LTC1657LIN#PBF [Linear]

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 28; Temperature Range: -40°C to 85°C;
LTC1657LIN#PBF
型号: LTC1657LIN#PBF
厂家: Linear    Linear
描述:

LTC1657 - Parallel 16-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 28; Temperature Range: -40°C to 85°C

文件: 总12页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1657  
Parallel 16-Bit Rail-to-Rail  
Micropower DAC  
U
DESCRIPTIO  
FEATURES  
The LTC®1657 is a complete single supply, rail-to-rail  
voltageoutput, 16-bitdigital-to-analogconverter(DAC)in  
a 28-pin SSOP or PDIP package. It includes a rail-to-rail  
output buffer amplifier, an internal 2.048V reference and  
a double buffered parallel digital interface.  
16-Bit Monotonic Over Temperature  
Deglitched Rail-to-Rail Voltage Output: 8nV•s  
5V Single Supply Operation  
ICC: 650µA Typ  
Maximum DNL Error: ±1LSB  
Settling Time: 20µs to ±1LSB  
The LTC1657 operates from a 4.5V to 5.5V supply. It has  
a separate reference input pin that can be driven by an  
external reference. The full-scale output can be 1 or 2  
times the reference voltage depending on how the X1/X2  
pin is connected.  
Internal or External Reference  
Internal Power-On Reset to Zero Volts  
Asynchronous CLR Pin  
Output Buffer Configurable for Gain of 1 or 2  
Parallel 16-Bit or 2-Byte Double Buffered Interface  
TheLTC1657issimilartoLinearTechnologyCorporation’s  
LTC1450 12-bit VOUT DAC family allowing an upgrade  
path. It is the only buffered 16-bit parallel DAC in a 28-lead  
SSOP package and includes an onboard reference for  
stand alone performance.  
Narrow 28-Lead SSOP Package  
Multiplying Capability  
U
APPLICATIO S  
Instrumentation  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
Digital Calibration  
Industrial Process Control  
Automatic Test Equipment  
Communication Test Equipment  
W
BLOCK DIAGRA  
5V  
24  
23  
22  
V
REFOUT  
REFHI  
CC  
19 D15 (MSB)  
18  
17  
16  
15  
14  
13  
12  
D8  
REFERENCE  
2.048V  
MSB  
8-BIT  
Differential Nonlinearity  
vs Input Code  
INPUT  
REGISTER  
1.0  
0.8  
16-BIT  
DAC  
REGISTER  
DATA IN FROM  
MICROPROCESSOR  
DATA BUS  
16-BIT  
DAC  
+
V
OUT  
25  
11  
10  
9
D7  
0V TO  
4.096V  
0.6  
0.4  
LSB  
8-BIT  
0.2  
8
R
7
0.0  
INPUT  
6
REGISTER  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
R
5
D0 (LSB)  
CSMSB  
4
3
1
2
WR  
FROM  
MICROPROCESSOR  
DECODE LOGIC  
0
16384  
DIGITAL INPUT CODE  
32768  
49152  
65535  
CSLSB  
1657 G01  
28 LDAC  
27 CLR  
POWER-ON  
RESET  
FROM  
SYSTEM RESET  
GND  
20  
REFLO  
21  
X1/X2  
26  
1657 TA01  
1
LTC1657  
W W U W  
U
W U  
ABSOLUTE MAXIMUM RATINGS  
PACKAGE/ORDER INFORMATION  
(Note 1)  
TOP VIEW  
VCC to GND .............................................. 0.5V to 7.5V  
TTL Input Voltage, REFHI, REFLO,  
X1/X2....................................................... 0.5V to 7.5V  
ORDER PART  
NUMBER  
1
2
LDAC  
CLR  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
WR  
CSLSB  
CSMSB  
(LSB) D0  
D1  
LTC1657CGN  
LTC1657CN  
LTC1657IGN  
LTC1657IN  
3
X1/X2  
V
OUT, REFOUT ............................ 0.5V to (VCC + 0.5V)  
4
V
OUT  
Operating Temperature Range  
5
V
CC  
LTC1657C ............................................. 0°C to 70°C  
LTC1657I ........................................ 40°C to 85°C  
Maximum Junction Temperature .......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
6
REFOUT  
REFHI  
REFLO  
GND  
D2  
7
D3  
8
D4  
9
D5  
10  
11  
12  
13  
14  
D15 (MSB)  
D14  
D6  
D7  
D13  
D8  
D12  
D9  
D11  
D10  
N PACKAGE  
28-LEAD PDIP  
GN PACKAGE  
28-LEAD PLASTIC SSOP  
TJMAX = 125°C, θJA = 95°C/ W (G)  
JMAX = 125°C, θJA = 58°C/ W (N)  
T
Consult factory for Military grade parts.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded, REFOUT tied to REFHI,  
REFLO tied to GND, X1/X2 tied to GND, unless otherwise noted.  
SYMBOL PARAMETER  
DAC (Note 2)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
16  
16  
Bits  
Bits  
Monotonicity  
DNL  
INL  
Differential Nonlinearity  
Guaranteed Monotonic (Note 3)  
(Note 3)  
±0.5  
±4  
±1.0  
±12  
2
LSB  
Integral Nonlinearity  
Zero Scale Error  
Offset Error  
LSB  
ZSE  
0
mV  
V
V
Measured at Code 200  
±0.3  
±5  
±3  
mV  
OS  
OS  
TC  
Offset Error Tempco  
Gain Error  
µV/°C  
LSB  
±2  
±16  
Gain Error Drift  
0.5  
ppm/°C  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
4.5  
5.5  
V
CC  
I
4.5V V 5.5V (Note 4)  
650  
1200  
µA  
CC  
CC  
Op Amp DC Performance  
Short-Circuit Current Low  
V
V
Shorted to GND  
70  
80  
40  
120  
140  
120  
4
mA  
mA  
OUT  
OUT  
Short-Circuit Current High  
Output Impedance to GND  
Output Line Regulation  
Shorted to V  
CC  
Input Code = 0  
Input Code = 65535, V = 4.5V to 5.5V  
mV/V  
CC  
2
LTC1657  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VCC = 4.5V to 5.5V, VOUT unloaded, REFOUT tied to REFHI,  
REFLO tied to GND, X1/X2 tied to GND, unless otherwise noted.  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Voltage Output Slew Rate  
(Note 5)  
±0.3  
±0.7  
V/µs  
Voltage Output Settling Time  
(Note 5) to 0.0015% (16-Bit Settling Time)  
(Note 5) to 0.012% (13-Bit Settling Time)  
20  
10  
µs  
µs  
Digital Feedthrough  
0.3  
8
nVs  
nVs  
Midscale Glitch Impulse  
DAC Switch Between 8000 and 7FFF  
H
H
Output Voltage Noise Spectral Density  
At 1kHz  
250  
nV/Hz  
Digital I/O  
V
V
V
V
Digital Input High Voltage  
Digital Input Low Voltage  
Digital Output High Voltage  
Digital Output Low Voltage  
Digital Input Leakage  
2.4  
V
V
IH  
IL  
0.8  
V
– 1  
CC  
V
OH  
OL  
0.4  
±10  
10  
V
I
V
= GND to V  
CC  
µA  
pF  
LEAK  
IN  
C
Digital Input Capacitance  
(Note 6)  
IN  
Switching Characteristics  
t
t
t
t
t
t
t
t
CS (MSB or LSB) Pulse Width  
WR Pulse Width  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS  
40  
0
WR  
CS to WR Setup  
CWS  
CWH  
DWS  
DWH  
LDAC  
CLR  
CS to WR Hold  
0
Data Valid to WR Setup  
Data Valid to WR Hold  
LDAC Pulse Width  
CLR Pulse Width  
40  
0
40  
40  
Reference Output (REFOUT)  
Reference Output Voltage  
2.036  
2.048  
15  
2.060  
V
Reference Output  
ppm/°C  
Temperature Coefficient  
Reference Line Regulation  
Reference Load Regulation  
Short-Circuit Current  
V
= 4.5V to 5.5V  
±1.5  
5
mV/V  
mV/A  
mA  
CC  
Measured at I  
= 100µA  
OUT  
REFOUT Shorted to GND  
50  
100  
Reference Input  
REFHI, REFLO Input Range  
(Note 6) See Applications Information  
X1/X2 Tied to V  
X1/X2 Tied to GND  
0
0
V
– 1.5  
V /2  
CC  
V
V
OUT  
CC  
REFHI Input Resistance  
16  
25  
kΩ  
Note 4: Digital inputs at 0V or V  
.
Note 1: Absolute Maximum Ratings are those values beyond which the life  
CC  
of a device may be impaired.  
Note 2: External reference REFHI = 2.2V. V = 5V.  
Note 5: DAC switched between all 1s and all 0s.  
Note 6: Guaranteed by design. Not subject to test.  
CC  
Note 3: Nonlinearity is defined from code 128 to code 65535 (full scale).  
See Applications Information.  
3
LTC1657  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
Minimum Supply Headroom for  
Full Output Swing vs Load Current  
Differential Nonlinearity  
Integral Nonlinearity  
1.0  
0.8  
5
4
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
CODE ALL 1’S  
OUT  
V  
1LSB  
0.6  
3
0.4  
2
125°C  
0.2  
1
0.0  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–4  
–5  
25°C  
–55°C  
0
16384  
32768  
49152  
65535  
0
16384  
32768  
49152  
65535  
0
5
10  
DIGITAL INPUT CODE  
DIGITAL INPUT CODE  
LOAD CURRENT (mA)  
1657 G01  
1657 G02  
1657 G03  
Minimum Output Voltage vs  
Output Sink Current  
Full-Scale Voltage vs  
Temperature  
Offset Error vs Temperature  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
4.110  
4.105  
4.100  
4.095  
4.090  
4.085  
4.080  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
CODE ALL 0’S  
OUT  
V  
1LSB  
125°C  
25°C  
–55°C  
0
5
10  
15  
–55  
–25  
5
35  
65  
95  
125  
–55  
–10  
35  
80  
125  
OUTPUT SINK CURRENT (mA)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
1657 G04  
1657 G05  
1657 G06  
Supply Current vs Logic Input  
Voltage  
Supply Current vs Temperature  
Large-Signal Transient Response  
8
7
6
5
4
3
2
1
0
700  
680  
660  
640  
620  
600  
580  
560  
540  
520  
500  
5
V
A
UNLOADED  
OUT  
T
= 25°C  
4
3
2
1
0
V
= 5.5V  
CC  
V
V
= 5V  
CC  
= 4.5V  
CC  
0
1
2
3
4
5
–55 –35 –15  
5
25 45 65 85 105 125  
LOGIC INPUT VOLTAGE (V)  
TEMPERATURE (°C)  
TIME (20µs/DIV)  
1657 G07  
1657 G08  
1657 G09  
4
LTC1657  
U
U
U
PIN FUNCTIONS  
WR (Pin 1): Write Input (Active Low). Used with CSMSB  
and/orCSLSBtocontroltheinputregisters. WhileWRand  
CSMSB and/or CSLSB are held low, data writes into the  
input register.  
the output buffer to this end of the ladder. Can be used to  
offset the zero scale above ground.  
REFHI (Pin 22): Upper input terminal of the DAC’s internal  
resistor ladder. Typically connected to REFOUT. An input  
code of (FFFF)H will connect the positive input of the  
output buffer to 1LSB below this voltage.  
CSLSB (Pin 2): Chip Select Least Significant Byte (Active  
Low). Used with WR to control the LSB 8-bit input regis-  
ters. While WR and CSLSB are held low, the LSB byte  
writes into the LSB input register. Can be connected to  
CSMSB for simultaneous loading of both sets of input  
latches on a 16-bit bus.  
REFOUT(Pin23):Outputoftheinternal2.048Vreference.  
TypicallyconnectedtoREFHItodriveinternalDACresistor  
ladder.  
V
CC (Pin 24): Positive Power Supply Input. 4.5V VCC ≤  
CSMSB (Pin 3): Chip Select Most Significant Byte (Active  
Low). Used with WR to control the MSB 8-bit input  
registers. While WR and CSMSB are held low, the MSB  
byte writes into the MSB input register. Can be connected  
to CSLSB for simultaneous loading of both sets of input  
latches on a 16-bit bus.  
5.5V. Requires a 0.1µF bypass capacitor to ground.  
VOUT (Pin 25): Buffered DAC Output.  
X1/X2(Pin26):GainSettingResistorPin. ConnecttoGND  
for G = 2 or to VOUT for G = 1. This pin should always be  
tied to a low impedance source, such as ground or VOUT  
,
to ensure stability of the output buffer when driving  
capacitive loads.  
D0toD7(Pins4to11):InputdatafortheLeastSignificant  
Byte. Written into LSB input register when WR = 0 and  
CSLSB = 0.  
CLR (Pin 27): Clear Input (Asynchronous Active Low). A  
low on this pin asynchronously resets all input and DAC  
registers to 0s.  
D8 to D15 (Pins 12 to 19): Input data for the Most Signifi-  
cant Byte. Written into MSB input register when WR = 0  
and CSMSB = 0.  
LDAC (Pin 28): Load DAC (Asynchronous Active Low).  
Used to asynchronously transfer the contents of the input  
registers to the DAC register which updates the output  
voltage. If held low, the DAC register loads data from the  
GND (Pin 20): Ground.  
REFLO (Pin 21): Lower input terminal of the DAC’s inter-  
nal resistor ladder. Typically connected to Analog Ground.  
An input code of (0000)H will connect the positive input of  
input registers which will immediately update VOUT  
.
5
LTC1657  
U
DIGITAL INTERFACE TRUTH TABLE  
CLR  
CSMSB  
CSLSB  
WR  
LDAC  
FUNCTION  
L
X
X
X
L
H
L
X
H
X
L
X
X
X
H
L
X
X
L
Clears input and DAC registers to zero  
Loads DAC register with contents of input registers  
Freezes contents of DAC register  
Writes MSB byte into MSB input register  
Writes LSB byte into LSB input register  
Writes MSB and LSB bytes into MSB and LSB input registers  
Inhibits write to MSB and LSB input registers  
Inhibits write to MSB input register  
H
H
H
H
H
H
H
H
X
X
L
L
L
H
X
X
L
H
X
X
X
X
X
X
L
L
X
X
H
L
Inhibits write to LSB input register  
Data bus flows directly through input and DAC registers  
H
W U  
W
TIMING DIAGRAM  
t
CS  
CSLSB  
t
CS  
CSMSB  
t
t
t
t
WR  
CWH  
CWS  
t
WR  
WR  
t
LDAC  
LDAC  
DWH  
t
DWS  
DAC UPDATE  
DATA VALID  
DATA VALID  
DATA  
1657 TD  
6
LTC1657  
U U  
DEFI ITIO S  
Resolution (n): Resolution is defined as the number of  
digital input bits (n). It defines the number of DAC output  
states(2n)thatdividethefull-scalerange.Resolutiondoes  
not imply linearity.  
Zero-Scale Error (ZSE): The output voltage when the  
DAC is loaded with all zeros. Since this is a single supply  
part, this value cannot be less than 0V.  
Integral Nonlinearity (INL): End-point INL is the maxi-  
mum deviation from a straight line passing through the  
end points of the DAC transfer curve. Because the part  
operates from a single supply and the output cannot go  
below zero, the linearity is measured between full scale  
and the code corresponding to the maximum offset  
specification. The INL error at a given input code is  
calculated as follows:  
Full-Scale Voltage (VFS): This is the output of the DAC  
when all bits are set to 1.  
VoltageOffsetError(VOS): Normally,theDACoffsetisthe  
voltageattheoutputwhentheDACisloadedwithallzeros.  
The DAC can have a true negative offset, but because the  
partisoperatedfromasinglesupply, theoutputcannotgo  
below zero. If the offset is negative, the output will remain  
near 0V resulting in the transfer curve shown in Figure 1.  
INL (In LSBs) = [VOUT – VOS – (VFS – VOS)  
(code/65535)]  
VOUT = The output voltage of the DAC measured at  
the given input code  
OUTPUT  
VOLTAGE  
Differential Nonlinearity (DNL): DNL is the difference  
between the measured change and the ideal one LSB  
change between any two adjacent codes. The DNL error  
between any two codes is calculated as follows:  
0V  
NEGATIVE  
OFFSET  
DAC CODE  
1657 F01  
Figure 1. Effect of Negative Offset  
DNL = (VOUT – LSB)/LSB  
VOUT = The measured voltage difference between  
two adjacent codes  
The offset of the part is measured at the code that corre-  
sponds to the maximum offset specification:  
DigitalFeedthrough: Theglitchthatappearsattheanalog  
outputcausedbyACcouplingfromthedigitalinputswhen  
they change state. The area of the glitch is specified in  
nV • s.  
VOS = VOUT – [(Code)(VFS)/(2n – 1)]  
Least Significant Bit (LSB): One LSB is the ideal voltage  
difference between two successive codes.  
LSB = (VFS – VOS)/(2n – 1) = (VFS – VOS)/65535  
Nominal LSBs:  
LTC1657 LSB = 4.096V/65535 = 62.5µV  
DAC Transfer Characteristic:  
REFHIREFLO  
VOUT = G•  
CODE +REFLO  
(
)
65536  
G = 1 for X1/X2 connected to VOUT  
G = 2 for X1/X2 connected to GND  
CODE = Decimal equivalent of digital input  
(0 CODE 65535)  
7
LTC1657  
U
OPERATION  
Parallel Interface  
to the DAC resistor ladder, an external reference can be  
used or the resistor ladder can be driven by an external  
source in multiplying applications. The external reference  
or source must be capable of driving the 16k (minimum)  
DAC ladder resistance.  
The data on the input of the DAC is written into the DAC’s  
inputregisterswhenChipSelect(CSLSBand/orCSMSB)  
and WR are at a logic low. The data that is written into the  
input registers will depend on which of the Chip Selects  
areatalogiclow(seeDigitalInterfaceTruthTable). IfWR  
and CSLSB are both low and CSMSB is high, then only  
data on the eight LSBs (D0 to D7) is written into the input  
registers. Similarly, if WR and CSMSB are both low and  
CSLSB is high, then only data on the eight MSBs (D8 to  
D15) is written into the input registers. Data is written into  
both the Least Significant Data Bits (D0 to D7) and the Most  
Significant Bits (D8 to D15) at the same time if WR, CSLSB  
and CSMSB are low. If WR is high or both CSMSB and  
CSLSB are high, then no data is written into the input  
registers.  
Internal reference output noise can be reduced with a  
bypass capacitor to ground. (Note: The reference does not  
require a bypass capacitor to ground for nominal opera-  
tion.)Whenbypassingthereference,asmallvalueresistor  
inserieswiththecapacitorisrecommendedtohelpreduce  
peakingontheoutput.A10resistorinserieswitha4.7µF  
capacitor is optimum for reducing reference generated  
noise. Internal reference output voltage noise spectral  
density at 1kHz is typically 150nV/Hz.  
DAC Resistor Ladder  
The high and low end of the DAC ladder resistor string  
(REFHI and REFLO, respectively) are not connected inter-  
nally on this part. Typically, REFHI will be connected to  
REFOUT and REFLO will be connected to GND. X1/X2  
connectedtoGNDwillgivetheLTC1657afull-scaleoutput  
swing of 4.096V.  
Once data is written into the input registers, it can be  
written into the DAC register. This will update the analog  
voltage output of the DAC. The DAC register is written by  
a logic low on LDAC. The data in the DAC register will be  
held when LDAC is high.  
When WR, CSLSB, CSMSB and LDAC are all low, the  
registers are transparent and data on pins D0 to D15 flows  
directly into the DAC register.  
Either of these pins can be driven up to VCC – 1.5V when  
usingthebufferinthegain-of-1configuration.Theresistor  
string pins can be driven to VCC/2 when the buffer is in the  
gain of 2 configuration. The resistance between these two  
pins is typically 25k (16k min).  
For an 8-bit data bus connection, tie the MSB byte data  
pins to their corresponding LSB byte pins (D15 to D7, D14  
to D6, etc).  
Voltage Output  
Power-On Reset  
The output buffer for the LTC1657 can be configured for  
two different gain settings. By tying the X1/X2 pin to GND,  
the gain is set to 2. By tying the X1/X2 pin to VOUT, the gain  
is set to unity.  
TheLTC1657hasaninternalpower-onresetthatresetsall  
internal registers to 0’s on power-up (equivalent to the  
CLR pin function).  
Reference  
The LTC1657 rail-to-rail buffered output can source or  
sink 5mA within 500mV of the positive supply voltage or  
groundatroomtemperature. Theoutputstageisequipped  
with a deglitcher that results in a midscale glitch impulse  
of 8nV • s. The output swings to within a few millivolts of  
either supply rail when unloaded and has an equivalent  
output resistance of 40when driving a load to the rails.  
The LTC1657 includes an internal 2.048V reference, giv-  
ing the LTC1657 a full-scale range of 4.096V in the gain-  
of-2 configuration. The onboard reference in the LTC1657  
is not internally connected to the DAC’s reference resistor  
string but is provided on an adjacent pin for flexibility.  
Because the internal reference is not internally connected  
8
LTC1657  
U
W U U  
APPLICATIONS INFORMATION  
Rail-to-Rail Output Considerations  
Similarly, limiting can occur near full scale when the REF  
pin is tied to VCC/2. If VREF = VCC/2 and the DAC full-scale  
error (FSE) is positive, the output for the highest codes  
limits at VCC as shown in Figure 1c. No full-scale limiting  
can occur if VREF is less than (VCC – FSE)/2.  
In any rail-to-rail DAC, the output swing is limited to  
voltages within the supply range.  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 1b.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
POSITIVE  
FSE  
V
CC  
V
= V /2  
CC  
OUTPUT  
VOLTAGE  
REF  
INPUT CODE  
(c)  
V
CC  
V
= V /2  
CC  
OUTPUT  
VOLTAGE  
REF  
0
32768  
65535  
INPUT CODE  
(a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
(b)  
1657 F02  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC/2  
9
LTC1657  
U
TYPICAL APPLICATIO S  
the onboard reference is always sourcing current and  
never has to sink any current even when VOUT is at full  
scale. The LT1077 output will have a wide bipolar output  
swing of 4.096V to 4.096V as shown in the figure below.  
With this output swing, 1LSB = 125µV.  
This circuit shows how to make a bipolar output 16-bit  
DAC with a wide output swing using an LTC1657 and an  
LT1077. R1 and R2 resistively divide down the LTC1657  
output and an offset is summed in using the LTC1657  
onboard2.048VreferenceandR3andR4. R5ensuresthat  
A Wide Swing, Bipolar Output 16-Bit DAC  
5V  
0.1µF  
24  
5:19  
2
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
3
25  
µP  
V
LTC1657  
OUT  
1
R1  
100k  
1%  
28  
27  
5V  
LDAC  
CLR  
3
2
X1/X2 REFLO GND REFHI REFOUT  
7
+
26  
21  
20  
22  
23  
6
(2)(D )(4.096)  
IN  
R2  
200k  
1%  
LT1077  
4
V
:
– 4.096V  
OUT  
65536  
TRANSFER CURVE  
4.096  
R3  
100k  
1%  
R4  
200k  
1%  
5V  
1657 TA05  
R5  
100k  
1%  
32768  
65535  
0
V
D
IN  
OUT  
4.096  
Thiscircuitshowsadigitallyprogrammablecurrentsource  
from an external voltage source using an external op amp,  
an LT1218 and an NPN transistor (2N3440). Any digital  
word from 0 to 65535 is loaded into the LTC1657 and its  
output correspondingly swings from 0V to 4.096V. This  
voltage will be forced across the resistor RA. If RA is  
chosen to be 412, the output current will range from  
0mA at zero scale to 10mA at full scale. The minimum  
voltage for VS is determined by the load resistor RL and  
Q1’s VCESAT voltage. With a load resistor of 50, the  
voltage source can be 5V.  
Digitally Programmable Current Source  
5V  
22  
23  
5V < V < 100V  
S
FOR R 50Ω  
0.1µF  
5:19  
2
L
REFHI REFOUT  
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
(D )(4.096)  
IN  
3
R
L
I
=
7
OUT  
25  
3
(65536)(R )  
µP  
A
LTC1657  
V
OUT  
+
1
0mA TO 10mA  
6
Q1  
2N3440  
28  
27  
LT1218  
LDAC  
2
CLR  
X1/X2 REFLO GND  
26 21 20  
4
R
A
412Ω  
1%  
1657 TA04  
10  
LTC1657  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
GN Package  
28-Lead Plastic SSOP (Narrow 0.150)  
(LTC DWG # 05-08-1641)  
0.386 – 0.393*  
(9.804 – 9.982)  
0.033  
(0.838)  
REF  
28 27 26 25 24 23 22 21 20 19 18 17 1615  
0.229 – 0.244  
(5.817 – 6.198)  
0.150 – 0.157**  
(3.810 – 3.988)  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
0.004 – 0.009  
0.015 ± 0.004  
(0.38 ± 0.10)  
0.053 – 0.069  
× 45°  
(1.351 – 1.748)  
(0.102 – 0.249)  
0.0075 – 0.0098  
(0.191 – 0.249)  
0° – 8° TYP  
0.016 – 0.050  
(0.406 – 1.270)  
0.008 – 0.012  
(0.203 – 0.305)  
0.0250  
(0.635)  
BSC  
* DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD  
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE  
GN28 (SSOP) 1098  
N Package  
28-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
1.370*  
(34.789)  
MAX  
28 27 26 25 24  
23 22 21 20  
19 18 17 16 15  
0.255 ± 0.015*  
(6.477 ± 0.381)  
1
2
3
4
5
6
7
8
9
10  
11 12  
13 14  
0.300 – 0.325  
(7.620 – 8.255)  
0.045 – 0.065  
(1.143 – 1.651)  
0.130 ± 0.005  
(3.302 ± 0.127)  
0.020  
(0.508)  
MIN  
0.065  
(1.651)  
TYP  
0.009 – 0.015  
(0.229 – 0.381)  
+0.035  
0.125  
(3.175)  
MIN  
0.005  
(0.127)  
MIN  
0.018 ± 0.003  
(0.457 ± 0.076)  
0.100  
(2.54)  
BSC  
0.325  
–0.015  
+0.889  
8.255  
(
)
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
N28 1098  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1657  
U
TYPICAL APPLICATIO  
This circuit shows how to measure negative offset. Since  
LTC1657 operates on a single supply, if its offset is  
negative, the output for code 0 limits at 0V. To measure  
this negative offset, a negative supply is needed, connect  
resistor R1 as shown in the figure. The output voltage is  
the negative offset when code 0 is loaded in.  
Negative Offset Measurement  
5V  
22  
23  
24  
0.1µF  
5:19  
2
REFHI REFOUT  
V
CC  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
3
25  
µP  
LTC1657  
V
OUT  
1
R1  
100k  
28  
27  
LDAC  
CLR  
X1/X2 REFLO GND  
–5V  
26  
21  
20  
1657 TA06  
Although LTC1657 output is up to 4.096V with its internal  
reference, highervoltagescanbeachievedwiththehelpof  
another op amp. The following circuit shows how to  
increasetheoutputswingofLTC1657byusinganLT1218.  
As shown in the configuration, the output of LTC1657 is  
amplified by 8 for an output swing of 0V to 32.768V, or a  
convenient 0.5mV/LSB.  
A Higher Voltage Output DAC  
5V  
24  
TRANSFER CURVE  
V
OUT  
36V  
22  
23  
0.1µF  
5:19  
2
REFHI REFOUT  
V
CC  
32.768 (V)  
DATA (0:15)  
CSLSB  
CSMSB  
WR  
0.1µF  
3
7
25  
3
2
µP  
LTC1657  
V
+
1
OUT  
6
28  
27  
LT1218  
4
LDAC  
(D )(4.096)  
IN  
65536  
R2  
R1  
CLR  
X1/X2 REFLO GND  
26 21 20  
V
=
1 +  
OUT  
(
)
D
IN  
0
65535  
R1  
R2  
6.98k  
1%  
1k  
1%  
1657 TA07  
RELATED PARTS  
PART NUMBER  
LTC1446(L)  
LTC1450(L)  
LTC1458(L)  
LTC1650  
DESCRIPTION  
COMMENTS  
Dual 12-Bit V  
DACs in SO-8 Package  
V
CC  
V
CC  
V
CC  
V
CC  
V
CC  
= 5V (3V), V  
= 5V (3V), V  
= 5V (3V), V  
= 0V to 4.095V (0V to 2.5V)  
= 0V to 4.095V (0V to 2.5V)  
= 0V to 4.095V (0V to 2.5V)  
OUT  
OUT  
OUT  
OUT  
Single 12-Bit V  
DACs with Parallel Interface  
OUT  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
Single 16-Bit V  
Single 16-Bit V  
Industrial DAC in 16-Pin SO  
= ±5V, Low Power, Deglitched, 4-Quadrant Multiplying V  
OUT  
OUT  
OUT  
LTC1655(L)  
DAC with Serial Interface in SO-8  
= 5V (3V), Low Power, Deglitched, V  
= 0V to 4.096V  
OUT  
(0V to 2.5V)  
1657f LT/TP 0400 4K • PRINTED IN USA  
LINEAR TECHNOLOGY CORPORATION 1999  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1657L_15

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1657_15

Parallel 16-Bit Rail-to-Rail Micropower DAC
Linear

LTC1658

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CMS8#PBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CMS8#TR

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CMS8#TRPBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CN8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CN8#PBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: PDIP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CS8

14-Bit Rail-to-Rail Micropower DAC in MSOP
Linear

LTC1658CS8#TR

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1658CS8#TRPBF

LTC1658 - 14-Bit Rail-to-Rail Micropower DAC; Package: SO; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear