LT6402CUD-20 [Linear]

300MHz Low Distortion, Low Noise Differential Amplifier/ ADC Driver (AV = 20dB); 300MHz的低失真,低噪声差分放大器/ ADC驱动器( AV = 20分贝)
LT6402CUD-20
型号: LT6402CUD-20
厂家: Linear    Linear
描述:

300MHz Low Distortion, Low Noise Differential Amplifier/ ADC Driver (AV = 20dB)
300MHz的低失真,低噪声差分放大器/ ADC驱动器( AV = 20分贝)

驱动器 运算放大器 放大器电路
文件: 总16页 (文件大小:322K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT6402-20  
300MHz Low Distortion, Low  
Noise Differential Amplifier/  
ADC Driver (A = 20dB)  
V
U
DESCRIPTIO  
FEATURES  
300 MHz –3dB Bandwidth  
The LT®6402-20 is a low distortion, low noise differential  
amplifier/ADC driver for use in applications from DC to  
300MHz. The LT6402-20 has been designed for ease of  
use,withminimalsupportcircuitryrequired.Exceptionally  
low input-referred noise and low distortion (with either  
single-ended or differential inputs) make the LT6402-20  
an excellent solution for driving high speed 12-bit and  
14-bit ADCs. In addition to the normal unfiltered outputs  
(+OUT and –OUT), the LT6402-20 has a built-in 75MHz  
differential low pass filter and an additional pair of filtered  
outputs (+OUTFILTERED, –OUTFILTERED) to reduce  
external filtering components when driving high speed  
ADCs. The output common mode voltage is easily set via  
Fixed Gain of 20dB  
Low Distortion:  
51dBm OIP3, –81dBc HD3 (20MHz, 2V  
)
P-P  
Low Noise:  
12.4dB NF, e = 1.9nV/√Hz (20MHz)  
n
Differential Inputs and Outputs  
Additional Filtered Outputs  
Adjustable Output Common Mode Voltage  
DC- or AC-Coupled Operation  
Minimal Support Circuitry Required  
Small 0.75mm Profile 16-Lead 3mm × 3mm QFN  
Package  
the V  
pin, eliminating an output transformer or AC-  
OCM  
U
coupling capacitors in many applications.  
APPLICATIO S  
TheLT6402-20isdesignedtomeetthedemandingrequire-  
ments of communications transceiver applications. It can  
be used as a differential ADC driver, a general-purpose  
differential gain block, or in other applications requiring  
differential drive. The LT6402-20 can be used in data  
acquisition systems required to function at frequencies  
down to DC.  
Differential ADC Driver for:  
Imaging  
Communications  
Differential Driver/Receiver  
Single Ended to Differential Conversion  
Differential to Single Ended Conversion  
Level Shifting  
IF Sampling Receivers  
SAW Filter Interfacing/Buffering  
The LT6402-20 operates on a 5V supply and consumes  
30mA.Itcomesinacompact16-lead3mm×3mmQFNpack-  
ageandoperatesovera40°Cto8Ctemperaturerange.  
, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
U
Distortion vs Frequency, Differential  
TYPICAL APPLICATIO  
Input, No R  
LOAD  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
FILTERED OUTPUTS  
= 2V  
V
OUT  
5V  
P-P  
0.1µF  
0.1µF  
–INB  
V
CC  
V
CM  
–INA  
V
10Ω  
10Ω  
OCM  
+OUT  
+
AIN  
0.1µF  
0.1µF  
HD3  
LT6402-20  
–OUT  
LTC®2249  
AIN  
+INB  
+INA  
HD2  
V
IF IN  
EE  
6402 TA01a  
1
10  
FREQUENCY (MHz)  
100  
64022 G08  
640220fa  
1
LT6402-20  
W W U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
Total Supply Voltage (V /V /V  
to  
CCA CCB CCC  
V
/V /V ) ...................................................5.5V  
EEA EEB EEC  
Input Current (+INA, –INA, +INB, –INB,  
16 15 14 13  
V
1
2
3
4
12  
V
EEC  
CCC  
V
, ENABLE)................................................ 10mA  
OCM  
V
11 ENABLE  
OCM  
17  
Output Current (Continuous)  
V
V
V
10  
9
CCA  
CCB  
EEB  
+OUT, OUT................................................... 100mA  
+OUTFILTERED, –OUTFILTERED...................... 30mA  
Output Short Circuit Duration (Note 2) ............ Indefinite  
Operating Temperature Range (Note 3) ... –40°C to 85°C  
Specified Temperature Range (Note 4) .... –40°C to 85°C  
Storage Temperature Range................... –65°C to 125°C  
Junction Temperature ........................................... 125°C  
Lead Temperature Range (Soldering 10 sec) ........ 300°C  
V
EEA  
5
6
7
8
UD PACKAGE  
16-LEAD (3mm × 3mm) PLASTIC QFN  
= 125°C, θ = 68°C/W, θ = 4.2°C/W  
T
JMAX  
JA  
JC  
EXPOSED PAD IS V (PIN 17)  
EE  
MUST BE SOLDERED TO THE PCB  
ORDER PART NUMBER  
UD PART MARKING*  
LT6402CUD-20  
LT6402IUD-20  
LCBC  
LCBC  
Order Options Tape and Reel: Add #TR  
Lead Free: Add #PBF Lead Free Tape and Reel: Add #TRPBF  
Lead Free Part Marking: http://www.linear.com/leadfree/  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
*The temperature grade is identified by a label on the shipping container.  
DC ELECTRICAL CHARACTERISTICS  
The  
CCA  
denotes the specifications which apply over the full operating  
= V = 5V, V = V = V = 0V, ENABLE = 0.8V, +INA  
temperature range, otherwise specifications are at T = 25°C. V  
= V  
A
CCB  
CCC  
EEA  
EEB  
EEC  
shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
= 2.2V, Input common mode voltage = 2.2V, no R  
unless otherwise noted.  
OCM  
CONDITIONS  
Input/Output Characteristics (+INA, +INB, –INA, –INB, +OUT, OUT, +OUTFILTERED, –OUTFILTERED)  
LOAD  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
GDIFF  
Gain  
Differential (+OUT, OUT), V  
Differential  
=
160mV  
18.9  
20  
0.25  
3.6  
7
20.9  
dB  
IN  
V
V
V
Single-Ended +OUT, OUT, +OUTFILTERED,  
–OUTFILTERED, V 600mV Differential  
0.35  
0.5  
V
V
SWINGMIN  
SWINGMAX  
SWINGDIFF  
OUT  
=
IN  
Single-Ended +OUT, OUT, +OUTFILTERED,  
–OUTFILTERED, V 600mV Differential  
3.4  
3.3  
V
V
=
IN  
Output Voltage Swing  
Differential (+OUT, OUT), V  
Differential  
=
600mV  
6.1  
5.6  
V
V
IN  
P-P  
P-P  
I
Output Current Drive  
Input Offset Voltage  
30  
35  
1
mA  
V
–6.5  
–10  
6.5  
10  
mV  
mV  
OS  
TCV  
Input Offset Voltage Drift  
T
MIN  
to T  
MAX  
2.5  
µV/°C  
OS  
640220fa  
2
LT6402-20  
DC ELECTRICAL CHARACTERISTICS  
The  
CCA  
denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at T = 25°C. V  
= V  
= V  
= 5V, V = V = V = 0V, ENABLE = 0.8V, +INA  
CCC EEA EEB EEC  
A
CCB  
shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
= 2.2V, Input common mode voltage = 2.2V, no R  
unless otherwise noted.  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
Single-Ended  
Single-Ended  
MIN  
TYP  
MAX  
UNITS  
V
I
I
Input Voltage Range, MIN  
Input Voltage Range, MAX  
Input Resistance  
0.9  
VRMIN  
VRMAX  
3.9  
77  
V
Ω
R
INDIFF  
100  
1
122  
C
Input Capacitance  
pF  
dB  
Ω
INDIFF  
CMRR  
Common Mode Rejection Ratio  
Output Resistance  
Input Common Mode 0.9V to 3.9V  
45  
70  
R
0.3  
0.8  
OUTDIFF  
OUTDIFF  
C
Output Capacitance  
pF  
Common Mode Voltage Control (V  
Pin)  
OCM  
GCM  
Common Mode Gain  
Differential (+OUT, OUT), V  
Differential (+OUT, OUT), V  
= 1.2V to 3.6V  
= 1.4V to 3.4V  
0.9  
0.9  
1
1.1  
1.1  
V/V  
V/V  
OCM  
OCM  
V
V
V
Output Common Mode Voltage  
Adjustment Range, MIN  
1.2  
1.4  
V
V
OCMMIN  
OCMMAX  
OSCM  
Output Common Mode Voltage  
Adjustment Range, MAX  
Single-Ended  
3.6  
3.4  
V
V
Output Common Mode Offset  
Voltage  
Measured from V  
to Average of +OUT and –OUT  
–30  
4
30  
15  
mV  
OCM  
I
V
V
V
Input Bias Current  
Input Resistance  
Input Capacitance  
5
3
1
µA  
MΩ  
pF  
BIASCM  
OCM  
OCM  
OCM  
R
0.8  
INCM  
INCM  
C
ENABLE Pin  
V
V
ENABLE Input Low Voltage  
ENABLE Input High Voltage  
ENABLE Input Low Current  
ENABLE Input High Current  
0.8  
V
V
IL  
2
IH  
I
IL  
I
IH  
ENABLE = 0.8V  
ENABLE = 2V  
0.5  
3
µA  
µA  
1
Power Supply  
V
Operating Range  
4
5
5.5  
37  
V
mA  
µA  
S
I
I
Supply Current  
ENABLE = 0.8V  
ENABLE = 2V  
4V to 5.5V  
24  
30  
S
Supply Current (Disabled)  
Power Supply Rejection Ratio  
250  
90  
500  
SDISABLED  
PSRR  
55  
dB  
640220fa  
3
LT6402-20  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V, V = V = V = 0V,  
CCC EEA EEB EEC  
A
CCA  
CCB  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
OCM  
LOAD  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input/Output Characteristics  
–3dBBW  
0.1dBBW  
0.5dBBW  
SR  
–3dB Bandwidth  
20mV Differential (+OUT, OUT)  
200  
300  
30  
MHz  
MHz  
MHz  
V/µs  
ns  
P-P  
Bandwidth for 0.1dB Flatness  
Bandwidth for 0.5dB Flatness  
Slew Rate  
20mV Differential (+OUT, OUT)  
P-P  
20mV Differential (+OUT, OUT)  
80  
P-P  
3.2V Differential (+OUT, OUT)  
400  
8
P-P  
t
1% Settling  
1% Settling for a 1V Differential Step  
s1%  
P-P  
(+OUT, OUT)  
t
t
Turn-On Time  
Turn-Off Time  
100  
1
ns  
µs  
ON  
OFF  
Common Mode Voltage Control (V  
Pin)  
OCM  
–3dBBW  
Common Mode Small-Signal –3dB  
Bandwidth  
0.1V at V , Measured Single-Ended at +OUT  
OCM  
200  
250  
MHz  
V/µs  
CM  
P-P  
and –OUT  
SR  
Common Mode Slew Rate  
1.3V to 3.4V Step at V  
OCM  
CM  
Noise/Harmonic Performance Input/Output Characteristics  
10MHz Signal  
Second/Third Harmonic Distortion  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–85  
–85  
–93  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
Third-Order IMD  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 9.5MHz, f2 = 10.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 9.5MHz, f2 = 10.5MHz (Note 5)  
49.5  
dBm  
10M  
Noise Figure  
Measured Using DC954A Demo Board  
12.3  
1.85  
19.5  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n10M  
R = 100Ω (Note 5)  
L
20MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–81  
–81  
–96  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 19.5MHz, f2 = 20.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–91  
51  
dBc  
P-P  
R = 400Ω, f1 = 19.5MHz, f2 = 20.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 19.5MHz, f2 = 20.5MHz (Note 5)  
dBm  
20M  
Noise Figure  
Measured Using DC954A Demo Board  
12.4  
1.9  
18  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n20M  
R = 100Ω (Note 5)  
L
640220fa  
4
LT6402-20  
AC ELECTRICAL CHARACTERISTICS  
T = 25°C, V  
= V  
= V  
= 5V,V = V = V = 0V,  
A
CCA  
CCB  
CCC EEA EEB EEC  
ENABLE = 0.8V, +INA shorted to +INB (+IN), –INA shorted to –INB (–IN), V  
unless otherwise noted.  
= 2.2V, Input common mode voltage = 2.2V, no R  
OCM  
LOAD  
UNITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
25MHz Signal  
Second/Third Harmonic Distortion  
Third-Order IMD  
2V Differential (+OUTFILTERED, –OUTFILTERED)  
–80  
–80  
–86  
dBc  
dBc  
dBc  
P-P  
2V Differential (+OUT, OUT)  
P-P  
2V Differential Composite (+OUTFILTERED,  
P-P  
–OUTFILTERED), f1 = 24.5MHz, f2 = 25.5MHz  
2V Differential Composite (+OUT, OUT),  
L
–84  
46  
dBc  
P-P  
R = 400Ω, f1 = 24.5MHz, f2 = 25.5MHz  
OIP3  
NF  
Output Third-Order Intercept  
Differential (+OUTFILTERED, –OUTFILTERED),  
f1 = 24.5MHz, f2 = 25.5MHz (Note 5)  
dBm  
25M  
Noise Figure  
Measured Using DC954A Demo Board  
12.5  
1.9  
dB  
nV/√Hz  
dBm  
e
Input Referred Noise Voltage Density  
1dB Compression Point  
n25M  
R = 100Ω (Note 5)  
L
16.6  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 4: The LT6402C is guaranteed to meet specified performance from  
0°C to 70°C. It is designed, characterized and expected to meet specified  
performance from –40°C and 85°C but is not tested or QA sampled  
at these temperatures. The LT6402I is guaranteed to meet specified  
performance from –40°C to 85°C.  
Note 2: As long as output current and junction temperature are kept below  
the Absolute Maximum Ratings, no damage to the part will occur.  
Note 3: The LT6402 is guaranteed functional over the operating  
temperature range of –40°C to 85°C.  
Note 5: Since the LT6402-20 is a feedback amplifier with low output  
impedance, a resistive load is not required when driving an ADC.  
Therefore, typical output power is very small. In order to compare the  
LT6402-20 with typical g amplifiers that require 50Ω output loading, the  
m
LT6402-20 output voltage swing driving an ADC is converted to OIP3 and  
P1dB as if it were driving a 50Ω load.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
LOAD  
Frequency Response  
LOAD  
Frequency Response vs  
, R = 400Ω  
R
= 400Ω  
R
= 100Ω  
C
LOAD LOAD  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
V
= 20mV  
P-P  
IN  
UNFILTERED OUTPUTS  
UNFILTERED  
FILTERED  
UNFILTERED  
FILTERED  
0
0
V
= 20mV  
P-P  
0pF  
V
= 20mV  
P-P  
IN  
IN  
UNFILTERED: R  
FILTERED: R  
= 400Ω  
1.6pF  
5pF  
UNFILTERED: R  
FILTERED: R  
= 100Ω  
LOAD  
LOAD  
–5  
–10  
–5  
–10  
= 300(EXTERNAL)  
= 100Ω  
LOAD  
LOAD  
+ 100(INTERNAL, FILTERED OUTPUTS)  
10 100  
FREQUENCY (MHz)  
10pF  
(INTERNAL, FILTERED OUTPUTS)  
10 100  
FREQUENCY (MHz)  
0
1
1000  
1
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
64022 G01  
64022 G03  
34022 G02  
640220fa  
5
LT6402-20  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Third Order Intercept vs  
Frequency, Differential Input,  
Third Order Intermodulation  
Distortion vs Frequency  
Differential Input, No R  
Third Order Intermodulation  
Distortion vs Frequency  
No R  
Differential Input, R  
= 400Ω  
LOAD  
LOAD  
LOAD  
60  
55  
50  
45  
40  
35  
30  
–60  
–65  
–60  
–65  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
UNFILTERED OUTPUTS  
1MHz TONE SPACING  
1MHz TONE SPACING  
–70  
–70  
UNFILTERED OUTPUTS  
FILTERED OUTPUTS  
–75  
–75  
–80  
–80  
–85  
–85  
UNFILTERED OUTPUTS  
–90  
–90  
–95  
–95  
FILTERED OUTPUTS  
–100  
–105  
–110  
–100  
–105  
–110  
FILTERED OUTPUTS  
5
15  
20  
25  
30  
35  
5
10  
20  
25  
30  
35  
35  
10  
5
10  
20  
25  
30  
35  
10  
15  
15  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64022 G06  
64022 G04  
64022 G05  
Output Third Order Intercept vs  
Frequency, Differential Input,  
Distortion vs Frequency,  
Differential Input, No R  
(Unfiltered)  
Distortion vs Frequency,  
Differential Input, No R  
(Filtered)  
LOAD  
LOAD  
R
LOAD  
= 400Ω  
60  
55  
50  
45  
40  
35  
30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
2 TONES, 2V COMPOSITE  
P-P  
1MHz TONE SPACING  
V
= 2V  
V
= 2V  
OUT P-P  
OUT  
P-P  
FILTERED OUTPUTS  
HD3  
HD2  
HD3  
HD2  
UNFILTERED OUTPUTS  
5
15  
20  
25  
30  
1
10  
FREQUENCY (MHz)  
100  
1
10  
FREQUENCY (MHz)  
100  
10  
FREQUENCY (MHz)  
64022 G08  
64022 G10  
64022 G07  
Distortion vs Output Amplitude  
20MHz Differential Input,  
Distortion vs Output Amplitude  
20MHz Differential Input,  
Output 1dB Compression  
vs Frequency  
No R  
(Filtered)  
No R  
(Unfiltered)  
LOAD  
LOAD  
–70  
–75  
–80  
–70  
–72  
–74  
–76  
–78  
–80  
–82  
–84  
– 86  
25  
20  
15  
10  
5
FILTERED OUTPUTS  
UNFILTERED OUTPUTS  
20MHz DIFFERENTIAL INPUT  
20MHz DIFFERENTIAL INPUT  
NO R  
NO R  
LOAD  
LOAD  
HD2  
HD3  
400LOAD  
100LOAD  
HD2  
HD3  
–85  
–90  
–95  
0
–5  
–10  
UNFILTERED OUTPUTS  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
10  
1
10  
100  
1000  
OUTPUT AMPLITUDE (dBm)  
OUTPUT AMPLITUDE (dBm)  
FREQUENCY (Hz)  
64022 G14  
64022 G12  
64022 G13  
640220fa  
6
LT6402-20  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Referred Noise Voltage  
vs Frequency  
Noise Figure vs Frequency  
Isolation vs Frequency  
30  
25  
20  
15  
10  
5
8
7
6
5
4
3
2
1
0
–30  
–40  
UNFILTERED OUTPUTS  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
MEASURED USING DC954A DEMO BOARD  
10  
100  
1000  
10  
100  
FREQUENCY (MHz)  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64022 G15  
64022 G16  
64022 G17  
Differential Input Impedance  
vs Frequency  
Differential Output Impedance  
vs Frequency  
Input Reflection Coefficient  
vs Frequency  
1000  
100  
10  
1
0
–5  
400  
350  
300  
250  
200  
150  
100  
50  
UNFILTERED OUTPUTS  
MEASURED USING  
DC954A DEMO BOARD  
–10  
–15  
–20  
–25  
–30  
–35  
IMPEDANCE MAGNITUDE  
IMPEDANCE PHASE  
0
–50  
–100  
0
10  
100  
1000  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64022 G19  
64022 G18  
34022 G20  
Output Reflection Coefficient  
vs Frequency  
PSRR, CMRR vs Frequency  
Small-Signal Transient Response  
0
–5  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
MEASURED USING  
DC954A DEMO BOARD  
UNFILTERED OUTPUTS  
R
= 100PER OUTPUT  
LOAD  
PSRR  
CMRR  
2.25  
2.20  
2.15  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
64022 G23  
TIME (5ns/DIV)  
1
10  
100  
1000  
1
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
64022 G21  
64022 G22  
640220fa  
7
LT6402-20  
TYPICAL PERFORMANCE CHARACTERISTICS  
Distortion vs Output Common  
Mode Voltage LT6402-20 Driving  
LTC2249 14-Bit ADC  
Large-Signal Transient Response  
Overdrive Recovery Time  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.4  
3.2  
3.0  
2.8  
2.6  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
–80  
–82  
–84  
–86  
–88  
–90  
R
= 100PER OUTPUT  
FILTERED OUTPUTS, NO R  
LOAD  
OUT  
R
LOAD  
= 100PER OUTPUT  
LOAD  
V
= 20MHz 2V  
P-P  
+OUT  
HD3  
HD2  
–OUT  
TIME (25ns/DIV)  
TIME (10ns/DIV)  
1
1.2 1.4 1.6 1.8  
2.0 2.2 2.4  
64022 G25  
OUTPUT COMMON MODE VOLTAGE (V)  
64022 G24  
64022 G26  
10MHz 8192 Point FFT,  
LT6402-20 Driving  
Turn-On Time  
Turn-Off Time  
LTC2249 14-Bit ADC  
0
–10  
4.0  
3.5  
3.0  
2.5  
4.0  
3.5  
3.0  
2.5  
8192 POINT FFT  
= 10MHz, –1dBFS  
R
= 100  
R
= 100  
LOAD  
LOAD  
f
PER OUTPUT  
PER OUTPUT  
IN  
FILTERED OUTPUTS  
–20  
–30  
+OUT  
+OUT  
–OUT  
–40  
–50  
–60  
2.0  
1.5  
2.0  
1.5  
–OUT  
–70  
–80  
ENABLE  
–90  
ENABLE  
1.0  
0.5  
0
1.0  
0.5  
0
5V  
0V  
5V  
0V  
–100  
–110  
–120  
25 30  
10 15 20  
FREQUENCY (MHz)  
0
5
35 40  
TIME (125ns/DIV)  
TIME (250ns/DIV)  
64022 G27  
64022 G28  
64022 G29  
20MHz 8192 Point FFT,  
LT6402-20 Driving  
LTC2249 14-Bit ADC  
25MHz 8192 Point FFT,  
LT6402-20 Driving  
LTC2249 14-Bit ADC  
20MHz 2-Tone 32768 Point FFT,  
LT6402-20 Driving  
LTC2249 14-Bit ADC  
0
–10  
0
–10  
0
–10  
–20  
–30  
–40  
8192 POINT FFT  
= 20MHz, –1dBFS  
FILTERED OUTPUTS  
8192 POINT FFT  
32768 POINT FFT  
f
f
= 25MHz, –1dBFS  
IN  
IN  
TONE 1 AT 19.5MHz, –7dBFS  
TONE 2 AT 20.5MHz, –7dBFS  
FILTERED OUTPUTS  
FILTERED OUTPUTS  
–20  
–20  
–30  
–30  
–40  
–40  
–50  
–60  
–50  
–50  
–60  
–60  
–70  
–80  
–70  
–70  
–90  
–80  
–80  
–100  
–110  
–120  
–130  
–140  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
25 30  
10 15 20  
FREQUENCY (MHz)  
25 30  
10 15 20  
FREQUENCY (MHz)  
0
5
35 40  
0
5
35 40  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5  
FREQUENCY (MHz)  
64022 G30  
64022 G31  
64022 G32  
640220fa  
8
LT6402-20  
U
U
U
PI FU CTIO S  
V
(Pin 2): This pin sets the output common mode  
+OUTFILTERED, –OUTFILTERED (Pins 6, 7): Filtered  
Outputs. These pins add a series 50Ω resistor from the  
unfiltered outputs and three 14pF capacitors. Each output  
OCM  
voltage. Without additional biasing, both inputs bias to  
this voltage as well. This input is high impedance.  
has 14pF to V , plus an additional 14pF between each pin  
EE  
V
, V , V  
CCA CCB CCC  
(Pins 3, 10, 1): Positive Power Supply  
(See the Block Diagram). This filter has a –3dB bandwidth  
of 75MHz.  
(Normally Tied to 5V). All three pins must be tied to the  
same voltage. Bypass each pin with 1000pF and 0.1µF  
capacitors as close to the package as possible. Split  
ENABLE (Pin 11): This pin is a TTL logic input referenced  
supplies are possible as long as the voltage between V  
and V is 5V.  
to the V  
pin. If low, the LT6402 is enabled and draws  
CC  
EEC  
typically 30mA of supply current. If high, the LT6402 is  
disabled and draws typically 250µA.  
EE  
V
, V , V (Pins 4, 9, 12): Negative Power Supply  
EEA EEB EEC  
(Normally Tied to Ground). All three pins must be tied to  
+INA, +INB (Pins 15, 16): Positive Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
the same voltage. Split supplies are possible as long as  
the voltage between V and V is 5V. If these pins are  
CC  
EE  
nottiedtoground, bypasseachpinwith1000pFand0.1µF  
to the voltage applied to the V  
pin.  
OCM  
capacitors as close to the package as possible.  
–INA, –INB (Pins 14, 13): Negative Inputs. These pins are  
normally tied together. These inputs may be DC- or AC-  
coupled. If the inputs are AC-coupled, they will self-bias  
+OUT, OUT (Pins 5, 8): Outputs (Unfiltered). These  
pins are high bandwidth, low-impedance outputs. The DC  
output voltage at these pins is set to the voltage applied  
to the voltage applied to the V  
pin.  
OCM  
at V  
.
OCM  
Exposed Pad (Pin 17): Tie the pad to V (Pin 12). If split  
EEC  
supplies are used, DO NOT tie the pad to ground.  
W
BLOCK DIAGRA  
500  
V
EEA  
V
CCA  
–INA  
–INB  
14pF  
100Ω  
100Ω  
14  
13  
+
+OUT  
5
6
A
+OUTFILTERED  
50Ω  
V
EEA  
V
CCC  
500Ω  
V
OCM  
2
+
C
14pF  
V
EEC  
500Ω  
100Ω  
50Ω  
–OUTFILTERED  
–OUT  
V
CCB  
+INA  
+INB  
7
8
16  
15  
+
B
100Ω  
14pF  
V
EEB  
V
EEB  
500Ω  
BIAS  
11  
6402 BD  
3
10  
1
4
9
12  
V
V
V
ENABLE  
V
V
V
EEC  
CCA  
CCB  
CCC  
EEA  
EEB  
640220fa  
9
LT6402-20  
U
W U U  
APPLICATIO S I FOR ATIO  
Circuit Description  
the outputs, the common mode voltage is set via the V  
OCM  
pin, allowing the LT6402-20 to drive ADCs directly. No  
outputAC-couplingcapacitorsortransformersareneeded.  
At the inputs, signals can be differential or single-ended  
with virtually no difference in performance. Furthermore,  
DC levels at the inputs can be set independently of the  
outputcommonmodevoltage.Theseinputcharacteristics  
often eliminate the need for an input transformer and/or  
AC-coupling capacitors.  
The LT6402-20 is a low noise, low distortion differential  
amplifier/ADC driver with:  
• –3dB bandwidth  
DC to 300MHz  
• Fixed gain independent of R  
10V/V (20dB)  
LOAD  
• Differential input impedance  
100Ω  
Input Impedance and Matching Networks  
• Low output impedance  
Calculation of the input impedance of the LT6402-20 is  
notstraightforwardfromexaminationoftheblockdiagram  
because of the internal feedback network. In addition, the  
inputimpedancewhendrivendifferentiallyisdifferentthan  
when driven single-ended.  
• Built-in, user adjustable output filtering  
• Requires minimal support circuitry  
Referring to the block diagram, the LT6402-20 uses a  
closed-loop topology which incorporates 3 internal am-  
plifiers. Two of the amplifiers (A and B) are identical and  
drive the differential outputs. The third amplifier is used  
to set the output common mode voltage. Gain and input  
impedance are set by the 500Ω and 100Ω resistors in  
the internal feedback network. Output impedance is low,  
determinedbytheinherentoutputimpedanceofamplifiers  
A and B, and further reduced by internal feedback.  
Differential  
Single-Ended  
LT6402-20  
100Ω  
85.9Ω  
Forsingle-ended50Ωapplications,a121Ωshuntmatching  
resistor to ground will result in the proper input termina-  
tion (Figure 1). For differential inputs there are several  
terminationoptions. Iftheinputsourceis50Ωdifferential,  
then the input matching can be accomplished by either  
a 100Ω shunt resistor across the inputs (Figure 3), or  
equivalent 49.9Ω shunt resistors on each of the inputs  
to ground (Figure 2). If additional AC gain is desired, an  
impedance ratio transformer can also be used to better  
match impedances.  
The LT6402-20 also includes built-in single-pole output  
filtering. The user has the choice of using the unfiltered  
outputs, the filtered outputs (75MHz –3dB lowpass), or  
modifying the filtered outputs to alter frequency response  
by adding additional components. Many lowpass and  
bandpass filters are easily implemented with just one or  
two additional components.  
13  
–INB  
–INA  
8
–OUT  
LT6402-20  
+OUT  
14  
The LT6402-20 has been designed to minimize the need  
for external support components such as transformers or  
AC-coupling capacitors. As an ADC driver, the LT6402-20  
requires no external components except for power-supply  
bypass capacitors. This allows DC-coupled operation for  
applications that have frequency ranges including DC. At  
0.1µF  
15  
16  
IF IN  
+INB  
+INA  
5
121Ω  
Z
= 50Ω  
IN  
6402 F01  
SINGLE-ENDED  
Figure 1. Input Termination for Single-Ended 50Ω  
Input Impedance  
640220fa  
10  
LT6402-20  
U
W U U  
APPLICATIO S I FOR ATIO  
Single-Ended to Differential Operation  
and filtered outputs of the LT6402-20 can easily drive the  
high impedance inputs of these differential ADCs. If the  
filtered outputs are used, then cutoff frequency and the  
type of filter can be tailored for the specific application if  
needed.  
The LT6402-20’s performance with single-ended inputs  
is comparable to its performance with differential inputs.  
This excellent single-ended performance is largely due  
to the internal topology of the LT6402-20. Referring to  
the block diagram, if the +INA and +INB pins are driven  
with a single-ended signal (while –INA and –INB are tied  
to AC ground), then the +OUT and –OUT pins are driven  
differentially without any voltage swing needed from  
amplifier C. Single-ended to differential conversion using  
more conventional topologies suffers from performance  
limitations due to the common mode amplifier.  
Wideband Applications  
(Using the +OUT and –OUT Pins)  
In applications where the full bandwidth of the LT6402-20  
is desired, the unfiltered output pins (+OUT and –OUT)  
should be used. They have a low output impedance;  
therefore, gain is unaffected by output load. Capacitance  
in excess of 5pF placed directly on the unfiltered outputs  
results in additional peaking and reduced performance.  
When driving an ADC directly, a small series resistance  
is recommended between the LT6402-20’s outputs and  
the ADC inputs (Figure 4). This resistance helps eliminate  
any resonances associated with bond wire inductances of  
either the ADC inputs or the LT6402-20’s outputs. A value  
between 10Ω and 25Ω gives excellent results.  
Driving ADCs  
The LT6402-20 has been specifically designed to interface  
directly with high speed Analog to Digital Converters  
(ADCs).Ingeneral,theseADCshavedifferentialinputs,with  
an input impedance of 1kΩ or higher. In addition, there is  
generally some form of lowpass or bandpass filtering just  
prior to the ADC to limit input noise at the ADC, thereby  
improving system signal to noise ratio. Both the unfiltered  
13  
–INB  
IF IN  
8
5
14  
–OUT  
LT6402-20  
+OUT  
–INA  
49.9Ω  
Z
= 50Ω  
IN  
DIFFERENTIAL  
15  
16  
+INB  
+INA  
+
IF IN  
49.9Ω  
6402 F02  
Figure 2. Input Termination for Differential 50Ω Input Impedance  
13  
14  
–INB  
–INA  
10TO 25Ω  
10TO 25Ω  
IF IN  
8
5
8
5
–OUT  
LT6402-20  
+OUT  
–OUT  
LT6402-20  
+OUT  
Z
= 50Ω  
DIFFERENTIAL  
IN  
100Ω  
ADC  
15  
16  
+INB  
+INA  
+
IF IN  
6402 F03  
6402 F04  
Figure 3. Alternate Input Termination for Differential 50Ω  
Input Impedance  
Figure 4. Adding Small Series R at LT6402 Output  
640220fa  
11  
LT6402-20  
U
W U U  
APPLICATIO S I FOR ATIO  
Filtered Applications  
TERED (Figure 6). These resistors are in parallel with the  
internal 50Ω resistor, lowering the overall resistance and  
increasinglterbandwidth. Todoublethelterbandwidth,  
for example, add two external 50Ω resistors to lower the  
seriesresistanceto25Ω.The42pFofcapacitanceremains  
unchanged, so filter bandwidth doubles.  
(Using the +OUTFILTERED and –OUTFILTERED Pins)  
Filtering at the output of the LT6402-20 is often desired  
to provide either anti-aliasing or improved signal to noise  
ratio. To simplify this filtering, the LT6402-20 includes an  
additional pair of differential outputs (+OUTFILTERED and  
–OUTFILTERED) which incorporate an internal lowpass  
filter network with a –3dB bandwidth of 75MHz (Figure 5).  
These pins each have an output impedance of 50Ω. Inter-  
To decrease filter bandwidth, add two external capacitors,  
one from +OUTFILTERED to ground, and the other from  
–OUTFILTERED to ground. A single differential capacitor  
connected between +OUTFILTERED and –OUTFILTERED  
can also be used, but since it is being driven differentially  
it will appear at each filtered output as a single-ended  
capacitance of twice the value. To halve the filter band-  
width, for example, two 42pF capacitors could be added  
(one from each filtered output to ground). Alternatively  
one 21pF capacitor could be added between the filtered  
outputs, again halving the filter bandwidth. Combinations  
of capacitors could be used as well; a three capacitor  
nal capacitances are 14pF to V on each filtered output,  
EE  
plus an additional 14pF capacitor connected differentially  
between the two filtered outputs. This resistor/capaci-  
tor combination creates filtered outputs that look like a  
series 50Ω resistor with a 42pF capacitor shunting each  
filtered output to AC ground, giving a –3dB bandwidth of  
75MHz.  
The filter cutoff frequency is easily modified with just a  
fewexternalcomponents.Toincreasethecutofffrequency,  
simplyadd2equalvalueresistors, onebetween+OUTand  
+OUTFILTEREDandtheotherbetweenOUTandOUTFIL-  
LT6402-20  
8
7
–OUT  
V
EE  
14pF  
50  
50Ω  
LT6402-20  
14pF  
8
–OUTFILTERED  
–OUT  
V
EE  
FILTERED OUTPUT  
(37.5MHz)  
14pF  
14pF  
14pF  
14pF  
50Ω  
50Ω  
7
6
–OUTFILTERED  
+OUTFILTERED  
+OUTFILTERED  
6
5
FILTERED OUTPUT  
(75MHz)  
14pF  
14pF  
14pF  
V
EE  
+OUT  
6402 F07  
V
EE  
5
+OUT  
Figure 7. LT6402-20 Internal Filter Topology Modified  
for 1/2x Filter Bandwidth (3 External Capacitors)  
6402 F05  
Figure 5. LT6402-20 Internal Filter Topology –3dB BW ≈75MHz  
LT6402-20  
8
7
–OUT  
V
EE  
LT6402-20  
8
–OUT  
50Ω  
14pF  
V
EE  
50Ω  
50Ω  
–OUTFILTERED  
14pF  
14pF  
50Ω  
50Ω  
7
6
–OUTFILTERED  
14pF  
FILTERED OUTPUT  
FILTERED OUTPUT  
(150MHz)  
14pF  
+OUTFILTERED  
+OUTFILTERED  
6
5
14pF  
50Ω  
V
EE  
V
EE  
5
+OUT  
+OUT  
6402 F06  
6402 F08  
Figure 6. LT6402-20 Internal Filter Topology Modified  
for 2x Filter Bandwidth (2 External Resistors)  
Figure 8. LT6402-20 Output Filter Modified for Bandpass  
Filtering (1 External Inductor, 1 External Capacitor)  
640220fa  
12  
LT6402-20  
U
W U U  
APPLICATIO S I FOR ATIO  
solution of 14pF from each filtered output to ground plus  
a 14pF capacitor between the filtered outputs would also  
halve the filter bandwidth (Figure 7).  
Input Bias Voltage and Bias Current  
The input pins of the LT6402-20 are internally biased to  
the voltage applied to the V pin. No external biasing  
OCM  
Bandpass filtering is also easily implemented with just a  
few external components. An additional 560pF and 62nH,  
each added differentially between +OUTFILTERED and  
–OUTFILTERED creates a bandpass filter with a 26MHz  
center frequency, –3dB points of 23MHz and 30MHz, and  
1.6dB of insertion loss (Figure 8).  
resistors are needed, even for AC-coupled operation. The  
input bias current is determined by the voltage difference  
between the input common mode voltage and the V  
OCM  
pin (which sets the output common mode voltage). For  
example, if the inputs are tied to 2.5V with the V pin  
OCM  
at 2.2V, then a total input bias current of 1mA will flow  
into the LT6402-20’s +INA and +INB pins. Furthermore,  
an additional input bias current totaling 1mA will flow into  
the –INA and –INB inputs.  
Output Common Mode Adjustment  
The LT6402-20’s output common mode voltage is set by  
the V  
pin. It is a high-impedance input, capable of  
OCM  
Application (Demo) Boards  
setting the output common mode voltage anywhere in  
a range from 1.1V to 3.6V. Bandwidth of the V  
pin is  
pin  
TheDC954ADemoBoardhasbeencreatedforstand-alone  
evaluation of the LT6402-20 with either single-ended or  
differential input and output signals. As shown, it accepts  
a single-ended input and produces a single-ended output  
so that the LT6402-20 can be evaluated using standard  
laboratory test equipment. For more information on this  
Demo Board, please refer to the layout and schematic  
diagrams found later in this data sheet.  
OCM  
typically 200MHz, so for applications where the V  
OCM  
is tied to a DC bias voltage, a 0.1µF capacitor at this pin is  
recommended.Forbestdistortionperformance,thevoltage  
at the V  
pin should be between 1.8V and 2.6V.  
OCM  
When interfacing with most ADCs, there is generally a  
output pin that is at about half of the supply voltage  
V
OCM  
of the ADC. For 5V ADCs such as the LTC17XX family, this  
output pin should be connected directly (with the  
V
There are also additional demo boards available that  
combine the LT6402-20 with a variety of different Linear  
Technology ADCs. Please contact the factory for more  
information on these demo boards.  
OCM  
addition of a 0.1µF capacitor) to the input V  
pin of the  
OCM  
LT6402-20. For 3V ADCs such as the LTC22XX families,  
the LT6402-20 will function properly using the 1.65V from  
the ADC’s V reference pin, but improved Spurious Free  
CM  
Dynamic Range (SFDR) and distortion performance can  
3V  
beachievedbylevel-shiftingtheLTC22XX’sV reference  
CM  
11k  
voltage up to at least 1.8V. This can be accomplished as  
1.9V  
shown in Figure 9 by using a resistor divider between the  
0.1µF  
4.02k  
LTC22XX’s V output pin and V and then bypassing  
CM  
CC  
2
13  
14  
31 1.5V  
–INB  
–INA  
the LT6402-20’s V  
pin with a 0.1µF capacitor. For a  
OCM  
V
V
CM  
OCM  
10Ω  
10Ω  
commonmodevoltageabove1.9V,ACcouplingcapacitors  
are recommended between the LT6402-20 and LTC22XX  
ADCs because of the input voltage range constraints of  
the ADC.  
6
7
1
2
+
+OUTFILTERED  
LT6402-20  
AIN  
AIN  
0.1µF  
LTC22xx  
–OUTFILTERED  
15  
16  
+INB  
+INA  
IF IN  
121Ω  
6402 F9  
Large Output Voltage Swings  
The LT6402-20 has been designed to provide the  
Figure 9. Level Shifting 3V ADC V Voltage for  
CM  
3.2V  
output swing needed by the LTC1748 family  
Improved SFDR  
P-P  
of 14-bit low-noise ADCs. This additional output swing  
improves system SNR by up to 4dB.  
640220fa  
13  
LT6402-20  
U
TYPICAL APPLICATIO  
Top Silkscreen  
640220fa  
14  
LT6402-20  
U
PACKAGE DESCRIPTIO  
UD Package  
16-Lead Plastic QFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1691)  
0.70 0.05  
3.50 0.05  
2.10 0.05  
1.45 0.05  
(4 SIDES)  
PACKAGE OUTLINE  
0.25 0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.20 TYP  
OR 0.25 × 45° CHAMFER  
R = 0.115  
TYP  
0.75 0.05  
3.00 0.10  
(4 SIDES)  
15 16  
PIN 1  
TOP MARK  
(NOTE 6)  
0.40 0.10  
1
2
1.45 0.10  
(4-SIDES)  
(UD16) QFN 0904  
0.200 REF  
0.25 0.05  
0.50 BSC  
0.00 – 0.05  
NOTE:  
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WEED-2)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
640220fa  
InformationfurnishedbyLinearTechnologyCorporationisbelievedtobeaccurateandreliable.However,  
no responsibility is assumed for its use. Linear Technology Corporation makes no representation that  
the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LT6402-20  
U
TYPICAL APPLICATIO  
Demo Circuit DC954A Schematic (AC Test Circuit)  
R18  
0  
R17  
0Ω  
V
CC  
V
CC  
GND  
V
CC  
2
1
2
1
1
SW1  
3
TP1  
ENABLE  
C17  
1000pF  
C18  
0.01µF  
R16  
0Ω  
2
1
1
2
R2  
R4  
R14  
C11  
[1]  
12  
11  
10  
9
C2  
0.1µF  
C4  
0Ω  
49.9Ω  
0Ω  
R6  
R10  
R12  
0.1µF  
V
ENABLE  
V
V
EEC  
CCB EEB  
–OUT  
0Ω  
24.9Ω  
75Ω  
13  
8
–INB  
1
2
1
2
J1  
–IN  
R8  
[1]  
J4  
–OUT  
T1  
T2  
C21  
0.1µF  
14  
15  
16  
7
6
5
1:1 Z-RATIO  
4:1 Z-RATIO  
5
4
1
3
–INA  
+INB  
+INA  
–OUTFILTERED  
LT6402-20  
+OUTFILTERED  
3
1
4
5
2
1
2
2
L1  
[1]  
C8  
[1]  
R15  
[1]  
R7  
[1]  
0dB  
+18.8dB  
+14dB  
1
2
MINI-  
M/A-COM  
ETC1-1T  
0dB  
+8dB  
J2  
+IN  
J5  
+OUT  
C1  
0.1µF  
C3  
0.1µF  
CIRCUITS  
TCM 4-19  
R9  
24.9Ω  
R11  
75Ω  
R5  
0Ω  
+OUT  
1
2
1
2
V
CCC  
V
OCM  
V
V
4
CCA  
EEA  
1
2
2
1
R1  
[1]  
R3  
49.9Ω  
R13  
[1]  
C16  
[1]  
C22  
0.1µF  
1
2
3
V
CC  
V
CC  
2
1
2
1
2
1
2
1
C10  
0.01µF  
C9  
1000pF  
C12  
1000pF  
C13  
0.01µF  
V
CC  
R19  
14k  
J3  
V
OCM  
2
1
C7  
0.01µF  
R20  
11k  
C5  
0.1µF  
J6  
TEST IN  
T3  
T4  
J7  
1:4  
4:1  
TEST OUT  
4
5
5
1
3
3
2
1
2
R22  
C19, 0.1µF  
C20, 0.1µF  
2
R21  
[1]  
C6  
[1]  
0.1µF  
1
2
1
2
MINI-  
CIRCUITS  
TCM 4-19  
MINI-  
CIRCUITS  
TCM 4-19  
4
1
1
2
TP2  
CC  
V
CC  
V
NOTES: UNLESS OTHERWISE SPECIFIED,  
[1] DO NOT STUFF.  
1
1
2
2
1
C14  
4.7µF  
C15  
1µF  
1
TP3  
GND  
6402 TA02  
RELATED PARTS  
PART NUMBER  
LT1993-2  
LT1993-4  
LT1993-10  
LT5514  
DESCRIPTION  
COMMENTS  
A = 2V/V, NF = 12.3dB, OIP3 = 38dBm at 70MHz  
800MHz Differential Amplifier/ADC Driver  
900MHz Differential Amplifier/ADC Driver  
700MHz Differential Amplifier/ADC Driver  
Ultralow Distortion IF Amplifier/ADC Driver  
V
A = 4V/V, NF = 14.5dB, OIP3 = 40dBm at 70MHz  
V
A = 10V/V, NF = 12.7dB, OIP3 = 40dBm at 70MHz  
V
Digitally Controlled Gain Output IP3 47dBm at 100MHz  
LT6600-5  
LT6600-10  
Very Low Noise Differential Amplifier and 5MHz Lowpass Filter 82dB S/N with 3V Supply, SO-8 Package  
Very Low Noise Differential Amplifier and 10MHz Lowpass  
Filter  
82dB S/N with 3V Supply, SO-8 Package  
LT6600-20  
Very Low Noise Differential Amplifier and 20MHz Lowpass  
Filter  
76dB S/N with 3V Supply, SO-8 Package  
LT6402-6  
LT6402-12  
LT6411  
300MHz Differential Amplifier/ADC Driver  
300MHz Differential Amplifier/ADC Driver  
A = 6dB, e = 3.8nV/√Hz at 20MHz, 150mV  
V n  
A = 12dB, e = 2.6nV/√Hz at 20MHz, 150mV  
V
n
650MHz Differential ADC Driver/Dual Selectable Gain Amplifier 3300V/µs Slew Rate, 16mA Current Consumption, Selectable Gain:  
A = –1, +1, +2  
V
640220fa  
LT 0706 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2005  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LT6402CUD-20#PBF

LT6402-20 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 20dB); Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT6402CUD-20#TR

LT6402-20 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 20dB); Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT6402CUD-6

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402CUD-6#TR

暂无描述
Linear

LT6402CUD-6#TRPBF

LT6402-6 - 300MHz Low Distortion, Low Noise Differential Amplifier/ ADC Driver (AV = 6dB); Package: QFN; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LT6402CUD-6-PBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402CUD-6-TR

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402CUD-6-TRPBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 6dB)
Linear

LT6402IUD-12

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear

LT6402IUD-12#TR

暂无描述
Linear

LT6402IUD-12#TRPBF

LT6402-12 - 300MHz Low Distortion, Low Noise Differential Amplifier/ADC Driver (AV = 12dB); Package: QFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LT6402IUD-12-PBF

300MHz Low Distortion, Low Noise Differential Amplifi er/ ADC Driver (AV = 12dB)
Linear