LT5570IDD-PBF [Linear]

Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector; 快速响应, 40MHz至2.7GHz的均方功率检测器
LT5570IDD-PBF
型号: LT5570IDD-PBF
厂家: Linear    Linear
描述:

Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector
快速响应, 40MHz至2.7GHz的均方功率检测器

文件: 总16页 (文件大小:259K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5570  
Fast Responding, 40MHz  
to 2.7GHz Mean-Squared  
Power Detector  
FEATURES  
DESCRIPTION  
TheLT®5570isa40MHzto2.7GHzmonolithicLogarithmic  
Mean-Squared RF power detector. It is capable of RMS  
measurement of an AC signal with wide dynamic range,  
from –52dBm to 13dBm depending on frequency. The  
power of the AC signal in an equivalent decibel-scaled  
value is precisely converted into DC voltage on a linear  
scale,independentofthecrestfactorofthewaveforms.The  
LT5570issuitableforprecisionRFpowermeasurementand  
level control for a wide variety of RF standards, including  
CDMA, W-CDMA, CDMA2000, TD-SCDMA and WiMAX.  
The DC output is buffered with a low output impedance  
amplifier capable of driving a high capacitance load.  
n
Frequency Range: 40MHz to 2.7GHz  
n
Accurate RMS Power Measurement of High Crest  
Factor Modulated Waveforms  
n
Linear DC Output vs Input Power in dBm  
n
Linear Dynamic Range: Up to 60dB  
n
Exceptional Accuracy over Temperature: 0.ꢀdB  
n
Fast Response Time: 0.5μs Rise Time,  
8μs Fall Time  
Low Supply Current: 26.5mA  
n
n
Low Impedance Output Buffer Capable of Driving  
High Capacitance Load  
n
Small 3mm × 3mm 10-Lead DFN Package  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
Protected by U.S. Patents including 7262661, 7259620, 7268608.  
APPLICATIONS  
n
RMS Power Measurement  
n
RF Power Control  
n
Receive and Transmit Gain Control  
W-CDMA, CDMA2000, TD-SCDMA, WiMAX  
n
n
RF Instrumentation  
TYPICAL APPLICATION  
40MHz to 2.7GHz Mean-Squared Power Detector  
Output Voltage, Linearity Error vs Input Power, 25°C (2140 MHz)  
2.4  
2.0  
1.6  
1.2  
3
2
1
0
5V  
22nF  
1MF  
1nF  
1
2
10  
9
RF  
INPUT  
V
FLTR  
EN  
CC  
1:4  
+
ENABLE  
IN  
3
4
8
7
NC  
DEC  
LT5570  
DNC  
DNC  
IN  
0.8  
0.4  
0
–1  
–2  
–3  
5
6
GND  
OUT  
V
OUT  
CW  
4CH WCDMA  
3CH CDMA2000  
5570 TA01a  
–15  
RF INPUT POWER (dBm)  
5
15  
–45  
–35  
–25  
–5  
5570 TA01b  
5570f  
1
LT5570  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
Supply Voltage.........................................................5.5V  
Enable Voltage .................................–0.3V to V + 0.3V  
V
1
2
3
4
5
10 FLTR  
CC  
+
CC  
IN  
9
8
7
6
EN  
Input Signal Power (Differential)..........................15dBm  
DEC  
DNC  
DNC  
OUT  
T
JMAX  
.................................................................... 125°C  
IN  
Operating Temperature Range.................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
GND  
DD PACKAGE  
10-LEAD (3mm s 3mm) PLASTIC DFN  
CAUTION:Thispartissensitivetoelectrostaticdischarge.It  
isveryimportantthatproperESDprecautionsbeobserved  
when handling the LT5570.  
T
= 125°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 11) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5570IDD#PBF  
LT5570IDD#TRPBF  
LCJQ  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, EN = 5V, unless otherwise noted. Test circuits are shown in  
Figures 1 and ꢀ. (Notes 2 and ꢀ).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
AC Input  
l
Input Frequency Range (Note 4)  
Input Impedance  
40 to 2700  
200/1  
MHz  
Ω/pF  
f
RF  
= 500MHz  
RF Input Power Range  
Linear Dynamic Range (Note 5)  
Output Slope  
CW Input; 1:4 Balun Matched into 50Ω Source  
–52 to 13  
62  
dBm  
dB  
1dB Linearity Error, T = 40°C to 85°C  
A
36.9  
mV/dB  
dBm  
dB  
Logarithmic Intercept  
–54.8  
0.5  
Output Variation vs Temperature  
Normalized to Output at 25°C  
–40°C < T < 85°C; P = –50dBm to 13dBm  
A
IN  
Deviation from CW Response  
11dB Peak to Average Ratio (3-Carrier CDMA2K)  
12dB Peak to Average Ratio (4-Carrier WCDMA)  
0.4  
0.3  
dB  
dB  
nd  
2
3
Order Harmonic Distortion  
Order Harmonic Distortion  
At RF Input; CW Input; P = 10dBm  
61  
66  
dBc  
dBc  
IN  
rd  
At RF Input; CW Input; P = 10dBm  
IN  
5570f  
2
LT5570  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, EN = 5V, unless otherwise noted. Test circuits are shown in  
Figures 1 and ꢀ. (Notes 2 and ꢀ).  
PARAMETER  
= 880MHz  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
RF  
RF Input Power Range  
Linear Dynamic Range (Note 5)  
Output Slope  
CW Input; 1:4 Balun Matched into 50Ω Source  
–48 to 13  
61  
dBm  
dB  
1dB Linearity Error, T = 40°C to 85°C  
A
37.7  
mV/dB  
dBm  
dB  
Logarithmic Intercept  
–51.9  
0.4  
Output Variation vs Temperature  
Normalized to Output at 25°C  
–40°C < T < 85°C; P = –47dBm to 13dBm  
A
IN  
Deviation from CW Response  
11dB Peak to Average Ratio (3-Carrier CDMA2K)  
12dB Peak to Average Ratio (4-Carrier WCDMA)  
0.3  
0.2  
dB  
nd  
2
3
Order Harmonic Distortion  
Order Harmonic Distortion  
= 2140MHz  
At RF Input; CW Input; P = 10dBm  
60  
61  
dBc  
dBc  
IN  
rd  
At RF Input; CW Input; P = 10dBm  
IN  
f
RF  
RF Input Power Range  
Linear Dynamic Range (Note 5)  
Output Slope  
CW Input; 1:4 Balun Matched into 50Ω Source  
–38 to 13  
51  
dBm  
dB  
1dB Linearity Error, T = 40°C to 85°C  
47  
A
34.8  
–43.6  
36.5  
39.0  
mV/dB  
dBm  
dB  
Logarithmic Intercept  
–40.6  
0.3  
–37.6  
Output Variation vs Temperature  
Normalized to Output at 25°C  
–40°C < T < 85°C; P = –36dBm to 13dBm  
A
IN  
Deviation from CW Response  
11dB Peak to Average Ratio (3-Carrier CDMA2K)  
12dB Peak to Average Ratio (4-Carrier WCDMA)  
0.1  
0.2  
dB  
dB  
f
RF  
= 2700MHz  
RF Input Power Range  
Linear Dynamic Range (Note 5)  
Output Slope  
CW Input; 1:4 Balun Matched into 50Ω Source  
–35 to 13  
48  
dBm  
dB  
1dB Linearity Error, T = 40°C to 85°C  
A
36.4  
mV/dB  
dBm  
dB  
Logarithmic Intercept  
–38.5  
0.2  
Output Variation vs Temperature  
Normalized to Output at 25°C  
–40°C < T < 85°C; P = –31dBm to 13dBm  
A
IN  
Deviation from CW Response  
11dB Peak to Average Ratio (3-Carrier CDMA2K)  
12dB Peak to Average Ratio (4-Carrier WCDMA)  
0.1  
0.5  
dB  
Output  
Output DC Voltage  
Output Impedance  
Sourcing/Sinking  
Rise Time  
No RF Signal Present  
0.1  
100  
5/2.5  
0.5  
V
Ω
mA  
μS  
μS  
0.2V to 1.6V, 10% to 90%, C1 = 22nF, f = 2140MHz  
RF  
Fall Time  
1.6V to 0.2V, 90% to 10%, C1 = 22nF, f = 2140MHz  
8
RF  
5570f  
3
LT5570  
The l denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are at TA = 25°C, VCC = 5V, EN = 5V, unless otherwise noted. Test circuits are shown in  
Figures 1 and ꢀ. (Notes 2 and ꢀ).  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Enable (EN) Low = Off, High = On  
EN Input High Voltage (On)  
EN Input Low Voltage (Off)  
Enable Pin Input Current  
Turn ON Time  
l
l
l
2
V
V
1
EN = 5V  
68  
1
μA  
μs  
μs  
V
OUT  
V
OUT  
within 10% of Final Value, C1 = 22nF  
< 0.1V, C1 = 22nF  
Turn OFF Time  
5
Power Supply  
l
Supply Voltage  
4.75  
5
5.25  
32.5  
100  
V
mA  
μA  
Supply Current  
26.5  
0.1  
Shutdown Current  
EN = 0V, V = 5V  
CC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note ꢀ: A 1:4 input transformer is used for the input matching to 50Ω  
source.  
Note 4: Operation over a wider frequency range is possible with reduced  
performance. Consult the factory for information and assistance.  
Note 2: Specifications over the –40ºC to +85ºC temperature range are  
assured by design, characterization and correlation with statistical process  
controls.  
Note 5: The linearity error is calculated by the difference between the  
incremental slope of the output and the average output slope from  
–30dBm to 2dBm. The dynamic range is defined as the range over which  
the linearity error is within 1dB.  
5570f  
4
LT5570  
TYPICAL PERFORMANCE CHARACTERISTICS  
(Test Circuits Shown in Figures 1 and ꢀ)  
Output Voltage vs Frequency  
Linearity Error vs Frequency  
2.4  
3
2
1
0
T
= 25°C  
T = 25°C  
A
A
2.0  
1.6  
1.2  
0.8  
0.4  
0
–1  
–2  
–3  
500MHz  
880MHz  
2140MHz  
2700MHz  
500MHz  
880MHz  
2140MHz  
2700MHz  
–15  
RF INPUT POWER (dBm)  
5
15  
–15  
RF INPUT POWER (dBm)  
5
15  
–55 –45 –35 –25  
–5  
–55 –45 –35 –25  
–5  
5570 G01  
5570 G02  
Output Voltage, Linearity Error vs  
RF Input Power, 500MHz  
Linearity Error vs RF Input Power,  
500MHz Modulated Waveforms  
3
2
1
0
2.4  
2.0  
1.6  
1.2  
3
2
1
0
T
= 25°C  
A
–1  
–2  
–3  
0.8  
0.4  
0
–1  
–2  
–3  
CW  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
4CH WCDMA  
3CH CDMA2000  
–15  
RF INPUT POWER (dBm)  
5
15  
–55 –45 –35 –25  
–5  
–15  
RF INPUT POWER (dBm)  
5
15  
–55 –45 –35 –25  
–5  
5570 G04  
5570 G03  
Output Voltage, Linearity Error vs  
RF Input Power, 880MHz  
Linearity Error vs RF Input Power,  
880MHz Modulated Waveforms  
2.4  
2.0  
1.6  
1.2  
3
2
1
0
3
2
1
0
T
= 25°C  
A
0.8  
0.4  
0
–1  
–2  
–3  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
CW  
A
A
A
4CH WCDMA  
3CH CDMA2000  
–15  
RF INPUT POWER (dBm)  
5
15  
–55 –45 –35 –25  
–5  
–15  
RF INPUT POWER (dBm)  
5
15  
–55 –45 –35 –25  
–5  
5570 G05  
5570 G06  
5570f  
5
LT5570  
TYPICAL PERFORMANCE CHARACTERISTICS (Test Circuits Shown in Figures 1 and ꢀ)  
Output Voltage, Linearity Error vs  
RF Input Power, 2140MHz  
Linearity Error vs RF Input Power,  
2140MHz Modulated Waveforms  
3
2
1
0
2.4  
2.0  
1.6  
1.2  
3
2
1
0
T
= 25°C  
A
–1  
–2  
–3  
0.8  
0.4  
0
–1  
–2  
–3  
CW  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
4CH WCDMA  
3CH CDMA2000  
–15  
RF INPUT POWER (dBm)  
5
15  
–45  
–35  
–25  
–5  
–15  
RF INPUT POWER (dBm)  
5
15  
–45  
–35  
–25  
–5  
5570 G08  
5570 G07  
Output Voltage, Linearity Error vs  
RF Input Power, 2700MHz  
Linearity Error vs RF Input Power,  
2700MHz Modulated Waveforms  
2.4  
2.0  
1.6  
1.2  
3
2
1
0
3
2
1
0
T
= 25°C  
A
0.8  
0.4  
0
–1  
–2  
–3  
–1  
–2  
–3  
T
T
T
= –40°C  
= 25°C  
= 85°C  
CW  
A
A
A
4CH WCDMA  
3CH CDMA2000  
–15  
RF INPUT POWER (dBm)  
5
15  
–45  
–35  
–25  
–5  
–15  
RF INPUT POWER (dBm)  
5
15  
–45  
–35  
–25  
–5  
5570 G09  
5570 G10  
Logarithmic Intercept vs  
Frequency  
Slope vs Frequency  
–35  
–40  
–45  
–50  
42  
40  
38  
36  
T
= 25°C  
T
= 25°C  
A
A
–55  
–60  
34  
32  
0
1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
0
1000 1500 2000 2500 3000  
FREQUENCY (MHz)  
500  
500  
5570 G12  
5570 G11  
5570f  
6
LT5570  
(Test Circuits Shown in Figures 1 and ꢀ)  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Transient Response,  
C1 = 22nF  
Output Transient Response,  
C1 = 1μF  
3.0  
2.5  
6
2
3.0  
2.5  
6
2
RF  
PULSE  
OFF  
RF  
PULSE  
OFF  
RF  
PULSE  
OFF  
RF  
PULSE  
OFF  
RF PULSE ON  
RF PULSE ON  
AT 2140MHz  
AT 2140MHz  
2.0  
1.5  
–2  
–6  
2.0  
1.5  
–2  
–6  
P
P
= 10dBm  
= 0dBm  
P
P
= 10dBm  
= 0dBm  
IN  
IN  
IN  
IN  
P
= –10dBm  
= –20dBm  
P
= –10dBm  
= –20dBm  
IN  
IN  
IN  
1.0  
0.5  
0
–10  
–14  
–18  
1.0  
0.5  
0
–10  
–14  
–18  
P
P
P
P
IN  
IN  
= –30dBm  
= –30dBm  
IN  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (μs)  
0
5
10 15 20 25 30 35 40 45 50  
TIME (μs)  
5570 G14  
5570 G13  
Slope Distribution vs  
Temperature  
Logarithmic Intercept Distribution  
vs Temperature  
Supply Current vs Supply Voltage  
40  
35  
45  
40  
35  
30  
25  
20  
15  
10  
5
45  
40  
35  
30  
25  
20  
15  
10  
5
TA = –40oC  
TA = 25oC  
TA = 85oC  
TA = –40oC  
TA = 25oC  
TA = 85oC  
30  
25  
20  
15  
10  
T
T
T
= –40°C  
= 25°C  
= 85°C  
A
A
A
0
0
4.50  
4.75  
5.00  
5.25  
5.50  
35.4 36 36.6 37.2 37.8 38.4 39  
SLOPE (mV/dB)  
–44 –43 –42 –41  
LOGARITHMIC INTERCEPT (dBm)  
–40 –39 –38  
SUPPLY VOLTAGE (V)  
5570 G17  
5570 G15  
5570 G16  
Input Return Loss vs Frequency  
Reference in Figure ꢀ  
Input Return Loss vs Frequency  
Reference in Figure 1  
Supply Current vs RF Input Power  
29  
28  
27  
26  
0
0
T
= 25°C  
A
–5  
–5  
–10  
–15  
–10  
–15  
25  
24  
23  
–20  
–25  
–30  
–20  
–25  
–30  
880MHz  
2140MHz  
2700MHz  
–15  
RF INPUT POWER (dBm)  
5
15  
–55 –45 –35 –25  
–5  
0
100 200 300 400 500 600 700 800 9001000  
FREQUENCY (MHz)  
500  
1000  
1500  
FREQUENCY (MHz)  
2000  
2500  
3000  
5570 G18  
5570 G19  
5570 G20  
5570f  
7
LT5570  
PIN FUNCTIONS  
V
(Pin 1): Power Supply Pin for the Bias Circuits. Typi- OUT (Pin 6): DC Output Pin. The output impedance is  
CC  
cal current consumption is 26.5mA. This pin should be mainly determined by an internal 100Ω series resistance  
externally bypassed with 1nF and 1μF chip capacitors.  
that provides output circuit protection if the output is  
shorted to ground.  
+
IN , IN (Pins 2, 4): Differential Input Signal Pins. These  
pins are preferably driven with a differential signal for DNC (Pins 7, 8): Do Not Connect. Don’t connect any  
optimum performance. The pins are internally biased to external component at these pins. Avoid a long wire or  
V
– 1.224V and should be DC blocked externally. The metal trace on the PCB.  
CC  
differential impedance is about 200Ω.  
EN (Pin 9): Enable Pin. An applied voltage above 2V will  
DEC (Pin ꢀ): Input Common Mode Decoupling Pin. This activate the bias for the IC. For an applied voltage below  
pin is internally biased to V – 1.224V. The input imped- 1V, the circuits will be shut down (disabled) with a corre-  
CC  
ance is about 1.75KΩ in parallel with a 10pF internal sponding reduction in power supply current. If the enable  
shunt capacitor to ground. The impedance between DEC function is not required, then this pin should be con-  
+
and IN (or IN ) is about 100Ω. The pin can be connected nected to V . Typical enable pin input current is 68μA for  
CC  
to the center tap of an external balun. An ac-decoupling EN = 5V. Note that at no time should the Enable pin voltage  
capacitor may be connected to ground to maintain the IC be allowed to exceed V by more than 0.3V.  
CC  
performance if necessary.  
FLTR(Pin10):ConnectionforanExternalFilteringCapaci-  
GND (Pin 5, Exposed Pad): Circuit Ground Return for tor C1. A minimum 22nF capacitor is required for stable  
the Entire IC. This must be soldered to the printed circuit ac average power measurement. This capacitor should be  
board ground plane.  
connected between Pin 10 and V .  
CC  
5570f  
8
LT5570  
TEST CIRCUITS  
5V  
C3  
1MF  
C1  
22nF  
C2  
1nF  
1
2
10  
9
RF  
INPUT  
V
FLTR  
EN  
T1  
CC  
L1  
1:4  
1
5
3
2
4
+
ENABLE  
R1  
100k  
IN  
3
4
8
7
C7  
J1  
LT5570  
DNC  
DNC  
NC  
NC  
DEC  
IN  
5
6
C4  
1nF  
OUT  
GND  
OUT  
EXPOSED PAD  
C6  
(OPT)  
5570 F01  
REF DES  
C2, C4  
C1  
VALUE  
1nF  
SIZE  
PART NUMBER  
AVX 0402ZC102KAT  
AVX 0402YC223KAT  
0402  
0402  
0603  
0402  
22nF  
1μF  
C3  
Taiyo Yuden LMK107BJ105MA  
CRCW0402100KFKED  
R1  
100k  
FREQUENCY  
T1  
L1  
L1 P/N  
C7  
880MHz  
2140MHz  
2700MHz  
MURATA LDB21869M20C-001  
MURATA LDB212G1020-001  
MURATA LDB212G4020-001  
8.2nH  
3.3nH  
1.2nH  
TOKO LL1005-FH8N25  
TOKO LL1005-FH3N35  
TOKO LL1005-FH1N25  
2.7pF  
0.5pF  
1pF  
MURATA GRM1555C1H2R7DZ01  
MURATA GRM1555C1HR50CZ01  
MURATA GRM1555C1H1R0DZ01  
Figure 1. Test Schematic for 880MHz, 2140MHz and 2700MHz Applications  
Figure 2. Top Side of Evaluation Board for 880MHz, 2140MHz and 2700MHz Applications  
5570f  
9
LT5570  
TEST CIRCUITS  
5V  
C3  
1MF  
C1  
22nF  
C2  
1nF  
T2  
1
2
10  
9
RF  
INPUT  
C7  
1nF  
V
FLTR  
EN  
ETC4-1-2  
CC  
+
L1  
0
1:4  
4
5
3
2
1
ENABLE  
IN  
C8  
OPT  
R1  
100k  
3
4
8
7
J1  
C9  
0
LT5570  
DNC  
DNC  
NC  
NC  
DEC  
IN  
5
6
C4  
1nF  
GND  
OUT  
EXPOSED PAD  
OUT  
C6  
(OPT)  
5570 F03  
REF DES  
C2, C4, C7  
C1  
VALUE  
1nF  
SIZE  
PART NUMBER  
REF DES  
R1  
VALUE  
100k  
1:4  
SIZE  
PART NUMBER  
0402  
0402  
0603  
AVX 0402ZCI02KAT  
AVX 0402YC223KAT  
0402  
CRCW0402100KFKED  
ETC4-1-2  
22nF  
1μF  
T2  
C3  
Taiyo Yuden LMK107BJ105MA  
C8  
OPT  
0
0402  
0402  
C9, L1  
CJ05-000M  
Figure ꢀ. Test Schematic for 40MHz to 860MHz Applications  
Figure 4. Top Side of Evaluation Board for 40MHz to 860MHz Applications  
5570f  
10  
LT5570  
APPLICATIONS INFORMATION  
TheLT5570isamean-squaredRFpowerdetector, capable  
of measuring an RF signal over the frequency range from  
40MHz to 2.7GHz, independent of input waveforms with  
different crest factors such as CW, CDMA, WCDMA, TD-  
SCDMA and WiMAX signals. A wide dynamic range is  
achievedwithverystableoutputwithinthefulltemperature  
range from –40˚C to 85˚C.  
The LT5570’s differential inputs are optimally driven from  
a fully balanced source. When the signal is from a single-  
ended 50Ω source, conversion to a differential signal is  
required to achieve the maximum dynamic range. This  
is best achieved using a 1:4 balun to match the internal  
200Ω input impedance as shown in Figures 1 and 3. This  
impedance transformation results in 6dB voltage gain. At  
high frequency, additional LC elements may be needed  
for input impedance matching due to the parasitics of the  
transformer and PCB trace.  
RF Inputs  
The differential RF inputs are internally biased at  
V
– 1.224V. The differential impedance is about 200Ω.  
The approximate RF input power range of the LT5570 is  
60dB at frequencies up to 900MHz, even with high crest  
factor signals such as a 4-carrier W-CDMA waveform.  
HowevertheminimumdetectableRFpowerleveldegrades  
as the input RF frequency increases.  
CC  
These pins should be DC blocked when connected to  
ground or other matching components. The impedance  
vs. frequency of the differential RF input is detailed in the  
following table.  
Due to the high RF input impedance of the LT5570, a  
narrow band L-C matching network can be used for the  
conversion of a single-ended to balanced signal as well.  
By this means, the sensitivity and overall linear dynamic  
range of the detector remain the same, without using an  
RF balun.  
Table 1. RF Differential Input Impedance  
S11  
FREQUENCY DIFFERENTIAL INPUT  
(MHz)  
IMPEDANCE (Ω)  
MAG  
0.606  
0.606  
0.606  
0.606  
0.605  
0.604  
0.603  
0.602  
0.601  
0.599  
0.598  
0.596  
0.593  
0.591  
0.589  
0.586  
0.582  
ANGLE (°)  
–0.1  
–0.3  
–0.5  
–1.1  
–1.6  
–2.1  
–2.7  
–3.2  
–3.8  
–4.4  
–5.0  
–5.6  
–6.2  
–6.9  
–7.6  
–8.4  
–9.2  
40  
204 –j 0.6  
204 –j 1.8  
100  
200  
204 –j 3.6  
The LT5570 can also be driven in a single-ended con-  
figuration. Figure 5 shows the simplified circuit of this  
single-ended configuration. The DEC Pin is preferably ac-  
coupled to ground via a capacitor rather than left floating.  
400  
203.5 –j 7.3  
202.8 –j 10.9  
201.8 –j 14.5  
200.6 –j17.9  
199.1 –j21.3  
197.3 –j24.7  
195.4 –j27.9  
193.2 –j31.1  
190.8 –j34.2  
188.2 –j37.4  
185.3 –j40.4  
181.9 –j43.5  
178.3 –j46.4  
174.4 –j49.3  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
2200  
2400  
2600  
2800  
3000  
LT5570  
+
IN  
1nF  
1007  
1007  
DEC  
1nF  
IN  
RF  
INPUT  
1007  
5570 F05  
Figure 5. Single-Ended Input Configuration  
5570f  
11  
LT5570  
APPLICATIONS INFORMATION  
40  
35  
30  
25  
20  
15  
10  
5
320  
280  
240  
200  
160  
120  
80  
2.4  
AT 2140MHZ, P = 10dBm  
IN  
2.0  
1.6  
1.2  
0.8  
500MHz  
880MHz  
0.4  
RESIDUAL RIPPLE  
RISE TIME  
FALL TIME  
40  
2140MHz  
2700MHz  
0
0
0.0  
–10  
–50 –40 –30 –20  
INPUT POWER (dBm)  
0
10  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
EXTERNAL FILTERING CAPACITOR C1 (μF)  
5570 F07  
5570 F06  
Figure 6. Output Voltage and Linearity Error vs  
RF Input Power in Single-ended Input Configuration  
Figure 7. Residual Ripple, Output Transient  
Times vs. Filtering Capacitor C1  
+
The DEC pin can be tied to the IN (or IN ) Pin directly  
and ac-coupled to ground while the RF signal is applied  
C1’s value has a dominant effect on the output transient  
response. The lower the capacitance, the faster the output  
rise and fall times as illustrated in Figure 7. For signals  
withAMcontentsuchasW-CDMA, ripplecanbeobserved  
when the loop bandwidth set by C1 is close to the modu-  
lation bandwidth of the signal. A 4-carrier W-CDMA RF  
signal is used as an example in this case. The trade-offs  
of residual ripple vs. output transient time are also as  
shown in Figure 7.  
+
to the IN (or IN ) Pin. By simply terminating the signal  
side of the inputs with a 100Ω resistor to ground in front  
of the ac-blocking capacitor and coupling the other side  
to ground using a 1nF capacitor, a broadband 50Ω input  
match can be achieved with typical input return loss better  
than 12dB from 40MHz to 2.7GHz.  
Since there is no voltage conversion gain from imped-  
ance transformation in this case, the sensitivity of the  
detector is reduced by 6dB. The linear dynamic range is  
reduced by the same amount correspondingly as shown  
in Figure 6.  
In general, the LT5570 output ripple remains relatively  
constant regardless of the RF input power level for a fixed  
C1 and modulation format of the RF signal. Typically, C1  
must be selected to average out the ripple to achieve the  
desiredaccuracyofRFpowermeasurement.Foratwo-tone  
RF signal with equal power applied to the LT5570 input,  
Figure 8 shows the variation of the output dc voltage and  
its RMS value of the residual ac voltage as a function of  
the delta frequency. Both values are referred to dB by  
normalizing them to the output slope (about 37mV/dB).  
In this measurement, C1 = 22nF. Increasing C1 will shift  
both curves toward a lower frequency.  
External Filtering (FLTR) Capacitor C1  
This pin is internally biased at V – 0.13V via a 2k resistor  
CC  
from voltage supply V . To assure stable operation of the  
CC  
LT5570, an external capacitor C1 with a value of 22nF or  
higher is required to connect the FLTR Pin to V . Don’t  
CC  
connect this filtering capacitor to ground or any other  
low voltage reference at any time to avoid an abnormal  
start-up condition.  
5570f  
12  
LT5570  
APPLICATIONS INFORMATION  
8
7
6
5
4
3
2
1
0
1
C1 = 22nF  
DC VOLTAGE VARIATION  
LT5570  
0
V
CC  
50μA  
–1  
–2  
–3  
1007  
OUT  
R
SS  
OUTPUT AC RIPPLE  
INPUT  
V
OUT  
C
LOAD  
0.1  
AM MODULATION FREQUENCY (MHz)  
0.01  
1
10  
3566 F09  
5570 F08  
Figure 8. Output DC Voltage Variation and  
Residual Ripple vs AM Modulation Frequency  
Figure 9. Simplified Circuit Schematic of the Output Interface  
ThehighperformanceRFcircuitsinsidetheLT5570enable  
it to handle output ripple as high as 2dB without losing its  
powerdetectionaccuracy.Theripplecanbefurtherreduced  
for optimal transient time with an additional RC lowpass  
filter at the output as discussed in the next section.  
175ns. When the output is resistively terminated or open,  
the fastest output transient response is achieved when a  
large signal is applied to the RF input port. The total rise  
time of the LT5570 is about 0.5μs and the total fall time  
is 8μs, respectively, for full-scale pulsed RF input power.  
The speed of the output transient response is dictated  
mainly by the filtering capacitor C1 (at least 22nF) at the  
FLTR pin. See the detailed output transient response in  
theTypicalPerformanceCharacteristicssection.Whenthe  
RF input has AM content, residual ripple may be present  
at the output depending upon the low frequency content  
of the modulated RF signal. For example, when 4-carrier  
Output Interface  
The output buffer amplifier of the LT5570 is shown in  
Figure 9. This push-pull buffer amplifier can source 5mA  
current to the load and sink 2.5mA current from the load.  
Theoutputimpedanceisdeterminedprimarilybythe100Ω  
series resistor connected to the buffer amplifier. This will  
prevent any over-stress on the internal devices in case the  
output is shorted to ground.  
WCDMA is applied at the RF input, 36mV  
(about  
RMS  
1dB) ripple is present at the output. This ripple can be  
reduced with a larger filtering capacitor C1 at the expense  
of a slower transient response.  
The –3dB bandwidth of the buffer amplifier is about  
2.4MHz and the full-scale rise/fall time can be as fast as  
5570f  
13  
LT5570  
APPLICATIONS INFORMATION  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
200  
160  
120  
80  
AT 2140MHZ, P = 10dBm  
IN  
RF  
PULSE  
OFF  
RF  
PULSE  
OFF  
RF PULSE ON  
V
CC  
40  
0
EN  
–40  
–80  
–120  
–160  
–200  
100k  
100k  
WITH FILTERING  
WITHOUT  
FILTERING  
0
10 20 30 40 50 60 70 80 90 100  
5570 F11  
TIMES (μs)  
5570 F10  
Figure 10. Residual ripple, Output Transient  
Times with Output Low-pass Filter  
Figure 11. Enable Pin Simplified Circuit  
Since the output amplifier of the LT5570 is capable of driv-  
ing an arbitrary capacitive load, the residual ripple can be  
In general, the rise time of the LT5570 is much shorter  
than the fall time. However, when the output RC filter is  
used, the rise time is dominated by the time constant of  
this filter. Accordingly, the rise time becomes very similar  
to the fall time.  
filtered at the output with a series resistor R and a large  
SS  
shunt capacitor C  
. See Figure 9. This lowpass filter  
LOAD  
also reduces the output noise by limiting the output noise  
bandwidth. When this RC network is designed properly,  
a fast output transient response can be maintained with  
Enable Interface  
reduced residual ripple. We can estimate C  
with an  
LOAD  
A simplified schematic of the EN Pin interface is shown  
in Figure 11. The enable voltage necessary to turn on the  
LT5570 is 2V. To disable or turn off the chip, this voltage  
should be below 1V. It is important that the voltage applied  
output voltage swing of 1.8V at 2140MHz. In order that  
the maximum 2.5mA sinking current not limit the fall time  
(about 8μS), C  
can be chosen as follows.  
LOAD  
to the EN pin should never exceed V by more than 0.3V.  
C
= 2.5mA • approximate additional time/1.8V  
CC  
LOAD  
Otherwise, the supply current may be sourced through  
the upper ESD protection diode connected at the EN pin.  
Under no circumstances should voltage be applied to the  
= 2.5mA • 0.25μs/1.8V = 347pF  
Once C is determined, R can be chosen properly  
LOAD  
SS  
to form a RC lowpass filter with a corner frequency of  
EN Pin before the supply voltage is applied to the V pin.  
CC  
2π/(R C ).Using4-carrierW-CDMAasanexample,  
SS LOAD  
If this occurs, damage to the IC may result.  
Figure 10 shows the residual ripple is reduced to half from  
36mV  
with R = 4.7k and C  
= 330pF, while the  
RMS  
SS  
LOAD  
fall time is slightly increased to 8.8μS.  
5570f  
14  
LT5570  
PACKAGE DESCRIPTION  
DD Package  
10-Lead Plastic DFN (ꢀmm × ꢀmm)  
(Reference LTC DWG # 05-08-1699)  
R = 0.115  
TYP  
6
0.38 p 0.10  
10  
0.675 p0.05  
3.50 p0.05  
2.15 p0.05 (2 SIDES)  
1.65 p0.05  
3.00 p0.10  
(4 SIDES)  
1.65 p 0.10  
(2 SIDES)  
PIN 1  
PACKAGE  
OUTLINE  
TOP MARK  
(SEE NOTE 6)  
(DD) DFN 1103  
5
1
0.25 p 0.05  
0.50 BSC  
0.75 p0.05  
0.200 REF  
0.25 p 0.05  
0.50  
BSC  
2.38 p0.10  
(2 SIDES)  
2.38 p0.05  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
5570f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT5570  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5514  
DESCRIPTION  
COMMENTS  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
LT5515  
LT5516  
1.5GHz to 2.5GHz Direct Conversion Quadrature 20dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
0.8GHz to 1.5GHz Direct Conversion Quadrature 21.5dBm IIP3, Integrated LO Quadrature Generator  
Demodulator  
LT5517  
LT5518  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21dBm IIP3, Integrated LO Quadrature Generator  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = 64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5525  
LT5526  
LT5527  
LT5528  
LT5557  
0.7GHz to 1.4GHz High Linearity Upconverting  
Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting  
Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
600MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
High Linearity, Low Power Downconverting  
Mixer  
High Linearity, Low Power Downconverting  
Mixer  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Conversion Gain = 2dB  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = 66dBc at 2.14GHz  
400MHz to 3.8GHz, 3.3V High Signal Level  
Downconverting Mixer  
IIP3 = 23.7dBm at 2600MHz, 23.5dBm at 3600MHz, I = 82mA at 3.3V  
CC  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
800MHz to 2.7GHz High Linearity Direct  
Conversion I/Q Demodulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
50Ω, Single-Ended RF and LO Inputs. 28dBm IIP3 at 900MHz, 13.2dBm P1dB,  
0.04dB I/Q Gain Mismatch, 0.4° I/Q Phase Mismatch  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5530  
LTC5531  
LTC5532  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
LT5537  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
Wide Dynamic Range Log RF/IF Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
5570f  
LT 1107 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2007  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5570IDD-TRPBF

Fast Responding, 40MHz to 2.7GHz Mean-Squared Power Detector
Linear

LT5571

620MHz - 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5571EUF

620MHz - 1100MHz High Linearity Direct Quadrature Modulator
Linear

LT5571EUF#PBF

暂无描述
Linear

LT5571EUF#TR

IC TELECOM, CELLULAR, RF AND BASEBAND CIRCUIT, PQCC16, 4 X 4 MM, PLASTIC, MO-220WGGC, QFN-16, Cellular Telephone Circuit
Linear

LT5571EUF#TRPBF

LT5571 - 620MHz - 1100MHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5572

1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator
Linear

LT5572EUF

1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator
Linear

LT5572EUF#TRPBF

LT5572 - 1.5GHz to 2.5GHz High Linearity Direct Quadrature Modulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5575

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUF

800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator
Linear

LT5575EUF#PBF

LT5575 - 800MHz to 2.7GHz High Linearity Direct Conversion Quadrature Demodulator; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear