LTC1403IMSE-1#TRPBF [Linear]

LTC1403-1 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C;
LTC1403IMSE-1#TRPBF
型号: LTC1403IMSE-1#TRPBF
厂家: Linear    Linear
描述:

LTC1403-1 - Serial 12-Bit, 2.8Msps Sampling ADCs with Shutdown; Package: MSOP; Pins: 10; Temperature Range: -40°C to 85°C

文件: 总20页 (文件大小:412K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1403-1/LTC1403A-1  
Serial 12-Bit/14-Bit, 2.8Msps  
Sampling ADCs with Shutdown  
U
FEATURES  
DESCRIPTIO  
The LTC®1403-1/LTC1403A-1 are 12-bit/14-bit, 2.8Msps  
serial ADCs with differential inputs. The devices draw only  
4.7mA from a single 3V supply and come in a tiny 10-lead  
MSE package. A Sleep shutdown feature lowers power  
consumption to 10µW. The combination of speed, low  
powerandtinypackagemakestheLTC1403-1/LTC1403A-1  
suitable for high speed, portable applications.  
2.8Msps Conversion Rate  
Low Power Dissipation: 14mW  
3V Single Supply Operation  
2.5V Internal Bandgap Reference can be Overdriven  
3-Wire Serial Interface  
Sleep (10µW) Shutdown Mode  
Nap (3mW) Shutdown Mode  
80dB Common Mode Rejection  
The 80dB common mode rejection allows users to elimi-  
nategroundloopsandcommonmodenoisebymeasuring  
signals differentially from the source.  
±1.25V Bipolar Input Range  
Tiny 10-Lead MSE Package  
U
The devices convert –1.25V to 1.25V bipolar inputs differ-  
entially. The absolute voltage swing for +AIN and  
–AIN extends from ground to the supply voltage.  
APPLICATIO S  
Communications  
The serial interface sends out the conversion results  
during the 16 clock cycles following CONVfor compat-  
ibility with standard serial interfaces. If two additional  
clock cycles for acquisition time are allowed after the data  
stream in between conversions, the full sampling rate of  
2.8Msps can be achieved with a 50.4MHz clock.  
Data Acquisition Systems  
Uninterrupted Power Supplies  
Multiphase Motor Control  
Multiplexed Data Acquisition  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
W
BLOCK DIAGRA  
THD, 2nd and 3rd vs Input  
10µF 3V  
Frequency for Differential Input  
Signals  
7
–44  
V
DD  
LTC1403A-1  
–50  
–56  
+
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
A
A
IN  
1
2
+
–62  
14-BIT ADC  
SDO  
S & H  
8
–68  
–74  
IN  
14  
THD 3rd  
2nd  
–80  
–86  
V
REF  
3
4
10  
9
CONV  
SCK  
2.5V  
REFERENCE  
TIMING  
LOGIC  
10µF  
–92  
GND  
5
–98  
–104  
14031 BD  
6
11  
0.1  
1
10  
100  
EXPOSED PAD  
FREQUENCY (MHz)  
14031 G19  
14031f  
1
LTC1403-1/LTC1403A-1  
W W  
U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Notes 1, 2)  
Supply Voltage (VDD)................................................. 4V  
Analog Input Voltage  
ORDER PART  
NUMBER  
(Note 3) ....................................–0.3V to (VDD + 0.3V)  
Digital Input Voltage ................... – 0.3V to (VDD + 0.3V)  
Digital Output Voltage.................. 0.3V to (VDD + 0.3V)  
Power Dissipation.............................................. 100mW  
Operation Temperature Range  
LTC1403C-1/LTC1403AC-1 ..................... 0°C to 70°C  
LTC1403I-1/LTC1403AI-1 .................. 40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
TOP VIEW  
LTC1403CMSE-1  
LTC1403IMSE-1  
LTC1403ACMSE-1  
LTC1403AIMSE-1  
+
A
A
1
2
3
4
5
10 CONV  
IN  
IN  
9
8
7
6
SCK  
SDO  
DD  
GND  
V
11  
REF  
GND  
GND  
V
MSE PACKAGE  
10-LEAD PLASTIC MSOP  
MSE PART MARKING  
TJMAX = 125°C, θJA = 150°C/ W  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
LTBGP  
LTBGQ  
LTBGR  
LTBGS  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
U
CO VERTER CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. With internal reference. VDD = 3V  
LTC1403-1  
TYP MAX  
LTC1403A-1  
MIN TYP MAX  
PARAMETER  
CONDITIONS  
MIN  
12  
UNITS  
Bits  
Resolution (No Missing Codes)  
Integral Linearity Error  
Offset Error  
14  
–4  
(Notes 4, 5, 18)  
(Notes 4, 18)  
(Note 4, 18)  
–2  
±0.25  
±1  
2
±0.5  
±2  
4
LSB  
–10  
–30  
10  
30  
–20  
–60  
20  
60  
LSB  
Gain Error  
±5  
±10  
LSB  
Gain Tempco  
Internal Reference (Note 4)  
External Reference  
±15  
±1  
±15  
±1  
ppm/°C  
ppm/°C  
U
U
A ALOG I PUT  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. VDD = 3V  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
Analog Differential Input Range (Notes 3, 8, 9)  
2.7V V 3.3V  
–1.25 to 1.25  
V
V
IN  
DD  
Analog Common Mode + Differential  
Input Range (Note 10)  
0 to V  
CM  
DD  
I
Analog Input Leakage Current  
1
µA  
pF  
ns  
ns  
ps  
IN  
C
Analog Input Capacitance  
13  
IN  
t
t
t
Sample-and-Hold Acquisition Time  
Sample-and-Hold Aperture Delay Time  
Sample-and-Hold Aperture Delay Time Jitter  
Analog Input Common Mode Rejection Ratio  
(Note 6)  
39  
ACQ  
AP  
1
0.3  
JITTER  
CMRR  
f
f
= 1MHz, V = 0V to 3V  
= 100MHz, V = 0V to 3V  
–60  
–15  
dB  
dB  
IN  
IN  
IN  
IN  
14031f  
2
LTC1403-1/LTC1403A-1  
U W  
DY A IC ACCURACY  
The denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C. VDD = 3V. Single-ended AIN+ signal drive with AIN= 1.5V DC. Differential signal drive with  
+
VCM = 1.5V at AIN and AIN  
LTC1403-1  
TYP MAX  
LTC1403A-1  
MIN TYP MAX  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
UNITS  
SINAD  
Signal-to-Noise Plus  
Distortion Ratio  
100kHz Input Signal (Note 19)  
1.4MHz Input Signal (Note 19)  
100kHz Input Signal, External V = 3.3V,  
70.5  
70.5  
72  
73.5  
73.5  
76.3  
dB  
dB  
dB  
68  
70  
REF  
V
DD  
3.3V (Note 19)  
750kHz Input Signal, External V = 3.3V,  
72  
76.3  
dB  
REF  
V
DD  
3.3V (Note 19)  
THD  
SFDR  
IMD  
Total Harmonic  
Distortion  
100kHz First 5 Harmonics (Note 19)  
1.4MHz First 5 Harmonics (Note 19)  
–87  
–83  
–90  
–86  
dB  
dB  
–76  
–78  
Spurious Free  
Dynamic Range  
100kHz Input Signal (Note 19)  
1.4MHz Input Signal (Note 19)  
–87  
–83  
–90  
–86  
dB  
dB  
Intermodulation  
Distortion  
0.625V 1.4MHz Summed with 0.625V  
–82  
–82  
dB  
P-P  
P-P  
+
1.56MHz into A and Inverted into A  
IN  
IN  
Code-to-Code  
V
REF  
= 2.5V (Note 18)  
0.25  
1
LSB  
RMS  
Transition Noise  
Full Power Bandwidth  
V
= 2.5V , SDO = 11585LSB (Note 15)  
50  
5
50  
5
MHz  
MHz  
IN  
P-P  
P-P  
Full Linear Bandwidth S/(N + D) 68dB  
U U  
U
The denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V  
I TER AL REFERE CE CHARACTERISTICS  
PARAMETER CONDITIONS  
= 0  
MIN  
TYP  
2.5  
15  
MAX  
UNITS  
V
V
V
V
V
V
Output Voltage  
Output Tempco  
Line Regulation  
Output Resistance  
Settling Time  
I
OUT  
REF  
REF  
REF  
REF  
REF  
ppm/°C  
µV/V  
V
= 2.7V to 3.6V, V = 2.5V  
600  
0.2  
2
DD  
REF  
Load Current = 0.5mA  
ms  
U
U
The denotes the specifications which apply over the  
DIGITAL I PUTS A D DIGITAL OUTPUTS  
full operating temperature range, otherwise specifications are at TA = 25°C. VDD = 3V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
V
V
= 3.3V  
= 2.7V  
2.4  
V
V
IH  
IL  
DD  
DD  
IN  
0.6  
I
= 0V to V  
±10  
µA  
pF  
V
IN  
DD  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
(Note 20)  
5
IN  
V
= 3V, I = 200µA  
OUT  
2.5  
2.9  
OH  
OL  
DD  
V
V
= 2.7V, I  
= 2.7V, I  
= 160µA  
= 1.6mA  
0.05  
0.10  
V
V
DD  
DD  
OUT  
OUT  
0.4  
I
Hi-Z Output Leakage D  
V
= 0V to V  
DD  
±10  
µA  
pF  
OZ  
OUT  
OUT  
C
Hi-Z Output Capacitance D  
1
OZ  
OUT  
I
I
Output Short-Circuit Source Current  
Output Short-Circuit Sink Current  
V
V
= 0V, V = 3V  
20  
15  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
DD  
= V = 3V  
DD  
14031f  
3
LTC1403-1/LTC1403A-1  
W U  
POWER REQUIRE E TS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 17)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Supply Voltage  
2.7  
3.6  
V
DD  
I
Positive Supply Voltage  
Active Mode  
4.7  
1.1  
2
7
mA  
mA  
µA  
DD  
Nap Mode  
1.5  
15  
10  
Sleep Mode (LTC1403)  
Sleep Mode (LTC1403A)  
2
µA  
P
Power Dissipation  
Active Mode with SCK in Fixed State (Hi or Lo)  
12  
mW  
D
W U  
TI I G CHARACTERISTICS  
The denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. VDD = 3V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
f
Maximum Sampling Frequency per Channel  
(Conversion Rate)  
2.8  
MHz  
SAMPLE(MAX)  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Minimum Sampling Period (Conversion + Acquisiton Period)  
Clock Period  
357  
ns  
THROUGHPUT  
(Note 16)  
19.8  
16  
2
10000  
ns  
SCK  
Conversion Time  
(Note 6)  
18  
SCLK cycles  
CONV  
Minimum Positive or Negative SCLK Pulse Width  
CONV to SCK Setup Time  
(Note 6)  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
1
(Notes 6, 10)  
(Note 6)  
3
2
Nearest SCK Edge Before CONV  
Minimum Positive or Negative CONV Pulse Width  
SCK to Sample Mode  
0
3
(Note 6)  
4
4
(Note 6)  
4
5
CONV to Hold Mode  
(Notes 6, 11)  
(Notes 6, 7, 13)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 12)  
(Notes 6, 14)  
1.2  
45  
8
6
16th SCKto CONVInterval (Affects Acquisition Period)  
Minimum Delay from SCKto Valid Data  
SCK to Hi-Z at SDO  
7
8
6
9
Previous SDO Bit Remains Valid After SCK  
2
10  
12  
V
Settling Time After Sleep-to-Wake Transition  
2
REF  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: All voltage values are with respect to GND.  
Note 11: Not the same as aperture delay. Aperture delay is smaller (1ns)  
because the 2.2ns delay through the sample-and-hold is subtracted from  
the CONV to Hold mode delay.  
Note 12: The rising edge of SCK is guaranteed to catch the data coming  
out into a storage latch.  
Note 3: When these pins are taken below GND or above V , they will be  
clamped by internal diodes. This product can handle input currents greater  
DD  
than 100mA below GND or greater than V without latchup.  
Note 13: The time period for acquiring the input signal is started by the  
16th rising clock and it is ended by the rising edge of convert.  
Note 14: The internal reference settles in 2ms after it wakes up from Sleep  
mode with one or more cycles at SCK and a 10µF capacitive load.  
Note 15: The full power bandwidth is the frequency where the output code  
DD  
Note 4: Offset and full-scale specifications are measured for a single-  
+
ended A input with A grounded and using the internal 2.5V reference.  
IN  
IN  
Note 5: Integral linearity is tested with an external 2.55V reference and is  
defined as the deviation of a code from the straight line passing through  
the actual endpoints of a transfer curve. The deviation is measured from  
the center of quantization band.  
swing drops to 3dB with a 2.5V input sine wave.  
P-P  
Note 16: Maximum clock period guarantees analog performance during  
Note 6: Guaranteed by design, not subject to test.  
Note 7: Recommended operating conditions.  
conversion. Output data can be read without an arbitrarily long clock.  
Note 17: V = 3V, f  
= 2.8Msps.  
SAMPLE  
DD  
Note 8: The analog input range is defined for the voltage difference  
Note 18: The LTC1403A-1 is measured and specified with 14-bit  
Resolution (1LSB = 152µV) and the LTC1403-1 is measured and specified  
with 12-bit Resolution (1LSB = 610µV).  
+
between A and A . Performance is specified with A = 1.5V DC while  
IN  
+
IN  
IN  
driving A  
.
IN  
+
Note 9: The absolute voltage at A and A must be within this range.  
Note 19: Full-scale sinewaves are fed into the noninverting input while the  
IN  
IN  
inverting input is kept at 1.5V DC.  
Note 20: The sampling capacitor at each input accounts for 4.1pF of the  
input capacitance.  
Note 10: If less than 3ns is allowed, the output data will appear one clock  
cycle later. It is best for CONV to rise half a clock before SCK, when  
running the clock at rated speed.  
14031f  
4
LTC1403-1/LTC1403A-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
TA = 25°C, VDD = 3V. Single ended AIN+ signal drive  
with AIN= 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1403A-1)  
ENOBs and SINAD  
vs Input Frequency  
THD, 2nd and 3rd vs Input  
Frequency  
SFDR vs Input Frequency  
–44  
–50  
–56  
–62  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
–68  
–74  
THD  
3rd  
–80  
–86  
2nd  
9.0  
–92  
8.5  
–98  
–104  
8.0  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
14031 G02  
14031 G01  
14031 G03  
THD, 2nd and 3rd vs Input  
ENOBs and SINAD vs Input  
Frequency for Differential Input  
Signals  
Frequency for Differential Input  
Signals  
SNR vs Input Frequency  
–44  
–50  
–56  
–62  
74  
71  
68  
65  
62  
59  
56  
53  
50  
12.0  
11.5  
11.0  
10.5  
10.0  
9.5  
74  
71  
68  
65  
62  
59  
56  
53  
50  
–68  
–74  
THD 3rd  
2nd  
–80  
–86  
9.0  
–92  
8.5  
–98  
–104  
8.0  
0.1  
1
10  
100  
0.1  
1
10  
100  
0.1  
1
10  
100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
14031 G19  
14031 G04  
14031 G18  
SFDR vs Input Frequency for  
Differential Input Signals  
98kHz Sine Wave 4096 Point  
FFT Plot  
1.3MHz Sine Wave 4096 Point  
FFT Plot  
0
–10  
104  
98  
92  
86  
80  
74  
68  
62  
56  
50  
44  
0
–10  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–60  
–70  
–80  
–80  
–90  
–100  
–110  
–120  
–90  
–100  
–110  
–120  
0
350  
700k  
1.05M  
1.4M  
0
350k  
700k  
1.05M  
1.4M  
0.1  
1
10  
100  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
14031 G20  
14031 G05  
14031 G06  
14031f  
5
LTC1403-1/LTC1403A-1  
U W  
TA = 25°C, VDD = 3V. Single ended AIN+ signal drive  
TYPICAL PERFOR A CE CHARACTERISTICS  
with AIN= 1.5V DC, differential signals drive both inputs with VCM = 1.5V DC (LTC1403A-1)  
1.4MHz Input Summed with  
1.56MHz Input IMD 4096 Point FFT  
Plot for Differential Input Signals  
1.3MHz Sine Wave 4096 Point  
FFT Plot for Differential Input  
Signals  
10.7MHz Sine Wave 4096 Point  
FFT Plot for Differential Input  
Signals  
0
–10  
0
–10  
–20  
0
–10  
–20  
–20  
–30  
–40  
–50  
–60  
–70  
–30  
–40  
–50  
–30  
–40  
–50  
–60  
–70  
–60  
–70  
–80  
–80  
–80  
–90  
–100  
–110  
–120  
–90  
–90  
–100  
–110  
–120  
–100  
–110  
–120  
0
350  
700k  
1.05M  
1.4M  
0
350  
700k  
1.05M  
1.4M  
0
200k 400k 600k 800k 1M 1.2M 1.4M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
14031 G22  
14031 G21  
14031 G07  
Differential Linearity  
vs Output Code  
Integral Linearity  
vs Output Code  
Integral Linearity vs Output Code  
for Differential Input Signals  
1.0  
0.8  
4
3
4
3
0.6  
2
2
0.4  
1
1
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–1  
–2  
–3  
–4  
0
8192  
12288  
0
8192  
12288  
4096  
16384  
4096  
16384  
0
8192  
12288  
4096  
16384  
OUTPUT CODE  
OUTPUT CODE  
OUTPUT CODE  
14031 G08  
14071 G09  
14071 G23  
Differential and Integral Linearity  
vs Conversion Rate  
SINAD vs Conversion Rate  
8
7
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
18 CLOCKS PER CONVERSION  
6
5
4
MAX INL  
3
2
MAX DNL  
MIN DNL  
1
0
–1  
–2  
–3  
–4  
EXTERNAL V  
EXTERNAL V  
INTERNAL V  
INTERNAL V  
= 3.3V f ~ f /3  
IN  
REF  
REF  
REF  
REF  
S
S
= 3.3V f ~ f /40  
IN  
MIN INL  
= 2.5V f ~ f /3  
IN S  
= 2.5V f ~ f /40  
IN  
S
2
2.25 2.5 2.75  
3
3.25 3.5 3.75  
4
2
2.25 2.5 2.75  
3
3.25 3.5 3.75  
4
CONVERSION RATE (Msps)  
CONVERSION RATE (Msps)  
14031 G10  
14031 G11  
14031f  
6
LTC1403-1/LTC1403A-1  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
TA = 25°C, VDD = 3V (LTC1403-1 and LTC1403A-1)  
2.5VP-P Power Bandwidth  
CMRR vs Frequency  
PSRR vs Frequency  
12  
6
–25  
0
–20  
–30  
–35  
–40  
–45  
–50  
–55  
–60  
–65  
–70  
0
–40  
–6  
–12  
–18  
–60  
–80  
–24  
–30  
–36  
–100  
–120  
1M  
10M  
100M  
1G  
100  
10k  
100k 1M  
10M 100M  
1
10  
100  
1k  
10k 100k  
1M  
1k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
14031 G12  
14031 G14  
14031 G13  
Reference Voltage vs Load  
Current  
VDD Supply Current vs  
Conversion Rate  
Reference Voltage vs VDD  
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
6.0  
5.5  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.4902  
2.4900  
2.4898  
2.4896  
2.4894  
2.4892  
2.4890  
0
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0  
LOAD CURRENT (mA)  
0
0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0  
CONVERSION RATE (Msps)  
2.6  
2.8  
3.0  
3.2  
(V)  
3.4  
3.6  
V
DD  
14031 G15  
14031 G17  
14031 G16  
14031f  
7
LTC1403-1/LTC1403A-1  
U
U
U
PI FU CTIO S  
+
+
AIN (Pin 1): Noninverting Analog Input. AIN operates  
analog ground plane with a 10µF ceramic capacitor (or  
10µF tantalum in parallel with 0.1µF ceramic). Keep in  
mindthatinternalanalogcurrentsanddigitaloutputsignal  
currents flow through this pin. Care should be taken to  
place the 0.1µF bypass capacitor as close to Pins 6 and 7  
as possible.  
fully differentially with respect to AIN with a –1.25V to  
1.25V differential swing with respect to AINand a 0V to  
VDD common mode swing.  
AIN (Pin 2): Inverting Analog Input. AIN operates fully  
differentially with respect to AIN+ with a 1.25V to –1.25V  
differential swing with respect to AIN and a 0V to VDD  
common mode swing.  
+
SDO (Pin 8): Three-State Serial Data Output. Each of  
output data words represents the difference between  
AIN+ and AINanalog inputs at the start of the previous  
conversion. The output format is 2’s complement.  
V
REF (Pin 3): 2.5V Internal Reference. Bypass to GND and  
to a solid analog ground plane with a 10µF ceramic  
capacitor (or 10µF tantalum in parallel with 0.1µF ce-  
ramic). Can be overdriven by an external reference be-  
tween 2.55V and VDD.  
SCK (Pin 9): External Clock Input. Advances the conver-  
sion process and sequences the output data on the rising  
edge. Responds to TTL (3V) and 3V CMOS levels. One  
or more pulses wake from sleep.  
GND (Pins 4, 5, 6, 11): Ground and Exposed Pad. These  
ground pins and the exposed pad must be tied directly to  
the solid ground plane under the part. Keep in mind that  
analog signal currents and digital output signal currents  
flow through these pins.  
CONV (Pin 10): Convert Start. Holds the analog input  
signal and starts the conversion on the rising edge.  
Responds to TTL (3V) and 3V CMOS levels. Two pulses  
with SCK in fixed high or fixed low state start Nap mode.  
Four or more pulses with SCK in fixed high or fixed low  
state start Sleep mode.  
VDD (Pin 7): 3V Positive Supply. This single power pin  
supplies3Vtotheentirechip.BypasstoGNDandtoasolid  
W
BLOCK DIAGRA  
10µF 3V  
7
V
DD  
LTC1403A-1  
+
THREE-  
STATE  
SERIAL  
OUTPUT  
PORT  
A
A
IN  
1
2
+
14-BIT ADC  
SDO  
S & H  
8
IN  
14  
V
REF  
3
4
10  
9
CONV  
SCK  
2.5V  
REFERENCE  
TIMING  
LOGIC  
10µF  
GND  
5
14031 BD  
6
11  
EXPOSED PAD  
14031f  
8
LTC1403-1/LTC1403A-1  
W U  
W
TI I G DIAGRA  
LTC1403 Timing Diagram  
t
2
t
7
t
3
t
1
17  
18  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
t
16  
17  
18  
1
14  
SCK  
t
4
5
CONV  
t
6
t
ACQ  
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
t
9
t
8
8
SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1  
Hi-Z  
Hi-Z  
SDO  
D0  
X*  
X*  
14031 TD01  
14-BIT DATA WORD  
CONV  
t
t
THROUGHPUT  
*BITS MARKED "X" AFTER D0 SHOULD BE IGNORED.  
LTC1403A Timing Diagram  
t
2
t
7
t
t
1
3
17  
18  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
15  
t
16  
17  
18  
1
14  
SCK  
t
4
5
CONV  
t
6
t
ACQ  
INTERNAL  
S/H STATUS  
SAMPLE  
HOLD  
SAMPLE  
HOLD  
t
t
t
8
8
9
SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3  
Hi-Z  
Hi-Z  
SDO  
D2  
D1  
D0  
14031 TD01b  
14-BIT DATA WORD  
CONV  
t
t
THROUGHPUT  
Nap Mode and Sleep Mode Waveforms  
SLK  
t
1
t
1
CONV  
NAP  
SLEEP  
t
12  
V
14031 TD02  
REF  
NOTE: NAP AND SLEEP ARE INTERNAL SIGNALS  
SCK to SDO Delay  
SCK  
SCK  
V
V
IH  
IH  
t
10  
8
t
t
9
V
V
90%  
10%  
OH  
OL  
SDO  
SDO  
14031 TD03  
14031f  
9
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
DRIVING THE ANALOG INPUT  
(More detailed information is available in the Linear Technol-  
ogy Databooks and our website at www.linear.com.)  
ThedifferentialanaloginputsoftheLTC1403-1/LTC1403A-1  
are easy to drive. The inputs may be driven differentially or as  
a single-ended input (i.e., the AINinput is set to VCM). Both  
differential analog inputs, AIN+ with AIN, are sampled at the  
same instant. Any unwanted signal that is common to both  
inputsofeachinputpairwillbereducedbythecommonmode  
rejectionofthesample-and-holdcircuit.Theinputsdrawonly  
one small current spike while charging the sample-and-hold  
capacitors at the end of conversion. During conversion, the  
analoginputsdrawonlyasmallleakagecurrent. Ifthesource  
impedance of the driving circuit is low, then the LTC1403-1/  
LTC1403A-1 inputs can be driven directly. As source imped-  
ance increases, so will acquisition time. For minimum acqui-  
sition time with high source impedance, a buffer amplifier  
must be used. The main requirement is that the amplifier  
driving the analog input(s) must settle after the small current  
spikebeforethenextconversionstarts(settlingtimemustbe  
39ns for full throughput rate). Also keep in mind while  
choosing an input amplifier, the amount of noise and har-  
monic distortion added by the amplifier.  
LTC®1566-1: Low Noise 2.3MHz Continuous Time Low-  
Pass Filter.  
LT1630:Dual30MHzRail-to-RailVoltageFBAmplifier.2.7V  
to ±15V supplies. Very high AVOL, 500µV offset and 520ns  
settling to 0.5LSB for a 4V swing. THD and noise are –93dB  
to40kHzandbelow1LSBto320kHz(AV=1,2VP-P into1k,  
VS = 5V), making the part excellent for AC applications (to  
1/3Nyquist)whererail-to-railperformanceisdesired.Quad  
version is available as LT1631.  
LT1632:Dual45MHzRail-to-RailVoltageFBAmplifier.2.7V  
to ±15V supplies. Very high AVOL, 1.5mV offset and 400ns  
settling to 0.5LSB for a 4V swing. It is suitable for applica-  
tions with a single 5V supply. THD and noise are  
–93dB to 40kHz and below 1LSB to 800kHz (AV = 1,  
2VP-P into 1k, VS = 5V), making the part excellent for AC  
applications where rail-to-rail performance is desired.Quad  
version is available as LT1633.  
LT1813: Dual 100MHz 750V/µs 3mA Voltage Feedback  
Amplifier. 5V to ±5V supplies. Distortion is –86dB to 100kHz  
and –77dB to 1MHz with ±5V supplies (2VP-P into 500).  
Excellent part for fast AC applications with ±5V supplies.  
CHOOSING AN INPUT AMPLIFIER  
Choosing an input amplifier is easy if a few requirements are  
taken into consideration. First, to limit the magnitude of the  
voltage spike seen by the amplifier from charging the sam-  
pling capacitor, choose an amplifier that has a low output  
impedance(<100)attheclosed-loopbandwidthfrequency.  
For example, if an amplifier is used with a gain of 1 and has  
aunity-gainbandwidthof50MHz,thentheoutputimpedance  
at 50MHz must be less than 100. The second requirement  
is that the closed-loop bandwidth must be greater than  
40MHz to ensure adequate small-signal settling for full  
throughput rate. If slower op amps are used, more time for  
settling can be provided by increasing the time between  
conversions. The best choice for an op amp to drive the  
LTC1403-1/LTC1403A-1willdependontheapplication.Gen-  
erally, applications fall into two categories: AC applications  
where dynamic specifications are most critical and time  
domainapplicationswhereDCaccuracyandsettlingtimeare  
most critical. The following list is a summary of the op amps  
that are suitable for driving the LTC1403-1/LTC1403A-1.  
LT1801: 80MHz GBWP, –75dBc at 500kHz, 2mA/Amplifier,  
8.5nV/Hz.  
LT1806/LT1807:325MHzGBWP,80dBcDistortionat5MHz,  
Unity-GainStable,R-RInandOut,10mA/Amplifier,3.5nV/Hz.  
LT1810: 180MHz GBWP, –90dBc Distortion at 5MHz,  
Unity-GainStable,R-RInandOut,15mA/Amplifier,16nV/Hz.  
LT1818/LT1819:400MHz,2500V/µs,9mA,Single/DualVolt-  
age Mode Operational Amplifier.  
LT6200: 165MHz GBWP, –85dBc Distortion at 1MHz, Unity-  
Gain Stable, R-R In and Out, 15mA/Amplifier,  
0.95nV/Hz.  
LT6203: 100MHz GBWP, –80dBc Distortion at 1MHz,  
Unity-Gain Stable, R-R In and Out, 3mA/Amplifier,  
1.9nV/Hz.  
LT6600-10: Amplifier/Filter Differential In/Out with 10MHz  
Cutoff.  
14031f  
10  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
The ±1.25V range is also ideally suited for AC-coupled  
signals in single supply applications. Figure 2 shows how  
to AC couple signals in a single supply system without  
needing a mid-supply 1.5V external reference. The DC  
common mode level is supplied by the previous stage that  
is already bounded by the single supply voltage of the  
system. The common mode range of the inputs extend  
from ground to the supply voltage VDD. If the difference  
INPUT FILTERING AND SOURCE IMPEDANCE  
The noise and the distortion of the input amplifier and  
other circuitry must be considered since they will add to  
the LTC1403-1/LTC1403A-1 noise and distortion. The  
small-signal bandwidth of the sample-and-hold circuit is  
50MHz. Any noise or distortion products that are present  
at the analog inputs will be summed over this entire  
bandwidth. Noisy input circuitry should be filtered prior to  
the analog inputs to minimize noise. A simple 1-pole RC  
filter is sufficient for many applications. For example,  
Figure 1 shows a 47pF capacitor from AIN+ to ground and  
a 51source resistor to limit the input bandwidth to  
47MHz. The 47pF capacitor also acts as a charge reservoir  
for the input sample-and-hold and isolates the ADC input  
from sampling-glitch sensitive circuitry. High quality ca-  
pacitors and resistors should be used since these compo-  
nentscanadddistortion.NPOandsilvermicatypedielectric  
capacitors have excellent linearity. Carbon surface mount  
resistors can generate distortion from self heating and  
from damage that may occur during soldering. Metal film  
surface mount resistors are much less susceptible to both  
problems. When high amplitude unwanted signals are  
close in frequency to the desired signal frequency, a  
multiple pole filter is required. High external source resis-  
tance, combined with the 13pF of input capacitance, will  
reduce the rated 50MHz bandwidth and increase acquisi-  
tion time beyond 39ns.  
+
between the AIN and AIN inputs exceeds 1.25V, the  
output code will stay fixed at zero and all ones and if this  
difference goes below –1.25V, the output code will stay  
fixed at one and all zeros.  
C2  
1µF  
LTC1403-1/  
R2  
LTC1403A-1  
1.6k  
1
2
3
R3  
+
A
A
V
IN  
51Ω  
V
IN  
IN  
R1  
1.6k  
REF  
+
C3  
56pF  
C1  
1µF  
C4  
10µF  
14031 F02  
C1, C2: FILM TYPE  
C3: COG TYPE  
C4: CERAMIC BYPASS  
Figure 2. AC Coupling of AC Signals with 1kHz Low Cut  
INTERNAL REFERENCE  
The LTC1403-1/LTC1403A-1 has an on-chip, temperature  
compensated, bandgap reference that is factory trimmed  
near 2.5V to obtain ±1.25V input span. The reference  
amplifier output VREF, (Pin 3) must be bypassed with a  
capacitor to ground. The reference amplifier is stable with  
capacitors of 1µF or greater. For the best noise perfor-  
mance, a 10µF ceramic or a 10µF tantalum in parallel with  
a 0.1µF ceramic is recommended. The VREF pin can be  
overdriven with an external reference as shown in Fig-  
ure 3. Thevoltageoftheexternalreferencemustbehigher  
than the 2.5V of the class A pull-up output of the internal  
51  
1
2
+
A
A
V
IN  
47pF  
V
CM  
IN  
1.5V DC  
LTC1403-1/  
LTC1403A-1  
3
REF  
10µF  
11  
GND  
1403A F01  
Figure 1. RC Input Filter  
3
INPUT RANGE  
3V  
V
REF  
REF  
LTC1403-1/  
LTC1403A-1  
The analog inputs of the LTC1403-1/LTC1403A-1 may be  
driven fully differentially with a single supply. Each input  
may swing up to 3VP-P individually. In the conversion  
range, each input is always up to 1.25V more positive or  
more negative than the inverting input of each channel.  
10µF  
11  
GND  
14031 F03  
Figure 3  
14031f  
11  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
reference. The recommended range for an external refer-  
ence is 2.55V to VDD. An external reference at 2.55V will  
see a DC quiescent load of 0.75mA and as much as 3mA  
during conversion.  
Figure 5 shows the ideal input/output characteristics for  
the LTC1403-1/LTC1403A-1. The code transitions occur  
midway between successive integer LSB values (i.e.,  
0.5LSB, 1.5LSB, 2.5LSB, FS – 1.5LSB). The output code  
is natural binary with 1LSB = 2.5V/16384 = 153µV for the  
LTC1403A-1, and 1LSB = 2.5V/4096 = 610µV for the  
LTC1403-1. The LTC1403A-1 has 1LSB RMS of random  
white noise. Figure 6a shows the LTC1819 converting a  
single ended input signal to differential input signals for  
optimumTHDandSFDRperformanceasshownintheFFT  
plot (Figure 6b).  
INPUT SPAN VERSUS REFERENCE VOLTAGE  
The differential input range has a unipolar voltage span  
that equals the difference between the voltage at the  
referencebufferoutputVREF atPin3, andthevoltageatthe  
ground (Exposed Pad Ground). The differential input  
range of the ADC is ±1.25V when using the internal  
reference. The internal ADC is referenced to these two  
nodes. This relationship also holds true with an external  
reference.  
LTC1403-1/LTC1403A-1 Transfer  
Characteristic  
011...111  
011...110  
011...101  
DIFFERENTIAL INPUTS  
The LTC1403-1/LTC1403A-1 have a unique differential  
sample-and-hold circuit that allows inputs from ground to  
VDD. The ADC will always convert the bipolar difference of  
AIN+ – AIN, independent of the common mode voltage at  
the inputs. The common mode rejection holds up at  
extremelyhighfrequencies,seeFigure4.Theonlyrequire-  
ment is that both inputs not go below ground or exceed  
VDD. Integral nonlinearity errors (INL) and differential  
nonlinearity errors (DNL) are largely independent of the  
common mode voltage. However, the offset error will  
vary. The change in offset error is typically less than 0.1%  
of the common mode voltage.  
100...010  
100...001  
100...000  
–FS  
FS – 1LSB  
INPUT VOLTAGE (V)  
14031 F05  
Figure 5  
5V  
C5  
0.1µF  
CMRR vs Frequency  
0
C3  
1µF  
R1  
51Ω  
–20  
–40  
U1  
1
+
A
IN  
1/2 LT1819  
V
P-P  
MAX  
C1  
IN  
+
1.25V  
47pF TO  
1000pF  
C6  
0.1µF  
R5  
1k  
–60  
R4  
499Ω  
R3  
1.5V  
CM  
LTC1403A-1  
–5V  
499Ω  
–80  
R6  
1k  
C4  
1µF  
–100  
R2  
51Ω  
U2  
A
IN  
1/2 LT1819  
–120  
C2  
47pF TO  
1000pF  
+
1403A F06a  
100  
10k  
100k 1M  
10M 100M  
1k  
FREQUENCY (Hz)  
14031 F04  
Figure 6a. The LT1819 Driving the LTC1403A-1 Differentially  
Figure 4  
14031f  
12  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
0
185k  
371k  
556k  
741k  
FREQUENCY (Hz)  
14031 F06b  
Figure 6b. LTC1403-1 6MHz Sine Wave 4096 Point FFT Plot  
with the LT1819 Driving the Inputs Differentially  
Board Layout and Bypassing  
Wire wrap boards are not recommended for high resolu-  
tion and/or high speed A/D converters. To obtain the best  
performance from the LTC1403-1/LTC1403A-1, a printed  
circuit board with ground plane is required. Layout for the  
printed circuit board should ensure that digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital track  
alongside an analog signal track. If optimum phase match  
between the inputs is desired, the length of the two input  
wires should be kept matched.  
14031 F07  
Figure 7. Recommended Layout  
Digital circuitry grounds must be connected to the digital  
supply common. In applications where the ADC data  
outputs and control signals are connected to a continu-  
ously active microprocessor bus, it is possible to get  
errors in the conversion results. These errors are due to  
feedthrough from the microprocessor to the successive  
approximation comparator. The problem can be elimi-  
nated by forcing the microprocessor into a Wait state  
during conversion or by using three-state buffers to iso-  
late the ADC data bus.  
High quality tantalum and ceramic bypass capacitors  
should be used at the VDD and VREF pins as shown in the  
Block Diagram on the first page of this data sheet. For  
optimumperformance, a10µFsurfacemountAVXcapaci-  
tor with a 0.1µF ceramic is recommended for the VDD and  
VREF pins. Alternatively, 10µF ceramic chip capacitors  
such as Murata GRM219R60J106M may be used. The  
capacitorsmustbelocatedasclosetothepinsaspossible.  
The traces connecting the pins and the bypass capacitors  
must be kept short and should be made as wide as  
possible.  
POWER-DOWN MODES  
Upon power-up, the LTC1403-1/LTC1403A-1 is initialized  
totheactivestateandisreadyforconversion. TheNapand  
Sleep mode waveforms show the power-down modes for  
the LTC1403-1/LTC1403A-1. The SCK and CONV inputs  
control the power-down modes (see Timing Diagrams).  
Two rising edges at CONV, without any intervening rising  
Figure7showstherecommendedsystemgroundconnec-  
tions. All analog circuitry grounds should be terminated at  
the LTC1403-1/LTC1403A-1 GND (Pins 4, 5, 6 and ex-  
posed pad). The ground return from the LTC1403-1/  
LTC1403A-1 (Pins 4, 5, 6 and exposed pad) to the power  
supply should be low impedance for noise free operation.  
edges at SCK, put the LTC1403-1/LTC1403A-1 in Nap  
14031f  
13  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
modeandthepowerdraindropsfrom14mWto6mW. The  
internal reference remains powered in Nap mode. One or  
more rising edges at SCK wake up the LTC1403-1/  
LTC1403A-1 for service very quickly, and CONV can start  
an accurate conversion within a clock cycle. Four rising  
edges at CONV, without any intervening rising edges at  
SCK, put the LTC1403-1/LTC1403A-1 in Sleep mode and  
the power drain drops from 16mW to 10µW. One or more  
rising edges at SCK wake up the LTC1403-1/LTC1403A-1  
for operation. The internal reference (VREF ) takes 2ms to  
slew and settle with a 10µF load. Note that, using sleep  
mode more frequently than every 2ms, compromises the  
settled accuracy of the internal reference. Note that, for  
slower conversion rates, the Nap and Sleep modes can be  
used for substantial reductions in power consumption.  
theframesyncinputoftheprocessorserialport. Itisgood  
practice to drive the LTC1403-1/LTC1403A-1 CONV input  
first to avoid digital noise interference during the sample-  
to-holdtransitiontriggeredbyCONVatthestartofconver-  
sion. It is also good practice to keep the width of the low  
portion of the CONV signal greater than 15ns to avoid  
introducing glitches in the front end of the ADC just before  
the sample-and-hold goes into hold mode at the rising  
edge of CONV.  
Minimizing Jitter on the CONV Input  
Inhighspeedapplicationswherehighamplitudesinewaves  
above 100kHz are sampled, the CONV signal must have as  
little jitter as possible (10ps or less). The square wave  
output of a common crystal clock module usually meets  
this requirement easily. The challenge is to generate a  
CONV signal from this crystal clock without jitter corrup-  
tion from other digital circuits in the system. A clock  
divider and any gates in the signal path from the crystal  
clock to the CONV input should not share the same  
integratedcircuitwithotherpartsofthesystem. Asshown  
intheinterfacecircuitexamples, theSCKandCONVinputs  
should be driven first, with digital buffers used to drive the  
serial port interface. Also note that the master clock in the  
DSP may already be corrupted with jitter, even if it comes  
directly from the DSP crystal. Another problem with high  
speed processor clocks is that they often use a low cost,  
low speed crystal (i.e., 10MHz) to generate a fast, but  
jittery, phase-locked-loop system clock (i.e., 40MHz). The  
jitter in these PLL-generated high speed clocks can be  
several nanoseconds. Note that if you choose to use the  
frame sync signal generated by the DSP port, this signal  
will have the same jitter of the DSP’s master clock.  
DIGITAL INTERFACE  
The LTC1403-1/LTC1403A-1 has a 3-wire SPI (Serial  
Protocol Interface) interface. The SCK and CONV inputs  
and SDO output implement this interface. The SCK and  
CONV inputs accept swings from 3V logic and are TTL  
compatible, if the logic swing does not exceed VDD. A  
detaileddescriptionofthethreeserialportsignalsfollows:  
Conversion Start Input (CONV)  
The rising edge of CONV starts a conversion, but subse-  
quent rising edges at CONV are ignored by theLTC1403-1/  
LTC1403A-1 until the following 16 SCK rising edges have  
occurred. It is necessary to have a minimum of 16 rising  
edges of the clock input SCK between rising edges of  
CONV. But to obtain maximum conversion speed, it is  
necessary to allow two more clock periods between con-  
versions to allow 39ns of acquisition time for the internal  
ADC sample-and-hold circuit. With 16 clock periods per  
conversion, the maximum conversion rate is limited to  
2.8Msps to allow 39ns for acquisition time. In either case,  
the output data stream comes out within the first 16 clock  
periods to ensure compatibility with processor serial  
ports. The duty cycle of CONV can be arbitrarily chosen to  
be used as a frame sync signal for the processor serial  
port. A simple approach to generate CONV is to create a  
pulse that is one SCK wide to drive the LTC1403-1/  
LTC1403A-1 and then buffer this signal with the appropri-  
ate number of inverters to ensure the correct delay driving  
Serial Clock Input (SCK)  
The rising edge of SCK advances the conversion process  
and also udpates each bit in the SDO data stream. After  
CONVrises,thethirdrisingedgeofSCKstartsclockingout  
the 12/14 data bits with the MSB sent first. A simple  
approach is to generate SCK to drive the LTC1403-1/  
LTC1403A-1 first and then buffer this signal with the  
appropriate number of inverters to drive the serial clock  
input of the processor serial port. Use the falling edge of  
the clock to latch data from the Serial Data Output (SDO)  
14031f  
14  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
into your processor serial port. The 14-bit Serial Data will  
bereceivedrightjustified, ina16-bitwordwith16ormore  
clocks per frame sync. It is good practice to drive the  
LTC1403-1/LTC1403A-1 SCK input first to avoid digital  
noise interference during the internal bit comparison  
decision by the internal high speed comparator. Unlike the  
CONVinput, theSCKinputisnotsensitivetojitterbecause  
the input signal is already sampled and held constant.  
HARDWARE INTERFACE TO TMS320C54x  
The LTC1403-1/LTC1403A-1 is a serial output ADC whose  
interface has been designed for high speed buffered serial  
ports in fast digital signal processors (DSPs). Figure 8  
shows an example of this interface using a TMS320C54X.  
The buffered serial port in the TMS320C54x has direct  
accesstoa2kBsegmentofmemory. TheADC’sserialdata  
can be collected in two alternating 1kB segments, in real  
time,atthefull2.8MspsconversionrateoftheLTC1403-1/  
LTC1403A-1. The DSP assembly code sets frame sync  
mode at the BFSR pin to accept an external positive going  
pulse and the serial clock at the BCLKR pin to accept an  
external positive edge clock. Buffers near the LTC1403-1/  
LTC1403A-1 may be added to drive long tracks to the DSP  
to prevent corruption of the signal to LTC1403-1/  
LTC1403A-1. This configuration is adequate to traverse a  
typical system board, but source resistors at the buffer  
outputs and termination resistors at the DSP, may be  
neededtomatchthecharacteristicimpedanceofverylong  
transmission lines. If you need to terminate the SDO  
transmission line, buffer it first with one or two 74ACTxx  
gates. The TTL threshold inputs of the DSP port respond  
properly to the 3V swing from the SDO pin.  
Serial Data Output (SDO)  
Upon power-up, the SDO output is automatically reset to  
the high impedance state. The SDO output remains in high  
impedance until a new conversion is started. SDO sends  
out 12/14 bits in 2’s complement format in the output data  
stream beginning at the third rising edge of SCK after the  
rising edge of CONV. SDO is always in high impedance  
mode when it is not sending out data bits. Please note the  
delayspecificationfromSCKtoavalidSDO.SDOisalways  
guaranteed to be valid by the next rising edge of SCK. The  
16-bit output data stream is compatible with the 16-bit or  
32-bit serial port of most processors.  
3V  
7
5V  
V
V
CC  
DD  
10  
9
CONV  
LTC1403-1/  
LTC1403A-1  
SCK  
BFSR  
BCLKR  
BDR  
B13 B12  
8
6
SDO  
GND  
TMS320C54x  
CONV  
CLK  
3-WIRE SERIAL  
INTERFACELINK  
14031 F08  
0V TO 3V LOGIC SWING  
Figure 8. DSP Serial Interface to TMS320C54x  
14031f  
15  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
; 10-23-03 ******************************************************************  
; Files: 014SI.ASM -> 1403 bipolar Sine wave collection with Serial Port interface  
;
;
bvectors.asm  
s2k14ini.asm  
buffered mode.  
2k buffer size.  
; first element at 1024, last element at 1023, two middles at 2047 and 0000  
; bipolar mode  
; Works 16 or 64 clock frames.  
; negative edge BCLKR  
; negative BFSR pulse  
; -0 data shifted  
; 1' cable from counter to CONV at DUT  
; 2' cable from counter to CLK at DUT  
; ***************************************************************************  
.width  
160  
.length 110  
.title “sineb0 BSP in auto buffer mode”  
.mmregs  
.setsect “.text”,  
0x500,0  
;Set address of executable  
.setsect “vectors”, 0x180,0  
.setsect “buffer”, 0x800,0  
.setsect “result”, 0x1800,0  
.text  
;Set address of incoming 1403 data  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
;.text marks start of code  
start:  
;this label seems necessary  
;Make sure /PWRDWN is low at J1-9  
;to turn off AC01 adc  
tim=#0fh  
prd=#0fh  
tcr = #10h  
tspc = #0h  
pmst = #01a0h  
sp = #0700h  
dp = #0  
; stop timer  
; stop TDM serial port to AC01  
; set up iptr. Processor Mode STatus register  
; init stack pointer.  
; data page  
ar2 = #1800h  
ar3 = #0800h  
ar4 = #0h  
; pointer to computed receive buffer.  
; pointer to Buffered Serial Port receive buffer  
; reset record counter  
call sineinit  
; Double clutch the initialization to insure a proper  
sinepeek:  
call sineinit  
; reset. The external frame sync must occur 2.5 clocks  
; or more after the port comes out of reset.  
wait  
goto  
wait  
;
————————Buffered Receive Interrupt Routine —————————  
breceive:  
ifr = #10h  
TC = bitf(@BSPCE,#4000h) ; check which half (bspce(bit14)) of buffer  
if (NTC) goto bufull ; if this still the first half get next half  
; clear interrupt flags  
bspce = #(2023h + 08000h); turn on halt for second half (bspce(bit15))  
return_enable  
———————mask and shift input data ——————————————  
;
bufull:  
b = *ar3+ << -0  
b = #03FFFh & b  
b = b ^ #2000h  
; load acc b with BSP buffer and shift right -0  
; mask out the TRISTATE bits with #03FFFh  
; invert the MSB for bipolar operation  
B
*ar2+ = data(#0bh)  
; store B to out buffer and advance AR2 pointer  
TC = (@ar2 == #02000h) ; output buffer is 2k starting at 1800h  
if (TC) goto start  
goto bufull  
; restart if out buffer is at 1fffh  
14031f  
16  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
;
—————————dummy bsend return————————————  
return_enable ;this is also a dummy return to define bsend  
;in vector table file BVECTORS.ASM  
bsend  
;
——————————— end ISR ——————————————  
.copy “c:\dskplus\1403\s2k14ini.asm”  
;initialize buffered serial port  
.space 16*32  
;clear a chunk at the end to mark the end  
;======================================================================  
;
;
;
VECTORS  
;======================================================================  
.sect “vectors” ;The vectors start here  
.copy “c:\dskplus\1403\bvectors.asm” ;get BSP vectors  
.sect “buffer”  
.space 16*0x800  
.sect “result”  
.space 16*0x800  
;Set address of BSP buffer for clearing  
;Set address of result for clearing  
.end  
; ***************************************************************************  
; File: BVECTORS.ASM -> Vector Table for the ‘C54x DSKplus 10.Jul.96  
;
;
BSP vectors and Debugger vectors  
TDM vectors just return  
; ***************************************************************************  
; The vectors in this table can be configured for processing external and  
; internal software interrupts. The DSKplus debugger uses four interrupt  
; vectors. These are RESET, TRAP2, INT2, and HPIINT.  
;
;
*
DO NOT MODIFY THESE FOUR VECTORS IF YOU PLAN TO USE THE DEBUGGER  
*
; All other vector locations are free to use. When programming always be sure  
; the HPIINT bit is unmasked (IMR=200h) to allow the communications kernel and  
; host PC interact. INT2 should normally be masked (IMR(bit 2) = 0) so that the  
; DSP will not interrupt itself during a HINT. HINT is tied to INT2 externally.  
;
;
;
.title “Vector Table”  
.mmregs  
reset  
nmi  
goto #80h  
nop  
nop  
return_enable  
nop  
;00; RESET * DO NOT MODIFY IF USING DEBUGGER *  
;04; non-maskable external interrupt  
nop  
nop  
goto #88h  
nop  
nop  
.space 52*16  
return_enable  
nop  
nop  
trap2  
int0  
int1  
;08; trap2 * DO NOT MODIFY IF USING DEBUGGER *  
;0C-3F: vectors for software interrupts 18-30  
;40; external interrupt int0  
nop  
return_enable  
;44; external interrupt int1  
nop  
nop  
nop  
14031f  
17  
LTC1403-1/LTC1403A-1  
W U U  
U
APPLICATIO S I FOR ATIO  
int2  
return_enable  
nop  
nop  
nop  
return_enable  
nop  
nop  
nop  
goto breceive  
nop  
nop  
nop  
goto bsend  
nop  
nop  
nop  
;48; external interrupt int2  
;4C; internal timer interrupt  
;50; BSP receive interrupt  
;54; BSP transmit interrupt  
;58; TDM receive interrupt  
tint  
brint  
bxint  
trint  
return_enable  
nop  
nop  
nop  
txint  
int3  
return_enable  
nop  
nop  
;5C; TDM transmit interrupt  
;60; external interrupt int3  
return_enable  
nop  
nop  
nop  
dgoto #0e4h  
nop  
hpiint  
;64; HPIint * DO NOT MODIFY IF USING DEBUGGER *  
;68-7F; reserved area  
nop  
.space 24*16  
**********************************************************************  
(C) COPYRIGHT TEXAS INSTRUMENTS, INC. 1996  
**********************************************************************  
*
*
*
*
*
*
*
*
* File: s2k14ini.ASM BSP initialization code for the ‘C54x DSKplus  
*
*
*
for use with 1403 in buffered mode  
BSPC and SPC are the same in the ‘C542  
BSPCE and SPCE seem the same in the ‘C542  
**********************************************************************  
.title “Buffered Serial Port Initialization Routine”  
ON  
OFF  
YES  
.set 1  
.set !ON  
.set 1  
NO  
.set !YES  
.set 2  
.set 1  
.set 3  
.set 0  
BIT_8  
BIT_10  
BIT_12  
BIT_16  
GO  
.set 0x80  
**********************************************************************  
* This is an example of how to initialize the Buffered Serial Port (BSP).  
* The BSP is initialized to require an external CLK and FSX for  
* operation. The data format is 16-bits, burst mode, with autobuffering  
* enabled.  
*
14031f  
18  
LTC1403-1/LTC1403A-1  
U
W U U  
APPLICATIO S I FOR ATIO  
*****************************************************************************************************  
*LTC1403 timing from board with 10MHz crystal.  
*
*10MHz, divided from 40MHz, forced to CLKIN by 1403 board.  
*Horizontal scale is 25ns/chr or 100ns period at BCLKR  
*Timing measured at DSP pins. Jxx pin labels for jumper cable.  
*
*
*
*BFSR Pin J1-20 ~~\____/~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\____/~~~~~~~~~~~*  
*BCLKR Pin J1-14 _/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~\_/~*  
*BDR  
Pin J1-26 _—_—_—<B13-B12-B11-B10-B09-B08-B07-B06-B05-B04-B03-B02-B01-B00>—_—<B13-B12*  
*CLKIN Pin J5-09 ~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~~~\_______/~~~~~*  
*C542 read  
*
0
B13 B12 B11 B10 B09 B08 B07 B06 B05 B04 B03 B02 B01 B00  
0
0
B13 B12*  
*
* negative edge BCLKR  
* negative BFSR pulse  
* no data shifted  
* 1' cable from counter to CONV at DUT  
* 2' cable from counter to CLK at DUT  
*No right shift is needed to right justify the input data in the main program  
*the two msbs should also be masked  
*
*
*****************************************************************************************************  
*
Loopback  
Format  
IntSync  
IntCLK  
BurstMode  
CLKDIV  
PCM_Mode  
FS_polarity  
CLK_polarity  
Frame_ignore  
XMTautobuf  
RCVautobuf  
XMThalt  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
.set  
NO  
BIT_16  
NO  
NO  
YES  
3
NO  
YES  
NO  
!YES  
NO  
YES  
NO  
;(digital looback mode?)  
;(Data format? 16,12,10,8)  
;(internal Frame syncs generated?) TXM bit  
;(internal clks generated?) MCM bit  
;(if BurstMode=NO, then Continuous) FSM bit  
;(3=default value, 1/4 CLOCKOUT)  
;(Turn on PCM mode?)  
;(change polarity)YES=^^^\_/^^^, NO=___/^\___  
;(change polarity)for BCLKR YES=_/^, NO=~\_  
;(inverted !YES -ignores frame)  
;(transmit autobuffering)  
DLB bit  
FO bit  
;(receive autobuffering)  
;(transmit buff halt if XMT buff is full)  
;(receive buff halt if RCV buff is full)  
;(address of transmit buffer)  
;(length of transmit buffer)  
;(address of receive buffer)  
RCVhalt  
NO  
XMTbufAddr  
XMTbufSize  
RCVbufAddr  
RCVbufSize  
*
0x800  
0x000  
0x800  
0x800  
;(length of receive buffer)works up to 800  
* See notes in the ‘C54x CPU and Peripherals Reference Guide on setting up  
* valid buffer start and length values. Page 9-44  
*
*
**********************************************************************  
.eval ((Loopback >> 1)|((Format & 2)<<1)|(BurstMode <<3)|(IntCLK <<4)|(IntSync <<5)) ,SPCval  
.eval ((CLKDIV)|(FS_polarity <<5)|(CLK_polarity<<6)|((Format &  
1)<<7)|(Frame_ignore<<8)|(PCM_Mode<<9)), SPCEval  
.eval (SPCEval|(XMTautobuf<<10)|(XMThalt<<12)|(RCVautobuf<<13)|(RCVhalt<<15)), SPCEval  
sineinit:  
bspc = #SPCval  
ifr = #10h  
; places buffered serial port in reset  
; clear interrupt flags  
imr = #210h  
intm = 0  
; Enable HPINT,enable BRINT0  
; all unmasked interrupts are enabled.  
; programs BSPCE and ABU  
; initializes transmit buffer start address  
; initializes transmit buffer size  
; initializes receive buffer start address  
; initializes receive buffer size  
; bring buffered serial port out of reset  
;for transmit and receive because GO=0xC0  
bspce = #SPCEval  
axr = #XMTbufAddr  
bkx = #XMTbufSize  
arr = #RCVbufAddr  
bkr = #RCVbufSize  
bspc = #(SPCval | GO)  
return  
14031f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC1403-1/LTC1403A-1  
U
PACKAGE DESCRIPTIO  
MSE Package  
10-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1663)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.497 ± 0.076  
(.0196 ± .003)  
2.06 ± 0.102  
(.081 ± .004)  
1
10 9  
8
7 6  
REF  
1.83 ± 0.102  
(.072 ± .004)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
4.90 ± 0.152  
(.193 ± .006)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
1
2
3
4
5
10  
GAUGE PLANE  
0.53 ± 0.152  
(.021 ± .006)  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
2.794 ± 0.102  
(.110 ± .004)  
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0.18  
(.007)  
SEATING  
PLANE  
5.23  
(.206)  
MIN  
2.083 ± 0.102 3.20 – 3.45  
(.082 ± .004) (.126 – .136)  
0.17 – 0.27  
(.007 – .011)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
MSOP (MSE) 0603  
0.50  
(.0197)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
0.50  
(.0197)  
BSC  
0.305 ± 0.038  
(.0120 ± .0015)  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
ADCs  
LTC1608  
16-Bit, 500ksps Parallel ADC  
16-Bit, 333ksps Parallel ADC  
16-Bit, 250ksps Serial ADC  
14-Bit, 2.5Msps Parallel ADC  
14-Bit, 2.2Msps Parallel ADC  
12-/14-Bit, 2.8Msps Serial ADC  
±5V Supply, ±2.5V Span, 90dB SINAD  
±5V Supply, ±2.5V Span, 90dB SINAD  
5V, Configurable Bipolar/Unipolar Inputs  
5V, Selectable Spans, 80dB SINAD  
LTC1604  
LTC1609  
LTC1411  
LTC1414  
±5V Supply, ±2.5V Span, 78dB SINAD  
3V, 15mW Unipolar Inputs, MSOP Package  
LTC1403/LTC1403A  
LTC1407/LTC1407A  
LTC1407-1/LTC1407A-1  
LTC1420  
12-/14-Bit, 3Msps Simultaneous Sampling ADC 3V, 2-Channel Differential, Unipolar Inputs, 14mW, MSOP Package  
12-/14-Bit, 3Msps Simultaneous Sampling ADC 3V, 2-Channel Differential, Bipolar Inputs, 14mW, MSOP Package  
12-Bit, 10Msps Parallel ADC  
12-Bit, 5Msps Parallel ADC  
12-Bit, 3Msps Parallel ADC  
12-Bit, 2.2Msps Serial ADC  
16-Bit, 250ksps Serial ADC  
5V, Selectable Spans, 72dB SINAD  
LTC1405  
5V, Selectable Spans, 115mW  
LTC1412  
±5V Supply, ±2.5V Span, 72dB SINAD  
5V or ±5V Supply, 4.096V or ±2.5V Span  
5V Supply, 1 and 2 Channel, 4.3mW, MSOP Package  
LTC1402  
LTC1864/LTC1865  
DACs  
LTC1666/LTC1667/LTC1668 12-/14-/16-Bit, 50Msps DACs  
87dB SFDR, 20ns Settling Time  
LTC1592  
16-Bit, Serial SoftSpanTM  
I
DAC  
±1LSB INL/DNL, Software Selectable Spans  
OUT  
References  
LT1790-2.5  
LT1461-2.5  
LT1460-2.5  
Micropower Series Reference in SOT-23  
Precision Voltage Reference  
0.05% Initial Accuracy, 10ppm Drift  
0.04% Initial Accuracy, 3ppm Drift  
0.1% Initial Accuracy, 10ppm Drift  
Micropower Series Voltage Reference  
SoftSpan is a trademark of Linear Technology Corporation.  
14031f  
LT/TP 0404 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1403_15

Serial 12-Bit/14-Bit, 2.8Msps Sampling ADCs with Shutdown
Linear

LTC1404

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404C

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404CS8

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404CS8#PBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1404CS8#TR

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1404CS8#TRPBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1404I

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404IS8

Complete SO-8, 12-Bit, 600ksps ADC with Shutdown
Linear

LTC1404IS8#PBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1404IS8#TR

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1404IS8#TRPBF

LTC1404 - Complete SO-8, 12-Bit, 600ksps ADC with Shutdown; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear