LTC1069-7I [Linear]

Linear Phase 8th Order Lowpass Filter; 线性相位8阶低通滤波器
LTC1069-7I
型号: LTC1069-7I
厂家: Linear    Linear
描述:

Linear Phase 8th Order Lowpass Filter
线性相位8阶低通滤波器

文件: 总8页 (文件大小:230K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1069-7  
Linear Phase  
8th Order Lowpass Filter  
cutoff frequency of the LTC1069-7 is set by an external  
clock and is equal to the clock frequency divided by 25.  
The ratio of the internal sampling frequency to the cutoff  
frequencyis50:1thatis,theinputsignalissampledtwice  
perclockcycletolowertheriskofaliasing.TheLTC1069-  
7 can be operated from a single 5V supply up to dual±5V  
supplies.  
FEATURES  
8th Order, Linear Phase Filter in SO-8 Package  
Raised Cosine Amplitude Response  
43dB Attenuation at 2× fCUTOFF  
Wideband Noise: 140µVRMS  
Operates from Single 5V Supply to  
±5V Power Supplies  
The gain and phase response of the LTC1069-7 can be  
usedindigitalcommunicationsystemswherepulseshap-  
ing and channel bandwidth limiting must be carried out.  
Any system that requires an analog filter with linear phase  
and sharper roll off than conventional Bessel filters can  
use the LTC1069-7.  
Clock-Tunable to 200kHz with ±5V Supplies  
Clock-Tunable to 120kHz with Single 5V Supply  
U
APPLICATIONS  
Digital Communication Filter  
Antialiasing Filter with Linear Phase  
Smoothing Filters  
The LTC1069-7 has a wide dynamic range. With ±5V  
supplies and an input range of 0.1VRMS to 2VRMS, the  
signal-to-(noise + THD) ratio is 60dB. The wideband  
noise of the LTC1069-7 is 140µVRMS. Unlike other  
LTC1069-X filters, the typical passband gain of the  
LTC1069-7 is equal to –1V/V.  
U
DESCRIPTION  
The LTC®1069-7 is a monolithic, clock-tunable, linear  
phase, 8th order lowpass filter. The amplitude response  
of the filter approximates a raised cosine filter with an  
alphaofone. Thegainatthecutofffrequencyis3dBand  
the attenuation at twice the cutoff frequency is 43dB. The  
The LTC1069-7 is available in an SO-8 package.  
Other filter responses with lower power/speed specifica-  
tions can be obtained. Please contact LTC Marketing.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATION  
Frequency Response  
10  
Single 5V Supply, Linear Phase 100kHz Lowpass Filter  
0
–10  
–20  
30  
40  
50  
60  
–70  
AGND  
V
OUT  
V
OUT  
5V  
+
0.47µF  
V
V
0.1µF  
LTC1069-7  
NC  
NC  
f
= 2.5MHz  
1069-7 TA01  
V
IN  
V
IN  
CLK  
CLK  
10  
100  
1000  
FREQUENCY (kHz)  
1069-7 TA02  
1
LTC1069-7  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
Total Supply Voltage (V+ to V) ............................. 12V  
Power Dissipation............................................. 400mW  
Operating Temperature Range  
ORDER PART  
TOP VIEW  
NUMBER  
AGND  
1
2
3
4
8
7
6
5
V
V
OUT  
LTC1069-7CS8  
LTC1069-7IS8  
LTC1069-7C ........................................... 0°C to 70°C  
LTC1069-7I ....................................... 40°C to 85°C  
Storage Temperature ............................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
+
V
NC  
NC  
V
CLK  
IN  
S8 PART MARKING  
S8 PACKAGE  
8-LEAD PLASTIC SO  
TJMAX = 125°C, θJA = 110°C/ W  
10697  
10697I  
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS  
fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/25. The fCLK signal level is TTL or CMOS (max clock rise or  
fall time 1µs), RL = 10k, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
PARAMETER  
Passband Gain (f 0.2f  
CONDITIONS  
V = ±5V, f = 2.5MHz  
CLK  
MIN  
TYP  
MAX  
UNITS  
)
0.10 ±0.75  
±0.90  
dB  
dB  
IN  
CUTOFF  
S
f
= 1kHz, V = 1V  
TEST  
IN  
RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
0.10 ±0.75  
±0.90  
dB  
dB  
f
= 1kHz, V = 0.5V  
TEST  
IN RMS  
Gain at 0.25f  
Gain at 0.50f  
Gain at 0.75f  
V = ±5V, f = 2.5MHz  
CLK  
0.30  
0.1  
dB  
dB  
CUTOFF  
CUTOFF  
CUTOFF  
S
f
= 25kHz, V = 1V  
0.55  
0.30  
1.40  
0.60  
2.1  
1.15  
4.0  
3.3  
19  
TEST  
IN  
RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
0.05  
0.15  
dB  
dB  
f
= 5kHz, V = 0.5V  
TEST  
IN RMS  
V = ±5V, f  
= 2.5MHz  
1.0  
dB  
dB  
S
CLK  
f
= 50kHz, V = 1V  
0.35  
TEST  
IN  
RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
0.30  
0
dB  
dB  
f
= 10kHz, V = 0.5V  
TEST  
IN RMS  
V = ±5V, f  
= 2.5MHz  
1.65  
0.80  
dB  
dB  
S
CLK  
f
= 75kHz, V = 1V  
TEST  
IN RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
0.75  
0.25  
dB  
dB  
f
= 15kHz, V = 0.5V  
TEST  
IN  
RMS  
Gain at f  
V = ±5V, f = 2.5MHz  
CLK  
3.5  
2.7  
dB  
dB  
CUTOFF  
S
f
= 100kHz, V = 1V  
TEST  
IN  
RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
2.9  
2.4  
dB  
dB  
f
= 20kHz, V = 0.5V  
TEST  
IN  
RMS  
Gain at 1.5f  
V = ±5V, f = 2.5MHz  
CLK  
16.5  
14  
dB  
dB  
CUTOFF  
CUTOFF  
S
f
= 150kHz, V = 1V  
TEST  
IN  
RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
18.1  
17  
dB  
dB  
f
= 30kHz, V = 0.5V  
20  
TEST  
IN  
RMS  
Gain at 2.0f  
V = ±5V, f  
= 2.5MHz  
43  
38  
dB  
dB  
S
CLK  
f
= 200kHz, V = 1V  
55  
TEST  
IN  
RMS  
V = 4.75V, f  
S
= 500kHz  
CLK  
41  
39  
dB  
dB  
f
= 40kHz, V = 0.5V  
48  
TEST  
IN  
RMS  
2
LTC1069-7  
ELECTRICAL CHARACTERISTICS  
fCUTOFF is the filter’s cutoff frequency and is equal to fCLK/25. The fCLK signal level is TTL or CMOS (max clock rise or  
fall time 1µs), RL = 10k, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
PARAMETER  
Gain at 5.0f  
CONDITIONS  
V = 4.75V, f = 500kHz  
CLK  
MIN  
TYP  
MAX  
UNITS  
70  
–59  
55  
dB  
CUTOFF  
S
f
= 100kHz, V = 0.5V  
TEST  
IN RMS  
Gain at f  
(160kHz)  
V = ±5V, f = 4MHz  
CLK  
2.1  
dB  
Deg  
Deg  
Deg  
CUTOFF  
S
f
= 160kHz, V = 1V  
TEST  
IN RMS  
Phase at 0.5f  
V = ±5V, f  
= 2.5MHz  
= 2.5MHz  
= 500kHz  
= 500kHz  
35 30.5  
25  
CUTOFF  
S
CLK  
CLK  
f
= 50kHz  
TEST  
Phase at f  
V = ±5V, f  
240 235 230  
CUTOFF  
S
f
= 100kHz  
TEST  
Passband Phase Deviation from  
Linear Phase (Note 1)  
V = ±5V, f  
3.0  
50  
S
CLK  
Output DC Offset (Input at GND)  
V = ±5V, f  
mV  
mV  
S
CLK  
V = 4.75V, f  
S
= 400kHz  
25  
125  
CLK  
Output Voltage Swing  
V = ±5V, I  
V = 4.75V, I  
S
/I  
1mA, R = 10k  
±3.5  
2.6  
±4.0  
3.6  
V
P-P  
S
SOURCE SINK  
L
/I  
1mA, R = 10k  
V
SOURCE SINK  
L
Power Supply Current  
V = ±5V, f  
= 500kHz  
18  
26  
29  
mA  
mA  
S
CLK  
V = 4.75V, f  
S
= 400kHz  
CLK  
13  
15  
16.5  
mA  
mA  
Example: An LTC1069-7 has Phase at 0.5f  
= 30.5° and Phase at  
The  
temperature range.  
Note 1: Phase Deviation = 1/2(Phase at 0Hz – Phase at f  
denotes specifications which apply over the full operating  
CUTOFF  
f
= 235°.  
CUTOFF  
Passband Phase Deviation from Linear Phase  
= 1/2[180° – (235°)] – [(180° – (30.5°)] = 3°  
) – (Phase  
CUTOFF  
at 0Hz – Phase at 0.5f  
)
CUTOFF  
Phase at 0Hz = 180° (guaranteed by design)  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Passband Gain vs Frequency  
Transition Band Gain vs Frequency  
Stopband Gain vs Frequency  
10  
0
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
1.0  
0.5  
V
f
C
V
= ±5V  
V
f
= ±5V  
V
f
= ±5V  
S
S
S
= 500kHz  
= 500kHz  
= 500kHz  
CLK  
CLK  
CLK  
f
= 20kHz  
f
= 20kHz  
f
= 20kHz  
C
C
0
= 2V  
V
= 2V  
V
= 2V  
IN  
RMS  
IN  
RMS  
IN  
RMS  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–10  
–20  
–30  
–40  
–50  
21 23 25 27 29 31 33 35 37 39 41  
FREQUENCY (kHz)  
41 45 49 53 57 61 65 69 73 77 81  
FREQUENCY (kHz)  
1
3
5
7
9
11 13 15 17 19 21  
FREQUENCY (kHz)  
LTC1069-7 • TPC03  
LTC1069-7 • TPC01  
LTC1069-7 • TPC02  
3
LTC1069-7  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Passband Gain vs  
Clock Frequency  
Gain vs Frequency  
Passband Gain vs Frequency  
3
0
1.0  
0.5  
10  
0
V
f
= ±5V  
V
f
= ±5V  
CLK  
S
S
= 250kHz  
= 4MHz  
CLK  
f
= 5MHz  
CLK  
f
= 10kHz  
f
= 160kHz  
= 2V  
C
C
0
V
= 1V  
V
IN  
RMS  
IN  
RMS  
–10  
–20  
–30  
–40  
–50  
–60  
–3  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
T
= 85°C  
A
–6  
f
= 2.5MHz  
CLK  
f
= 4.5MHz  
CLK  
T
= –40°C  
A
–9  
f
f
= 4MHz  
CLK  
T
= 25°C  
= 3.5MHz  
A
CLK  
–12  
–15  
–18  
f
= 3MHz  
CLK  
V
V
= ±5V  
S
IN  
= 2V  
RMS  
1
10  
100  
10  
40  
70  
100  
130  
160  
20 40 60 80  
140 160 180 200  
100 120  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1069-7 • TPC04  
LTC1069-7 • TPC06  
LTC1069-7 • TPC05  
Passband Gain vs  
Clock Frequency  
Gain vs Supply Voltage  
Passband Gain vs Frequency  
1.0  
0.5  
3
0
10  
0
f
f
= 2MHz  
V
V
= 5V  
IN  
CLK  
S
= 80kHz  
= 1V  
C
RMS  
V
= 0.5V  
0
IN  
RMS  
T
A
= 85°C  
–3  
–10  
–20  
–30  
–40  
–50  
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
f
= 3MHz  
CLK  
–6  
T
A
= –40°C  
–9  
T
= 25°C  
A
f
= 2.5MHz  
CLK  
–12  
–15  
–18  
V
= 5V  
V
= 5V  
S
S
f
f
= 2.5MHz  
CLK  
= 100kHz  
f
= 2MHz  
CLK  
V
= ±5V  
S
C
V
= 1V  
IN  
RMS  
f
= 1.5MHz  
CLK  
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
20 40 60 80  
140 160 180 200  
10  
70  
110 130 150 170 190 210  
100 120  
30 50  
90  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
LTC1069-7 • TPC09  
LTC1069-7 • TPC08  
LTC1069-7 • TPC07  
Passband Gain and Phase vs  
Frequency  
Passband Gain and Delay vs  
Frequency  
2
1
13.5  
13.0  
12.5  
12.0  
11.5  
11.0  
2
1
180  
135  
90  
V
f
C
= ±5V  
CLK  
= 100kHz  
V
f
C
= ±5V  
CLK  
= 100kHz  
S
S
= 2.5MHz  
= 2.5MHz  
f
f
0
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
45  
GAIN  
0
GAIN  
–45  
–90  
–135  
–180  
–225  
–270  
PHASE  
DELAY  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
LTC1069-7 • TPC12  
LTC1069-7 • TPC10  
4
LTC1069-7  
W
U
TYPICAL PERFORMANCE CHARACTERISTICS  
Phase Matching vs Frequency  
THD + Noise vs Input (VP-P  
)
THD + Noise vs Frequency  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
f
f
f
= 1MHz  
f
f
= 2.5MHz  
CLK  
C
IN  
CLK  
C
70°C  
= 40kHz  
= 100kHz  
= 1kHz  
25°C  
V
= 5V  
S
V
V
= 5V, V = 1V  
IN P-P  
S
S
V
CLK  
= ±5V  
S
f
2.5MHz  
PHASE DIFFERENCE BETWEEN  
ANY TWO UNITS (SAMPLE OF  
20 REPRESENTATIVE UNITS)  
V
= ±5V  
S
= ±5V, V = 2V  
IN  
P-P  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
0.1  
1
10  
1
10  
100  
INPUT (V  
)
FREQUENCY (f  
CUTOFF  
/FREQUENCY)  
FREQUENCY (kHz)  
P-P  
LTC1609-7 • TPC13  
LTC1069-7 • TPC11  
LTC1069-7 • TPC14  
Output Voltage Swing vs  
Temperature  
Transient Response  
Output Offset vs Clock Frequency  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
4.3  
4.2  
4.1  
1.2  
1.1  
1.0  
V
S
= 5V  
V
= 5V (AGND AT 2.5V)  
S
f
f
R
I
= 500kHz  
CLK  
CUTOFF  
= 20kHz  
= 10k  
L
/I  
1mA  
V
S
= ±5V  
SOURCE SINK  
VS = ±5V  
0.1ms/DIV  
LTC1069-7 • TPC15  
fCLK = 500kHz  
fCUTOFF = 20kHz  
VIN = 4VP-P SQUARE WAVE AT 1kHz  
0.25  
1.25  
2.25  
3.25  
4.25  
5.25  
–40  
0
20  
40  
60  
80 100  
–20  
CLOCK FREQUENCY (MHz)  
TEMPERATURE (°C)  
LTC1069-7 • TPC16  
LTC1069-7 • TPC17  
Output Voltage Swing vs  
Temperature  
Supply Current vs  
Supply Voltage  
Supply Current vs  
Clock Frequency  
4.2  
4.1  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
f
= 10Hz  
CLK  
25  
20  
15  
10  
5
85°C  
25°C  
V
= ±5V  
S
V
= ±5V  
S
4.0  
–40°C  
f
f
= 2.5MHz  
CLK  
CUTOFF  
= 10k  
= 100kHz  
R
L
–4.5  
–4.6  
–4.7  
I
/I  
SOURCE SINK  
= 1mA  
V
= 5V  
S
0
–40  
0
20  
40  
60  
80 100  
0
1
2
3
4
5
6
–20  
0.25  
1.25  
2.25  
3.25  
4.25  
5.25  
SUPPLY VOLTAGE (±V)  
TEMPERATURE (°C)  
CLOCK FREQUENCY (MHz)  
LTC1069-7 • TPC18  
LTC1069-7 • TPC19  
LTC1263 • TPC20  
5
LTC1069-7  
U
U
U
PIN FUNCTIONS  
AGND (Pin 1): Analog Ground. The quality of the analog  
signal ground can affect the filter performance. For either  
single or dual supply operation, an analog ground plane  
surrounding the package is recommended. The analog  
ground plane should be connected to any digital ground at  
a single point. For dual supply operation, Pin 1 should be  
connected to the analog ground plane.  
a 36k resistor for each op amp. This parallel combination  
creates an 18k input impedance.  
CLK (Pin 5): Clock Input. Any TTL or CMOS clock source  
with a square wave output and 50% duty cycle (±10%) is  
anadequateclocksourceforthedevice. Thepowersupply  
for the clock source should not necessarily be the filter’s  
power supply. The analog ground of the filter should only  
be connected to the clock’s ground at a single point. Table  
1 shows the clock’s low and high level threshold value for  
adualorsinglesupplyoperation. Apulsegeneratorcanbe  
used as a clock source provided the high level on-time is  
greater than 0.42µs (VS = ±5V). Sine waves less than  
100kHz are not recommended for clock sources because  
excessive slow clock rise or fall times generate internal  
clockjitter. Themaximumclockriseorfalltimeis1µs. The  
clock signal should be routed from the right side of the IC  
package to avoid coupling into any input or output analog  
signal path.A1kresistorbetweentheclocksourceandthe  
clock input (Pin 5) will slow down the rise and fall times of  
the clock to further reduce charge coupling, Figure 1.  
For single supply operation, Pin 1 should be bypassed to  
the analog ground plane with a capacitor 0.47µF or larger.  
An internal resistive divider biases Pin 1 to half the total  
power supply. Pin 1 should be buffered if used to bias  
other ICs. Figure 1 shows the connections for single  
supply operation.  
V+, V(Pins 2, 7): Power Supplies. The V+ (Pin 2) and V–  
(Pin 7) should be bypassed with a 0.1µF capacitor to an  
adequateanalogground.Thefilter’spowersuppliesshould  
be isolated from other digital or high voltage analog  
supplies. A low noise linear supply is recommended.  
Using switching power supplies will lower the signal-to-  
noise ratio of the filter. Unlike previous monolithic filters,  
the power supplies can be applied in any order, that is, the  
positive supply can be applied before the negative supply  
and vice versa. Figure 2 shows the connections for dual  
supply operation.  
Table 1. Clock Source High and Low Thresholds  
POWER SUPPLY  
HIGH LEVEL  
1.5V  
LOW LEVEL  
0.5V  
Dual Supply = ±5V  
Single Supply = 10V  
Single Supply = 5V  
6.5V  
5.5V  
1.5V  
0.5V  
NC(Pins3,6):NoConnection.Pins3and6arenotconnected  
to any internal circuitry; they should be tied to ground.  
VOUT (Pin 8): Filter Output. Pin 8 is the output of the filter,  
and it can source 23mA or sink 16mA. The total harmonic  
distortionofthefilterwilldegradewhendrivingcoaxialcables  
or loads less than 20k without an output buffer.  
VIN (Pin 4): Filter Input. The filter input pin is internally  
connected to the inverting inputs of two op amps through  
ANALOG GROUND  
PLANE  
ANALOG GROUND  
PLANE  
1
2
3
4
8
7
6
5
AGND  
V
OUT  
V
OUT  
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
OUT  
+
+
V
V
V
V
0.47µF  
+
+
V
LTC1069-7  
0.1µF  
0.1µF  
V
V
NC  
LTC1069-7  
NC  
0.1µF  
NC  
NC  
V
CLK  
V
IN  
IN  
V
CLK  
IN  
V
IN  
DIGITAL  
GROUND  
PLANE  
DIGITAL  
GROUND  
PLANE  
STAR  
SYSTEM  
GROUND  
STAR  
SYSTEM  
GROUND  
1k  
1k  
CLOCK  
SOURCE  
CLOCK  
SOURCE  
LTC1069-7 • F01  
LTC1069 F02  
Figure 2. Connections for Dual Supply Operation  
Figure 1. Connections for Single Supply Operation  
6
LTC1069-7  
U
W U U  
APPLICATIONS INFORMATION  
the clock frequency and depends slightly on the power  
supplyvoltage(seeTable3). Theclockfeedthroughspeci-  
fications are not part of the wideband noise.  
Temperature Behavior  
The power supply current of the LTC1069-7 has a positive  
temperature coefficient. The GBW product of its internal  
op amps is nearly constant and the speed of the device  
does not degrade at high temperatures.  
Table 3. Wideband Noise  
V
WIDEBAND NOISE  
S
4.75V  
125µV  
140µV  
RMS  
RMS  
Clock Feedthrough  
± 5V  
The clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output (Pin 8). The clock feedthrough is tested with  
the input (Pin 4) shorted to the AGND pin and depends on  
PC board layout and on the value of the power supplies.  
With proper layout techniques the values of the clock  
feedthrough are shown on Table 2.  
Aliasing  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs for input frequencies approaching  
the sampling frequency. The internal sampling frequency  
of the LTC1069-7 is 50 times its fCUTOFF frequency. For  
instance if a 48kHz, 100mVRMS signal is applied at the  
input of an LTC1069-7 operating with a 50% duty cycle  
25kHz clock, a 2kHz, 741µVRMS alias signal will appear at  
the filter output. Table 4 shows details.  
Table 2. Clock Feedthrough  
V
CLOCK FEEDTHROUGH  
S
5V  
400µV  
850µV  
RMS  
RMS  
Table 4. Aliasing  
±5V  
INPUT FREQUENCY  
= 1V  
OUTPUT LEVEL  
Relative to Input  
OUTPUT FREQUENCY  
Aliased Frequency  
Any parasitic switching transients during the rising and  
fallingedgesoftheincomingclockarenotpartoftheclock  
feedthroughspecifications. Switchingtransientshavefre-  
quency contents much higher than the applied clock; their  
amplitude strongly depends on scope probing techniques  
as well as grounding and power supply bypassing. The  
clock feedthrough can be reduced by adding a single RC  
lowpass filter at the output (Pin 8) of the LTC1069-7.  
V
IN  
RMS  
f
/f = 25:1, f  
C
= 1kHz  
CUTOFF  
CLK  
40kHz (or 60kHz)  
47kHz (or 53kHz)  
48kHz (or 52kHz)  
–59.9dB  
–54.2dB  
–42.6dB  
–18.3dB  
–2.9dB  
10kHz  
3kHz  
2kHz  
48.5kHz (or 51.5kHz)  
49kHz (or 52kHz)  
1.5kHz  
1.0kHz  
0.5kHz  
49.5kHz (or 50.5kHz)  
–0.65dB  
Wideband Noise  
Speed Limitations  
The wideband noise of the filter is the total RMS value of  
the device’s noise spectral density and determines the  
operating signal-to-noise ratio. Most of the wideband  
noise frequency contents lie within the filter passband.  
The wideband noise cannot be reduced by adding post  
filtering. Thetotalwidebandnoiseisnearlyindependentof  
To avoid op amp slew rate limiting, the signal amplitude  
should be kept below a specified level as shown in Table 5.  
Table 5. Maximum VIN vs VS and Clock  
V
MAXIMUM CLOCK  
2.5MHz  
MAXIMUM V  
IN  
S
5V  
340mV  
(f 200kHz)  
RMS IN  
±5V  
4.5MHz  
1.2V (f 400kHz)  
RMS IN  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1069-7  
TYPICAL APPLICATION  
U
Clock Tunable, Noninverting, Linear Phase 8th Order Filter to 200kHz fCUTOFF  
51pF  
10k  
5V  
0.1µF  
0.1µF  
1µF  
10k  
+
AGND  
V
OUT  
5V  
–5V  
LT®1354  
V
OUT  
+
V
V
0.1µF  
0.1µF  
LTC1069-7  
NC  
NC  
–5V  
V
IN  
V
IN  
CLK  
f
5MHz  
CLK  
1069-7 TA03  
U
PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
0.189 – 0.197*  
(4.801 – 5.004)  
7
5
8
6
0.010 – 0.020  
(0.254 – 0.508)  
× 45°  
0.053 – 0.069  
(1.346 – 1.752)  
0.004 – 0.010  
(0.101 – 0.254)  
0.150 – 0.157**  
(3.810 – 3.988)  
0.228 – 0.244  
(5.791 – 6.197)  
0.008 – 0.010  
(0.203 – 0.254)  
0°– 8° TYP  
0.016 – 0.050  
0.406 – 1.270  
0.050  
(1.270)  
TYP  
0.014 – 0.019  
(0.355 – 0.483)  
1
3
4
2
SO8 0996  
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
RELATED PARTS  
PART NUMBER  
LTC1064-3  
LTC1064-7  
LTC1164-7  
LTC1264-7  
DESCRIPTION  
COMMENTS  
Linear Phase, Bessel 8th Order Filter  
Linear Phase, 8th Order Lowpass Filter  
Low Power, Linear Phase Lowpass Filter  
Linear Phase 8th Order Lowpass Filter  
f
f
f
f
/f = 75/1 or 150/1, Very Low Noise  
C
CLK  
CLK  
CLK  
CLK  
/f = 50/1 or 100/1, f  
C
= 100kHz  
C(MAX)  
/f = 50/1 or 100/1, I = 2.5mA, V = 5V  
C
S
S
/f = 25/1 or 50/1, f  
C
= 200kHz  
C(MAX)  
10697f LT/TP 0697 7K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1996  
Linear Technology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900  
8
FAX: (408) 434-0507 TELEX: 499-3977 www.linear-tech.com  

相关型号:

LTC1069-7IS8

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7IS8#PBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1069-7IS8#TRPBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1077

Temperature Sensor with Alert Outputs Voltage Output Proportional to Temperature
Linear

LTC1090

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090AC

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACJ

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACN

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACN#PBF

LTC1090 - Single Chip 10-Bit Data Acquisition System; Package: PDIP; Pins: 20; Temperature Range: 0°C to 70°C
Linear

LTC1090AM

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090AMJ

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090C

Single Chip 10-Bit Data Acquisition System
Linear