LT5568-2EUF-PBF [Linear]

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator; GSM / EDGE优化,高线性度直接正交调制器
LT5568-2EUF-PBF
型号: LT5568-2EUF-PBF
厂家: Linear    Linear
描述:

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
GSM / EDGE优化,高线性度直接正交调制器

GSM
文件: 总16页 (文件大小:300K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5568-2  
GSM/EDGE Optimized,  
High Linearity Direct  
Quadrature Modulator  
U
DESCRIPTIO  
FEATURES  
The LT®5568-2 is a direct I/Q modulator designed for high  
performance wireless applications, including wireless  
infrastructure. It allows direct modulation of an RF signal  
using differential baseband I and Q signals. It supports  
GSM, EDGE, CDMA, CDMA2000 and other systems that  
operate in the 850MHz to 965MHz band. It may be config-  
ured as an image reject upconverting mixer, by applying  
90° phase-shifted signals to the I and Q inputs. The I/Q  
baseband inputs consist of voltage-to-current converters  
that in turn drive double-balanced mixers. The outputs of  
these mixers are summed and applied to an on-chip RF  
transformer, which converts the differential mixer signals  
to a 50Ω single-ended output. The four balanced I and Q  
baseband input ports are intended for DC coupling from a  
source with a common mode voltage level of about 0.5V.  
The LO path consists of an LO buffer with single-ended  
input, and precision quadrature generators that produce  
the LO drive for the mixers. The supply voltage range is  
4.5V to 5.25V.  
Optimized Image Rejection for 850MHz to 965MHz  
High OIP3: +22.9dBm at 900MHz  
Low Output Noise Floor at 5MHz Offset:  
No RF: –159.4dBm/Hz  
P
OUT  
= 4dBm: –153dBm/Hz  
Integrated LO Buffer and LO Quadrature Phase  
Generator  
50Ω AC-Coupled Single-Ended LO and RF Ports  
50Ω DC Interface to Baseband Inputs  
Low Carrier Leakage: –43dBm at 900MHz  
High Image Rejection: –52dBc at 900MHz  
16-Lead 4mm × 4mm QFN Package  
U
APPLICATIO S  
Infrastructure Tx for GSM/Cellular Bands  
Image Reject Up-Converters for Cellular Bands  
Low-Noise Variable Phase-Shifter for 700MHz to  
1050MHz Local Oscillator Signals  
RFID Reader  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
TYPICAL APPLICATIO  
GSM EVM and Noise  
vs RF Output Power at 900MHz  
850MHz to 965MHz Direct Conversion Transmitter Application  
5
4
–96  
–98  
5V  
100nF  
x 2  
V
CC  
LT5568-2  
RF = 850MHz  
TO 965MHz  
I-DAC  
V-I  
I-CHANNEL  
3
–100  
PA  
NOISE  
0°  
EN  
90°  
BALUN  
2
1
0
–102  
–104  
–106  
Q-CHANNEL  
V-I  
Q-DAC  
EVM  
4
55682 TA01  
BASEBAND  
GENERATOR  
–10 –8 –6 –4 –2  
0
2
6
VCO/SYNTHESIZER  
GSM RF OUTPUT POWER (dBm)  
55682 TA02  
55682f  
1
LT5568-2  
W W U W  
ABSOLUTE AXI U RATI GS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................5.5V  
Common Mode Level of BBPI, BBMI and  
BBPQ, BBMQ .......................................................2.5V  
Operating Ambient Temperature  
16 15 14 13  
EN  
GND  
LO  
1
2
3
4
12 GND  
11 RF  
17  
(Note 2) ............................................... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Voltage on Any Pin  
GND  
GND  
10  
9
GND  
5
6
7
8
Not to Exceed...................... –500mV to V + 500mV  
CC  
UF PACKAGE  
16-LEAD (4mm × 4mm) PLASTIC QFN  
= 125°C, θ = 37°C/W  
CAUTION: This part is sensitive to ESD. It is very  
important that proper ESD precautions be observed  
when handling the LT5568-2.  
T
JMAX  
JA  
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead (4mm × 4mm) Plastic QFN  
TEMPERATURE RANGE  
40°C to 85°C  
LT5568-2EUF#PBF  
LT5568-2EUF#TRPBF  
55682  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz, f = 902MHz, P = 0dBm.  
A LO RF LO  
CC  
BBPI, BBMI, BBPQ, BBMQ inputs 0.54V , Baseband Input Frequency = 2MHz, I&Q 90° shifted (upper side-band selection).  
DC  
P
= –10dBm, unless otherwise noted. (Note 3)  
RF, OUT  
SYMBOL  
RF Output (RF)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
RF Frequency Range  
RF Frequency Range  
3dB Bandwidth  
1dB Bandwidth  
0.6 to 1.1  
0.7 to 1  
GHz  
GHz  
RF  
S
S
RF Output Return Loss  
RF Output Return Loss  
RF Output Noise Floor  
EN = High (Note 6)  
EN = Low (Note 6)  
16  
18  
dB  
dB  
22, ON  
22, OFF  
NFloor  
No Input Signal (Note 8)  
159.4  
153  
152.6  
dBm/Hz  
dBm/Hz  
dBm/Hz  
P
P
= 4dBm (Note 9)  
= 4dBm (Note 10)  
OUT  
OUT  
G
G
Conversion Power Gain  
P
/P  
–9  
6.8  
6.8  
2.8  
23  
8.6  
–3  
dB  
dB  
P
OUT IN, I&Q  
Conversion Voltage Gain  
Absolute Output Power  
20 • Log (V  
/V  
)
V
OUT, 50Ω IN, DIFF, I or Q  
P
OUT  
1V  
CW Signal, I and Q  
dBm  
dB  
P-P DIFF  
G
3 • LO Conversion Gain Difference  
Output 1dB Compression  
Output 2nd Order Intercept  
Output 3rd Order Intercept  
(Note 17)  
(Note 7)  
3LO vs LO  
OP1dB  
OIP2  
dBm  
dBm  
dBm  
(Notes 13, 14)  
(Notes 13, 15)  
59  
OIP3  
22.9  
55682f  
2
LT5568-2  
ELECTRICAL CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz, f = 902MHz, P = 0dBm.  
A LO RF LO  
CC  
BBPI, BBMI, BBPQ, BBMQ inputs 0.54V , Baseband Input Frequency = 2MHz, I&Q 90° shifted (upper side-band selection).  
DC  
P
= –10dBm, unless otherwise noted. (Note 3)  
RF, OUT  
SYMBOL  
IR  
PARAMETER  
CONDITIONS  
= 100kHz (Note 16)  
MIN  
TYP  
MAX  
UNITS  
Image Rejection  
f
52  
dBc  
BB  
LOFT  
Carrier Leakage  
(LO Feedthrough)  
EN = High, P = 0dBm (Note 16)  
43  
65  
dBm  
dBm  
LO  
EN = Low, P = 0dBm (Note 16)  
LO  
LO Input (LO)  
f
LO Frequency Range  
0.6 to 1.1  
0
GHz  
dBm  
dB  
LO  
P
S
S
LO Input Power  
10  
5
LO  
LO Input Return Loss  
EN = High (Note 6)  
EN = Low (Note 6)  
(Note 5) at 900MHz  
(Note 5) at 900MHz  
(Note 5) at 900MHz  
15  
2.5  
14.7  
14.7  
–3  
11, ON  
11, OFF  
LO Input Return Loss  
dB  
NF  
LO Input Referred Noise Figure  
LO to RF Small Signal Gain  
LO Input 3rd Order Intercept  
dB  
LO  
G
dB  
LO  
IIP3  
dBm  
LO  
Baseband Inputs (BBPI, BBMI, BBPQ, BBMQ)  
BW  
Baseband Bandwidth  
3dB Bandwidth  
(Note 4)  
380  
0.54  
47  
MHz  
V
BB  
V
DC Common Mode Voltage  
Single-Ended Input Resistance  
Carrier Feedthrough on BB  
Input 1dB Compression Point  
CMBB  
Ω
R
(Note 4)  
IN, SE  
P
P
OUT  
= 0 (Note 4)  
38  
4.3  
dBm  
LO2BB  
IP1dB  
Differential Peak-to-Peak (Notes 7, 18)  
V
P-P, DIFF  
Power Supply (V  
)
CC  
V
Supply Voltage  
4.5  
80  
5
5.25  
145  
100  
V
mA  
µA  
µs  
CC  
I
I
t
t
Supply Current  
EN = High  
110  
CC, ON  
CC, OFF  
ON  
Supply Current, Sleep Mode  
Turn-On Time  
EN = 0V  
EN = Low to High (Note 11)  
EN = High to Low (Note 12)  
0.3  
1.4  
Turn-Off Time  
µs  
OFF  
Enable (EN), Low = Off, High = On  
Enable  
Input High Voltage  
Input High Current  
EN = High  
EN = 5V  
1.0  
V
µA  
245  
Sleep  
Input Low Voltage  
Input Low Current  
EN = Low  
EN = 0V  
0.5  
V
µA  
0.01  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Specifications over the 40°C to 85°C temperature range are assured  
by design, characterization and correlation with statistical process controls.  
Note 10: At 5MHz offset from the CW signal frequency.  
Note 11: RF power is within 10% of final value.  
Note 12: RF power is at least 30dB lower than in the ON state.  
Note 13: Baseband is driven by 2MHz and 2.1MHz tones. Drive level is set  
in such a way that the two resulting RF tones are –10dBm each.  
Note 14: IM2 measured at LO frequency + 4.1MHz.  
Note 15: IM3 measured at LO frequency + 1.9MHz and LO frequency + 2.2MHz.  
Note 16: Amplitude average of the characterization data set without image  
or LO feedthrough nulling (unadjusted).  
Note 3: Tests are performed as shown in the configuration of Figure 7.  
Note 4: On each of the four baseband inputs BBPI, BBMI, BBPQ and BBMQ.  
Note 5: V(BBPI) – V(BBMI) = 1V , V(BBPQ) – V(BBMQ) = 1V  
.
DC  
DC  
Note 6: Maximum value within 850MHz to 965MHz.  
Note 17: The difference in conversion gain between the spurious signal at  
f = 3 • LO – BB versus the conversion gain at the desired signal at f = LO +  
BB for BB = 2MHz and LO = 900MHz.  
Note 7: An external coupling capacitor is used in the RF output line.  
Note 8: At 20MHz offset from the LO signal frequency.  
Note 9: At 20MHz offset from the CW signal frequency.  
Note 18: The input voltage corresponding to the output P1dB.  
55682f  
3
LT5568-2  
U W  
V
CC  
= 5V, EN = High, T = 25°C, f = 900MHz,  
A LO  
TYPICAL PERFOR A CE CHARACTERISTICS  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.54V , Baseband Input Frequency f = 2MHz, I&Q 90° shifted. f = f + f (upper  
DC BB RF BB LO  
LO  
sideband selection). P  
= –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
RF, OUT  
RF Output Power vs LO Frequency  
Supply Current vs Supply Voltage  
at 1V Differential Baseband Drive  
Voltage Gain vs LO Frequency  
P-P  
120  
110  
100  
90  
–4  
–6  
0
–2  
85°C  
–8  
–4  
25°C  
–10  
–12  
–14  
–16  
–18  
–6  
–8  
–40°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
–10  
–12  
–14  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5  
5
5.5  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
SUPPLY VOLTAGE (V)  
LO FREQUENCY (MHz)  
55682 G03  
55682 G02  
55682 G01  
Output 1dB Compression  
vs LO Frequency  
Output IP3 vs LO Frequency  
Output IP2 vs LO Frequency  
26  
24  
22  
20  
18  
16  
14  
12  
70  
65  
60  
55  
50  
45  
10  
8
f
f
= 2MHz  
= 2.1MHz  
BB, 1  
BB, 2  
f
f
f
= f  
+ f  
+ f  
IM2 BB, 1 BB, 2 LO  
= 2MHz  
BB, 1  
BB, 2  
= 2.1MHz  
6
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
4
5V, 85°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
2
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
55682 G04  
55682 G06  
55682 G05  
LO Feedthrough to RF Output  
vs LO Frequency  
2 • LO Leakage to RF Output  
vs 2 • LO Frequency  
3 • LO Leakage to RF Output  
vs 3 • LO Frequency  
–38  
–40  
–42  
–44  
–46  
–45  
–50  
–55  
–60  
–65  
–45  
–50  
–55  
–60  
–65  
–70  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
550 650 750 850 950 1050 1150 1250  
LO FREQUENCY (MHz)  
1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5  
2 • LO FREQUENCY (GHz)  
1.65 1.95 2.25 2.55 2.85 3.15 3.45 3.75  
3 • LO FREQUENCY (GHz)  
55682 G07  
55682 G08  
55682 G09  
55682f  
4
LT5568-2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
A LO  
CC  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.54V , Baseband Input Frequency f = 2MHz, I&Q 90° shifted. f = f + f (upper  
DC BB RF BB LO  
LO  
sideband selection). P  
= –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
RF, OUT  
LO and RF Port Return Loss  
vs RF Frequency  
Noise Floor vs RF Frequency  
Image Rejection vs LO Frequency  
–158  
–159  
–160  
–161  
–163  
–163  
–30  
0
–10  
–20  
–30  
–40  
5V, –40°C  
5V, 25°C  
LO PORT, EN = LOW  
f
= 900MHz  
LO  
(FIXED)  
NO RF  
5V, 85°C  
–35  
–40  
–45  
–50  
–55  
4.5V, 25°C  
5.5V, 25°C  
LO PORT, EN = HIGH,  
P
= 0dBm  
LO  
RF PORT,  
EN = LOW  
RF PORT,  
EN = HIGH,  
= 0dBm  
5V, –40°C  
5V, 25°C  
P
LO  
5V, 85°C  
LO PORT,  
4.5V, 25°C  
5.5V, 25°C  
EN = HIGH,  
RF PORT, EN = HIGH, No LO  
f
= 100kHz  
P
= 10dBm  
BB  
LO  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
550 650 750 850 950 1050 1150 1250  
RF FREQUENCY (MHz)  
LO FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
55682 G11  
55682 G12  
55682 G10  
LO Feedthrough to RF Output  
vs LO Input Power  
Image Rejection vs LO Input Power  
Voltage Gain vs LO Power  
–38  
–35  
–40  
–45  
–50  
–55  
–4  
–6  
P
BB  
= –10dBm  
= 100kHz  
RF  
f
–40  
–42  
–44  
–46  
48  
–50  
–8  
–10  
–12  
–14  
–16  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
5V, 85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
4.5V, 25°C  
5.5V, 25°C  
–20 –16 –12  
–8  
–4  
0
4
8
–20 –16 –12 –8  
–4  
0
4
8
–20 –16 –12  
–8  
–4  
0
4
8
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
55682 G13  
55682 G14  
55682 G15  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage  
and Temperature  
RF CW Output Power, HD2 and  
HD3 vs CW Baseband Voltage  
and Supply Voltage  
Output IP3 vs LO Power  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
10  
0
25  
23  
21  
19  
17  
15  
13  
f
f
= 2MHz  
= 2.1MHz  
RF  
BB, 1  
BB, 2  
RF  
0
–40°C  
25°C  
4.5V  
5V  
–10  
–20  
–30  
–40  
–50  
–60  
–10  
–20  
–30  
–40  
–50  
–60  
25°C  
85°C  
–40°C  
HD3  
85°C  
HD3  
HD2  
25°C  
–40°C  
5V  
HD2  
5.5V  
4.5V  
5V, –40°C  
5V, 25°C  
85°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
0
1
2
3
4
5
)
0
1
2
3
4
5
)
–20 –16 –12  
–8  
–4  
0
4
8
I AND Q BASEBAND VOLTAGE (V  
P–P, DIFF  
I AND Q BASEBAND VOLTAGE (V  
LO INPUT POWER (dBm)  
P–P, DIFF  
55682 G16  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
LO  
BB  
LO  
BB  
BB  
HD2 = MAX POWER AT f + 2 • f OR f – 2 • f  
BB  
LO  
BB  
LO  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
55682 G17  
LO  
BB  
LO  
HD3 = MAX POWER AT f + 3 • f OR f – 3 • f  
LO  
BB  
LO  
BB 55682 G18  
55682f  
5
LT5568-2  
U W  
V
= 5V, EN = High, T = 25°C, f = 900MHz,  
A LO  
TYPICAL PERFOR A CE CHARACTERISTICS  
CC  
P
= 0dBm. BBPI, BBMI, BBPQ, BBMQ inputs 0.54V , Baseband Input Frequency f = 2MHz, I&Q 90° shifted. f = f + f (upper  
DC BB RF BB LO  
LO  
sideband selection). P  
= –10dBm (–10dBm/tone for 2-tone measurements), unless otherwise noted. (Note 3)  
RF, OUT  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Temperature  
LO Feedthrough to RF Output  
vs CW Baseband Voltage  
Image Rejection  
vs CW Baseband Voltage  
10  
0
–36  
–38  
–40  
–42  
–44  
–45  
–50  
–55  
5V, –40°C  
5V, 25°C  
5V, –40°C  
5V, 25°C  
5V, 85°C  
4.5V, 25°C  
5.5V, 25°C  
RF  
85°C  
–40°C  
25°C  
5V, 85°C  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
4.5V, 25°C  
5.5V, 25°C  
–40°C  
25°C  
85°C  
25°C  
IM3  
–40°C  
85°C  
IM2  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
f
= 100kHz  
BB  
0.1  
1
10  
0
1
2
3
4
5
)
0
0.5  
1
1.5  
2
2.5  
3
I AND Q BASEBAND VOLTAGE (V  
)
P–P, DIFF, EACH TONE  
I AND Q BASEBAND VOLTAGE (V  
I AND Q BASEBAND VOLTAGE (V  
)
P-P,DIFF  
P-P,DIFF  
IM2 = POWER AT f + 4.1MHz  
55682 G19  
55682 G20  
LO  
IM3 = MAX POWER AT f + 1.9MHz OR f + 2.2MHz  
LO  
LO  
RF Two-Tone Power (Each Tone),  
IM2 and IM3 vs Baseband Voltage  
and Supply Voltage  
Gain Distribution  
Noise Floor Distribution  
10  
0
35  
30  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
RF  
4.5V  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
5V, 5.5V  
5V, 5.5V  
4.5V  
IM3  
5V  
5.5V  
IM2  
4.5V  
f
f
= 2MHz, 2.1MHz, 0°  
= 2MHz, 2.1MHz, 90°  
BBI  
BBQ  
0
0
0.1  
1
10  
–160.4  
–159.6  
–159.2  
–158.8  
–160  
–9  
–7.5 –7 –6.5 –6 –5.5  
–8.5 –8  
I AND Q BASEBAND VOLTAGE (V  
)
NOISE FLOOR (dBm/Hz)  
P–P, DIFF, EACH TONE  
GAIN (dB)  
55682 G24  
55682 G23  
IM2 = POWER AT f + 4.1MHz  
LO  
IM3 = MAX POWER AT f + 1.9MHz OR f + 2.2MHz  
LO  
LO  
LO Leakage Distribution  
Image Rejection Distribution  
25  
20  
15  
10  
5
40  
35  
30  
25  
20  
15  
10  
5
–40°C  
25°C  
85°C  
–40°C  
25°C  
85°C  
0
0
< –70  
–62 –58 –54 –50 –46  
< –54  
–46 –42 –38 –34 –30  
–66  
–50  
55682 G26  
IMAGE REJECTION (dBc)  
LO LEAKAGE (dBm)  
55682 G25  
55682f  
6
LT5568-2  
U
U
U
PI FU CTIO S  
BBPQ,BBMQ(Pins7,5):BasebandInputsfortheQ-chan-  
nel, each 50Ω input impedance. Internally biased at about  
0.54V. Applied voltage must stay below 2.5V.  
EN (Pin 1): Enable Input. When the enable pin voltage is  
higher than 1V, the IC is turned on. When the input voltage  
is less than 0.5V, the IC is turned off.  
V
(Pins 8, 13): Power Supply. Pins 8 and 13 are con-  
GND (Pins 2, 4, 6, 9, 10, 12, 15): Ground. Pins 6, 9, 15  
and 17 (exposed pad) are connected to each other inter-  
nally. Pins 2 and 4 are connected to each other internally  
and function as the ground return for the LO signal. Pins  
10 and 12 are connected to each other internally and  
function as the ground return for the on-chip RF balun.  
For best RF performance, pins 2, 4, 6, 9, 10, 12, 15 and  
the Exposed Pad 17 should be connected to the printed  
circuit board ground plane.  
CC  
nected to each other internally. It is recommended to use  
0.1µF capacitors for decoupling to ground on each of  
these pins.  
RF (Pin 11): RF Output. The RF output is an AC-coupled  
single-ended output with approximately 50Ω output im-  
pedance at RF frequencies. Externally applied DC voltage  
should be within the range 0.5V to V + 0.5V in order  
to avoid turning on ESD protection diodes.  
CC  
LO(Pin3):LOInput.TheLOinputisanAC-coupledsingle-  
ended input with approximately 50Ω input impedance at  
RF frequencies. Externally applied DC voltage should be  
BBPI, BBMI (Pins 14, 16): Baseband Inputs for the  
I-channel,eachwith50Ωinputimpedance.Internallybiased  
at about 0.54V. Applied voltage must stay below 2.5V.  
within the range 0.5V to V + 0.5V in order to avoid  
CC  
Exposed Pad (Pin 17): Ground. This pin must be soldered  
to the printed circuit board ground plane.  
turning on ESD protection diodes.  
55682f  
7
LT5568-2  
W
BLOCK DIAGRA  
V
CC  
8
13  
LT5568-2  
BBPI 14  
BBMI 16  
V-I  
V-I  
11 RF  
0°  
90°  
BALUN  
BBPQ  
BBMQ  
7
5
1
EN  
2
4
6
9
3
10  
12  
15  
17  
55682 BD  
GND  
LO  
GND  
U
W U U  
APPLICATIO S I FOR ATIO  
The LT5568-2 consists of I and Q input differential volt-  
age-to-current converters, I and Q up-conversion mixers,  
an RF output balun, an LO quadrature phase generator  
and LO buffers.  
External I and Q baseband signals are applied to the dif-  
ferential baseband input pins, BBPI, BBMI, and BBPQ,  
BBMQ.Thesevoltagesignalsareconvertedtocurrentsand  
translated to RF frequency by means of double-balanced  
up-converting mixers. The mixer outputs are combined  
in an RF output balun, which also transforms the output  
impedance to 50Ω. The center frequency of the resulting  
RF signal is equal to the LO signal frequency. The LO input  
drives a phase shifter which splits the LO signal into in-  
phaseandquadratureLOsignals.TheseLOsignalsarethen  
applied to on-chip buffers which drive the up-conversion  
mixers. Both the LO input and RF output are single-ended,  
50Ω-matched and AC coupled.  
LT5568-2  
RF  
= 5V  
C
V
CC  
BALUN  
FROM  
Q
LOMI  
CM  
LOPI  
R1A  
25  
R1B  
23Ω  
R2B  
23Ω  
R2A  
25Ω  
BBPI  
R3  
R4  
12pF  
12pF  
Baseband Interface  
V
REF  
= 540mV  
BBMI  
Thebasebandinputs(BBPI,BBMI),(BBPQ,BBMQ)present  
adifferentialinputimpedanceofabout100Ω.Ateachofthe  
fourbasebandinputs,arst-orderlowpasslterusing25Ω  
55682 F01  
GND  
Figure1. SimplifiedCircuitSchematicoftheLT5568-2  
(Only I-Half is Drawn)  
55682f  
8
LT5568-2  
U
W U U  
APPLICATIO S I FOR ATIO  
and 12pF to ground is incorporated (see Figure 1), which Thebasebandinputsshouldbedrivendifferentially;other-  
limits the baseband bandwidth to approximately 330MHz wise, the even-order distortion products will degrade the  
(–1dB point). The common mode voltage is about 0.54V overall linearity severely. Typically, a DAC will be the signal  
and is approximately constant over temperature.  
source for the LT5568-2. Reconstruction filters should  
be placed between the DAC output and the LT5568-2’s  
baseband inputs. In Figure 3, a typical baseband interface  
schematicforGSMisdrawn.Itshowsagroundreferenced  
DACoutputinterfacefollowedbya3rdorderactiveOpAmp  
RC lowpass filter with a 400kHz cutoff frequency (–3dB).  
The DAC in this example sources a current from 0mA to  
20mA, with a voltage compliance range of at least 0V to  
1V. This interface is DC coupled, which allows adjust-  
ment of the DAC’s differential output current to minimize  
the LO feedthrough. The voltage swing at the LT5568-2  
Itisimportantthattheappliedcommonmodevoltagelevel  
of the I and Q inputs is about 0.54V in order to properly  
bias the LT5568-2. Some I/Q test generators allow setting  
the common mode voltage independently. In this case, the  
common mode voltage of those generators must be set  
to 0.27V to match the LT5568-2 internal bias, because for  
DC signals, there is no –6dB source-load voltage division  
(see Figure 2).  
50Ω  
50Ω  
48Ω  
baseband inputs is about 2V  
, which results in a  
P-P,DIFF  
0.27V  
0.54V  
DC  
DC  
1.2dBm GSM RF output power at 900MHz with noise floor  
of –154.3dBm/Hz at 6MHz offset (= –104.3dBm/100kHz).  
The RMS EVM is about 0.6%. The LT1819, which houses  
two LT1818s, can be used instead of U2 and U3. The total  
current in the positive supply is about 157mA and the  
current in the negative supply is about 40mA.  
+
+
+
DC  
0.54V  
0.54V  
0.54V  
DC  
DC  
50Ω  
GENERATOR  
GENERATOR  
LT5568-2  
55682 F02  
Figure 2. DC Voltage Levels for a Generator Programmed at  
0.27V for a 50Ω Load and the LT5568-2 as a Load  
DC  
C3  
1nF  
V
= 4.5 TO 5.25V  
CC  
RF =  
1.2dBm,  
GSM  
R7  
200Ω  
R9  
249Ω  
R14  
50Ω  
LT5568-2  
V
7
CC  
+
3
BALUN  
0.54V  
0.54V  
6
FROM  
Q
C
U2  
C1  
1.2nF  
C5  
LT1818  
10nF  
LOPI  
R11  
LOMI  
2
249Ω  
4
R5  
V
SS  
CC  
0mA to 20mA  
0mA to 20mA  
53.6Ω  
0.54V  
R13  
499Ω  
GND  
GND  
DAC  
R1  
45Ω  
R2  
45Ω  
R6  
53.6Ω  
BBPI  
V
7
R12  
249Ω  
CM  
2
R3  
R4  
33Ω  
16mA  
C2  
1.2nF  
C6  
10nF  
U3  
LT1818  
33Ω  
V
0.54V  
R15  
50Ω  
R8  
200Ω  
R10  
249Ω  
6
= 540mV  
REF  
+
BBMI  
0.54V  
3
4
C4  
1nF  
V
SS  
U1  
55682 F03  
V
= –2V to –5.25V  
SS  
GND  
Figure 3. LT5568-2 GSM Baseband Interface with 3rd Order Lowpass Filter and Ground Referenced DAC (Only I-Channel is Shown)  
55682f  
9
LT5568-2  
U
W U U  
APPLICATIO S I FOR ATIO  
Table 1. LO Port Input Impedance vs Frequency for EN = High  
LO Section  
and P = 0dBm  
LO  
The internal LO input amplifier performs single-ended to  
differential conversion of the LO input signal. Figure 4  
shows the equivalent circuit schematic of the LO input.  
Frequency  
MHz  
Input Impedance  
S
11  
Ω
Mag  
Angle  
95.0  
37.8  
–3.41  
–31.7  
–53.2  
–68.7  
–79.4  
–90.0  
500  
600  
700  
800  
900  
1000  
1100  
1200  
47.5 + j12.1  
59.4 + j8.4  
0.126  
0.115  
0.140  
0.185  
0.232  
0.252  
0.258  
0.297  
V
CC  
66.2 – j1.14  
67.2 – j13.4  
61.1 – j23.9  
53.3 – j26.8  
48.2 – j26.1  
42.0 – j27.4  
20pF  
LO  
INPUT  
51Ω  
5568 F04  
If the part is in shutdown mode, the input impedance of  
the LO port will be different. The LO input impedance for  
EN = Low is given in Table 2.  
Figure 4. Equivalent Circuit Schematic of the LO Input  
Theinternal,differentialLOsignalisthensplitintoin-phase  
and quadrature (90° phase shifted) signals that drive LO  
buffer sections. These buffers drive the double balanced I  
andQmixers.ThephaserelationshipbetweentheLOinput  
and the internal in-phase LO and quadrature LO signals  
is fixed, and is independent of start-up conditions. The  
internal phase shifters are designed to deliver accurate  
quadrature signals. For LO frequencies significantly be-  
low 650MHz or above 1.25GHz, however, the quadrature  
accuracy will diminish, causing the image rejection to  
degrade. The LO pin input impedance is about 50Ω, and  
the recommended LO input power is 0dBm. For lower  
LO input power, the gain, OIP2, OIP3 and noise floor at  
Table 2. LO Port Input Impedance vs Frequency for EN = Low and  
P
= 0dBm  
LO  
Frequency  
MHz  
Input Impedance  
S
11  
Ω
Mag  
Angle  
85.4  
49.8  
19.6  
–6.8  
–29.6  
–45.5  
–65.6  
–79.7  
500  
600  
700  
800  
900  
1000  
1100  
1200  
33.6 + j41.3  
59.8 + j69.1  
140 + j89.8  
225 – j62.6  
92.9 – j128  
39.8 – j95.9  
22.8 – j72.7  
16.0 – j57.3  
0.477  
0.539  
0.606  
0.659  
0.704  
0.735  
0.755  
0.763  
P
RF  
= 4dBm will degrade, especially for P below –2dBm  
LO  
RF Section  
and at T = 85°C. For high LO input power (e.g., +5dBm),  
A
Afterup-conversion,theRFoutputsoftheIandQmixersare  
combined. An on-chip balun performs internal differential  
tosingle-endedoutputconversion,whiletransformingthe  
output signal impedance to 50Ω. Table 3 shows the RF  
port output impedance vs frequency.  
the image rejection will degrade with no improvement in  
linearity or gain. Harmonics present on the LO signal can  
degrade the image rejection because they can introduce a  
small excess phase shift in the internal phase splitter. For  
the second (at 1.8GHz) and third harmonics (at 2.7GHz) at  
–20dBc,theresultingsignalattheimagefrequencyisabout  
–61dBc or lower, corresponding to an excess phase shift  
of much less than 1 degree. For the second and third LO  
harmonics at –10dBc, the introduced signal at the image  
frequencyisabout51dBc.Higherharmonicsthanthethird  
will have less impact. The LO return loss typically will be  
betterthan11dBoverthe700MHzto1.05GHzrange.Table  
1 shows the LO port input impedance vs frequency.  
Table 3. RF Port Output Impedance vs Frequency for EN = High  
and P = 0dBm  
LO  
Frequency  
MHz  
Input Impedance  
S
22  
Ω
Mag  
Angle  
164.2  
141.3  
117.5  
90.6  
–94.7  
–117.0  
–130.7  
–141.6  
500  
600  
700  
800  
900  
1000  
1100  
1200  
22.0 + j5.7  
28.2 + j12.5  
38.8 + j14.8  
49.4 + j7.2  
49.3 – j5.1  
42.5 – j11.1  
36.7 – j11.7  
33.0 – j10.3  
0.395  
0.317  
0.206  
0.072  
0.051  
0.143  
0.202  
0.238  
55682f  
10  
LT5568-2  
U
W U U  
APPLICATIO S I FOR ATIO  
The RF output S with no LO power applied is given in Note that an ESD diode is connected internally from the  
22  
Table 4.  
RF output to ground (see Figure 5). For strong output  
RF signal levels (higher than 3dBm), this ESD diode can  
degrade the linearity performance if the 50Ω termination  
impedanceisconnecteddirectlytoground.Topreventthis,  
a coupling capacitor can be inserted in the RF output line.  
This is strongly recommended during a 1dB compression  
measurement.  
Table 4. RF Port Output Impedance vs Frequency for EN = High  
and No LO Power Applied  
Frequency  
MHz  
Input Impedance  
S
22  
Ω
Mag  
Angle  
164.0  
500  
600  
22.7 + j5.6  
29.7 + j11.6  
40.5 + j11.6  
47.3 + j2.2  
44.1 – j6.7  
38.2 – j9.8  
34.0 – j9.4  
31.5 – j7.8  
0.381  
0.290  
0.164  
0.037  
0.094  
0.171  
0.218  
0.245  
142.0  
700  
121.9  
800  
139.6  
Enable Interface  
900  
–126.9  
–133.9  
–143.1  
–151.6  
Figure 6 shows a simplified schematic of the EN pin  
interface. The voltage necessary to turn on the LT5568-2  
is 1V. To disable (shut down) the chip, the enable voltage  
must be below 0.5V. If the EN pin is not connected, the  
chip is disabled. This EN = Low condition is assured by  
the 75k on-chip pull-down resistor. It is important that  
1000  
1100  
1200  
For EN = Low the S is given in Table 5.  
22  
Table 5. RF Port Output Impedance vs Frequency for EN = Low  
the voltage at the EN pin does not exceed V by more  
CC  
Frequency  
MHz  
Input Impedance  
S
22  
than 0.5V. If this should occur, the supply current could  
be sourced through the EN pin ESD protection diodes,  
which are not designed to carry the full supply current,  
and damage may result.  
Ω
Mag  
Angle  
164.9  
142.5  
118.1  
87.4  
500  
600  
21.2 + j5.4  
26.6 + j12.5  
36.6 + j16.6  
49.2 + j11.6  
52.9 – j2.0  
46.4 – j11.2  
39.3 – j13.2  
34.4 – j12.1  
0.409  
0.340  
0.241  
0.116  
0.034  
0.121  
0.188  
0.231  
700  
800  
900  
–33.1  
–101.1  
–120.6  
–133.8  
1000  
1100  
1200  
V
CC  
V
CC  
EN  
75k  
25k  
21pF  
RF  
OUTPUT  
7nH  
1pF  
51Ω  
55682 F06  
55682 F05  
Figure 6. EN Pin Interface  
Figure 5. Equivalent Circuit Schematic of the RF Output  
55682f  
11  
LT5568-2  
U
W U U  
APPLICATIO S I FOR ATIO  
Evaluation Board  
R1 (optional) limits the EN pin current in the event that  
the EN pin is pulled high while the V inputs are low. In  
CC  
Figure 7 shows the evaluation board schematic. A good  
ground connection is required for the exposed pad. If this  
is not done properly, the RF performance will degrade. Ad-  
ditionally,theexposedpadprovidesheatsinkingforthepart  
and minimizes the possibility of the chip overheating.  
Figures 8 and 9 the silk screens and the PCB board layout  
are shown.  
J1  
J2  
BBMI  
BBPI  
V
CC  
C2  
16  
BBMI GND BBPI  
EN  
15  
14  
13  
100nF  
R1  
V
CC  
100Ω  
1
2
3
4
12  
GND  
RF  
V
EN  
CC  
J3  
11  
10  
9
RF  
OUT  
GND  
LO  
J4  
LO  
IN  
LT5568-2  
GND  
GND  
GND  
GND  
17  
BBMQ GND BBPQ  
V
CC  
5
6
7
8
C1  
100nF  
J5  
J6  
BBMQ  
GND  
BBPQ  
BOARD NUMBER: DC1178A  
55682 F07  
Figure 7. Evaluation Circuit Schematic  
Figure 8. Component Side of Evaluation Board  
55682 F09  
Figure 9. Bottom Side of Evaluation Board  
55682f  
12  
LT5568-2  
U
W U U  
APPLICATIO S I FOR ATIO  
Application Measurements  
Because of the LT5568-2’s very high dynamic range, the  
test equipment can limit the accuracy of the ACPR mea-  
surement. See Application Note 99. Consult the factory  
for advice on the ACPR measurement, if needed.  
The LT5568-2 is recommended for base-station applica-  
tionsusingvariousmodulationformats.Figure10showsa  
typicalapplication.Figure11showstheACPRperformance  
for CDMA2000 using 1- and 3-carrier modulation. Figures  
12 and 13 illustrate the 1- and 3-carrier CDMA2000 RF  
spectrum. To calculate ACPR, a correction is made for the  
spectrum analyzer noise floor. If the output power is high,  
theACPRwillbelimitedbythelinearityperformanceofthe  
part. If the output power is low, the ACPR will be limited  
by the noise performance of the part. In the middle, an  
optimum ACPR is observed.  
TheACPRperformanceissensitivetotheamplitudematch  
of the BBPI and BBMI (or BBPQ and BBMQ) inputs. This  
is because a difference in AC current amplitude will give  
rise to a difference in amplitude between the even-order  
harmonic products generated in the internal V-I converter.  
As a result, they will not cancel out entirely. Therefore, it  
is important to keep the currents in those pins exactly  
–50  
–60  
–70  
–80  
–90  
–125  
–135  
–145  
–155  
–165  
5V  
100nF  
DOWNLINK TEST MODEL 64 DPCH 1-CH.  
ACPR  
V
CC 8, 13  
LT5568-2  
14  
16  
x2  
RF = 850MHz  
TO 965MHz  
I-DAC  
V-I  
I-CHANNEL  
3-CH. ACPR  
11  
PA  
0°  
1
EN  
90°  
BALUN  
3-CH. AltCPR  
1-CH. AltCPR  
Q-CHANNEL  
V-I  
7
5
Q-DAC  
3-CH. NOISE  
1-CH. NOISE  
BASEBAND  
GENERATOR  
55682 F10  
3
VCO/SYNTHESIZER  
2, 4, 6, 9, 10, 12, 15, 17  
–30  
–25  
–20  
–15  
–10  
–5  
RF OUTPUT POWER PER CARRIER (dBm)  
55682 F11  
Figure 10. 850MHz to 965MHz Direct  
Conversion Transmitter Application  
Figure 11. ACPR, AltCPR and Noise  
CDMA2000 Modulation  
–30  
–30  
–40  
DOWNLINK TEST  
DOWNLINK  
TEST  
MODEL 64  
DPCH  
–40  
–50  
–60  
–70  
–80  
–90  
MODEL 64 DPCH  
–50  
–60  
–70  
–80  
UNCORRECTED  
SPECTRUM  
–90  
CORRECTED  
SPECTRUM  
UNCORRECTED  
SPECTRUM  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
CORRECTED  
SPECTRUM  
SPECTRUM ANALYSER  
NOISE FLOOR  
SPECTRUM ANALYSER NOISE FLOOR  
896.25 897.75 899.25 900.75 902.25 903.75  
894  
896  
898  
900  
902  
904  
906  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
55682 F13  
55682 F12  
Figure 12. 1-Carrier CDMA2000 Spectrum  
Figure 13. 3-Carrier CDMA2000 Spectrum  
55682f  
13  
LT5568-2  
U
W U U  
APPLICATIO S I FOR ATIO  
the same (but of opposite sign). The current will enter change.ThisisillustratedinFigure14.TheLOfeedthrough  
the LT5568-2’s common-base stage, and will flow to the and image rejection can also change as a function of the  
mixer upper switches. This can be seen in Figure 1 where baseband drive level, as is depicted in Figure 15. In Figure  
the internal circuit of the LT5568-2 is drawn.  
16 the GSM EVM and noise performance vs RF output  
power is drawn.  
After calibration when the temperature changes, the LO  
feedthrough and the image rejection performance will  
–50  
10  
CALIBRATED WITH P = –10dBm  
RF  
–40°C  
P
85°C  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
RF  
IMAGE REJECTION  
25°C  
–60  
–70  
–80  
–90  
LO FEED-  
THROUGH  
LOFT  
85°C  
IR  
–40°C  
85°C  
25°C  
–40°C  
EN = High  
25°C  
f
f
= 900MHz  
= f + f  
LO  
V
f
BBQ  
= 5V  
= 2MHz, 0°  
= 2MHz, 90°  
LO  
CC  
RF BB LO  
P
BBI  
= 0dBm  
f
–40 –20  
0
20  
40  
60  
80  
0
1
2
3
4
5
TEMPERATURE (°C)  
I AND Q BASEBAND VOLTAGE (V  
)
P-P, DIFF  
55682 F14  
f
f
V
= 2MHz, 0°  
= 2MHz, 90°  
= 5V  
f
= 900MHz  
= f + f  
RF BB LO  
LO  
BBI  
BBQ  
LO  
Figure 14. LO Feedthrough and Image Rejection  
vs Temperature after Calibration at 25°C  
f
P
= 0dBm  
CC  
EN = High  
Figure 15. LO Feedthrough and Image Rejection  
vs Baseband Drive Voltage after Calibration at 25°C  
5
4
–96  
–98  
3
–100  
–102  
NOISE  
2
1
0
EVM  
–104  
–106  
–10 –8 –6 –4 –2  
0
2
4
6
GSM RF OUTPUT POWER (dBm)  
55682 F16  
Figure 16. GSM EVM and Noise vs RF Output Power at 900MHz  
55682f  
14  
LT5568-2  
U
PACKAGE DESCRIPTIO  
UF Package  
16-Lead Plastic QFN (4mm × 4mm)  
(Reference LTC DWG # 05-08-1692)  
0.72 0.05  
4.35 0.05  
2.90 0.05  
2.15 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.35 × 45° CHAMFER  
0.75 0.05  
R = 0.115  
TYP  
4.00 0.10  
(4 SIDES)  
15  
16  
0.55 0.20  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
2.15 0.10  
(4-SIDES)  
(UF16) QFN 10-04  
0.200 REF  
0.30 0.05  
0.65 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
55682f  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5568-2  
RELATED PARTS  
PART NUMBER DESCRIPTION  
Infrastructure  
COMMENTS  
LT5514  
LT5515  
LT5516  
Ultralow Distortion, IF Amplifier/ADC Driver with 850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
Digitally Controlled Gain  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
21dBm IIP3, Integrated LO Quadrature Generator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended LO and RF  
Ports, 4-Ch W-CDMA ACPR = –64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
0.7GHz to 1.4GHz High Linearity Upconverting  
Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting  
Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
10MHz to 3700MHz High Linearity Upconverting 24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Mixer  
Port Operation  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
LT5525  
LT5526  
High Linearity, Low Power Downconverting Mixer Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
High Linearity, Low Power Downconverting Mixer 3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
LT5527  
LT5528  
LT5557  
LT5558  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
IIP3 = 23.5dBm and NF = 12.5dB at 1900MHz, 4.5V to 5.25V Supply, I = 78mA  
CC  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband Interface,  
DC  
4-Ch W-CDMA ACPR = –66dBc at 2.14GHz  
400MHz to 3.8GHz, 3.3V, Very High Linearity  
Downconverting Mixer  
IIP3 = 24.7dBm at 1.9GHz, 23.5dBm at 3.5GHz, Conversion Gain = 2.9dB at 1.9GHz,  
3.3V at 82mA, –3dB LO Drive  
600MHz to 1100MHz High Linearity Direct  
Quadrature Modulator  
22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ, 2.1V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –70.4dBc at 900MHz  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
800MHz to 2.7GHz High Linearity Direct  
Conversion Quadrature Demodulator  
28dBm IIP3 and 13.2dBm P1dB at 900MHz, 60dBm IIP2 and 12.7dB NF  
at 1900MHz  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
LTC5530  
LTC5531  
LTC5532  
LT5534  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
300MHz to 3GHz RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
300MHz to 7GHz Precision RF Power Detector  
Precision V  
Precision V  
Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time  
LTC5536  
LT5537  
Precision 600MHz to 7GHz RF Detector with Fast 25ns Response Time, Comparator Reference Input, Latch Enable Input, –26dBm to  
Comparator  
+12dBm Input Range  
Wide Dynamic Range Log RF/IF Detector  
Low Frequency to 800MHz, 83dB Dynamic Range, 2.7V to 5.25V Supply  
55682f  
LT 0307 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5568-2EUF-TRPBF

GSM/EDGE Optimized, High Linearity Direct Quadrature Modulator
Linear

LT5568EUF

RF/Microwave Modulator/Demodulator, 700 MHz - 1050 MHz RF/MICROWAVE I/Q MODULATOR, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16
Linear

LT5568EUF#PBF

LT5568 - 700MHz to 1050MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5568EUF#TR

RF/Microwave Modulator/Demodulator, 700 MHz - 1050 MHz RF/MICROWAVE I/Q MODULATOR, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16
Linear

LT5568EUF#TRPBF

LT5568 - 700MHz to 1050MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5570

Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector
Linear

LT5570IDD#PBF

LT5570 - Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5570IDD#TRPBF

LT5570 - Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5570IDD-PBF

Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector
Linear

LT5570IDD-TRPBF

Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector
Linear

LT5571

620MHz - 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5571EUF

620MHz - 1100MHz High Linearity Direct Quadrature Modulator
Linear