LT5579 [Linear]

1.5GHz to 3.8GHz High Linearity Upconverting Mixer; 1.5GHz至3.8GHz的高线性度上变频混频器
LT5579
型号: LT5579
厂家: Linear    Linear
描述:

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
1.5GHz至3.8GHz的高线性度上变频混频器

文件: 总20页 (文件大小:243K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT5579  
1.5GHz to 3.8GHz  
High Linearity  
Upconverting Mixer  
FEATURES  
DESCRIPTION  
The LT®5579 mixer is a high performance upconverting  
mixer optimized for frequencies in the 1.5GHz to 3.8GHz  
range. The single-ended LO input and RF output ports  
simplify board layout and reduce system cost. The mixer  
needs only –1dBm of LO power and the balanced design  
resultsinlowLOsignalleakagetotheRFoutput.At 2.6GHz  
operation, the LT5579 provides high conversion gain of  
1.3dB, high OIP3 of +26dBm and a low noise floor of  
–157.5dBm/Hz at a –5dBm RF output signal level.  
n
High Output IP3: +27.3dBm at 2.14GHz  
Low Noise Floor: –158dBm/Hz (P  
n
= –5dBm)  
OUT  
n
n
n
n
n
n
n
High Conversion Gain: 2.6dB at 2.14GHz  
Wide Frequency Range: 1.5GHz to 3.8GHz*  
Low LO Leakage  
Single-Ended RF and LO  
Low LO Drive Level: –1dBm  
Single 3.3V Supply  
5mm × 5mm QFN24 Package  
The LT5579 offers a high performance alternative to pas-  
sivemixers.Unlikepassivemixers,whichhaveconversion  
loss and require high LO drive levels, the LT5579 delivers  
conversion gain at significantly lower LO input levels and  
is less sensitive to LO power level variations. The lower  
LO drive level requirements, combined with the excellent  
LO leakage performance, translate into lower LO signal  
contamination of the output signal.  
APPLICATIONS  
n
GSM/EDGE, W-CDMA, UMTS, LTE and TD-SCDMA  
Basestations  
n
2.6GHz and 3.5GHz WiMAX Basestations  
n
2.4GHz ISM Band Transmitters  
High Performance Transmitters  
n
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
*Operation over wider frequency range is possible with reduced performance.  
Consult Linear Technology for information and assistance.  
TYPICAL APPLICATION  
Frequency Upconversion in 2.14GHz W-CDMA Transmitter  
LO INPUT  
–1dBm (TYP)  
Gain, NF and OIP3 vs  
RF Output Frequency  
LO  
30  
LT5579  
OIP3  
25  
T
= 25°C  
= 3.3V  
= 240MHz  
= f + f  
A
CC  
V
GND  
20  
15  
f
f
IF  
BIAS  
11Ω  
LO RF IF  
SSB NF  
GAIN  
IF  
INPUT  
RF  
OUTPUT  
40nH  
MABAES0061  
4:1  
10  
5
82pF  
82pF  
1.8nH  
+
IF  
1
5
RF  
0.45pF  
2
3
33pF  
4
IF  
0
1900 2000  
2100  
2200  
2300  
2400  
40nH  
11Ω  
RF FREQUENCY (MHz)  
V
CC  
5579 TA01a  
5579 TA01b  
V
CC  
3.3V  
1μF  
100pF  
1nF  
5579f  
1
LT5579  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
TOP VIEW  
(Note 1)  
Supply Voltage.........................................................3.6V  
LO Input Power..................................................+10dBm  
24 23 22 21 20 19  
LO Input DC Voltage ........................–0.3V to V + 0.3V  
CC  
GND  
GND  
1
2
3
4
5
6
18 GND  
RF Output DC Current ............................................60mA  
GND  
GND  
17  
16  
IF Input Power (Differential)...............................+13dBm  
+
IF  
+
IF , IF DC Currents ...............................................60mA  
.................................................................... 150°C  
25  
IF  
15 RF  
T
JMAX  
GND  
GND  
14 GND  
13 GND  
Operating Temperature Range.................. –40°C to 85°C  
Storage Temperature Range................... –65°C to 150°C  
7
8
9 10 11 12  
UH PACKAGE  
24-LEAD (5mm s 5mm) PLASTIC QFN  
T
= 150°C, θ = 34°C/W  
JA  
JMAX  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
24-Lead (5mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LT5579IUH#PBF  
LT5579IUH#TRPBF  
5579  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
VCC = 3.3V, TA = 25°C (Note 3), unless otherwise noted.  
DC ELECTRICAL CHARACTERISTICS  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply Requirements (V  
Supply Voltage  
)
CC  
3.15  
3.3  
3.6  
V
DC  
Supply Current  
V
CC  
V
CC  
= 3.3V, P = 1dBm  
226  
241  
250  
mA  
mA  
LO  
= 3.6V, P = 1dBm  
LO  
Input Common Mode Voltage (V  
)
CM  
Internally Regulated  
570  
mV  
AC ELECTRICAL CHARACTERISTICS (Notes 2, 3)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
MHz  
IF Input Frequency Range (Note 4)  
LO Input Frequency Range (Note 4)  
RF Output Frequency Range (Note 4)  
Requires Matching  
Requires Matching Below 1GHz  
Requires Matching  
LF to 1000  
750 to 4300  
900 to 3900  
MHz  
MHz  
5579f  
2
LT5579  
VCC = 3.3V, TA = 25°C, PRF = –5dBm (–5dBm/tone for 2-tone tests,  
AC ELECTRICAL CHARACTERISTICS  
Δf = 1MHz), PLO = –1dBm, unless otherwise noted. Test circuits are shown in Figure 1. (Notes 2, 3)  
PARAMETER  
CONDITIONS  
Z = 50Ω, External Match  
MIN  
TYP  
15  
MAX  
UNITS  
dB  
IF Input Return Loss  
LO Input Return Loss  
RF Output Return Loss  
LO Input Power  
O
Z = 50Ω, 1100MHz to 4000MHz  
O
>9  
dB  
Z = 50Ω, External Match  
O
>10  
dB  
–5 to 2  
dBm  
VCC = 3.3V, TA = 25°C, PRF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), PLO = –1dBm, unless otherwise noted.  
Low side LO for 1750MHz and 3600MHz. High side LO for 2140MHz and 2600MHz. (Notes 2, 3, 4)  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Conversion Gain  
f
f
f
f
= 240MHz, f = 1750MHz  
1.8  
2.6  
dB  
dB  
dB  
dB  
IF  
IF  
IF  
IF  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
1.3  
RF  
= 456MHz, f = 3600MHz  
–0.5  
RF  
Conversion Gain vs Temperature  
A
f
f
f
f
= 240MHz, f = 1750MHz  
–0.020  
–0.020  
–0.027  
–0.027  
dB/°C  
dB/°C  
dB/°C  
dB/°C  
IF  
IF  
IF  
IF  
RF  
(T = –40°C to 85°C)  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
Output 3rd Order Intercept  
Output 2nd Order Intercept  
Single Sideband Noise Figure  
f
f
f
f
= 240MHz, f = 1750MHz  
29  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dBm  
dB  
dB  
dB  
dB  
IF  
IF  
IF  
IF  
RF  
= 240MHz, f = 2140MHz  
27.3  
26.2  
23.2  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
f
IF  
f
IF  
f
IF  
f
IF  
= 240MHz, f = 1750MHz  
41  
42  
45  
54  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
f
IF  
f
IF  
f
IF  
f
IF  
= 240MHz, f = 1750MHz  
9.2  
9.9  
12  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
12  
RF  
Output Noise Floor (P  
= –5dBm)  
f
IF  
f
IF  
f
IF  
f
IF  
= 240MHz, f = 1750MHz  
–159.5  
–158.1  
–157.5  
–155.5  
dBm/Hz  
dBm/Hz  
dBm/Hz  
dBm/Hz  
OUT  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
Output 1dB Compression  
IF to LO Isolation  
f
f
f
f
= 240MHz, f = 1750MHz  
13.3  
13.9  
13.7  
10.7  
83  
81  
74  
73  
dBm  
dBm  
dBm  
dBm  
dB  
dB  
dB  
dB  
IF  
IF  
IF  
IF  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
f
f
f
f
= 240MHz, f = 1750MHz  
IF  
IF  
IF  
IF  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
LO to IF Leakage  
f
f
f
f
= 240MHz, f = 1750MHz  
–23  
–28  
–26  
–22  
dBm  
dBm  
dBm  
dBm  
IF  
IF  
IF  
IF  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
LO to RF Leakage  
f
f
f
f
= 240MHz, f = 1750MHz  
–39  
–35  
–36  
–35  
dBm  
dBm  
dBm  
dBm  
IF  
IF  
IF  
IF  
RF  
= 240MHz, f = 2140MHz  
RF  
= 456MHz, f = 2600MHz  
RF  
= 456MHz, f = 3600MHz  
RF  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: The LT5579 is guaranteed to meet specified performance from  
–40°C to 85°C  
Note 4: SSB noise figure measurements performed with a small-signal  
noise source and bandpass filter on LO signal generator. No other IF signal  
applied.  
Note 2: Each set of frequency conditions requires appropriate matching  
(see Figure 1).  
5579f  
3
LT5579  
(Test Circuit Shown in Figure 1)  
TYPICAL DC PERFORMANCE CHARACTERISTICS  
Supply Current vs Supply Voltage  
255  
245  
235  
225  
215  
85°C  
25°C  
–40°C  
205  
195  
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
SUPPLY VOLTAGE (V)  
5579 G01  
3300MHz to 3800MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 456MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), low side LO, PLO = –1dBm,  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
output measured at 3600MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
SSB Noise Figure Distribution at  
3600MHz  
Gain Distribution at 3600MHz  
OIP3 Distribution at 3600MHz  
30  
25  
16  
25  
T
T
T
= 90°C  
= 25°C  
= –45°C  
T
A
T
A
T
A
= 90°C  
= 25°C  
= –45°C  
T
T
T
= 90°C  
= 25°C  
= –45°C  
A
A
A
A
A
A
14  
12  
20  
15  
20  
15  
10  
8
10  
5
6
10  
5
4
2
0
0
0
10  
11  
12  
NOISE FIGURE (dB)  
13  
14  
20  
21  
23  
22  
OIP3 (dBm)  
24  
25  
26  
19  
–0.5  
–2.5 –2.0 –1.5 –1.0  
0
0.5 1.0 1.5  
GAIN (dB)  
5579 G04  
5579 G03  
5579 G02  
5579f  
4
LT5579  
TYPICAL AC PERFORMANCE CHARACTERISTICS  
output measured at 3600MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
3300MHz to 3800MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 456MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), low side LO, PLO = –1dBm,  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
16  
12  
8
28  
24  
20  
16  
12  
8
20  
0
–10  
–20  
–30  
–40  
–50  
18  
16  
OIP3  
14  
12  
10  
8
85°C  
25°C  
–40°C  
4
GAIN  
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
6
–4  
4
3200 3300 3400 3500 3600 3700 3800 3900  
RF FREQUENCY (MHz)  
3300 3400  
3600 3700 3800 3900  
3200  
3500  
3200 3300 3400 3500 3600 3700 3800 3900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5579 G05  
5579 G06  
5579 G07  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
26  
16  
26  
22  
18  
14  
10  
6
20  
18  
16  
14  
12  
10  
8
22  
12  
8
OIP3  
GAIN  
OIP3  
18  
85°C  
85°C  
25°C  
–40°C  
25°C  
–40°C  
4
14  
4
GAIN  
0
10  
0
85°C  
6
25°C  
–40°C  
–4  
6
–4  
4
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
–13  
–9  
–5  
–1  
3
–14  
–10  
–6  
LO INPUT POWER (dBm)  
–2  
2
–17  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5579 G10  
5579 G08  
5579 G09  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
20  
0
0
18  
16  
14  
12  
10  
8
–20  
–20  
–40  
–40  
–60  
–80  
–60  
–80  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
6
–100  
–100  
4
–12 –10 –8 –6 –4 –2  
0
2
4
6
–12 –10 –8 –6 –4 –2  
0
2
4
6
3.0  
3.1  
3.2  
3.4  
3.5  
3.6  
3.3  
RF OUTPUT POWER (dBm/TONE)  
RF OUTPUT POWER (dBm/TONE)  
SUPPLY VOLTAGE (V)  
5579 G11  
5579 G12  
5579 G13  
5579f  
5
LT5579  
TYPICAL AC PERFORMANCE CHARACTERISTICS 2300MHz to 2700MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 456MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), high side LO, PLO = –1dBm,  
output measured at 2600MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
LO-RF Leakage  
vs RF Output Frequency  
vs RF Output Frequency  
0
–10  
–20  
–30  
–40  
–50  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
85°C  
25°C  
–40°C  
OIP3  
GAIN  
85°C  
25°C  
–40°C  
10  
8
4
6
4
2
0
85°C  
25°C  
–40°C  
–4  
2300 2400  
2600  
2200 2300 2400 2500 2600 2700 2800  
RF FREQUENCY (MHz)  
2200  
2700 2800  
2200  
2400 2500 2600 2700 2800  
RF FREQUENCY (MHz)  
2500  
2300  
RF FREQUENCY (MHz)  
5579 G16  
5579 G15  
5579 G14  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
28  
16  
28  
24  
20  
16  
12  
8
18  
16  
14  
12  
10  
8
OIP3  
24  
12  
8
OIP3  
GAIN  
85°C  
85°C  
25°C  
–40°C  
25°C  
20  
16  
12  
8
–40°C  
GAIN  
4
4
6
0
0
85°C  
25°C  
–40°C  
4
–4  
–4  
2
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
–17  
–13  
–9  
–5  
–1  
3
–6  
LO INPUT POWER (dBm)  
–14  
–10  
–2  
2
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5579 G19  
5579 G17  
5579 G18  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
0
18  
16  
14  
12  
0
–20  
–20  
–40  
–40  
10  
8
–60  
–80  
–60  
–80  
6
4
2
85°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
25°C  
–40°C  
–100  
–100  
3.1  
3.2  
3.4  
–12 –10 –8 –6 –4 –2  
0
2
4
6
3.0  
3.3  
3.5  
3.6  
–12 –10 –8 –6 –4 –2  
0
2
4
6
RF OUTPUT POWER (dBm/TONE)  
RF OUTPUT POWER (dBm/TONE)  
SUPPLY VOLTAGE (V)  
5579 G22  
5579 G20  
5579 G21  
5579f  
6
LT5579  
TYPICAL PERFORMANCE CHARACTERISTICS 2140MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 240MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), high side LO, PLO = –1dBm,  
output measured at 2140MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
vs RF Output Frequency  
LO-RF Leakage  
vs RF Output Frequency  
18  
16  
14  
12  
10  
8
0
–10  
–20  
–30  
–40  
–50  
16  
12  
8
30  
26  
22  
18  
14  
10  
OIP3  
GAIN  
4
6
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
2
–4  
2150  
RF FREQUENCY (MHz)  
1950  
2050  
2250  
2350  
1950  
2050  
2150  
2250  
2050  
2150  
2250  
2350  
1950  
2350  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5579 G24  
5579 G25  
5579 G23  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
10  
8
16  
12  
8
30  
26  
22  
18  
14  
10  
OIP3  
GAIN  
OIP3  
GAIN  
4
4
6
0
0
85°C  
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
4
25°C  
–40°C  
–4  
2
–4  
–13  
–9  
–5  
–1  
3
–14  
–10  
–6  
LO INPUT POWER (dBm)  
–2  
2
–17  
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
3.1  
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
5579 G26  
5579 G27  
5579 G19  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
18  
16  
14  
12  
10  
8
0
0
–20  
–40  
–20  
–40  
–60  
–80  
–60  
–80  
6
85°C  
25°C  
–40°C  
85°C  
25°C  
85°C  
25°C  
–40°C  
4
2
–40°C  
–100  
–100  
–2  
RF OUTPUT POWER (dBm/TONE)  
–2  
RF OUTPUT POWER (dBm/TONE)  
3.1  
3.2  
3.4  
–10 –8 –6 –4  
0
2
4
6
–10 –8 –6 –4  
0
2
4
6
3.0  
3.5  
3.6  
3.3  
SUPPLY VOLTAGE (V)  
5579 G29  
5579 G30  
5579 G31  
5579f  
7
LT5579  
TYPICAL PERFORMANCE CHARACTERISTICS 1750MHz Application:  
VCC = 3.3V, TA = 25°C, fIF = 240MHz, PIF = –5dBm (–5dBm/tone for 2-tone tests, Δf = 1MHz), low side LO, PLO = –1dBm,  
output measured at 1750MHz, unless otherwise noted. (Test circuit shown in Figure 1)  
Conversion Gain and OIP3  
vs RF Output Frequency  
SSB Noise Figure  
vs RF Output Frequency  
LO-RF Leakage  
vs RF Output Frequency  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
0
–10  
–20  
–30  
–40  
–50  
85°C  
25°C  
–40°C  
OIP3  
GAIN  
85°C  
25°C  
–40°C  
10  
8
4
6
4
2
0
85°C  
25°C  
–40°C  
–4  
1700  
1750  
RF FREQUENCY (MHz)  
1850  
1650  
1700  
1750  
1800  
1850  
1900  
1650  
1900  
1800  
1650  
1700  
1750  
1800  
1850  
1900  
RF FREQUENCY (MHz)  
RF FREQUENCY (MHz)  
5579 G32  
5579 G33  
5579 G34  
Conversion Gain and OIP3  
vs LO Input Power  
SSB Noise Figure  
vs LO Input Power  
Conversion Gain and OIP3  
vs Supply Voltage  
16  
12  
8
32  
28  
24  
20  
16  
12  
16  
12  
8
30  
26  
22  
18  
14  
10  
18  
16  
14  
12  
OIP3  
OIP3  
GAIN  
85°C  
25°C  
–40°C  
10  
8
GAIN  
4
4
6
4
2
0
0
85°C  
25°C  
–40°C  
85°C  
25°C  
–40°C  
–4  
–4  
–13  
–9  
–1  
–17  
3
3.0  
3.2  
3.3  
3.4  
3.5  
3.6  
–5  
3.1  
–17  
–13  
–9  
–5  
–1  
3
SUPPLY VOLTAGE (V)  
LO INPUT POWER (dBm)  
LO INPUT POWER (dBm)  
5579 G36  
5579 G37  
5579 G35  
IM3 Level  
vs RF Output Power (2-Tone)  
IM2 Level  
vs RF Output Power (2-Tone)  
SSB Noise Figure  
vs Supply Voltage  
0
0
18  
16  
14  
12  
–20  
–40  
–20  
–40  
10  
8
–60  
–80  
–60  
–80  
6
4
2
85°C  
25°C  
–40°C  
85°C  
85°C  
25°C  
25°C  
–40°C  
–40°C  
–100  
–100  
3.1  
3.2  
3.4  
–2  
RF OUTPUT POWER (dBm/TONE)  
3.0  
3.5  
3.6  
–10 –8 –6 –4  
0
2
4
6
3.3  
–2  
RF OUTPUT POWER (dBm/TONE)  
–10 –8 –6 –4  
0
2
4
6
SUPPLY VOLTAGE (V)  
5579 G40  
5579 G39  
5579 G38  
5579f  
8
LT5579  
PIN FUNCTIONS  
GND(Pins1,2,5-7,12-14,16-18,19-21,23,24):Ground  
Connections. These pins are internally connected to the  
exposed pad and should be soldered to a low impedance  
RF ground on the printed circuit board.  
RF (Pin 15): Single-Ended RF Output. This pin is con-  
nected to an internal transformer winding. The opposite  
end of the winding is grounded internally. An impedance  
transformation may be required to match the output and a  
DC decoupling capacitor is required if the following stage  
has a DC bias voltage present.  
+
IF , IF (Pins 3, 4): Differential IF Input. The common  
mode voltage on these pins is set internally to 570mV. The  
DC current from each pin is determined by the value of  
an external resistor to ground. The maximum DC current  
through each pin is 60mA.  
LO(Pin22):Single-EndedLocalOscillatorInput.Aninternal  
series capacitor acts as a DC block to this pin.  
Exposed Pad (Pin 25): PGND. Electrical and thermal  
ground connection for the entire IC. This pad must be  
soldered to a low impedance RF ground on the printed  
circuit board. This ground must also provide a path for  
thermal dissipation.  
V
(Pins 8-11): Power Supply Pins for the IC. These  
CC  
pins are connected together internally. Typical current  
consumption is 226mA. These pins should be connected  
together on the circuit board with external bypass capaci-  
tors of 1000pF, 100pF and 10pF located as close to the  
pins as possible.  
5579f  
9
LT5579  
BLOCK DIAGRAM  
25  
EXPOSED  
PAD  
15  
RF  
V
CC  
V
CC  
V
CC  
V
CC  
11  
10  
9
LO  
22  
DOUBLE  
BALANCED  
MIXER  
LO BUFFER  
V
CC2  
BIAS  
8
V
CC2  
V
CM  
CTRL  
+
IF  
IF  
3
4
5579 BD  
GND PINS ARE NOT SHOWN  
5579f  
10  
LT5579  
TEST CIRCUIT  
LO INPUT  
R1  
L1  
24 23 22 21 20 19  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
T1  
4:1  
GND  
GND  
GND  
C1  
C2  
TL1  
TL2  
GND  
GND  
RF  
RF  
OUTPUT  
+
IF  
INPUT  
IF  
L3  
TL3  
C9  
C3  
GND  
IF  
C8  
GND  
GND  
GND  
GND  
L2  
R2  
7
8
9
10 11 12  
V
CC  
C4  
C5  
C6  
C7  
5579 F01  
f
= 1750MHz  
= 240MHz  
f
= 2140MHz  
= 240MHz  
f
= 2600MHz  
= 456MHz  
f
= 3600MHz  
= 456MHz  
RF  
IF  
RF  
IF  
RF  
IF  
RF  
IF  
REF DES  
C1, C2  
C3  
f
f
f
f
SIZE  
COMMENTS  
AVX  
82pF  
82pF  
33pF  
2.7pF  
100pF  
10pF  
1nF  
33pF  
1.8pF  
100pF  
10pF  
1nF  
0402  
0402  
0402  
0603  
0402  
0603  
0402  
0402  
0402  
0402  
0603  
SM-22  
AVX  
C4  
100pF  
10pF  
1nF  
100pF  
10pF  
1nF  
AVX  
C5  
AVX  
C6  
AVX  
C7  
1μF  
1μF  
1μF  
1μF  
Taiyo Yuden LMK107BJ105MA  
AVX ACCU-P  
C8  
1.2pF  
33pF  
40nH  
6.8nH  
0.45pF  
33pF  
40nH  
1.8nH  
0.7pF  
33pF  
40nH  
0ꢀ  
C9  
33pF  
40nH  
1nH  
AVX  
L1, L2  
L3  
Coilcraft 0402CS  
Toko LL1005-FHL/0ꢀ Jumper  
IRC PFC-W0603R-03-11R1-B  
M/A-COM MABAES0061  
R1, R2  
T1  
11ꢀ, 0.1%  
4:1  
11ꢀ, 0.1%  
4:1  
11ꢀ, 0.1%  
4:1  
11ꢀ, 0.1%  
4:1  
TL1, TL2*  
TL3  
1.3mm  
2.3mm  
1.9mm  
2.3mm  
Z = 70Ω Microstrip  
O
2.3mm  
2.3mm  
Z = 70Ω Microstrip  
O
*Center-to-center spacing between C9 and C3. Center of C9 is 3.0mm from the edge of the IC package for all cases.  
Figure 1. Test Circuit Schematic  
5579f  
11  
LT5579  
APPLICATIONS INFORMATION  
The LT5579 uses a high performance LO buffer amplifier  
drivingadouble-balancedmixercoretoachievefrequency  
conversion with high linearity. Internal baluns are used to  
provide single-ended LO input and RF output ports. The  
IF input is differential. The LT5579 is intended for opera-  
tion in the 1.5GHz to 3.8GHz frequency range, though  
operation outside this range is possible with reduced  
performance.  
The purpose of the inductors (L1 and L2) is to reduce the  
loadingeffectsofR1andR2. TheimpedancesofL1andL2  
should be at least several times greater than the IF input  
impedance at the desired IF frequency. The self-resonant  
frequency of the inductors should also be at least several  
times the IF frequency. Note that the DC resistances of  
L1 and L2 will affect the DC current and may need to be  
accounted for in the selection of R1 and R2.  
L1 and L2 should connect to the signal lines as close to  
the package as possible. This location will be at the lowest  
impedancepoint, whichwillminimizethesensitivityofthe  
performance to the loading of the shunt L-R branches.  
IF Input Interface  
TheIFinputsaretiedtotheemittersofthedouble-balanced  
mixer transistors, as shown in Figure 2. These pins are  
internally biased to a common mode voltage of 570mV.  
TheoptimumDCcurrentinthemixercoreisapproximately  
50mA per side, and is set by the external resistors, R1 and  
R2. The inductors and resistors must be able to handle  
the anticipated current and power dissipation. For best  
LO leakage performance the board layout must be sym-  
metrical and the input resistors should be well matched  
(0.1% tolerance is recommended).  
Capacitors C1 and C2 are used to cancel out the parasitic  
series inductance of the IF transformer. They also provide  
DCisolationbetweentheIFportstopreventunwantedinter-  
actions that can affect the LO to RF leakage performance.  
The differential input resistance to the mixer is approxi-  
mately 10Ω, as indicated in Table 1. The package and  
external inductances (TL1 and TL2) are used along with  
R1  
LT5579  
IF  
L1  
50mA  
C1  
C2  
INPUT T1  
4:1  
TL1  
+
IF  
3
4
570mV  
2k  
2k  
V
CC  
C9  
TL2  
C3  
IF  
570mV  
50mA  
L2  
5579 F02  
R2  
Figure 2. IF Input with External Matching  
5579f  
12  
LT5579  
APPLICATIONS INFORMATION  
C9 to step the impedance up to about 12.5Ω. At lower  
frequencies additional series inductance may be required  
between the IF ports and C9. The position of C9 may vary  
withtheIFfrequencyduetothedifferentseriesinductance  
requirements. The 4:1 impedance ratio of transformer T1  
completes the transformation to 50 ohms. Table 1 lists the  
differentialIFinputimpedancesandreflectioncoefficients  
for several frequencies.  
The purpose of capacitor C3 is to improve the LO-RF  
leakage in some applications. This relatively small-valued  
capacitor has little effect on the impedance match in most  
cases. This capacitor should typically be located close to  
the IC, however, there may be cases where re-positioning  
the capacitor may improve performance.  
The measured return loss of the IF input is shown in  
Figure 3 for application frequencies of 70MHz, 240MHz  
and 456MHz. Component values are listed in Table 2. (For  
70MHz matching details, refer to Figure 8.)  
Table 1. IF Input Differential Impedance  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
IF INPUT  
IMPEDANCE  
MAG  
0.70  
0.70  
0.70  
0.70  
0.70  
0.68  
0.67  
0.65  
0.64  
ANGLE  
177  
175  
174  
173  
170  
168  
167  
158  
148  
Table 2. IF Input Component Values  
70  
140  
170  
190  
240  
380  
450  
750  
1000  
8.8+j1.3  
8.7+j2.3  
9.0+j2.8  
8.9+j3.0  
9.0+j4.0  
9.7+j4.9  
10.0+j5.2  
10.8+j9.4  
11.8+j13.8  
FREQUENCY C1, C2  
C9  
C3  
L1, L2 R1, R2 MATCH BW  
(MHz)  
(pF)  
1000  
82  
(pF)  
(pF)  
(nH)  
100  
40  
(Ω) (at 12dB RL)  
140  
120  
33  
(1)  
(1)  
(1)  
9.1  
11  
11  
<50 to 158  
174 to 263  
330 to 505  
240  
450  
33  
33  
40  
Note: (1) Depends on RF, (2) T1 = M/A-Com MABAES0061  
0
–5  
–10  
–15  
–20  
–25  
c
b
a
400  
500 600 700 800  
0
100 200 300  
FREQUENCY (MHz)  
5579 F03  
Figure 3. IF Input Return Loss with 70MHz (a),  
240MHz (b) and 456MHz (c) Matching  
5579f  
13  
LT5579  
APPLICATIONS INFORMATION  
LO Input Interface  
While external matching of the LO input is not required  
for frequencies above 1.1GHz, external matching should  
be used for lower LO frequencies for best performance.  
Table 3 lists the input impedance and reflection coefficient  
vs frequency for the LO input for use in such cases.  
Thesimplifiedschematicforthesingle-endedLOinputport  
is shown in Figure 4. An internal transformer provides a  
broadband impedance match and performs single-ended  
to differential conversion. An internal capacitor also aids  
in impedance matching and provides DC isolation to the  
primary transformer winding. The transformer secondary  
feeds the differential limiting amplifier stages that drive  
the mixer core.  
Table 3. Single-Ended LO Input Impedance  
(at Pin 22, No External Match)  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
INPUT  
IMPEDANCE  
MAG  
0.68  
0.42  
0.22  
0.34  
0.35  
0.36  
0.35  
0.26  
0.24  
0.15  
ANGLE  
–125  
–179  
–7.7  
750  
63.3||–j30.5  
20.3||–j1120  
78.4||–j1250  
79.1||–j113  
74.7||–j96.3  
66.8||–j81.5  
53.8||–j69.8  
33.7||–j115  
33.0||–j146  
43.9||+j173  
The measured return loss of the LO input port is shown  
in Figure 5 for an LO input power of –1dBm. The imped-  
ance match is acceptable from about 1.1GHz to beyond  
4GHz, with a minimum return loss across this range of  
about 9dB at 2300MHz. If desired, the return loss can  
be improved below 1.1GHz by external components as  
shown in Figure 4. The return loss can also be improved  
by reducing the LO drive level, though performance will  
degrade if the level is too low.  
1000  
1500  
1900  
2000  
2150  
2400  
3050  
3150  
4000  
–65.2  
–74.7  
–87.0  
–105  
–148  
–154  
–123  
EXTERNAL  
MATCHING  
FOR LOW  
FREQUENCY  
ONLY  
0
V
CC  
LO  
INPUT  
–5  
–10  
–15  
–20  
–25  
L6  
LO  
22  
C13  
V
BIAS  
5579 F04  
Figure 4. LO Input Circuit  
500 1000 1500 2000 2500 3000 3500 4000  
FREQUENCY (MHz)  
5579 F05  
Figure 5. LO Input Return Loss  
5579f  
14  
LT5579  
APPLICATIONS INFORMATION  
RF Output Interface  
Table 4. Single-Ended RF Output Impedance  
(at Pin 15, No External Matching)  
The RF output interface is shown in Figure 6. An internal  
RF transformer reduces the mixer core output impedance  
to simplify matching of the RF output pin. A center tap in  
the transformer provides the DC connection to the mixer  
core and the transformer provides DC isolation to the RF  
output. The RF pin is internally grounded through the  
secondary winding of the transformer, thus a DC voltage  
should not be applied to this pin.  
REFLECTION COEFFICIENT  
FREQUENCY  
(MHz)  
RF OUTPUT  
IMPEDANCE  
MAG  
0.78  
0.62  
0.52  
0.42  
0.34  
0.30  
0.45  
ANGLE  
97.4  
1250  
1750  
1950  
2150  
2300  
2600  
3600  
11.0+j42.7  
55.6+j83.4  
119+j62.4  
116–j21.0  
73.7–j37.7  
35.2–j21.5  
21.9+j17.8  
47.8  
21.9  
–10.4  
–40.9  
–110  
134  
While the LT5579 performs best at frequencies above  
1500MHz, the part can be used down to 900MHz. The  
internal RF transformer is not optimized for these lower  
frequencies, thusthegainandimpedancematchingband-  
widthwilldecreaseduetothelowtransformerinductance.  
The impedance data for the RF output, listed in Table 4,  
can be used to develop matching networks for different  
frequencies or load impedances. Figure 7 illustrates the  
output return loss performance for several applications.  
The component values and approximate matching band-  
widths are listed in Table 5.  
Table 5. RF Output Component Values  
FREQUENCY  
(MHz)  
1650  
1750  
1950  
2140  
2600  
3600  
C8 (pF)  
L3 (nH)  
MATCH BW (at 12dB RL)  
1630 to 1770  
1.5  
6.8  
1.2  
6.8  
1725 to 1870  
1
4.7  
1840 to 2020  
0.45  
0.45  
0.7  
3.9  
2035 to 2285  
1.8  
2260 to 2780*  
3170 to 4100*  
0ꢀ  
*10dB Return Loss bandwidth  
DC and RF Grounding  
0
The LT5579 relies on the back side ground for both RF and  
thermal performance. The Exposed Pad must be soldered  
to the low impedance topside ground plane of the board.  
Several vias should connect the topside ground to other  
ground layers to aid in thermal dissipation.  
–5  
–10  
–15  
–20  
c
LT5579  
d
RF  
50Ω  
a
b
L3  
–25  
1500  
15  
2000  
2500  
3000  
3500  
4000  
C8  
FREQUENCY (MHz)  
5579 F07  
Figure 7. RF Output Return Loss with 1750MHz (a),  
2140MHz (b), 2600MHz (c) and 3600MHz (d) Matching  
5579 F06  
8
9
10  
11  
V
CC  
Figure 6. RF Output Circuit  
5579f  
15  
LT5579  
TYPICAL APPLICATIONS  
The following examples illustrate the implementation  
and performance of the LT5579 in different frequency  
configurations. These circuits were evaluated using the  
circuit board shown in Figure 12.  
12.5Ω. The relatively low input frequency demanded the  
use of 4.7nH chip inductors instead of short transmission  
lines.  
Closer to the IC input, 47pF capacitors were used instead  
ofasingledifferentialcapacitor(C3inFigure1), becauseit  
was found that the addition of common mode capacitance  
improved the high side LO performance in this applica-  
tion. The value of these 47pF capacitors was selected to  
resonate with the 100nH inductors at 70MHz. Note that  
adding common mode capacitance does not improve  
performance with all frequency configurations.  
1650MHz Application  
In this case, the LT5579 was evaluated while tuned for an  
IF of 70MHz and an RF output of 1650MHz. The matching  
configuration is shown in Figure 8.  
Input capacitors are used only as DC blocks in this ap-  
plication. The 4.7nH inductors and the 120pF capacitor  
transformtheinputimpedanceoftheICuptoapproximately  
9.1Ω  
100nH  
LO  
47pF  
MABAES0061  
4:1  
1nF  
1nF  
4.7nH  
RF  
1650MHz  
6.8nH  
IF  
70MHz  
120pF  
4.7nH  
47pF  
1.5pF  
5579 F08  
100nH  
9.1Ω  
Figure 8. IF Input Tuned for 70MHz  
5579f  
16  
LT5579  
TYPICAL APPLICATIONS  
The RF port impedance match was realized with C8 =  
1.5pF and L3 = 6.8nH. The optimum impedance match  
was purposefully shifted high in order to achieve better  
OIP3 performance at the desired frequency.  
1950MHz Application  
In this example, a high side LO was used to convert the IF  
input signal at 240MHz to 1950MHz at the RF output. The  
RF port impedance match was realized with C8 = 1pF and  
L3 = 4.7nH. As in the 1650MHz case, it was found that  
tuning the output match slightly high in frequency gave  
better OIP3 results at the desired frequency. The input  
match for 240MHz operation is the same as described in  
the test circuit of Figure 1.  
Figure 9 shows the measured conversion gain and OIP3  
asafunctionofRFoutputfrequency. Asmentionedabove,  
the output impedance match is shifted towards the high  
sideoftheband,andthisisevidencedbythepositiveslope  
of the gain. The single sideband noise figure across the  
frequency range is also shown.  
The measured 1950MHz performance is plotted in Fig-  
ure 10 for both low side and high side LO drive. With this  
matchingconfiguration,thelowsideLOcaseoutperforms  
the high side LO. The gain, noise figure (SSB) and OIP3  
are plotted as a function of RF output frequency.  
Curves for both high side and low side LO cases are  
shown. In this particular application, the low side OIP3  
outperforms the high side case.  
35  
OIP3  
35  
30  
25  
OIP3  
30  
T
= 25°C  
A
f
= 70MHz  
IF  
P
P
25  
20  
15  
10  
5
= –5dBm/TONE  
IF  
= –1dBm  
LO  
T
f
= 25°C  
LOW SIDE LO  
HIGH SIDE LO  
A
= 240MHz  
= –5dBm/TONE  
IF  
LOW SIDE LO  
HIGH SIDE LO  
20  
15  
10  
5
P
IF  
SSB NF  
P
= –1dBm  
LO  
SSB NF  
GAIN  
GAIN  
0
–5  
1650  
RF OUTPUT FREQUENCY (MHz)  
1550  
1600  
1700  
1750  
0
1800  
1850  
1900  
1950  
2050  
2000  
RF OUTPUT FREQUENCY (MHz)  
5579 F09  
5579 F10  
Figure 9. Gain, Noise Figure and OIP3 vs  
RF Frequency with 70MHz IF and 1650MHz RF  
Figure 10. Gain, Noise Figure and OIP3 vs  
RF Frequency for the 1950MHz Application  
5579f  
17  
LT5579  
TYPICAL APPLICATIONS  
30  
25  
20  
15  
10  
5
2140MHz with Low Side LO  
OIP3  
The LT5579 was fully characterized with an RF output of  
2140MHz and a high side LO. The part also works well  
when driven with low side LO, however, the performance  
benefited from the addition of common mode capacitance  
to the IF input match. A 10pF capacitor to ground was  
added to each IF pin. These capacitors were attached  
near inductors L1 and L2. The measured performance is  
shown in Figure 11.  
T
= 25°C  
A
f
= 240MHz  
IF  
P
P
= –5dBm/TONE  
IF  
= –1dBm  
LO  
f
= f + f  
RF IF LO  
SSB NF  
GAIN  
0
2000  
2100 2150 2200 2250 2300  
2050  
RF OUTPUT FREQUENCY (MHz)  
5579 F11  
Figure 11. Measured Performance when Tuned  
for 240MHz IF, 2140MHz RF and Low Side LO  
Figure 12. LT5579 Evaluation Board (DC1233A)  
5579f  
18  
LT5579  
PACKAGE DESCRIPTION  
UH Package  
24-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1747 Rev Ø)  
0.75 0.05  
5.40 0.05  
3.90 0.05  
3.20 0.05  
3.25 REF  
3.20 0.05  
PACKAGE OUTLINE  
0.30 0.05  
0.65 BSC  
PIN 1 NOTCH  
R = 0.30 TYP  
OR 0.35 s 45°  
CHAMFER  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
R = 0.115  
R = 0.05  
TYP  
0.75 0.05  
5.00 0.10  
TYP  
23 24  
0.00 – 0.05  
0.55 0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.20 0.10  
5.00 0.10  
3.25 REF  
3.20 0.10  
(UH24) QFN 1206 REV Ø  
0.200 REF  
0.30 0.05  
0.65 BSC  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
5579f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LT5579  
RELATED PARTS  
PART NUMBER  
Infrastructure  
LT5514  
DESCRIPTION  
COMMENTS  
Ultralow Distortion, IF Amplifier/ADC Driver  
with Digitally Controlled Gain  
40MHz to 900MHz Quadrature Demodulator  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
850MHz Bandwidth, 47dBm OIP3 at 100MHz, 10.5dB to 33dB Gain Control Range  
21dBm IIP3, Integrated LO Quadrature Generator  
LT5517  
LT5518  
22.8dBm OIP3 at 2GHz, –158.2dBm/Hz Noise Floor, 50Ω Single-Ended RF and LO  
Ports, 4-Channel W-CDMA ACPR = 64dBc at 2.14GHz  
LT5519  
LT5520  
LT5521  
LT5522  
LT5524  
LT5525  
LT5526  
LT5527  
LT5528  
LT5557  
LT5558  
0.7GHz to 1.4GHz High Linearity Upconverting  
Mixer  
17.1dBm IIP3 at 1GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
1.3GHz to 2.3GHz High Linearity Upconverting  
Mixer  
15.9dBm IIP3 at 1.9GHz, Integrated RF Output Transformer with 50Ω Matching,  
Single-Ended LO and RF Ports Operation  
24.2dBm IIP3 at 1.95GHz, NF = 12.5dB, 3.15V to 5.25V Supply, Single-Ended LO  
Port Operation  
10MHz to 3700MHz High Linearity  
Upconverting Mixer  
400MHz to 2.7GHz High Signal Level  
Downconverting Mixer  
4.5V to 5.25V Supply, 25dBm IIP3 at 900MHz, NF = 12.5dB, 50Ω Single-Ended RF  
and LO Ports  
450MHz Bandwidth, 40dBm OIP3, 4.5dB to 27dB Gain Control  
Low Power, Low Distortion ADC Driver with  
Digitally Programmable Gain  
High Linearity, Low Power Downconverting  
Mixer  
High Linearity, Low Power Downconverting  
Mixer  
400MHz to 3.7GHz High Signal Level  
Downconverting Mixer  
Single-Ended 50Ω RF and LO Ports, 17.6dBm IIP3 at 1900MHz, I = 28mA  
CC  
3V to 5.3V Supply, 16.5dBm IIP3, 100kHz to 2GHz RF, NF = 11dB, I = 28mA,  
CC  
–65dBm LO-RF Leakage  
IIP3 = 23.5dBm and NF = 12.5dBm at 1900MHz, 4.5V to 5.25V Supply, I = 78mA,  
CC  
Conversion Gain = 2dB  
1.5GHz to 2.4GHz High Linearity Direct  
Quadrature Modulator  
21.8dBm OIP3 at 2GHz, –159.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 4-Channel W-CDMA ACPR = 66dBc at 2.14GHz  
400MHz to 3.8GHz 3.3V Downconverting Mixer IIP3 = 23.5dBm at 3.6GHz, NF = 15.4dB, Conversion Gain = 1.7dB, 3.3V Supply at  
82mA, Single-Ended RF and LO Inputs  
600MHz to 1100MHz High Linearity Direct  
Quadrature Modulator  
22.4dBm OIP3 at 900MHz, –158dBm/Hz Noise Floor, 3kΩ, 2.1V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –70.4dBc at 900MHz  
LT5560  
LT5568  
Ultra-Low Power Active Mixer  
700MHz to 1050MHz High Linearity Direct  
Quadrature Modulator  
10mA Supply Current, 10dBm IIP3, 10dB NF, Usable as Up- or Down-Converter.  
22.9dBm OIP3 at 850MHz, –160.3dBm/Hz Noise Floor, 50Ω, 0.5V Baseband  
DC  
Interface, 3-Ch CDMA2000 ACPR = –71.4dBc at 850MHz  
LT5572  
LT5575  
1.5GHz to 2.5GHz High Linearity Direct  
Quadrature Modulator  
700MHz to 2.7GHz Direct Conversion I/Q  
Demodulator  
21.6dBm OIP3 at 2GHz, –158.6dBm/Hz Noise Floor, High-Ohmic 0.5V Baseband  
DC  
Interface, 4-Ch W-CDMA ACPR = –67.7dBc at 2.14GHz  
Integrated Baluns, 28dBm IIP3, 13dBm P1dB, 0.03dB I/Q Amplitude Match,  
0.4° Phase Match  
RF Power Detectors  
LTC®5505  
LTC5507  
LTC5508  
LTC5509  
RF Power Detectors with >40dB Dynamic Range 300MHz to 3GHz, Temperature Compensated, 2.7V to 6V Supply  
100kHz to 1000MHz RF Power Detector  
300MHz to 7GHz RF Power Detector  
300MHz to 3GHz RF Power Detector  
100kHz to 1GHz, Temperature Compensated, 2.7V to 6V Supply  
44dB Dynamic Range, Temperature Compensated, SC70 Package  
36dB Dynamic Range, Low Power Consumption, SC70 Package  
LTC5530  
LTC5531  
LTC5532  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
300MHz to 7GHz Precision RF Power Detector Precision V  
Offset Control, Shutdown, Adjustable Gain  
Offset Control, Shutdown, Adjustable Offset  
Offset Control, Adjustable Gain and Offset  
OUT  
OUT  
OUT  
LT5534  
50MHz to 3GHz Log RF Power Detector with  
60dB Dynamic Range  
1dB Output Variation over Temperature, 38ns Response Time, Log Linear  
Response  
LTC5536  
Precision 600MHz to 7GHz RF Power Detector 25ns Response Time, Comparator Reference Input, Latch Enable Input,  
with Fast Comparator Output  
–26dBm to +12dBm Input Range  
LT5537  
LT5570  
Wide Dynamic Range Log RF/IF Detector  
2.7GHz Mean-Squared Detector  
Low Frequency to 1GHz, 83dB Log Linear Dynamic Range  
0.5dB Accuracy Over Temperature and >50dB Dynamic Range, Fast 500ns  
Rise Time  
5579f  
LT 0108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT5579IUH#PBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579IUH#TRPBF

LT5579 - 1.5GHz to 3.8GHz High Linearity Upconverting Mixer; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5579IUH-PBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5579IUH-TRPBF

1.5GHz to 3.8GHz High Linearity Upconverting Mixer
Linear

LT5581

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB#PBF

LT5581 - 6GHz RMS Power Detector with 40dB Dynamic Range; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LT5581IDDB-PBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT5581IDDB-TRPBF

6GHz RMS Power Detector with 40dB Dynamic Range
Linear

LT560Z

GREEN OVAL LAMP LED
SEOUL

LT561

INFRARED LAMP LED
SEOUL

LT569S-BC

Single Color LED, Blue, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON

LT569S-GC-1

Single Color LED, Green, Water Clear Tinted, T-1 3/4, 5mm,
SENSITRON