LTC1069-6CS8#TRPBF [Linear]

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1069-6CS8#TRPBF
型号: LTC1069-6CS8#TRPBF
厂家: Linear    Linear
描述:

LTC1069-6 - Single Supply, Very Low Power, Elliptic Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

文件: 总10页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1069-6  
Single Supply, Very Low  
Power, Elliptic Lowpass Filter  
FEATURES  
DESCRIPTION  
TheLTC®1069-6isamonolithiclowpower,8thorderlowpass  
filter optimized for single 3V or single 5V supply operation.  
The LTC1069-6 typically consumes 1mA under single 3V  
supply operation and 1.2mA under 5V operation.  
n
8th Order Elliptic Filter in SO-8 Package  
n
Single 3V Operation: Supply Current: 1mA (Typ)  
f
: 14kHz (Max) S/N Ratio: 72dB  
CUTOFF  
n
Single 5V Operation: Supply Current: 1.2mA (Typ)  
f
: 20kHz (Max) S/N Ratio: 79dB  
CUTOFF  
ThecutofffrequencyoftheLTC1069-6isclocktunableanditis  
equal to the clock frequency divided by 50. The input signal is  
sampled twice per clock cycle to lower the risk of aliasing.  
n
n
n
n
n
0.1dB Passband Ripple Up to 0.9f  
(Typ)  
CUTOFF  
42dB Attenuation at 1.3f  
66dB Attenuation at 2.0f  
70dB Attenuation at 2.1f  
CUTOFF  
CUTOFF  
CUTOFF  
The typical passband ripple is 0.1dB up to 0.9f  
.
CUTOFF  
The gain at f  
is 0.7dB. The transition band of the  
CUTOFF  
Wide Dynamic Range, 75dB or More (S/N + THD),  
LTC1069-6 features progressive attenuation reaching  
42dB at 1.3f and 70dB at 2.1f . The maximum  
Under Single 5V Operation  
CUTOFF  
CUTOFF  
n
n
n
Wideband Noise: 120µV  
RMS  
Ratio: 50:1  
stopband attenuation is 72dB.  
Clock-to-f  
CUTOFF  
The LTC1069-6 can be clock tuned for cutoff frequencies  
up to 20kHz (single 5V supply) and for cutoff frequencies  
up to 14kHz (single 3V supply).  
Internal Sample Rate: 100:1  
APPLICATIONS  
The low power feature of the LTC1069-6 does not penalize  
the device’s dynamic range. With single 5V supply and  
an input range of 0.4V  
n
Handheld Instruments  
n
to 1.4V  
, the Signal-to-  
Telecommunication Filters  
RMS  
RMS  
n
n
n
n
(Noise + THD) ratio is ≥70dB. The wideband noise of the  
LTC1069-6 is 125μV  
Antialiasing Filters  
Smoothing Filters  
Audio  
.
RMS  
Other filter responses with higher speed can be obtained.  
Please contact LTC Marketing for details.  
Multimedia  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
The LTC1069-6 is available in an 8-pin SO package.  
TYPICAL APPLICATION  
Frequency Response  
10  
V
= 500mV  
RMS  
IN  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
Single 3V Supply 10kHz Elliptic Lowpass Filter  
AGND  
V
OUT  
3V  
+
0.47μF  
V
V
0.1μF  
LTC1069-6  
NC  
NC  
f
= 500kHz  
V
CLK  
CLK  
IN  
1069-6 TA01  
–80  
5
10  
20  
FREQUENCY (kHz)  
25  
15  
1069-6 TA02  
10696fa  
1
LTC1069-6  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V to V ) ................................12V  
Operating Temperature Range  
LTC1069-6C............................................. 0°C to 70°C  
LTC1069-6I..........................................40°C to 85°C  
Storage Temperature..............................65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
PIN CONFIGURATION  
+
TOP VIEW  
AGND  
1
2
3
4
8
7
6
5
V
V
OUT  
+
V
NC  
NC  
V
CLK  
IN  
S8 PACKAGE  
8-LEAD PLASTIC SO  
= 125°C, θ = 130°C/W  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1069-6CS8#PBF  
LTC1069-6IS8#PBF  
TAPE AND REEL  
PART MARKING  
10696  
PACKAGE DESCRIPTION  
8-Lead Plastic SO  
TEMPERATURE RANGE  
0°C to 70°C  
LTC1069-6CS8#TRPBF  
LTC1069-6IS8#TRPBF  
10696I  
8-Lead Plastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range. fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/50. The fCLK signal level is TTL or CMOS (clock rise or  
fall time 1µs) RL = 10k, VS = 5V, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
SYMBOL  
Passband Gain (f ≤ 0.2f  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
)
V = 5V, f  
TEST  
= 200kHz  
CLK  
0.25  
0.30  
0.1  
0.1  
0.45  
0.50  
db  
db  
IN  
CUTOFF  
S
l
l
l
l
l
l
l
l
l
l
f
= 0.25kHz, V = 1V  
IN RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
0.25  
0.30  
0.1  
0.1  
0.45  
0.50  
db  
db  
S
f
= 0.25kHz, V = 0.5V  
IN RMS  
Gain at 0.50f  
Gain at 0.75f  
Gain at 0.90f  
Gain at 0.95f  
V = 5V, f = 200kHz  
CLK  
0.10  
0.15  
0.07  
0.07  
0.25  
0.30  
db  
db  
CUTOFF  
CUTOFF  
CUTOFF  
CUTOFF  
S
TEST  
f
= 2.0kHz, V = 1V  
IN RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
0.15  
0.20  
0.07  
0.07  
0.25  
0.30  
db  
db  
S
f
= 2.0kHz, V = 0.5V  
IN RMS  
V = 5V, f  
TEST  
= 200kHz  
CLK  
0.25  
0.30  
0
0
0.25  
0.30  
db  
db  
S
f
= 3.0kHz, V = 1V  
IN RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
0.25  
0.30  
0
0
0.25  
0.30  
db  
db  
S
f
= 3.0kHz, V = 0.5V  
IN  
RMS  
RMS  
RMS  
V = 5V, f  
TEST  
= 200kHz  
CLK  
0.25  
0.25  
0.1  
0.1  
0.45  
0.45  
db  
db  
S
f
= 3.6kHz, V = 1V  
IN  
RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
0.25  
0.30  
0.1  
0.1  
0.45  
0.50  
db  
db  
S
f
= 3.6kHz, V = 0.5V  
IN  
V = 5V, f  
TEST  
= 200kHz  
CLK  
0.35  
0.45  
0.05  
0.05  
0.25  
0.25  
db  
db  
S
f
= 3.8kHz, V = 1V  
IN  
RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
0.45  
0.55  
0.05  
0.05  
0.25  
0.35  
db  
db  
S
f
= 3.8kHz, V = 0.5V  
IN  
10696fa  
2
LTC1069-6  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range. fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/50. The fCLK signal level is TTL or CMOS (clock rise or  
fall time 1µs) RL = 10k, VS = 5V, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
SYMBOL  
Gain at f  
CONDITIONS  
V = 5V, f  
MIN  
TYP  
MAX  
UNITS  
= 200kHz  
CLK  
1.50 –0.07  
1.65 –0.07  
–0.20  
–0.25  
db  
db  
CUTOFF  
S
l
l
l
l
l
l
f
= 4.0kHz, V = 1V  
IN RMS  
TEST  
V = 3V, f  
TEST  
= 200kHz  
CLK  
1.5  
1.7  
–0.07  
–0.07  
0
0
db  
db  
S
f
= 4.0kHz, V = 0.5V  
IN  
RMS  
RMS  
RMS  
Gain at 1.30f  
Gain at 2.00f  
Gain at 0.95f  
V = 5V, f = 200kHz  
CLK  
–42  
–42  
–40  
–39  
db  
db  
CUTOFF  
CUTOFF  
CUTOFF  
S
TEST  
f
= 5.2kHz, V = 1V  
IN  
RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
–41  
–41  
–38  
–37  
db  
db  
S
f
= 5.2kHz, V = 0.5V  
IN  
V = 5V, f  
TEST  
= 200kHz  
CLK  
–66  
–66  
–61  
–60  
db  
db  
S
f
= 8.0kHz, V = 1V  
IN  
RMS  
V = 3V, f  
TEST  
= 200kHz  
CLK  
–66  
–66  
–60  
–59  
db  
dB  
S
f
= 8.0kHz, V = 0.5V  
IN  
V = 5V, f  
S
= 400kHz, f  
= 400kHz, f  
= 7.6kHz, V = 1V  
RMS  
0.5  
0.5  
0.15  
0
0.5  
0.5  
db  
db  
S
CLK  
CLK  
TEST  
TEST  
IN  
V = 3V, f  
= 7.6kHz, V = 0.5V  
IN RMS  
Output DC Offset (Note 1)  
V = 5V, f  
S
= 100kHz  
= 100kHz  
50  
30  
175  
135  
mV  
mV  
S
CLK  
CLK  
V = 3V, f  
Output DC Offset Tempco  
V = 5V, V = 3V  
30  
μV/°C  
S
S
Output Voltage Swing (Note 2)  
V = 5V, f  
= 100kHz  
= 100kHz  
= 100kHz  
= 100kHz  
3.4  
3.2  
4.2  
4.2  
V
V
S
CLK  
P-P  
P-P  
l
l
l
l
V = 3V, f  
S
1.6  
1.6  
2.0  
2.0  
V
P-P  
V
P-P  
CLK  
CLK  
CLK  
Power Supply Current  
V = 5V, f  
S
1.2  
1.60  
1.65  
mA  
mA  
V = 3V, f  
S
1
1.40  
1.55  
mA  
mA  
Maximum Clock Frequency  
V = 5V  
S
1
0.7  
MHz  
MHz  
S
V = 3V  
Input Frequency Range  
Input Resistance  
0
35  
3
<(f – 2f )  
CLK C  
50  
80  
10  
kΩ  
V
Operating Supply Voltage (Note 3)  
+
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The input offset voltage is measured with respect to AGND (Pin 1).  
The input (Pin 4) is also shorted to the AGND pin. The analog ground pin  
Note 3: The input voltage can swing to either rail (V or ground); the  
+
output typically swings 50mV from ground and 0.8V from V .  
Note 4: The LTC1069-6 is optimized for 3V and 5V operation. Although  
the device can operate with a single 10V supply or 5V, the total harmonic  
distortion will be degraded. For single 10V or 5V supply operation we  
recommend to use the LTC1069-1.  
potential is internally set to (0.437)(V  
).  
SUPPLY  
10696fa  
3
LTC1069-6  
TYPICAL PERFORMANCE CHARACTERISTICS  
Transition Band Gain  
Passband Gain vs Frequency  
vs Frequency  
Stopband Gain vs Frequency  
–60  
–62  
–64  
–66  
–68  
–70  
–72  
–74  
–76  
–78  
–80  
2
1
10  
0
V
f
= SINGLE 3V  
= 500kHz  
V
f
= SINGLE 3V  
= 500kHz  
V
f
= SINGLE 3V  
= 500kHz  
S
CLK  
S
CLK  
S
CLK  
f
= 10kHz  
f
= 10kHz  
f
= 10kHz  
CUTOFF  
V
CUTOFF  
V
CUTOFF  
V
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
= 0.5V  
RMS  
= 0.5V  
RMS  
= 0.5V  
IN  
IN  
IN  
RMS  
0
–1  
–2  
20  
60  
FREQUENCY (kHz)  
80  
1
3
5
7
9
11  
10  
12  
14  
16  
18  
20  
40  
100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-6 G03  
1069-6 G01  
1069-6 G02  
Amplitude Response  
vs Supply Voltage  
Passband Gain vs Clock Frequency  
Passband Gain vs Clock Frequency  
2
1
2
1
10  
0
f
= 500kHz  
= 0.5V  
RMS  
V
V
= SINGLE 3V  
V
V
= SINGLE 5V  
CLK  
IN  
S
S
V
= 0.5V  
= 1V  
IN  
RMS  
IN  
RMS  
f
= 750kHz  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
CLK  
f
= 15kHz  
CUTOFF  
0
0
f
= 500kHz  
CLK  
SINGLE 5V  
SINGLE 3V  
–1  
–2  
–1  
–2  
f
f
f
CLK  
CLK  
CLK  
f
= 10kHz  
CUTOFF  
500kHz  
750kHz  
1MHz  
f
f
f
CUTOFF  
10kHz  
CUTOFF  
15kHz  
CUTOFF  
20kHz  
1
10  
FREQUENCY (kHz)  
100  
1
3
5
7
9
11 13 15 17 19 21  
1
3
5
7
9
11 13 15 17 19 21  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-6 G06  
1069-6 G04  
1069-6 G05  
Phase vs Frequency  
Group Delay vs Frequency  
Transient Response  
90  
0
4.00E-04  
3.50E-04  
3.00E-04  
2.50E-04  
2.00E-04  
1.50E-04  
1.00E-04  
5.00E-05  
0.00E+00  
V
f
= SINGLE 5V  
= 500kHz  
V
f
= SINGLE 5V  
S
CLK  
S
= 500kHz  
CLK  
–90  
f
= 10kHz  
f
= 10kHz  
CUTOFF  
CUTOFF  
–180  
–270  
–360  
–450  
–540  
–630  
–720  
–810  
–900  
1069-6 G09  
V
= SINGLE 5V 0.1ms/DIV  
S
f
f
= 1MHz  
CLK  
= 1kHz  
IN  
0
4
6
8
10  
12  
14  
2
0
2
4
8
10  
12  
2V SQUARE WAVE  
p-p  
6
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-6 G07  
1069-6 G08  
10696fa  
4
LTC1069-6  
TYPICAL PERFORMANCE CHARACTERISTICS  
Dynamic Range THD + Noise  
vs Input/Output Voltage  
Dynamic Range THD + Noise  
vs Input Voltage  
THD + Noise vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
–40  
–45  
f
f
f
= 170kHz  
= 3.4kHz  
= 1kHz  
f
f
= 500kHz  
f
f
= 500kHz  
CLK  
CUTOFF  
IN  
CLK  
IN  
CLK  
CUTOFF  
= 1kHz  
= 10kHz  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
–85  
–90  
V
= 2.945V  
P-P  
IN  
V
S
= SINGLE 3V  
V
= SINGLE 3V  
S
V
= 0.5V  
IN  
RMS  
V
=
S
SINGLE 5V  
V
= SINGLE 5V  
= 1V  
S
V
IN  
RMS  
0.1  
1
INPUT/OUTPUT VOLTAGE (V  
3
0.1  
0.5 0.76 1 1.43  
INPUT VOLTAGE (V  
5
1
5
10  
)
)
RMS  
FREQUENCY (kHz)  
P-P  
1069-6 G14  
1069-6 G10  
1069-6 G11  
Output Voltage Swing  
vs Temperature  
Supply Current vs Supply Voltage  
5
4
3
2
1
0
R
= 10k  
L
4.5  
V
= SINGLE 5V  
S
S
4.0  
2.5  
V
= SINGLE 3V  
2.0  
85°C  
25°C  
80  
60  
40  
20  
0
V
= SINGLE 3V  
–40°C  
S
V
= SINGLE 5V  
S
0
8
12 14  
–40 –20  
0
20  
40  
60  
80  
2
4
6
10  
16  
TOTAL SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
1069-6 G12  
1069-6 G13  
PIN FUNCTIONS  
1
2
8
AGND (Pin 1): Analog Ground. The quality of the analog  
signal ground can affect the filter performance. For either  
single or dual supply operation, an analog ground plane  
surrounding the package is recommended. The analog  
ground plane should be connected to any digital ground  
at a single point. For single supply operation, Pin 1 should  
be bypassed to the analog ground plane with a 0.47μF  
capacitor or larger. An internal resistive divider biases  
Pin 1 to 0.4366 times the total power supply of the device  
(Figure 1). That is, with a single 5V supply, the potential  
at Pin 1 is 2.183V 1ꢀ. As the LTC1069-6 is optimized  
V
OUT  
AGND  
V
+
7
V
11.325k 8.775k  
NC NC  
3
4
6
5
LTC1069-6  
V
CLK  
IN  
1069-6 F01  
Figure 1. Internal Biasing of the Analog Ground (Pin 1)  
10696fa  
5
LTC1069-6  
PIN FUNCTIONS  
for single supply operation, the internal biasing of Pin 1  
allows optimum output swing. The AGND pin should be  
buffered if used to bias other ICs. Figure 2 shows the  
connections for single supply operation.  
NC (Pins 3, 6): No Connection. Pins 3 and 6 are not  
connected to any internal circuitry; they should be tied  
to ground.  
V (Pin4):FilterInputPin. TheFilterInputpinisinternally  
IN  
connected to the inverting input of an op amp through a  
1
2
8
7
AGND  
V
V
OUT  
OUT  
50k resistor.  
0.47μF  
+
+
V
V
V
CLK (Pin 5): Clock Input Pin. Any TTL or CMOS clock  
source with a square wave output and 50ꢀ duty cycle  
( 10ꢀ) is an adequate clock source for the device. The  
power supply for the clock source should not necessarily  
be the filter’s power supply. The analog ground of the filter  
should be connected to the clock’s ground at a single  
point only. Table 1 shows the clock’s low and high level  
threshold value for a dual or single supply operation. A  
pulse generator can be used as a clock source provided  
0.1μF  
LTC1069-6  
3
4
6
5
NC  
NC  
V
V
CLK  
IN  
IN  
ANALOG GROUND PLANE  
STAR  
SYSTEM  
GROUND  
DIGITAL  
GROUND  
PLANE  
1k  
CLOCK  
SOURCE  
1069-6 F02  
the high level ON time is greater than 0.42μs (V = 5V).  
S
Sine waves less than 100kHz are not recommended for  
clock frequencies because, excessive slow clock rise or  
falltimesgenerateinternalclockjitter.Themaximumclock  
rise or fall time is 1μs. The clock signal should be routed  
from the right side of the IC package to avoid coupling  
into any input or output analog signal path. A 1k resistor  
between the clock source and the Clock Input (Pin 5) will  
slow down the rise and fall times of the clock to further  
reduce charge coupling (Figure 1).  
Figure 2. Connections for Single Supply Operation  
+
+
V , V (Pins 2, 7): Power Supply Pins. The V (Pin 2)  
and the V (Pin 7, if used) should be bypassed with a  
0.1μF capacitor to an adequate analog ground. The filter’s  
power supplies should be isolated from other digital or  
high voltage analog supplies. A low noise linear supply is  
recommended. Switching power supplies will lower the  
signal-to-noiseratioofthelter.Unlikepreviousmonolithic  
filters, the power supplies can be applied in any order, that  
is, the positive supply can be applied before the negative  
supply and vice versa. Figure 3 shows the connection for  
dual supply operation.  
Table 1. Clock Source High and Low Thresholds  
POWER SUPPLY  
HIGH LEVEL  
1.5V  
LOW LEVEL  
0.5V  
Dual Supply = 5V  
Single Supply = 10V  
Single Supply = 5V  
Single Supply = 3.3V  
6.5V  
5.5V  
1
2
8
7
1.5V  
0.5V  
AGND  
V
V
OUT  
OUT  
1.2V  
0.5V  
+
+
V
V
V
0.1μF  
V
0.1μF  
LTC1069-6  
V
OUT  
(Pin 8): Filter Output Pin. Pin 8 is the output of the  
3
4
6
5
NC  
NC  
filter,anditcansource8mAorsink1mA.Thetotalharmonic  
distortion of the filter will degrade when driving coaxial  
cables or loads less than 20k without an output buffer.  
V
V
CLK  
IN  
IN  
ANALOG GROUND PLANE  
STAR  
DIGITAL  
GROUND  
PLANE  
1k  
SYSTEM  
GROUND  
CLOCK  
SOURCE  
1069-6 F03  
Figure 3. Connections for Dual Supply Operation  
10696fa  
6
LTC1069-6  
APPLICATIONS INFORMATION  
Temperature Behavior  
2
1
V
V
= SINGLE 3V  
S
= 0.5V  
IN  
RMS  
The power supply current of the LTC1069-6 has a positive  
temperature coefficient. The GBW product of its internal  
op amps is nearly constant and the speed of the device  
does not degrade at high temperatures. Figures 4a, 4b  
and 4c show the behavior of the passband of the device  
for various supplies and temperatures. The filter has a  
passband behavior which is temperature independent.  
85°C  
0
–40°C  
f
f
= 500kHz  
CLK  
CUTOFF  
–1  
–2  
= 10kHz  
Clock Feedthrough  
1
1
1
3
5
7
9
11 13 15 17 19 21  
FREQUENCY (kHz)  
The clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s Output (Pin 8). The clock feedthrough is tested with  
the Input (Pin 4) shorted to AGND (Pin 1) and depends on  
PC board layout and on the value of the power supplies.  
With proper layout techniques the values of the clock  
feedthrough are shown in Table 2.  
1069-6 F04a  
Figure 4a  
2
1
V
V
= SINGLE 5V  
S
= 1V  
IN  
RMS  
Table 2. Clock Feedthrough  
85°C  
0
V
CLOCK FEEDTHROUGH  
S
–40°C  
3.3V  
5V  
100μV  
170μV  
350μV  
RMS  
RMS  
RMS  
f
= 750kHz  
= 15kHz  
CLK  
CUTOFF  
–1  
–2  
f
10V  
Any parasitic switching transients during the rising and  
falling edges of the incoming clock are not part of the  
clock feedthrough specifications. Switching transients  
have frequency contents much higher than the applied  
clock; their amplitude strongly depends on scope probing  
techniques as well as grounding and power supply  
bypassing.Theclockfeedthroughcanbereducedbyadding  
a single RC lowpass filter at the Output (Pin 8).  
3
5
7
9
11 13 15 17 19 21  
FREQUENCY (kHz)  
1069-6 F04a  
Figure 4b  
2
1
V
V
=
IN  
5V  
= 1.5V  
S
RMS  
85°C  
0
–40°C  
f
= 1MHz  
= 20kHz  
CLK  
CUTOFF  
–1  
–2  
f
4
7
10 13 16 19 22 25 28 31  
FREQUENCY (kHz)  
1069-6 F04c  
Figure 4c  
10696fa  
7
LTC1069-6  
APPLICATIONS INFORMATION  
Wideband Noise  
Aliasing  
The wideband noise of the filter is the total RMS value  
of the device’s noise spectral density and determines the  
operating signal-to-noise ratio. The frequency contents  
of the wideband noise lie within the filter’s passband. The  
widebandnoisecannotbereducedbyaddingpostltering.  
The total wideband noise is nearly independent of the  
clock frequency and depends slightly on the power supply  
voltage(seeTable3).Theclockfeedthroughspecifications  
are not part of the wideband noise.  
Aliasing is an inherent phenomenon of sampled data  
systems and occurs for input frequencies approaching  
the sampling frequency. The internal sampling frequency  
of the LTC1069-6 is 100 times its cutoff frequency. For  
instance, if a 98.5kHz, 100mV  
signal is applied at  
RMS  
the input of an LTC1069-6 operating with a 50kHz clock,  
a 1.5kHz, 484μV  
alias signal will appear at the filter  
RMS  
output. Table 4 shows details.  
Table 4. Aliasing (fCLK = 50kHz)  
INPUT FREQUENCY  
OUTPUT LEVEL  
(Relative to Input)  
(dB)  
OUTPUT FREQUENCY  
(Aliased Frequency)  
(kHz)  
Table 3. Wideband Noise  
(V = 1V  
)
IN  
RMS  
(kHz)  
V
WIDEBAND NOISE  
S
3.3V  
5V  
118μV  
123μV  
127μV  
f
/f = 50:1, f  
= 1kHz  
–78.3  
–70.4  
80.6  
–46.3  
–2.8  
RMS  
RMS  
RMS  
CLK  
C
CUTOFF  
96 (or 104)  
97 (or 103)  
98 (or 102)  
4.0  
3.0  
2.0  
1.5  
1.0  
0.5  
5V  
98.5 (or 101.5)  
99 (or 101)  
99.5 (or 100.5)  
–1.38  
10696fa  
8
LTC1069-6  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
.160 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
10696fa  
9
LTC1069-6  
TYPICAL APPLICATION  
Single 5V Operation with Power Shutdown  
5V  
ON  
SHUTDOWN  
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
OUT  
+
0.47μF  
V
V
LTC1069-6  
NC  
0.1μF  
NC  
f
CLK  
5V  
V
IN  
V
CLK  
IN  
750kHz  
0V  
1069-6 TA03  
Single 3V Supply Operation with Output Buffer  
3.3V  
0.1μF  
5
6
1
2
3
4
8
7
6
5
8
AGND  
V
OUT  
+
7
0.47μF  
0.1μF  
1/2 LT1366  
V
OUT  
+
V
V
LTC1069-6  
NC  
4
NC  
f
CLK  
3.3V  
0V  
V
V
CLK  
IN  
IN  
1069-6 TA04  
500kHz  
Single 3V Supply Voice Band Lowpass Filter with Rail-to-Rail Input and Output  
3V  
0.1μF  
8
5
6
1
2
3
4
8
7
6
5
AGND  
V
OUT  
+
3V  
7
1μF  
1/2 LT1366  
+
V
V
LTC1069-6  
NC  
0.1μF  
NC  
10k  
170kHz  
V
CLK  
IN  
1069-6 TA05  
40.2k  
2
3
1
1/2 LT1366  
10k  
+
4
270pF 40.2k  
RELATED PARTS  
PART NUMBER  
LTC1068  
DESCRIPTION  
COMMENTS  
Very Low Noise, High Accuracy, Quad Universal Filter Building Block  
Low Power, Progressive Elliptic LPF  
User-Configurable, SSOP Package  
LTC1069-1  
LTC1164-5  
LTC1164-6  
LTC1164-7  
f
f
f
f
/f Ratio 100:1, 8-Pin SO Package  
C
CLK  
CLK  
CLK  
CLK  
Low Power 8th Order Butterworth LPF  
/f Ratio 100:1 and 50:1  
C
Low Power 8th Order Elliptic LPF  
/f Ratio 100:1 and 50:1  
C
Low Power 8th Order Linear Phase LPF  
/f Ratio 100:1 and 50:1  
C
10696fa  
LT 0309 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
10  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1069-6I

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6IS8

Single Supply, Very Low Power, Elliptic Lowpass Filter
Linear

LTC1069-6IS8#PBF

暂无描述
Linear

LTC1069-6IS8#TR

暂无描述
Linear

LTC1069-7

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7C

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7CS8

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7CS8#PBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-7CS8#TRPBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1069-7I

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7IS8

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7IS8#PBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear