LTC1605IG#TRPBF [Linear]

LTC1605 - 16-Bit, 100ksps, Sampling ADC; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC1605IG#TRPBF
型号: LTC1605IG#TRPBF
厂家: Linear    Linear
描述:

LTC1605 - 16-Bit, 100ksps, Sampling ADC; Package: SSOP; Pins: 28; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总18页 (文件大小:382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1605  
16-Bit, 100ksps,  
Sampling ADC  
FEATURES  
DESCRIPTION  
TheLTC®1605isa100ksps,sampling16-bitA/Dconverter  
that draws only 55mW (typical) from a single 5V supply.  
This easy-to-use device includes sample-and-hold, preci-  
sionreference,switchedcapacitorsuccessiveapproxima-  
tion A/D and trimmed internal clock.  
n
Single 5V Supply  
n
Bipolar Input Range: 10V  
n
Power Dissipation: 55mW Typ  
n
Guaranteed No Missing Codes  
n
Sample Rate: 100ksps  
n
Integral Nonlinearity: ±±.0LSB Max  
The LTC1605’s input range is an industry standard ±10V.  
Maximum DC specs include ±±.0LSB INL and 16-bits no  
missingcodesovertemperature.Anexternalreferencecan  
be used if greater accuracy over temperature is needed.  
n
Signal-to-Noise Ratio: 86dB Typ  
n
Operates with Internal or External Reference  
n
Internal Synchronized Clock  
n
Improved ±nd Source to ADS7805 and AD976  
n
The ADC has a microprocessor compatible, 16-bit or two-  
byte parallel output port. A convert start input and a data  
ready signal (BUSY) ease connections to FIFOs, DSPs and  
microprocessors.  
±8-Lead SSOP and SW Packages  
APPLICATIONS  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Industrial Process Control  
Technology Corporation. All other trademarks are the property of their respective owners.  
n
Multiplexed Data Acquisition Systems  
n
High Speed Data Acquisition for PCs  
Digital Signal Processing  
n
TYPICAL APPLICATION  
Typical INL Curve  
Low Power, 100kHz, 16-Bit Sampling ADC on 5V Supply  
5V  
2.0  
10μF  
0.1μF  
1.5  
1.0  
28  
27  
V
V
DIG ANA  
6 TO 13  
15 TO 22  
0.5  
16-BIT  
200Ω  
33.2k  
20k  
V
IN  
1
10V  
INPUT  
16-BIT  
OR 2 BYTE  
PARALLEL  
BUS  
0
D15 TO D0  
SAMPLING ADC  
–0.5  
–1.0  
–1.5  
–2.0  
4k  
10k  
CAP  
REF  
4
3
26  
25  
BUSY  
CS  
2.2μF  
2.2μF  
BUFFER  
4k  
DIGITAL  
CONTROL  
SIGNALS  
CONTROL  
LOGIC AND  
TIMING  
32768  
CODE  
0
16384  
49152  
65535  
R/C 24  
REFERENCE  
1605 • TA02  
BYTE  
23  
AGND1 AGND2  
DGND  
14  
1605 • TA01  
2
5
1605fd  
1
For more information www.linear.com/LTC1605  
LTC1605  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
TOP VIEW  
V
V
V
..........................................................................7V  
ANA  
DIG  
DIG  
V
1
2
3
4
5
6
7
8
9
28  
27  
V
V
IN  
DIG  
to V  
............................................................0.3V  
ANA  
AGND1  
REF  
ANA  
...........................................................................7V  
26 BUSY  
25 CS  
24 R/C  
23 BYTE  
22 D0  
21 D1  
20 D2  
19 D3  
18 D4  
17 D5  
16 D6  
15 D7  
Ground Voltage Difference  
DGND, AGND1 and AGND±................................±0.3V  
Analog Inputs (Note 3)  
CAP  
AGND2  
D15 (MSB)  
D14  
V
.....................................................................±±5V  
IN  
CAP............................. V  
+ 0.3V to AGND± – 0.3V  
ANA  
D13  
REF ....................................Indefinite Short to AGND±  
D12  
.......................................... Momentary Short to V  
D11 10  
D10 11  
D9 12  
ANA  
Digital Input Voltage (Note 4)..........DGND – 0.3V to 10V  
Digital Output Voltage........ V  
– 0.3V to V + 0.3V  
DGND  
DIG  
D8 13  
Power Dissipation.............................................. 500mW  
DGND 14  
Operating Ambient Temperature Range  
LTC1605C ................................................ 0°C to 70°C  
LTC1605I .............................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)...................300°C  
OBSOLETE PACKAGE  
N PACKAGE  
G PACKAGE  
28-LEAD PLASTIC SSOP  
SW PACKAGE  
28-LEAD PLASTIC SO WIDE  
28-LEAD PDIP  
T
T
T
= 125°C, θ = 95°C/W (G)  
JA  
JMAX  
JMAX  
JMAX  
= 125°C, θ = 130°C/W (N)  
JA  
= 125°C, θ = 130°C/W (SW)  
JA  
EXPOSED PAD (PIN #) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC1605ACG#PBF  
LTC1605AIG#PBF  
LTC1605CG#PBF  
LTC1605IG#PBF  
TAPE AND REEL  
PART MARKING  
1605ACG  
1605AIG  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC1605ACG#TRPBF  
LTC1605AIG#TRPBF  
LTC1605CG#TRPBF  
LTC1605IG#TRPBF  
LTC1605ACSW#TRPBF  
LTC1605AISW#TRPBF  
LTC1605CSW#TRPBF  
LTC1605ISW#TRPBF  
±8-Lead Plastic SSOP  
±8-Lead Plastic SSOP  
±8-Lead Plastic SSOP  
±8-Lead Plastic SSOP  
±8-Lead Plastic SO Wide  
±8-Lead Plastic SO Wide  
±8-Lead Plastic SO Wide  
±8-Lead Plastic SO Wide  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
1605CG  
1605IG  
–40°C to 85°C  
0°C to 70°C  
LTC1605ACSW#PBF  
LTC1605AISW#PBF  
LTC1605CSW#PBF  
LTC1605ISW#PBF  
1605ACSW  
1605AISW  
1605CSW  
1605ISW  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
OBSOLETE PACKAGE  
LTC1605CN#PBF  
LTC1605IN#PBF  
LTC1605CN#TRPBF  
LTC1605IN#TRPBF  
1605CN  
1605IN  
±8-Lead PDIP  
±8-Lead PDIP  
0°C to 70°C  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
1605fd  
2
For more information www.linear.com/LTC1605  
LTC1605  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Notes 5, 6)  
LTC1605  
TYP  
LTC1605A  
TYP  
PARAMETER  
CONDITIONS  
MIN  
16  
MAX  
MIN  
16  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
Transition Noise  
15  
16  
Bits  
1.0  
1.0  
LSB  
l
l
Integral Linearity Error  
Bipolar Zero Error  
(Note 7)  
±3  
±±  
LSB  
mV  
Ext. Reference = ±.5V (Note 8)  
±10  
±10  
Bipolar Zero Error Drift  
Full-Scale Error Drift  
Full-Scale Error  
±±  
±7  
±±  
±5  
ppm/°C  
ppm/°C  
%
l
Ext. Reference = ±.5V (Notes 1±, 13)  
Ext. Reference = ±.5V  
±0.50  
±8  
±0.±5  
±8  
Full-Scale Error Drift  
±±  
±±  
ppm/°C  
LSB  
Power Supply Sensitivity  
V
= 5V ±5% (Note 9)  
DD  
V
= V = V  
DIG DD  
ANA  
The l denotes the specifications which apply over the full operating temperature range, otherwise  
ANALOG INPUT  
specifications are at TA = 25°C. (Note 5)  
CONDITIONS  
LTC1605/LTC1605A  
SYMBOL  
PARAMETER  
MIN  
TYP  
±10  
10  
MAX  
UNITS  
V
l
V
IN  
C
IN  
Analog Input Range (Note 9)  
Analog Input Capacitance  
Analog Input Impedance  
4.75V ≤ V  
≤ 5.±5V, 4.75V ≤ V ≤ 5.±5V  
ANA DIG  
pF  
R
IN  
±0  
kΩ  
DYNAMIC ACCURACY (Notes 5, 14)  
LTC1605/LTC1605A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
87.5  
87  
MAX  
UNITS  
dB  
S/(N + D)  
Signal-to-(Noise + Distortion) Ratio  
1kHz Input Signal (Note 14)  
10kHz Input Signal  
dB  
±0kHz, –60dB Input Signal  
1kHz Input Signal, First 5 Harmonics  
10kHz Input Signal, First 5 Harmonics  
1kHz Input Signal  
30  
dB  
THD  
Total Harmonic Distortion  
–10±  
–94  
–10±  
–94  
±75  
40  
dB  
dB  
Peak Harmonic or Spurious Noise  
dB  
10kHz Input Signal  
dB  
Full-Power Bandwidth  
Aperture Delay  
(Note 15)  
kHz  
ns  
Aperture Jitter  
Sufficient to Meet AC Specs  
Transient Response  
Overvoltage Recovery  
Full-Scale Step (Note 9)  
(Note 16)  
±
µs  
ns  
150  
1605fd  
3
For more information www.linear.com/LTC1605  
LTC1605  
INTERNAL REFERENCE CHARACTERISTICS  
The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1605/LTC1605A  
PARAMETER  
CONDITIONS  
MIN  
TYP  
±.500  
±5  
MAX  
UNITS  
l
V
REF  
V
REF  
Output Voltage  
Output Tempco  
I
I
= 0  
= 0  
±.470  
±.5±0  
V
OUT  
OUT  
ppm/°C  
Internal Reference Source Current  
External Reference Voltage for Specified Linearity  
External Reference Current Drain  
CAP Output Voltage  
1
µA  
V
(Notes 9, 10)  
±.30  
±.50  
±.70  
100  
l
Ext. Reference = ±.5V (Note 9)  
µA  
V
I
= 0  
±.50  
OUT  
The l denotes the specifications which apply over the full operating  
DIGITAL INPUTS AND OUTPUTS  
temperature range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1605/LTC1605A  
TYP  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
V
DD  
V
DD  
V
IN  
= 5.±5V  
= 4.75V  
= 0V to V  
±.4  
IH  
IL  
0.8  
V
I
±10  
µA  
pF  
V
IN  
DD  
C
V
Digital Input Capacitance  
High Level Output Voltage  
5
IN  
V
V
V
= 4.75V  
= 4.75V  
I = –10µA  
4.5  
OH  
DD  
O
l
I = –±00µA  
O
4.0  
V
V
Low Level Output Voltage  
I = 160µA  
O
0.05  
0.10  
V
OL  
DD  
l
l
l
I = 1.6mA  
O
0.4  
±10  
15  
V
I
Hi-Z Output Leakage D15 to D0  
= 0V to V , CS High  
µA  
pF  
mA  
mA  
OZ  
OUT  
DD  
C
Hi-Z Output Capacitance D15 to D0 CS High (Note 9)  
OZ  
I
I
Output Source Current  
Output Sink Current  
V
OUT  
V
OUT  
= 0V  
–10  
10  
SOURCE  
SINK  
= V  
DD  
1605fd  
4
For more information www.linear.com/LTC1605  
LTC1605  
TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1605/LTC1605A  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
kHz  
µs  
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
100  
SAMPLE(MAX)  
8
±
CONV  
Acquisition Time  
µs  
ACQ  
1
Convert Pulse Width  
(Note 11)  
(Note 9)  
40  
ns  
Data Valid Delay After R/C↓  
BUSY Delay from R/C↓  
BUSY Low  
8
65  
8
µs  
±
C = 50pF  
L
ns  
3
µs  
4
BUSY Delay After End of Conversion  
Aperture Delay  
±±0  
40  
ns  
5
ns  
6
l
l
Bus Relinquish Time  
10  
50  
35  
83  
ns  
7
BUSY Delay After Data Valid  
Previous Data Valid After R/C↓  
R/C to CS Setup Time  
Time Between Conversions  
Bus Access and Byte Delay  
±00  
7.4  
ns  
8
µs  
9
(Notes 9, 10)  
(Notes 9, 10)  
10  
10  
10  
ns  
10  
11  
1±  
µs  
83  
ns  
The l denotes the specifications which apply over the full operating temperature  
POWER REQUIREMENTS  
range, otherwise specifications are at TA = 25°C. (Note 5)  
LTC1605/LTC1605A  
TYP  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
MAX  
5.±5  
16  
UNITS  
V
V
Positive Supply Voltage  
Positive Supply Current  
Power Dissipation  
(Notes 9, 10)  
4.75  
DD  
l
I
DD  
11  
55  
mA  
P
80  
mW  
DIS  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: All voltage values are with respect to ground with DGND, AGND1  
and AGND± wired together (unless otherwise noted).  
Note 8: Bipolar offset is the offset voltage measured from –0.5LSB when the  
output code flickers between 0000 0000 0000 0000 and 1111 1111 1111 1111.  
Note 9: Guaranteed by design, not subject to test.  
Note 10: Recommended operating conditions.  
Note 11: With CS low the falling R/C edge starts a conversion. If R/C  
returns high at a critical point during the conversion it can create small  
errors. For best results ensure that R/C returns high within 3µs after the  
start of the conversion.  
Note 12: As measured with fixed resistors shown in Figure 4. Adjustable to  
zero with external potentiometer.  
Note 13: Full-scale error is the worst-case of –FS or +FS untrimmed  
deviation from ideal first and last code transitions, divided by the transition  
voltage (not divided by the full-scale range) and includes the effect of  
offset error.  
Note 3: When these pin voltages are taken below ground or above V  
ANA  
= V = V , they will be clamped by internal diodes. This product can  
DIG  
DD  
handle input currents of greater than 100mA below ground or above V  
without latch-up.  
DD  
Note 4: When these pin voltages are taken below ground, they will be  
clamped by internal diodes. This product can handle input currents of  
90mA below ground without latchup. These pins are not clamped to V  
.
DD  
Note 5: V = 5V, f  
= 100kHz, t = t = 5ns unless otherwise specified.  
r f  
DD  
SAMPLE  
Note 6: Linearity, offset and full-scale specifications apply for a V input  
with respect to ground.  
Note 7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual end points of the transfer curve.  
The deviation is measured from the center of the quantization band.  
IN  
Note 14: All specifications in dB are referred to a full-scale ±10V input.  
Note 15: Full-power bandwidth is defined as full-scale input frequency at which  
a signal-to-(noise + distortion) degrades to 60dB or 10 bits of accuracy.  
Note 16: Recovers to specified performance after (± • FS) input  
overvoltage.  
1605fd  
5
For more information www.linear.com/LTC1605  
LTC1605  
TYPICAL PERFORMANCE CHARACTERISTICS  
Change in CAP Voltage  
vs Load Current  
Supply Current vs Supply Voltage  
Supply Current vs Temperature  
12.5  
12.0  
0.05  
0.04  
0.03  
0.02  
0.01  
12.0  
11.5  
11.0  
10.5  
f
= 100kHz  
f
= 100kHz  
SAMPLE  
SAMPLE  
0
11.5  
11.0  
–0.01  
–0.02  
–0.03  
–0.04  
–0.05  
–0.06  
–0.07  
–0.08  
–0.09  
–0.10  
10.5  
10.0  
9.5  
10.0  
4.50  
4.75  
5.00  
5.25  
5.50  
–80 –70 –60 –50 –40 –30 –20 –10  
LOAD CURRENT (mA)  
0
10  
–50 –25  
0
25  
50  
75  
100  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1605 • TPC01  
1605 • TPC03  
1605 • TPC02  
Power Supply Feedthrough vs  
Ripple Frequency  
Typical INL Curve  
Typical DNL Curve  
2.0  
1.5  
2.0  
1.5  
–20  
–30  
–40  
–50  
–60  
–70  
1.0  
1.0  
0.5  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
–1.5  
–2.0  
32768  
CODE  
32768  
CODE  
0
16384  
49152  
65535  
0
16384  
49152  
65535  
1
10  
100  
1k  
10k 100k  
1M  
RIPPLE FREQUENCY (Hz)  
1605 • TPC05  
1605 • TPC04  
1605 • TPC06  
LTC1605 Nonaveraged 4096 Point FFT Plot  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (kHz)  
1605 • TPC07  
1605fd  
6
For more information www.linear.com/LTC1605  
LTC1605  
TYPICAL PERFORMANCE CHARACTERISTICS  
Total Harmonic Distortion vs  
Input Frequency  
SINAD vs Input Frequency  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
–70  
–80  
–90  
–100  
–110  
1
10  
100  
1
10  
100  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
1605 • TPC08  
1605 • TPC09  
PIN FUNCTIONS  
V (Pin1):AnalogInput.Connectthrougha±00Ωresis-  
R/C (Pin 24): Read/Convert Input. With CS low, a falling  
edge on R/C puts the internal sample-and-hold into the  
hold state and starts a conversion. With CS low, a rising  
edge on R/C enables the output data bits.  
IN  
tor to the analog input. Full-scale input range is ±10V.  
AGND1(Pin 2): Analog Ground.Tie to analog ground plane.  
REF(Pin3):±.5VReferenceOutput.Bypasswith±.±µFtan-  
talum capacitor. Can be driven with an external reference.  
CS(Pin25):ChipSelect.InternallyOR’dwithR/C.WithR/C  
low, a falling edge on CS will initiate a conversion. With  
R/C high, a falling edge on CS will enable the output data.  
CAP(Pin4):ReferenceBufferOutput. Bypasswith±.±µF  
tantalum capacitor.  
BUSY (Pin 26): Output Shows Converter Status. It is low  
when a conversion is in progress. Data valid on the rising  
edge of BUSY. CS or R/C must be high when BUSY rises  
or another conversion will start without time for signal  
acquisition.  
AGND2(Pin5):AnalogGround.Tietoanaloggroundplane.  
D15 to D8 (Pins 6 to 13): Three-State Data Outputs. Hi-Z  
state when CS is high or when R/C is low.  
DGND (Pin 14): Digital Ground.  
V
(Pin 27): 5V Analog Supply. Bypass to ground with  
ANA  
D7 to D0 (Pins 15 to 22): Three-State Data Outputs. Hi-Z  
state when CS is high or when R/C is low.  
a 0.1µF ceramic and a 10µF tantalum capacitor.  
V
DIG  
(Pin28):5VDigitalSupply.ConnectdirectlytoPin±7.  
BYTE (Pin 23): Byte Select. With BYTE low, data will be  
output with Pin 6 (D15) being the MSB and Pin ±± (D0)  
being the LSB. With BYTE high the upper eight bits and  
the lower eight bits will be switched. The MSB is output  
on Pin 15 and bit 8 is output on Pin ±±. Bit 7 is output  
on Pin 6 and the LSB is output on Pin 13.  
1605fd  
7
For more information www.linear.com/LTC1605  
LTC1605  
TEST CIRCUIT  
Load Circuit for Access Timing  
Load Circuit for Output Float Delay  
5V  
5V  
1k  
1k  
DBN  
DBN  
DBN  
DBN  
1k  
C
C
1k  
50pF  
50pF  
L
L
LTC1605 • TC02  
LTC1605 • TC01  
A. V TO HI-Z  
OH  
B. V TO HI-Z  
OL  
A. HI-Z TO V AND V TO V  
B. HI-Z TO V AND V TO V  
OL OH  
OH  
OL  
OH  
OL  
FUNCTIONAL BLOCK DIAGRAM  
C
SAMPLE  
SAMPLE  
20k  
V
IN  
V
V
ANA  
DIG  
10k  
4k  
C
ZEROING SWITCHES  
4k  
REF  
2.5V REF  
+
REF BUF  
COMP  
16-BIT CAPACITIVE DAC  
CAP  
(2.5V)  
16  
D15  
D0  
SUCCESSIVE APPROXIMATION  
REGISTER  
OUTPUT LATCHES  
AGND1  
AGND2  
DGND  
INTERNAL  
CLOCK  
CONTROL LOGIC  
LTC1605 • BD  
CS  
R/C  
BYTE  
BUSY  
1605fd  
8
For more information www.linear.com/LTC1605  
LTC1605  
APPLICATIONS INFORMATION  
Conversion Details  
the end of a conversion, the DAC output balances the V  
IN  
input charge. The SAR contents (a 16-bit data word) that  
The LTC1605 uses a successive approximation algo-  
rithm and an internal sample-and-hold circuit to convert  
an analog signal to a 16-bit or two byte parallel output.  
The ADC is complete with a precision reference and an  
internal clock. The control logic provides easy interface  
to microprocessors and DSPs. (Please refer to the Digital  
Interface section for the data format.)  
representstheV areloadedintothe16-bitoutputlatches.  
IN  
Driving the Analog Inputs  
The nominal input range for the LTC1605 is ±10V  
or (±4 • V ) and the input is overvoltage protected to  
REF  
±±5V. The input impedance is typically ±0kΩ, therefore, it  
should be driven with a low impedance source. Wideband  
noise coupling into the input can be minimized by placing  
a 1000pF capacitor at the input as shown in Figure ±. An  
NPO-type capacitor gives the lowest distortion. Place the  
capacitor as close to the device input pin as possible. If  
an amplifier is to be used to drive the input, care should  
be taken to select an amplifier with adequate accuracy,  
linearity and noise for the application. The following list  
is a summary of the op amps that are suitable for driving  
the LTC1605. More detailed information is available at  
www.linear.com.  
Conversion start is controlled by the CS and R/C inputs.  
At the start of conversion the successive approximation  
register(SAR)isreset. Onceaconversioncyclehasbegun  
it cannot be restarted.  
During the conversion, the internal 16-bit capacitive DAC  
output is sequenced by the SAR from the most significant  
bit (MSB) to the least significant bit (LSB). Referring to  
Figure1,V isconnectedthroughtheresistordividertothe  
IN  
sample-and-hold capacitor during the acquire phase and  
the comparator offset is nulled by the autozero switches.  
In this acquire phase, a minimum delay of ±µs will provide  
enough time for the sample-and-hold capacitor to acquire  
the analog signal. During the convert phase, the autozero  
switches open, putting the comparator into the compare  
200Ω  
A
IN  
V
IN  
1000pF  
33.2k  
CAP  
mode. The input switch switches C  
to ground,  
1605 • F02  
SAMPLE  
injecting the analog input charge onto the summing junc-  
tion. This input charge is successively compared with the  
binary-weighted charges supplied by the capacitive DAC.  
Bit decisions are made by the high speed comparator. At  
Figure 2. Analog Input Filtering  
LT®1007: Low noise precision amplifier. ±.7mA supply  
current ±5V to ±15V supplies. Gain bandwidth product  
8MHz. DC applications.  
SAMPLE  
LT1097: Low cost, low power precision amplifier. 300µA  
supply current. ±5V to ±15V supplies. Gain bandwidth  
product 0.7MHz. DC applications.  
SI  
C
SAMPLE  
R
SAMPLE  
HOLD  
IN1  
V
+
IN  
LT1227: 140MHz video current feedback amplifier. 10mA  
supply current. ±5V to ±15V supplies. Low noise and low  
distortion.  
R
IN2  
C
V
DAC  
DAC  
COMPARATOR  
DAC  
S
A
R
LT1360: 37MHzvoltagefeedbackamplifier.3.8mAsupply  
current. ±5V to ±15V supplies. Good AC/DC specs.  
LT1363:50MHzvoltagefeedbackamplifier. 6.3mAsupply  
current. Good AC/DC specs.  
16-BIT  
LATCH  
1605 • F01  
Figure 1. LTC1605 Simplified Equivalent Circuit  
LT1364/LT1365: Dual and quad 50MHz voltage feedback  
amplifiers. 6.3mA supply current per amplifier. Good AC/  
DC specs.  
1605fd  
9
For more information www.linear.com/LTC1605  
LTC1605  
APPLICATIONS INFORMATION  
Internal Voltage Reference  
is adjusted until the output code is changing between 0111  
1111 1111 1110 and 0111 1111 1111 1111. Figure 6 shows  
the bipolar transfer characteristic of the LTC1605.  
The LTC1605 has an on-chip, temperature compensated,  
curvature corrected, bandgap reference, which is factory  
trimmed to ±.50V. The full-scale range of the ADC is  
1
V
10V INPUT  
IN  
2
equal to (±4 • V ) or nominally ±10V. The output of the  
200Ω  
1%  
REF  
AGND1  
reference is connected to the input of a unity-gain buffer  
througha4kresistor(seeFigure3). Theinputtothebuffer  
or the output of the reference is available at REF (Pin 3).  
The internal reference can be overdriven with an external  
reference if more accuracy is needed. The buffer output  
drives the internal DAC and is available at CAP (Pin 4). The  
CAP pin can be used to drive a steady DC load of less than  
±mA. Driving an AC load is not recommended because it  
can cause the performance of the converter to degrade.  
2.2μF  
+
LTC1605  
33.2k  
1%  
3
4
REF  
CAP  
+
2.2μF  
5
AGND2  
1605 • F04  
Figure 4. 10V Input Without Trim  
1
V
IN  
10V INPUT  
2
200Ω  
AGND1  
1%  
2.2μF  
+
4k  
3
REF  
(2.5V)  
BANDGAP  
REFERENCE  
3
33.2k  
1%  
REF  
CAP  
5V  
LTC1605  
V
ANA  
2.2μF  
576k  
+
R4  
50k  
4
5
+
R3  
50k  
2.2μF  
4
AGND2  
CAP  
(2.5V)  
1605 • F05  
INTERNAL  
CAPACITOR  
DAC  
2.2μF  
Figure 5. 10V Input with Offset and Gain Trim  
1605 • F03  
011...111  
BIPOLAR  
ZERO  
011...110  
Figure 3. Internal or External Reference Source  
000...001  
000...000  
111...111  
111...110  
For minimum code transition noise the REF pin and the  
CAP pin should each be decoupled with a capacitor to  
filter wideband noise from the reference and the buffer  
(±.±µF tantalum).  
100...001  
100...000  
FS = 20V  
1LSB = FS/65536  
Offset and Gain Adjustments  
–1 0V  
1
LSB  
–FS/2  
FS/2 – 1LSB  
The LTC1605 offset and full-scale errors have been trimmed  
at the factory with the external resistors shown in Figure 4.  
This allows for external adjustment of offset and full scale in  
applicationswhereabsoluteaccuracyisimportant.SeeFigure  
5 for the offset and gain trim circuit. First adjust the offset  
to zero by adjusting resistor R3. Apply an input voltage of  
–15±.6mV (–0.5LSB) and adjust R3 so the code is changing  
between 1111 1111 1111 1111 and 0000 0000 0000 0000.  
The gain error is trimmed by adjusting resistor R4. An input  
LSB  
INPUT VOLTAGE (V)  
1605 • F06  
Figure 6. LTC1605 Bipolar Transfer Characteristics  
DC Performance  
One way of measuring the transition noise associated  
with a high resolution ADC is to use a technique where  
a DC signal is applied to the input of the ADC and the  
resulting output codes are collected over a large number  
of conversions. For example in Figure 7 the distribution of  
voltage of 9.99954±V (+FS 1.5LSB)is applied to V and R4  
IN  
1605fd  
10  
For more information www.linear.com/LTC1605  
LTC1605  
TYPICAL APPLICATIONS  
outputcodeisshownforaDCinputthathasbeendigitized  
10000 times. The distribution is Gaussian and the RMS  
code transition is about 1LSB.  
Timing and Control  
Conversion start and data read are controlled by two  
digital inputs: CS and R/C. To start a conversion and put  
the sample-and-hold into the hold mode bring CS and  
R/C low for no less than 40ns. Once initiated it cannot be  
restarteduntiltheconversioniscomplete.Converterstatus  
is indicated by the BUSY output and this is low while the  
conversion is in progress.  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
Therearetwomodesofoperation.Thefirstmodeisshown  
in Figure 8. The digital input R/C is used to control the  
start of conversion. CS is tied low. When R/C goes low  
the sample-and-hold goes into the hold mode and a con-  
version is started. BUSY goes low and stays low during  
the conversion and will go back high after the conversion  
has been completed and the internal output shift registers  
havebeenupdated.R/Cshouldremainlowfornolessthan  
40ns. During the time R/C is low the digital outputs are in  
a Hi-Z state. R/C should be brought back high within 3µs  
after the start of the conversion to ensure that no errors  
occur in the digitized result. The second mode, shown in  
Figure 9, uses the CS signal to control the start of a con-  
version and the reading of the digital output. In this mode  
the R/C input signal should be brought low no less than  
10ns before the falling edge of CS. The minimum pulse  
width for CS is 40ns. When CS falls, BUSY goes low and  
will stay low until the end of the conversion. BUSY will go  
high after the conversion has been completed. The new  
data is valid when CS is brought back low again to initiate  
0
–5 –4 –3 –2 –1  
0
1
2
3
4
5
CODE  
1605 • F07  
Figure 7. Histogram for 10000 Conversions  
DIGITAL INTERFACE  
Internal Clock  
The ADC has an internal clock that is trimmed to achieve  
a typical conversion time of 7µs. No external adjustments  
are required and, with the typical acquisition time of 1µs,  
throughput performance of 100ksps is assured.  
t
1
R/C  
t
11  
t
2
t
4
t
3
BUSY  
t
t
6
5
ACQUIRE  
CONVERT  
ACQUIRE  
CONVERT  
HI-Z  
MODE  
t
t
ACQ  
CONV  
t
9
PREVIOUS  
DATA VALID  
PREVIOUS  
DATA VALID  
DATA  
VALID  
DATA  
VALID  
HI-Z  
NOT VALID  
DATA MODE  
1605 • F08  
t
t
7
8
Figure 8. Conversion Timing with Outputs Enabled After Conversion (CS Tied Low)  
1605fd  
11  
For more information www.linear.com/LTC1605  
LTC1605  
APPLICATIONS INFORMATION  
t
t
t
t
10  
10  
10  
10  
R/C  
t
t
1
1
CS  
t
3
t
4
BUSY  
t
6
MODE  
ACQUIRE  
CONVERT  
ACQUIRE  
t
CONV  
HI-Z  
HI-Z  
DATA  
VALID  
DATA BUS  
t
t
7
12  
1605 • F09  
Figure 9. Using CS to Control Conversion and Read Timing  
t
t
10  
10  
R/C  
CS  
BYTE  
HI-Z  
HI-Z  
HI-Z  
PINS 6 TO 13  
PINS 15 TO 22  
HIGH BYTE  
LOW BYTE  
LOW BYTE  
HIGH BYTE  
t
t
t
7
12  
12  
HI-Z  
1605 • F10  
Figure 10. Using CS and BYTE to Control Data Bus Read Timing  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
FREQUENCY (kHz)  
1605 • F11  
Figure 11. LTC1605 Nonaveraged 4096 Point FFT Plot  
1605fd  
12  
For more information www.linear.com/LTC1605  
LTC1605  
APPLICATIONS INFORMATION  
a read. Again it is recommended that both R/C and CS  
band between DC and half the sampling frequency. THD  
is expressed as:  
return high within 3µs after the start of the conversion.  
±
± +V3± +V4± +...VN  
Output Data  
THD=±0Log  
The output data can be read as a 16-bit word or it can be  
read as two 8-bit bytes. The format of the output data is  
two’s complement. The digital input pin BYTE is used to  
control the two byte read. With the BYTE pin low the first  
eight MSBs are output on the D15 to D8 pins and the  
eight LSBs are output on the D7 to D0 pins. When the  
BYTE pin is taken high the eight LSBs replace the eight  
MSBs (Figure 10).  
V1  
where V1 is the RMS amplitude of the fundamental  
frequency and V± through V are the amplitudes of the  
N
second through Nth harmonics.  
Board Layout, Power Supplies and Decoupling  
Wire wrap boards are not recommended for high reso-  
lution or high speed A/D converters. To obtain the best  
performance from the LTC1605, a printed circuit board  
is required. Layout for the printed circuit board should  
ensure the digital and analog signal lines are separated  
as much as possible. In particular, care should be taken  
not to run any digital track alongside an analog signal  
track or underneath the ADC. The analog input should be  
screened by AGND.  
Dynamic Performance  
FFT (Fast Fourier Transform) test techniques are used to  
test the ADC’s frequency response, distortion and noise  
at the rated throughput. By applying a low distortion sine  
wave and analyzing the digital output using an FFT algo-  
rithm, the ADC’s spectral content can be examined for  
frequencies outside the fundamental. Figure 11 shows a  
typical LTC1605 FFT plot which yields a SINAD of 87.5dB  
and THD of –10±dB.  
Figures1±through15showalayoutforasuggestedevalu-  
ation circuit which will help obtain the best performance  
from the 16-bit ADC. Pay particular attention to the design  
of the analog and digital ground planes. The DGND pin  
of the LTC1605 can be tied to the analog ground plane.  
Placing the bypass capacitor as close as possible to the  
power supply, the reference and reference buffer output is  
veryimportant.Lowimpedancecommonreturnsforthese  
bypass capacitors are essential to low noise operation of  
the ADC, and the foil width for these tracks should be as  
wide as possible. Also, since any potential difference in  
grounds between the signal source and ADC appears as  
an error voltage in series with the input signal, attention  
should be paid to reducing the ground circuit impedance  
as much as possible. The digital output latches and the  
onboard sampling clock have been placed on the digital  
ground plane. The two ground planes are tied together at  
the power supply ground connection.  
Signal-to-Noise Ratio  
The Signal-to-Noise and Distortion Ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency to the RMS amplitude of all other frequency  
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency.Figure11showsatypicalSINADof87.5dBwith  
a 100kHz sampling rate and a 1kHz input.  
Total Harmonic Distortion  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sumofallharmonicsoftheinputsignaltothefundamental  
itself. The out-of-band harmonics alias into the frequency  
1605fd  
13  
For more information www.linear.com/LTC1605  
LTC1605  
TYPICAL APPLICATIONS  
Figure 12. Component Side Silkscreen for the Suggested LTC1605 Evaluation Circuit  
ANALOG  
GROUND PLANE  
DIGITAL  
GROUND PLANE  
ANALOG  
GROUND PLANE  
Figure 13. Bottom Side Showing Analog Ground Plane  
Figure 14. Component Side Showing Separate Analog and  
Digital Ground Plane  
1605fd  
14  
For more information www.linear.com/LTC1605  
LTC1605  
1605fd  
15  
For more information www.linear.com/LTC1605  
LTC1605  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
G Package  
28-Lead Plastic SSOP (5.3mm)  
(Reference LTC DWG # 05-08-1640)  
9.90 – 10.50*  
(.390 – .413)  
1.25 0.12  
5.3 – 5.7  
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
7.8 – 8.2  
7.40 – 8.20  
(.291 – .323)  
0.42 0.03  
RECOMMENDED SOLDER PAD LAYOUT  
0.65 BSC  
5
7
8
1
2
3
4
6
9 10 11 12 13 14  
2.0  
(.079)  
MAX  
5.00 – 5.60**  
(.197 – .221)  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.25  
0.55 – 0.95  
(.0035 – .010)  
(.022 – .037)  
0.05  
0.22 – 0.38  
(.009 – .015)  
TYP  
(.002)  
NOTE:  
MIN  
1. CONTROLLING DIMENSION: MILLIMETERS  
MILLIMETERS  
2. DIMENSIONS ARE IN  
(INCHES)  
G28 SSOP 0204  
3. DRAWING NOT TO SCALE  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED .152mm (.006") PER SIDE  
**DIMENSIONS DO NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED .254mm (.010") PER SIDE  
N Package  
28-Lead Plastic PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
1.400*  
(35.560)  
MAX  
28  
27 26 25 24  
23 22 21 20  
19 18 17 16  
15  
14  
.240 – .295*  
(6.096 – 7.493)  
5
6
7
8
9
10 11 12  
13  
1
2
3
4
.045 – .065  
.130 ±.005  
(1.143 – 1.651)  
(3.302 ±0.127)  
.020  
(0.508)  
MIN  
.065  
(1.651)  
TYP  
N28 REV I 0711  
.120  
(3.048)  
MIN  
.005  
(0.127)  
MIN  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
NOTE:  
1. DIMENSIONS ARE  
INCHES  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
OBSOLETE PACKAGE  
1605fd  
16  
For more information www.linear.com/LTC1605  
LTC1605  
REVISION HISTORY (Revision history begins at Rev D)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
D
07/15 Obsoleted ±8-Lead PDIP Package  
±, 16  
1605fd  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
17  
LTC1605  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
SW Package  
28-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.697 – .712  
(17.70 – 18.08)  
NOTE 4  
N
28 27 26 25 24 23 22 21 20 19 18  
16 15  
17  
N
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
1
2
3
N/2  
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
2
3
5
7
8
9
10 11 12 13 14  
1
4
6
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
.010 – .029  
× 45°  
(2.362 – 2.642)  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
NOTE 3  
(0.102 – 0.305)  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S28 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
0.05% Max, 5ppm/°C Max  
LT1019-±.5  
Precision Bandgap Reference  
LTC1±74/LTC1±77 Low Power 1±-Bit, 100ksps ADCs  
10mW Power Dissipation, Parallel/Byte Interface  
55mW Power Dissipation, 7±dB SINAD  
LTC1415  
LTC1419  
LT1460-±.5  
Single 5V, 1±-Bit, 1.±5Msps ADC  
Low Power 14-Bit, 800ksps ADC  
Micropower Precision Series Reference  
True 14-Bit Linearity, 81.5dB SINAD, 150mW Dissipation  
0.075% Max, 10ppm/°C Max, Only 130µA Supply Current  
Serial I/O, 3V and 5V Versions  
LTC1594/LTC1598 Micropower 4-/8-Channel 1±-Bit ADCs  
1605fd  
LT 0715 REV D • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
18  
LINEAR TECHNOLOGY CORPORATION 2005  
(408)43±-1900 FAX: (408) 434-0507 www.linear.com/LTC1605  

相关型号:

LTC1605IN

16-Bit, 100ksps, Sampling ADC
Linear

LTC1605IN#PBF

暂无描述
Linear

LTC1605IN#TR

IC 1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP28, 0.300 INCH, PLASTIC, DIP-28, Analog to Digital Converter
Linear

LTC1605IN#TRPBF

IC 1-CH 16-BIT SUCCESSIVE APPROXIMATION ADC, PARALLEL ACCESS, PDIP28, 0.300 INCH, LEAD FREE, PLASTIC, DIP-28, Analog to Digital Converter
Linear

LTC1605ISW

16-Bit, 100ksps, Sampling ADC
Linear

LTC1605ISW#PBF

LTC1605 - 16-Bit, 100ksps, Sampling ADC; Package: SO; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1605ISW#TR

LTC1605 - 16-Bit, 100ksps, Sampling ADC; Package: SO; Pins: 28; Temperature Range: -40°C to 85°C
Linear

LTC1605ISW#TRPBF

暂无描述
Linear

LTC1606

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606AC

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACG

16-Bit, 250ksps, Single Supply ADC
Linear

LTC1606ACG#TRPBF

LTC1606 - 16-Bit, 250ksps, Single Supply ADC; Package: SSOP; Pins: 28; Temperature Range: 0°C to 70°C
Linear