandthreechannelmodulation.Figures12and13  
illustrate the 1- and 3-channel CDMA2000 measurement.  
To calculate ACPR, a correction is made for the spectrum  
analyzer noise floor (Application Note 99).  
5558fa  
12  
LT5558  
APPLICATIONS INFORMATION  
5V  
BASEBAND  
GENERATOR  
V
100nF  
CC 8, 13  
×2  
LT5558  
14  
RF = 600MHz  
TO 1100MHz  
I-DAC  
V-I  
I-CHANNEL  
16  
11  
PA  
0°  
90°  
1
EN  
BALUN  
Q-CHANNEL  
V-I  
7
5
Q-DAC  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
5558 F10  
Figure 10. 600MHz to 1.1GHz Direct Conversion Transmitter Application  
–40  
–50  
–60  
–70  
–110  
–120  
–130  
–140  
–30  
–40  
DOWNLINK TEST  
MODEL 64 DPCH  
DOWNLINK  
TEST  
MODEL  
–50  
3-CH ACPR  
3-CH ALTCPR  
64 DPCH  
–60  
–70  
1-CH ACPR  
1-CH NOISE  
–80  
UNCORRECTED  
SPECTRUM  
–90  
–100  
–110  
1-CH ALTCPR  
3-CH NOISE  
–80  
–90  
–150  
–160  
SPECTRUM ANALYSER NOISE FLOOR  
CORRECTED SPECTRUM  
–120  
–130  
–30  
–20  
–15  
–10  
–5  
0
–25  
894  
896 900  
898  
902  
904  
906  
RF OUTPUT POWER PER CARRIER (dBm)  
RF FREQUENCY (MHz)  
5558 TA01b  
5558 F13  
Figure 11. ACPR, ALTCPR and Noise for CDMA2000 Modulation  
Figure 13. 3-Channel CDMA2000 Spectrum  
Example: RFID Application  
–30  
DOWNLINK TEST  
–40  
–50  
–60  
–70  
–80  
MODEL 64 DPCH  
In Figure 15 the interface between the LTC1565 (U2, U3)  
and the LT5558 is designed for RFID applications. The  
LTC1565 is a seventh-order, 650kHz, continuous-time,  
linear-phase, lowpass filter. The optimum output com-  
mon-mode level of the LTC1565 is about 2.5V and the  
optimum input common-mode level of the LT5558 is  
around 2.1V and is temperature dependent. To adapt the  
common-mode level of the LTC1565 to the LT5558, a level  
shift network consisting of R1 to R6 and R11 to R16 is  
used. The output common-mode level of the LTC1565 can  
be adjusted by overriding the internally generated voltage  
on pin 3 of the LTC1565.  
–90 UNCORRECTED  
SPECTRUM  
CORRECTED  
SPECTRUM  
–100  
–110  
–120  
–130  
SPECTRUM ANALYSER NOISE FLOOR  
896.25 897.75 899.25 900.75 902.25 903.75  
RF FREQUENCY (MHz)  
5558 F12  
Figure 12. 1-Channel CDMA2000 Spectrum  
5558fa  
13  
LT5558  
APPLICATIONS INFORMATION  
U4’s stability while driving the large supply decoupling  
capacitors C3 and C4. This corrected common-mode  
voltage is applied to the common-mode input pins of U2  
and U3 (pins 3). This results in a positive feedback loop  
for the common mode voltage with a loop gain of about  
-10dB.Thistechniqueensuresthatthecurrentcompliance  
on the baseband input pins of the LT5558 is not exceeded  
undersupplyvoltageortemperatureextremes,andinternal  
diode voltage shifts or combinations of these. The core  
current of the LT5558 is thus maintained at its designed  
level for optimum performance. The recommended com-  
mon-mode voltage applied to the inputs of the LTC1565  
is about 2V. Resistor tolerances are recommended 1%  
accuracy or better. The total current consumption is about  
160mAandthenoiseoorat20MHzoffsetis147dBm/Hz  
10  
V
= 5V  
CC  
–40°C  
EN = HIGH  
P
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
RF  
85°C  
25°C  
f
f
f
f
= 900MHz,  
LO  
BBI  
BBQ  
= 2MHz, 0°  
= 2MHz, 90°  
= f + f  
RF BB LO  
LOFT  
P
= 0dBm  
LO  
85°C  
–40°C  
IR  
–40°C  
25°C  
0
1
2
3
4
5
I AND Q BASEBAND VOLTAGE (V  
)
P-P,DIFF  
5558 F14  
Figure 14. LO Feedthrough and Image Rejection vs  
Baseband Drive Voltage After Calibration at 25°C  
The common-mode voltage on the LT5558 is sampled  
using resistors R7, R8, R17 and R18 and shifted up to  
about 2.5V using resistor R9. Op amp U4 compensates  
for the gain loss in the resistor networks and provides a  
low-ohmic drive to steer the common-mode input pins  
of U2 and U3. Resistors R20 and R21 improve op amp  
with 3.7dBm RF output power. For a 2V  
baseband  
PP, DIFF  
input swing, the output power at f + f is 1.6dBm  
LO  
BB  
and the third harmonic at f – 3f is –48.6dBm. For a  
LO  
BB  
2.6V  
input, the output power at f + f is 3.8dBm  
PP, DIFF  
LO BB  
and the third harmonic at f – 3f is –40.5dBm.  
LO  
BB  
RF = 3dBm MAX  
V
4.5V to 5.25V  
CC  
R24  
3.32k  
R22  
22.1k  
U4  
+
4
3
LT1797  
5
2
1
R22  
22.1k  
R20  
249  
R5  
3.57k  
R6  
R9  
R16  
3.57k  
R15  
3.57k  
R21  
249Ω  
3.57k 88.7k  
C1, C2  
2 × 0.1µF  
8, 13 11  
1
R11  
499Ω  
R1  
499Ω  
V
RF EN  
U2  
U3  
CC  
BBPI  
2.1V  
DC  
2.1V  
14  
16  
7
5
1
2
8
7
DC  
8
7
1
2
+IN  
–IN  
+OUT  
–OUT  
BBPQ  
+OUT  
+IN  
–IN  
BB  
SOURCE  
BB  
SOURCE  
R3  
3.01k  
R7  
49.9k  
R17  
49.9k  
R13  
–OUT  
3.01k  
U1  
LTC1565-31  
LTC1565-31  
2.5V  
DC  
2.5V  
DC  
2.5V  
DC  
2.5V  
DC  
LT5558  
R4  
3.01k  
R8  
49.9k  
3
4
6
5
6
5
3
4
R18  
49.9k  
R14  
GND  
V–  
V+  
V+  
SHDN  
GND  
V–  
R2  
499Ω  
R12  
499Ω  
C3  
0.1µF  
C4  
0.1µF  
3.01k  
SHDN  
BBMQ  
LO  
BBMI  
GND  
2.1V  
2.1V  
DC  
DC  
5558 F16  
2, 4, 6, 9, 10  
12, 15, 17  
3
Figure 15. Baseband Interface Schematic of the LTC1565 with the LT5558 for RFID applications.  
5558fa  
14  
LT5558  
PACKAGE DESCRIPTION  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5558fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5558  
RELATED PARTS  
PART NUMBER DESCRIPTION  
COMMENTS  
Infrastructure  
LT5511  
LT5512  
High Linearity Upconverting Mixer  
DC to 3GHz High Signal Level Downconverting  
Mixer  
RF Output to 3GHz, 17dBm IIP3, Integrated LO Buffer  
DC to 3GHz, 17dBm IIP3, Integrated LO Buffer  
LT5514  
LT5515  
LT5516  
Ultralow Distortion, IF Amplifier/ADC Driver with 850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
Digitally Controlled Gain  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended LO and RF  
Ports, 4-Ch W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5526  
LT5527  
LT5528  
LT5568  
LT5572  
0.7GHz to 1.4GHz High Linearity Upconverting  
Mixer  
1.3GHz to 2.3GHz High Linearity Upconverting  
Mixer  
10MHz to 3700MHz High Linearity Upconverting 24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Mixer  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
Port Operation  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
High Linearity, Low Power Downconverting Mixer 3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
IIP3 = 23.5dBm and NF = 12.5dB at 1900MHz, 4.5V to 5.25V Supply, I = 78mA  
CC  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband Interface,  
DC  
4-Ch W-CDMA ACPR = –66dBc at 2.14GHz  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
RF Power Detectors  
LT5504  
800MHz to 2.7GHz RF Measuring Receiver  
80dB Dynamic Range, Temperature Compensated, 2.7V to 5.25V Supply  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz Loq RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
Precision 600MHz to 7GHz RF Detector with Fast 25ns Response Time, Comparator Reference Input, Latch Enable Input, –26dBm to  
Comparater  
+12dBm Input Range  
LT5537  
Wide Dynamic Range Loq RF/IF Detector  
Low Frequency to 800MHz, 83dB Dynamic Range, 2.7V to 5.25V Supply  
High Speed ADCs  
LTC2220-1  
12-Bit, 185Msps ADC  
Single 3.3V Supply, 910mW Consumption, 67.5dB SNR, 80dB SFDR, 775MHz Full  
Power BW  
LTC2249  
LTC2255  
14-Bit, 80Msps ADC  
14-Bit, 125Msps ADC  
Single 3V Supply, 222mW Consumption, 73dB SNR, 90dB SFDR  
Single 3V Supply, 395mW Consumption, 72.4dB SNR, 88dB SFDR, 640MHz Full  
Power BW  
5558fa  
LT 0706 REV A • PRINTED IN USA  
16 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
© LINEAR TECHNOLOGY CORPORATION 2006  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5558EUF#TRPBF

LT5558 - 600MHz to 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560

0.01MHz to 4GHz Low Power Active Mixer
Linear

LT5560EDD

0.01MHz to 4GHz Low Power Active Mixer
Linear

LT5560EDD#PBF

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560EDD#TR

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5560EDD#TRPBF

LT5560 - 0.01MHz to 4GHz Low Power Active Mixer; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568

200MHz to 6000MHz Quadrature Modulator with Ultrahigh OIP3
Linear

LT5568-2

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear

LT5568-2EUF#PBF

LT5568-2 - GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568-2EUF#TRPBF

LT5568-2 - GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568-2EUF-PBF

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear

LT5568-2EUF-TRPBF

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear