LTC1069-7CS8#PBF [Linear]

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1069-7CS8#PBF
型号: LTC1069-7CS8#PBF
厂家: Linear    Linear
描述:

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C

LTE 光电二极管 有源滤波器
文件: 总10页 (文件大小:160K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1069-7  
Linear Phase  
8th Order Lowpass Filter  
cutoff frequency of the LTC1069-7 is set by an external  
clock and is equal to the clock frequency divided by 25.  
The ratio of the internal sampling frequency to the cutoff  
frequency is 50:1 that is, the input signal is sampled  
twice per clock cycle to lower the risk of aliasing. The  
LTC1069-7 can be operated from a single 5V supply up  
to dual 5V supplies.  
FEATURES  
n
8th Order, Linear Phase Filter in SO-8 Package  
Raised Cosine Amplitude Response  
43dB Attenuation at 2× f  
Wideband Noise: 140μV  
n
n
CUTOFF  
n
RMS  
n
Operates from Single 5V Supply to  
5V ꢀower Supplies  
Clock-Tunable to 200kHz with 5V Supplies  
Clock-Tunable to 120kHz with Single 5V Supply  
The gain and phase response of the LTC1069-7 can be  
used in digital communication systems where pulse  
shaping and channel bandwidth limiting must be carried  
out. Any system that requires an analog filter with linear  
phase and sharper roll off than conventional Bessel filters  
can use the LTC1069-7.  
n
n
APPLICATIONS  
n
Digital Communication Filter  
The LTC1069-7 has a wide dynamic range. With 5V  
n
Antialiasing Filter with Linear ꢀhase  
supplies and an input range of 0.1V  
to 2V  
, the  
RMS  
RMS  
n
Smoothing Filters  
signal-to-(noise+THD)ratiois60dB.Thewidebandnoise  
oftheLTC1069-7is140μV .UnlikeotherLTC1069-Xlters,  
RMS  
DESCRIPTION  
the typical passband gain of the LTC1069-7 is equal to –1V/V.  
The LTC®1069-7 is a monolithic, clock-tunable, linear  
phase, 8th order lowpass filter. The amplitude response  
of the filter approximates a raised cosine filter with an  
alphaofone. Thegainatthecutofffrequencyis3dBand  
the attenuation at twice the cutoff frequency is 43dB. The  
The LTC1069-7 is available in an SO-8 package.  
Otherlterresponseswithlowerpower/speedspecifications  
can be obtained. ꢀlease contact LTC Marketing.  
L, LT, LTC and LTM are registered trademarks of Linear Technology Corporation.  
TYPICAL APPLICATION  
Frequency Response  
10  
0
Single 5V Supply, Linear Phase 100kHz Lowpass Filter  
AGND  
V
V
OUT  
OUT  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
5V  
IN  
+
0.47μF  
V
V
0.1μF  
LTC1069-7  
NC  
NC  
f
= 2.5MHz  
1069-7 TA01  
V
V
CLK  
CLK  
IN  
10  
100  
1000  
FREQUENCY (kHz)  
1069-7 TA02  
10697fa  
1
LTC1069-7  
ABSOLUTE MAXIMUM RATINGS  
Total Supply Voltage (V to V ) ............................... 12V  
ꢀower Dissipation.............................................. 400mW  
Operating Temperature Range  
LTC1069-7C............................................ 0°C to 70°C  
LTC1069-7I ......................................... 40°C to 85°C  
Storage Temperature..............................–65°C to 150°C  
Lead Temperature (Soldering, 10 sec) .................. 300°C  
PIN CONFIGURATION  
+
TOꢀ VIEW  
AGND  
1
2
3
4
8
7
6
5
V
V
OUT  
+
V
NC  
NC  
V
CLK  
IN  
S8 ꢀACKAGE  
8-LEAD ꢀLASTIC SO  
= 125°C, θ = 130°C/W  
T
JMAX  
JA  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1069-7CS8#ꢀBF  
LTC1069-7IS8#ꢀBF  
TAPE AND REEL  
PART MARKING  
10697  
PACKAGE DESCRIPTION  
8-Lead ꢀlastic SO  
TEMPERATURE RANGE  
LTC1069-7CS8#TRꢀBF  
LTC1069-7IS8#TRꢀBF  
0°C to 70°C  
10697I  
8-Lead ꢀlastic SO  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full operating  
temperature range. fCUTOFF is the filters cutoff frequency and is equal to fCLK/25. The fCLK signal level is TTL or CMOS (max clock rise  
or fall time 1μs), RL = 10k, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
SYMBOL  
ꢀassband Gain (f ≤ 0.2f  
CONDITIONS  
V = 5V, f = 2.5MHz  
CLK  
MIN  
TYP  
–0.10  
MAX UNITS  
)
0.75  
0.90  
dB  
dB  
IN  
CUTOFF  
S
l
l
l
l
l
l
l
l
l
l
f
= 1kHz, V = 1V  
IN RMS  
TEST  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
–0.10  
–0.30  
–0.05  
–1.0  
0.75  
0.90  
dB  
dB  
S
f
= 1kHz, V = 0.5V  
IN RMS  
Gain at 0.25f  
Gain at 0.50f  
Gain at 0.75f  
V = 5V, f = 2.5MHz  
CLK  
dB  
dB  
CUTOFF  
CUTOFF  
CUTOFF  
S
TEST  
f
= 25kHz, V = 1V  
RMS  
–0.55  
–0.1  
0.15  
–0.35  
0
IN  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
IN  
dB  
dB  
S
f
= 5kHz, V = 0.5V  
RMS  
–0.30  
–1.40  
–0.60  
–2.1  
V = 5V, f  
TEST  
= 2.5MHz  
dB  
dB  
S
CLK  
f
= 50kHz, V = 1V  
IN RMS  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
–0.30  
–1.65  
–0.75  
–3.5  
dB  
dB  
S
f
= 10kHz, V = 0.5V  
IN RMS  
V = 5V, f  
TEST  
= 2.5MHz  
dB  
dB  
S
CLK  
–0.80  
–0.25  
–2.7  
–2.4  
f
= 75kHz, V = 1V  
IN RMS  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
dB  
dB  
S
–1.15  
–4.0  
f
= 15kHz, V = 0.5V  
IN  
RMS  
Gain at f  
V = 5V, f = 2.5MHz  
CLK  
dB  
dB  
CUTOFF  
S
TEST  
f
= 100kHz, V = 1V  
IN  
RMS  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
–2.9  
dB  
dB  
S
–3.3  
f
= 20kHz, V = 0.5V  
IN RMS  
10697fa  
2
LTC1069-7  
ELECTRICAL CHARACTERISTICS The l denotes specifications which apply over the full operating  
temperature range. fCUTOFF is the filters cutoff frequency and is equal to fCLK/25. The fCLK signal level is TTL or CMOS (max clock rise  
or fall time 1μs), RL = 10k, TA = 25°C, unless otherwise specified. All AC gains are measured relative to the passband gain.  
SYMBOL  
CONDITIONS  
V = 5V, f = 2.5MHz  
CLK  
MIN  
TYP  
–16.5  
MAX UNITS  
Gain at 1.5f  
dB  
dB  
CUTOFF  
CUTOFF  
CUTOFF  
S
–19  
f
= 150kHz, V = 1V  
RMS  
–14  
–17  
–38  
TEST  
IN  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
–18.1  
–43  
dB  
dB  
S
–20  
–55  
f
= 30kHz, V = 0.5V  
IN  
RMS  
Gain at 2.0f  
Gain at 5.0f  
V = 5V, f  
TEST  
= 2.5MHz  
dB  
dB  
S
CLK  
f
= 200kHz, V = 1V  
IN  
RMS  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
–41  
dB  
dB  
S
–48  
–70  
–39  
–55  
f
= 40kHz, V = 0.5V  
IN RMS  
V = 4.75V, f  
TEST  
= 500kHz  
CLK  
–59  
dB  
S
f
= 100kHz, V = 0.5V  
IN RMS  
Gain at f  
(160kHz)  
V = 5V, f = 4MHz  
CLK  
TEST  
–2.1  
–30.5  
–235  
–3.0  
dB  
CUTOFF  
S
f
= 160kHz, V = 1V  
IN RMS  
ꢀhase at 0.5f  
V = 5V, f  
CLK  
TEST  
= 2.5MHz  
= 2.5MHz  
= 500kHz  
= 500kHz  
–35  
–25  
Deg  
Deg  
Deg  
CUTOFF  
S
f
= 50kHz  
ꢀhase at f  
V = 5V, f  
CLK  
–240  
–230  
CUTOFF  
S
TEST  
f
= 100kHz  
ꢀassband ꢀhase Deviation from  
Linear ꢀhase (Note 1)  
V = 5V, f  
S
CLK  
Output DC Offset (Input at GND)  
V = 5V, f  
S
50  
25  
mV  
mV  
S
CLK  
125  
V = 4.75V, f  
= 400kHz  
CLK  
l
l
Output Voltage Swing  
V = 5V, I  
S
/I  
≤ 1mA, R = 10k  
3.5  
2.6  
4.0  
3.6  
V
ꢀ-ꢀ  
S
SOURCE SINK  
L
V = 4.75V, I  
/I  
≤ 1mA, R = 10k  
V
SOURCE SINK  
L
ꢀower Supply Current  
V = 5V, f  
= 500kHz  
18  
26  
29  
mA  
mA  
S
CLK  
l
l
V = 4.75V, f  
S
= 400kHz  
CLK  
13  
15  
16.5  
mA  
mA  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Example: An LTC1069-7 has ꢀhase at 0.5f  
= 30.5° and ꢀhase at  
CUTOFF  
f
= –235°.  
CUTOFF  
ꢀassband ꢀhase Deviation from Linear ꢀhase  
= 1/2[180° – (–235°)] – [(180° – (–30.5°)] = –3°  
Note 2: ꢀhase Deviation = 1/2(ꢀhase at 0Hz – ꢀhase at f ) – (ꢀhase  
CUTOFF  
at 0Hz – ꢀhase at 0.5f  
)
CUTOFF  
ꢀhase at 0Hz = 180° (guaranteed by design)  
10697fa  
3
LTC1069-7  
TYPICAL PERFORMANCE CHARACTERISTICS  
Passband Gain vs Frequency  
Transition Band Gain vs Frequency  
Stopband Gain vs Frequency  
10  
0
1.0  
0.5  
–40  
–42  
–44  
–46  
–48  
–50  
–52  
–54  
–56  
–58  
–60  
V
=
5V  
V
=
5V  
V
=
5V  
S
S
S
f
f
= 500kHz  
f
f
= 500kHz  
f
f
= 500kHz  
CLK  
C
V
CLK  
C
CLK  
= 20kHz  
= 2V  
= 20kHz  
= 20kHz  
C
0
V
= 2V  
V
= 2V  
IN  
RMS  
IN  
RMS  
IN RMS  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–10  
–20  
–30  
–40  
–50  
1
3
5
7
9
11 13 15 17 19 21  
41 45 49 53 57 61 65 69 73 77 81  
21 23 25 27 29 31 33 35 37 39 41  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-7 G01  
1069-7 G03  
1069-7 G02  
Passband Gain  
Gain vs Frequency  
vs Clock Frequency  
Passband Gain vs Frequency  
10  
0
1.0  
0.5  
3
0
V
f
C
V
= 5V  
V
f
=
CLK  
= 160kHz  
= 2V  
5V  
S
S
= 250kHz  
= 4MHz  
CLK  
f
= 5MHz  
CLK  
f
= 10kHz  
f
C
0
= 1V  
V
IN  
RMS  
IN  
RMS  
–10  
–20  
–30  
–40  
–50  
–60  
–3  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
T
= 85°C  
A
–6  
f
= 2.5MHz  
CLK  
f
= 4.5MHz  
CLK  
T
= –40°C  
A
–9  
f
f
= 4MHz  
= 3.5MHz  
CLK  
T
= 25°C  
A
CLK  
–12  
–15  
–18  
f
= 3MHz  
CLK  
V
V
= 5V  
S
= 2V  
IN  
RMS  
1
10  
FREQUENCY (kHz)  
100  
10  
40  
70  
100  
130  
160  
20 40 60 80  
140 160 180 200  
100 120  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-7 G04  
1069-7 G06  
1069-7 G05  
Passband Gain  
vs Clock Frequency  
Gain vs Supply Voltage  
Passband Gain vs Frequency  
1.0  
0.5  
3
0
10  
0
f
= 2MHz  
V
V
= 5V  
IN  
CLK  
C
IN  
S
f
= 80kHz  
= 0.5V  
= 1V  
RMS  
V
0
RMS  
T
= 85°C  
A
–3  
–10  
–20  
–30  
–40  
–50  
–60  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
f
= 3MHz  
CLK  
–6  
T
= –40°C  
A
T
–9  
= 25°C  
A
f
= 2.5MHz  
CLK  
–12  
–15  
–18  
V
= 5V  
V
f
C
V
= 5V  
S
S
= 2.5MHz  
CLK  
f
= 2MHz  
CLK  
V
= 5V  
f
= 100kHz  
S
= 1V  
IN  
RMS  
f
= 1.5MHz  
CLK  
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
10  
70  
110 130 150 170 190 210  
20 40 60 80  
140 160 180 200  
30 50  
90  
100 120  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-7 G09  
1069-7 G07  
1069-7 G08  
10697fa  
4
LTC1069-7  
TYPICAL PERFORMANCE CHARACTERISTICS  
Passband Gain and Phase  
vs Frequency  
Passband Gain and Delay  
vs Frequency  
2
1
13.5  
2
1
180  
135  
90  
V
f
C
=
CLK  
= 100kHz  
5V  
= 2.5MHz  
V
f
C
=
CLK  
= 100kHz  
5V  
= 2.5MHz  
S
S
f
f
0
13.0  
12.5  
12.0  
11.5  
11.0  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
45  
GAIN  
0
GAIN  
–45  
–90  
–135  
–180  
–225  
–270  
ꢀHASE  
DELAY  
0
10 20 30 40 50 60 70 80 90 100  
0
10 20 30 40 50 60 70 80 90 100  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
1069-7 G12  
1069-7 G10  
Phase Matching vs Frequency  
THD + Noise vs Input (VP-P  
)
THD + Noise vs Frequency  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
–75  
–80  
2.50  
2.25  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
f
f
= 2.5MHz  
f
f
f
= 1MHz  
CLK  
C
CLK  
C
IN  
70°C  
= 100kHz  
= 40kHz  
= 1kHz  
25°C  
V
= 5V  
S
V
V
= 5V, V = 1V  
IN ꢀ-ꢀ  
S
S
V
f
=
CLK  
5V  
S
≤ 2.5MHz  
ꢀHASE DIFFERENCE BETWEEN  
ANY TWO UNITS (SAMꢀLE OF  
20 REꢀRESENTATIVE UNITS)  
V
= 5V  
S
=
5V, V = 2V  
IN  
ꢀ-ꢀ  
0.1  
1
10  
1
10  
100  
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0  
INꢀUT (V )  
FREQUENCY (kHz)  
FREQUENCY (f  
/FREQUENCY)  
ꢀ-ꢀ  
CUTOFF  
1609-7 G13  
1069-7 G11  
1069-7 G14  
Output Voltage Swing  
vs Temperature  
Transient Response  
Output Offset vs Clock Frequency  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
4.3  
4.2  
4.1  
1.2  
1.1  
1.0  
V
= 5V  
S
V
= 5V (AGND AT 2.5V)  
S
f
f
= 500kHz  
CLK  
CUTOFF  
R
= 20kHz  
= 10k  
L
I
/I  
≤ 1mA  
V
=
5V  
SOURCE SINK  
S
1069-7 G15  
V
=
5V  
0.1ms/DIV  
S
f
f
= 500kHz  
CLK  
CUTOFF  
= 20kHz  
0.25  
1.25  
2.25  
3.25  
4.25  
5.25  
40  
100  
V
= 4V  
–40  
0
20  
60  
–20  
80  
IN  
ꢀ-ꢀ SQUARE WAVE AT 1kHZ  
CLOCK FREQUENCY (MHz)  
TEMꢀERATURE (°C)  
1069-7 G16  
1069-7 G17  
10697fa  
5
LTC1069-7  
TYPICAL PERFORMANCE CHARACTERISTICS  
Output Voltage Swing  
vs Temperature  
Supply Current  
Supply Current  
vs Supply Voltage  
vs Clock Frequency  
4.2  
4.1  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
f
= 10Hz  
CLK  
25  
20  
15  
10  
5
85°C  
25°C  
V
= 5V  
S
V
=
5V  
S
4.0  
–40°C  
f
f
= 2.5MHz  
CLK  
CUTOFF  
R
= 100kHz  
= 10k  
L
–4.5  
–4.6  
–4.7  
I
/I  
= 1mA  
SOURCE SINK  
V
= 5V  
S
0
–40  
0
20  
40  
60  
80 100  
0
1
2
3
4
5
6
–20  
0.25  
1.25  
2.25  
3.25  
4.25  
5.25  
SUꢀꢀLY VOLTAGE ( V)  
TEMꢀERATURE (°C)  
CLOCK FREQUENCY (MHz)  
1069-7 G18  
1069-7 G19  
1069-7 G20  
PIN FUNCTIONS  
AGND (Pin 1): Analog Ground. The quality of the analog  
signal ground can affect the filter performance. For either  
single or dual supply operation, an analog ground plane  
surrounding the package is recommended. The analog  
ground plane should be connected to any digital ground  
at a single point. For dual supply operation, ꢀin 1 should  
be connected to the analog ground plane.  
NC (Pins 3, 6): No Connection. ꢀins 3 and 6 are not  
connected to any internal circuitry; they should be tied  
to ground.  
V
(Pin 4): Filter Input. The filter input pin is internally  
IN  
connected to the inverting inputs of two op amps through  
a 36k resistor for each op amp. This parallel combination  
creates an 18k input impedance.  
For single supply operation, ꢀin 1 should be bypassed  
to the analog ground plane with a capacitor 0.47μF or  
larger. An internal resistive divider biases ꢀin 1 to half the  
total power supply. ꢀin 1 should be buffered if used to  
bias other ICs. Figure 1 shows the connections for single  
supply operation.  
ANALOG GROUND  
ꢀLANE  
1
2
3
4
8
7
6
5
AGND  
V
V
OUT  
OUT  
0.47μF  
+
+
V
V
V
LTC1069-7  
0.1μF  
V
NC  
NC  
V
CLK  
IN  
IN  
+
+
V , V (Pins 2, 7): ꢀower Supplies. The V (ꢀin 2) and  
V (ꢀin 7) should be bypassed with a 0.1μF capacitor to  
DIGITAL  
GROUND  
ꢀLANE  
STAR  
SYSTEM  
GROUND  
1k  
an adequate analog ground. The filter’s power supplies  
shouldbeisolatedfromotherdigitalorhighvoltageanalog  
supplies.Alownoiselinearsupplyisrecommended.Using  
switching power supplies will lower the signal-to-noise  
ratio of the filter. Unlike previous monolithic filters, the  
power supplies can be applied in any order, that is, the  
positive supply can be applied before the negative supply  
and vice versa. Figure 2 shows the connections for dual  
supply operation.  
CLOCK  
SOURCE  
1069-7 F01  
Figure 1. Connections for Single Supply Operation  
10697fa  
6
LTC1069-7  
PIN FUNCTIONS  
a dual or single supply operation. A pulse generator can  
be used as a clock source provided the high level on-time  
ANALOG GROUND  
ꢀLANE  
1
8
7
6
5
AGND  
V
OUT  
V
is greater than 0.42μs (V = 5V). Sine waves less than  
OUT  
S
2
3
4
+
+
V
V
V
100kHz are not recommended for clock sources because  
excessive slow clock rise or fall times generate internal  
clock jitter. The maximum clock rise or fall time is 1μs. The  
clock signal should be routed from the right side of the IC  
package to avoid coupling into any input or output analog  
signal path.A1kresistorbetweentheclocksourceandthe  
clock input (ꢀin 5) will slow down the rise and fall times  
of the clock to further reduce charge coupling, Figure 1.  
V
0.1μF  
LTC1069-7  
0.1μF  
NC  
NC  
V
CLK  
V
IN  
IN  
DIGITAL  
STAR  
SYSTEM  
GROUND  
GROUND  
ꢀLANE  
1k  
CLOCK  
SOURCE  
Table 1. Clock Source High and Low Thresholds  
1069 F02  
POWER SUPPLY  
HIGH LEVEL  
1.5V  
LOW LEVEL  
0.5V  
Figure 2. Connections for Dual Supply Operation  
Dual Supply = 5V  
Single Supply = 10V  
Single Supply = 5V  
6.5V  
5.5V  
CLK (Pin 5): Clock Input. Any TTL or CMOS clock source  
with a square wave output and 50% duty cycle ( 10%) is  
anadequateclocksourceforthedevice. Thepowersupply  
for the clock source should not necessarily be the filter’s  
power supply. The analog ground of the filter should only  
be connected to the clock’s ground at a single point. Table  
1 shows the clock’s low and high level threshold value for  
1.5V  
0.5V  
V
OUT  
(Pin 8): Filter Output. ꢀin 8 is the output of the filter,  
and it can source 23mA or sink 16mA. The total harmonic  
distortion of the filter will degrade when driving coaxial  
cables or loads less than 20k without an output buffer.  
APPLICATIONS INFORMATION  
Temperature Behavior  
Table 2. Clock Feedthrough  
V
CLOCK FEEDTHROUGH  
S
The power supply current of the LTC1069-7 has a positive  
temperature coefficient. The GBW product of its internal  
op amps is nearly constant and the speed of the device  
does not degrade at high temperatures.  
5V  
5V  
400μV  
850μV  
RMS  
RMS  
Any parasitic switching transients during the rising and  
falling edges of the incoming clock are not part of the  
clock feedthrough specifications. Switching transients  
have frequency contents much higher than the applied  
clock; their amplitude strongly depends on scope probing  
techniques as well as grounding and power supply  
bypassing. The clock feedthrough can be reduced by  
adding a single RC lowpass filter at the output (ꢀin 8) of  
the LTC1069-7.  
Clock Feedthrough  
The clock feedthrough is defined as the RMS value of the  
clock frequency and its harmonics that are present at the  
filter’s output (ꢀin 8). The clock feedthrough is tested with  
the input (ꢀin 4) shorted to the AGND pin and depends on  
ꢀC board layout and on the value of the power supplies.  
With proper layout techniques the values of the clock  
feedthrough are shown on Table 2.  
10697fa  
7
LTC1069-7  
APPLICATIONS INFORMATION  
Wideband Noise  
input of an LTC1069-7 operating with a 50% duty cycle  
25kHz clock, a 2kHz, 741μV  
alias signal will appear  
RMS  
The wideband noise of the filter is the total RMS value  
of the device’s noise spectral density and determines the  
operating signal-to-noise ratio. Most of the wideband  
noise frequency contents lie within the filter passband.  
The wideband noise cannot be reduced by adding post  
filtering. The total wideband noise is nearly independent  
of the clock frequency and depends slightly on the power  
supply voltage (see Table 3). The clock feedthrough  
specifications are not part of the wideband noise.  
at the filter output. Table 4 shows details.  
Table 4. Aliasing  
INPUT FREQUENCY  
= 1V  
OUTPUT LEVEL  
Relative to Input  
OUTPUT FREQUENCY  
Aliased Frequency  
V
IN  
RMS  
f
/f = 25:1, f  
= 1kHz  
CLK  
C
CUTOFF  
40kHz (or 60kHz)  
47kHz (or 53kHz)  
48kHz (or 52kHz)  
48.5kHz (or 51.5kHz)  
49kHz (or 52kHz)  
49.5kHz (or 50.5kHz)  
–59.9dB  
–54.2dB  
–42.6dB  
–18.3dB  
–2.9dB  
10kHz  
3kHz  
2kHz  
1.5kHz  
1.0kHz  
0.5kHz  
Table 3. Wideband Noise  
V
CLOCK FEEDTHROUGH  
S
–0.65dB  
4.75V  
5V  
125μV  
140μV  
RMS  
RMS  
Speed Limitations  
To avoid op amp slew rate limiting, the signal amplitude  
should be kept below a specified level as shown in Table 5.  
Table 5. Maximum VIN vs VS and Clock  
Aliasing  
Aliasing is an inherent phenomenon of sampled data  
systems and it occurs for input frequencies approaching  
the sampling frequency. The internal sampling frequency  
of the LTC1069-7 is 50 times its f  
instance if a 48kHz, 100mV  
V
MAXIMUM CLOCK  
≥ 2.5MHz  
MAXIMUM V  
IN  
S
5V  
5V  
340mV  
(f ≥ 200kHz)  
RMS IN  
frequency. For  
CUTOFF  
signal is applied at the  
≥ 4.5MHz  
1.2V  
(f ≥ 400kHz)  
RMS IN  
RMS  
10697fa  
8
LTC1069-7  
PACKAGE DESCRIPTION  
S8 Package  
8-Lead Plastic Small Outline (Narrow 0.150)  
(LTC DWG # 05-08-1610)  
.189 – .197  
(4.801 – 5.004)  
.045 .005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 .005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 .005  
TYꢀ  
1
3
4
2
RECOMMENDED SOLDER ꢀAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
s 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYꢀ  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYꢀ  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR ꢀROTRUSIONS.  
MOLD FLASH OR ꢀROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
SO8 0303  
10697fa  
9
LTC1069-7  
TYPICAL APPLICATION  
Clock Tunable, Noninverting, Linear Phase 8th Order Filter to 200kHz fCUTOFF  
51pF  
10k  
5V  
0.1μF  
0.1μF  
1μF  
10k  
+
AGND  
V
OUT  
5V  
–5V  
LT®1354  
–5V  
V
OUT  
+
V
V
0.1μF  
V
0.1μF  
LTC1069-7  
NC  
NC  
V
CLK  
f
≤ 5MHz  
IN  
IN  
CLK  
1069-7 TA03  
RELATED PARTS  
PART NUMBER  
LTC1064-3  
LTC1064-7  
LTC1164-7  
LTC1264-7  
DESCRIPTION  
COMMENTS  
Linear ꢀhase, Bessel 8th Order Filter  
Linear ꢀhase, 8th Order Lowpass Filter  
Low ꢀower, Linear ꢀhase Lowpass Filter  
Linear ꢀhase 8th Order Lowpass Filter  
f
f
f
f
/f = 75/1 or 150/1, Very Low Noise  
C
CLK  
CLK  
CLK  
CLK  
/f = 50/1 or 100/1, f  
C
= 100kHz  
C(MAX)  
/f = 50/1 or 100/1, I = 2.5mA, V = 5V  
C
S
S
/f = 25/1 or 50/1, f  
C
= 200kHz  
C(MAX)  
10697fa  
LTC 0309 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
10  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1069-7CS8#TRPBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1069-7I

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7IS8

Linear Phase 8th Order Lowpass Filter
Linear

LTC1069-7IS8#PBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1069-7IS8#TRPBF

LTC1069-7 - Linear Phase 8th Order Lowpass Filter; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1077

Temperature Sensor with Alert Outputs Voltage Output Proportional to Temperature
Linear

LTC1090

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090AC

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACJ

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACN

Single Chip 10-Bit Data Acquisition System
Linear

LTC1090ACN#PBF

LTC1090 - Single Chip 10-Bit Data Acquisition System; Package: PDIP; Pins: 20; Temperature Range: 0°C to 70°C
Linear

LTC1090AM

Single Chip 10-Bit Data Acquisition System
Linear