LTC1662CMS8#TR [Linear]

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C;
LTC1662CMS8#TR
型号: LTC1662CMS8#TR
厂家: Linear    Linear
描述:

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: 0°C to 70°C

光电二极管 转换器
文件: 总12页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1662  
Ultralow Power, Dual  
10-Bit DAC in MSOP  
U
DESCRIPTIO  
FEATURES  
The LTC®1662 is an ultralow power, fully buffered volt-  
ageoutput,dual10-bitdigital-to-analogconverter(DAC).  
Each DAC channel draws just 1.7µA (typ) total supply-  
plus-reference operating current, yet is capable of sup-  
plying DC output currents in excess of 1mA and reliably  
driving capacitive loads of up to 1000pF. A program-  
mable Sleep mode further reduces total operating cur-  
rent to 0.05µA.  
Ultralow Power: 1.5µA (Typ) ICC per DAC Plus  
0.05µA Sleep Mode for Extended Battery Life  
Tiny: Two 10-Bit DACs in an 8-Lead MSOP—  
Half the Size of an SO-8  
Wide 2.7V to 5.5V Supply Range  
Double Buffered for Simultaneous DAC Updates  
Rail-to-Rail Voltage Outputs Drive 1000pF  
Reference Range Includes Supply for Ratiometric  
0V-to-VCC Output  
Linear Technology’s proprietary, inherently monotonic  
architecture provides excellent linearity and an exception-  
ally small external form factor. The double-buffered input  
logic provides simultaneous update capability and can be  
usedtowritetotheDACswithoutinterruptingSleepmode.  
Reference Input Impedance Is Code-Independent  
(7.1MTyp)—Eliminates External Buffers  
3-Wire Serial Interface with  
Schmitt Trigger Inputs  
Differential Nonlinearity: ±0.75LSB Max  
With its tiny operating current and exceptionally small  
size, the LTC1662 is ideal for use in the most power-  
constrained products. For most designs, there is no  
perceptible impact on the power budget; the LTC1662  
draws many times less current than even a trimpot, while  
providing buffered, low impedance (0.5typical,  
VCC = 5V) rail-to-rail outputs.  
U
APPLICATIO S  
Mobile Communications  
Portable Battery-Powered Instruments  
Remote or Inaccessible Adjustments  
Digitally Controlled Amplifiers and Attenuators  
The LTC1662 is pin and software compatible with the  
LTC1661 dual, 60µA 10-bit DAC. It is available in 8-pin  
MSOP and PDIP packages and is specified over the  
industrial temperature range.  
Factory or Field Calibration  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
W
BLOCK DIAGRA  
V
OUT A  
GND  
7
V
CC  
V
OUT B  
8
6
5
Total Supply-Plus-Reference  
Operating Current  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
10-BIT  
DAC A  
10-BIT  
DAC B  
5.5V  
4.5V  
3.6V  
CONTROL  
LOGIC  
ADDRESS  
DECODER  
V
CC  
= 2.7V  
V
= V  
CC  
SHIFT REGISTER  
REF  
CODE = 1023  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
1
2
3
4
1662 G02  
CS/LD  
SCK  
SDI  
REF  
1662 BD  
1
LTC1662  
W W W  
U
ABSOLUTE AXI U RATI GS  
(Note 1)  
VCC to GND .............................................. 0.3V to 7.5V  
Logic Inputs to GND ................................ 0.3V to 7.5V  
VOUT A, VOUT B, REF to GND ......... 0.3V to (VCC + 0.3V)  
Maximum Junction Temperature ......................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Operating Temperature Range  
LTC1662C ............................................. 0°C to 70°C  
LTC1662I........................................... 40°C to 85°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
W
U
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
ORDER PART  
TOP VIEW  
NUMBER  
NUMBER  
TOP VIEW  
CS/LD  
SCK  
SDI  
1
2
3
4
V
OUT A  
8
7
6
5
CS/LD  
SCK  
SDI  
1
2
3
4
8 V  
OUT A  
GND  
LTC1662CMS8  
LTC1662IMS8  
LTC1662CN8  
LTC1662IN8  
7 GND  
6 V  
5 V  
V
CC  
CC  
REF  
OUT B  
REF  
V
OUT B  
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
MS8 PART MARKING  
N8 PACKAGE  
8-LEAD PLASTIC DIP  
TJMAX = 125°C, θJA = 150°C/W  
LTKB  
LTKC  
TJMAX = 125°C, θJA = 100°C/W  
Consult factory for Military grade parts.  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range (TA = TMIN to TMAX), otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT Unloaded  
unless otherwise noted.  
SYMBOL PARAMETER  
Accuracy  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Resolution  
10  
10  
Bits  
Bits  
Monotonicity  
(Note 2)  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity  
±0.12  
±0.8  
±5  
±0.75  
±4  
LSB  
Integral Nonlinearity  
Offset Error  
LSB  
V
V
V
= 5V, V = 4.096V, Measured at Code 20  
±25  
mV  
OS  
OS  
CC  
REF  
TC  
V
Temperature Coefficient  
±15  
±1  
µV/°C  
LSB  
OS  
GE  
Gain Error  
V
= 5V, V = 4.096V  
±8  
CC  
REF  
GE TC  
Gain Error Temperature  
Coefficient  
±12  
µV/°C  
PSR  
Power Supply Rejection  
V
= 2.5V  
0.18  
LSB/V  
REF  
Reference Input  
Input Voltage Range  
0
V
CC  
V
Input Resistance  
Active Mode  
Sleep Mode  
3.9  
7.1  
2.5  
MΩ  
GΩ  
Input Capacitance  
10  
pF  
2
LTC1662  
The denotes the specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range (TA = TMIN to TMAX), otherwise specifications are at TA = 25°C. VCC = 2.7V to 5.5V, VREF VCC, VOUT Unloaded  
unless otherwise noted.  
SYMBOL PARAMETER  
Power Supply  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
V
V
V
V
= 3V (Note 3)  
= 5V (Note 3)  
= 3V (Note 3)  
= 5V (Note 3)  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
µA  
µA  
µA  
µA  
CC  
CC  
CC  
CC  
CC  
Sleep Mode Operating Current Supply Plus Reference Current, V = V  
= 5V (Note 3)  
REF  
0.05  
0.10  
0.18  
µA  
µA  
CC  
DC Performance  
Short-Circuit Current Low  
Short-Circuit Current High  
AC Performance  
Voltage Output Slew Rate  
V
V
= 0V, V = V = 5V, Code = 1023 (Note 7)  
5
3
12  
10  
70  
80  
mA  
mA  
OUT  
OUT  
CC  
REF  
= V = V  
= 5V, Code = 0 (Note 7)  
REF  
CC  
Rising (Notes 4, 5)  
Falling (Notes 4, 5)  
20  
7
V/ms  
V/ms  
Voltage Output Settling Time Rising 0.1V to 0.9V ±0.5LSB (Notes 4, 5)  
0.40  
0.75  
ms  
ms  
FS  
FS  
Falling 0.9V to 0.1V ±0.5LSB (Notes 4, 5)  
FS  
FS  
Capacitive Load Driving  
1000  
pF  
Digital I/O  
V
Digital Input High Voltage  
Digital Input Low Voltage  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
IH  
CC  
CC  
V
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL  
CC  
CC  
I
Digital Input Leakage  
V
= GND to V  
CC  
±0.05  
±1.0  
µA  
LK  
IN  
C
Digital Input Capacitance  
1.5  
pF  
IN W U  
The denotes the specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= 4.5V to 5.5V  
CC  
t
t
t
t
t
t
t
t
t
SDI Setup  
Relative to SCK Positive Edge  
Relative to SCK Positive Edge  
(Note 6)  
55  
0
15  
10  
14  
14  
27  
2
ns  
ns  
1
SDI Hold  
2
SCK High Time  
30  
30  
100  
30  
20  
0
ns  
3
SCK Low Time  
(Note 6)  
ns  
4
CS/LD Pulse Width  
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SCK Low to CS/LD Low  
CS/LD High to SCK Positive Edge  
SCK Frequency  
(Note 6)  
ns  
5
(Note 6)  
ns  
6
(Note 6)  
21  
–5  
0
ns  
7
(Note 6)  
ns  
9
(Note 6)  
20  
ns  
11  
Square Wave (Note 6)  
16.7  
MHz  
V
= 2.7V to 5.5V  
CC  
t
t
t
t
SDI Setup  
Relative to SCK Positive Edge (Note 6)  
Relative to SCK Positive Edge (Note 6)  
(Note 6)  
75  
0
20  
10  
15  
ns  
ns  
ns  
ns  
1
SDI Hold  
2
3
4
SCK High Time  
SCK Low Time  
50  
50  
(Note 6)  
15  
3
LTC1662  
W U  
The denotes the specifications which apply over the full operating temperature  
TI I G CHARACTERISTICS  
range, otherwise specifications are at TA = 25°C.  
SYMBOL PARAMETER  
CONDITIONS  
(Note 6)  
MIN  
150  
50  
TYP  
30  
3
MAX  
UNITS  
ns  
t
t
t
t
t
CS/LD Pulse Width  
5
LSB SCK High to CS/LD High  
CS/LD Low to SCK High  
SCK Low to CS/LD Low  
CS/LD High to SCK Positive Edge  
SCK Frequency  
(Note 6)  
ns  
6
(Note 6)  
30  
14  
–5  
0
ns  
7
(Note 6)  
0
ns  
9
(Note 6)  
30  
ns  
11  
Square Wave (Note 6)  
10  
MHz  
Note 1: Absolute maximum ratings are those values beyond which the life  
Note 4: Load is 10kin parallel with 100pF.  
of a device may be impaired.  
Note 5: V = V = 5V. DAC switched between 0.1V and 0.9V ; i.e.,  
CC  
REF  
FS  
FS  
Note 2: Nonlinearity and monotonicity are defined and tested at V = 5V,  
codes k = 102 and k = 922.  
CC  
V
= 4.096V, from code 20 to code 1023. See Figure 2.  
REF  
Note 6: Guaranteed by design, not subject to test.  
Note 7: One DAC output loaded.  
Note 3: Digital inputs at 0V or V  
.
CC  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Total Supply-Plus-Reference  
Operating Current  
Supply Current vs Clock  
Frequency  
Supply Current vs Temperature  
1000  
100  
10  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
REF  
CS/LD = LOGIC LOW  
CODE = 0  
5.5V  
CODE = 1023  
4.5V  
5.5V  
4.5V  
V
CC  
= 5V  
3.6V  
V
= 2.7V  
CC  
V
CC  
= 3V  
3.6V  
V
= 2.7V  
CC  
V
= V  
CC  
REF  
CODE = 1023  
1
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
10 100 1k 10k 100k 1M 10M 100M  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
FREQUENCY (Hz)  
1662 G03  
1662 G01  
1662 G02  
Supply Current vs Logic Input  
Voltage  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
0.75  
0.60  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
4
3
2
1
0
V
= 5V  
CC  
ALL DIGITAL INPUTS  
SHORTED TOGETHER  
0.40  
0.20  
0
–0.20  
–0.40  
–1  
–2  
–3  
–4  
–0.60  
–0.75  
0
256  
512  
768  
1023  
0
1.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
256  
512  
768  
1023  
CODE  
LOGIC INPUT VOLTAGE (V)  
CODE  
1662 G06  
1662 G04  
1662 G05  
4
LTC1662  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Integral Nonlinearity (INL) vs  
Reference Voltage  
Differential Nonlinearity (DNL) vs  
Reference Voltage  
Offset Voltage vs Temperature  
0
–1  
–2  
–3  
–4  
–5  
4
3
0.75  
0.50  
0.25  
0
V
V
= 5V  
REF  
V
= 5.5V  
CC  
CC  
V
= 5.5V  
CC  
= 4.096V  
2
1
MAX POS DNL  
MAX NEG DNL  
MAX POS INL  
MAX NEG INL  
0
–1  
–2  
–3  
–4  
–0.25  
–0.50  
–0.75  
–55 –35 –15  
5
25 45 65 85 105  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
TEMPERATURE (°C)  
V
(V)  
V
(V)  
REF  
REF  
1662 G09  
1662 G08  
1662 G07  
Load Regulation vs Output  
Current at 5V  
Load Regulation vs Output  
Current at 3V  
Gain Error vs Temperature  
0
–1  
–2  
–3  
–4  
–5  
1.0  
0.8  
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= V = 3V  
CC  
CC  
V
V
= V = 5V  
CC  
REF  
OUT  
REF  
OUT  
= 4.096V  
= 1.5V  
= 2.5V  
CODE = 512  
= 25°C  
0.6  
CODE = 512  
= 25°C  
0.6  
T
T
A
A
0.4  
0.4  
0.2  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
SOURCE  
SINK  
SOURCE  
SINK  
–55 –35 –15  
5
25 45 65 85 105  
–1 –0.8–0.6–0.40.2  
I
0
0.2 0.4 0.6 0.8  
1
–5 –4 –3 –2 –1  
I
0
(mA)  
1
2
3
4
5
TEMPERATURE (°C)  
(mA)  
OUT  
OUT  
1662 G10  
1662 G12  
1662 G11  
Output Amplifier Current Sourcing  
Capability (Midscale)  
Output Amplifier Current Sinking  
Capability (Midscale)  
Max/Min Output Voltage vs Source/  
Sink Output Current (VCC = 5V)  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
REF  
V
= V  
CC  
REF  
CODE = 512  
= 25°C  
CODE = 512  
= 25°C  
CODE = 1023  
T
A
T
A
V
V
V
= 5.5V  
= 5V  
= 4.5V  
V
V
V
= 5.5V  
= 5V  
= 4.5V  
CC  
CC  
CC  
CC  
CC  
CC  
V
A
= V  
CC  
REF  
T
= 25°C  
V
CC  
V
CC  
V
CC  
= 3.6V  
= 3V  
= 2.7V  
V
CC  
V
CC  
V
CC  
= 3.6V  
= 3V  
= 2.7V  
CODE = 0  
1µ  
10µ  
100µ  
1m  
10m  
100m  
1µ  
10µ  
100µ  
1m  
10m  
100m  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
OUTPUT SOURCE CURRENT (A)  
OUTPUT SINK CURRENT (A)  
OUTPUT SOURCE/SINK CURRENT (mA)  
1662 G13  
1662 G14  
1662 G15  
5
LTC1662  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Max/Min Output Voltage vs Source/  
Sink Output Current (VCC = 3V)  
Output Minimum Series  
Resistance vs Load Capacitance  
Large-Signal Step Response  
3.0  
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
5
4
3
2
1
0
180  
160  
140  
120  
100  
80  
CODE = 1023  
V
A
= V  
CC  
REF  
T
= 25°C  
60  
40  
CODE = 0  
V
= V = 5V  
CC  
REF  
20  
10% TO 90% STEP  
0
0
0.2 0.4 0.6 0.8  
1
1.2 1.4 1.6 1.8  
2
100p 1000p 0.01µ 0.1µ  
1µ  
10µ 100µ  
0
OUTPUT SOURCE/SINK CURRENT (mA)  
CAPACITANCE (F)  
TIME (0.5ms/DIV)  
1662 G16  
1662 G18  
1662 G17  
U
U
U
PI FU CTIO S  
CS/LD (Pin 1): Serial Interface Chip Select/Load Input.  
WhenCS/LDislow,SCKisenabledforshiftingdataonSDI  
into the register. When CS/LD is pulled high, SCK is  
disabled and the operation(s) specified in the Control  
code, A3-A0, is (are) performed. CMOS and TTL compat-  
ible.  
REF (Pin 4): Reference Voltage Input. 0V VREF VCC.  
VOUT A, VOUT B (Pins 8,5): DAC Analog Voltage Outputs.  
The output range is  
1023  
0 VOUTA,VOUTB VREF  
1024  
SCK (Pin 2): Serial Interface Clock Input. CMOS and TTL  
VCC (Pin 6): Supply Voltage Input. 2.7V VCC 5.5V.  
GND (Pin 7): System Ground.  
compatible.  
SDI(Pin3):SerialInterfaceDataInput. Inputworddataon  
the SDI pin is shifted into the 16-bit register on the rising  
edge of SCK. CMOS and TTL compatible.  
U
U
DEFI ITIO S  
Differential Nonlinearity (DNL): The difference between  
the measured change and the ideal 1LSB change for any  
twoadjacentcodes.TheDNLerrorbetweenanytwocodes  
is calculated as follows:  
Gain Error (GE): The deviation from the slope of the ideal  
DAC transfer function, expressed in LSBs at full scale.  
Integral Nonlinearity (INL): The deviation from a straight  
line passing through the endpoints of the DAC transfer  
curve(EndpointINL).Becausetheoutputcannotgobelow  
zero, the linearity is measured between full scale and the  
lowest code which guarantees the output will be greater  
than zero. The INL error at a given input code is calculated  
as follows:  
DNL = (VOUT – LSB)/LSB  
where VOUT is the measured voltage difference between  
two adjacent codes.  
Full-Scale Error (FSE): The deviation of the actual full-  
scale voltage from ideal. FSE includes the effects of offset  
and gain errors (see Figure 2).  
INL = [VOUT – VOS – (VFS – VOS)(code/1023)]/LSB  
6
LTC1662  
U
U
DEFI ITIO S  
where VOUT is the output voltage of the DAC measured at  
the given input code.  
Voltage Offset Error (VOS): Nominally, the voltage at the  
output when the DAC is loaded with all zeros. A single  
supply DAC can have a true negative offset, but the output  
cannot go below zero (see Figure 2).  
Least Significant Bit (LSB): The ideal voltage difference  
between two successive codes.  
For this reason, single supply DAC offset is measured at  
the lowest code that guarantees the output will be greater  
than zero.  
LSB = VREF/1024  
Resolution (n): Defines the number of DAC output states  
(2n) that divide the full-scale range. Resolution does not  
imply linearity.  
W U  
W
TI I G DIAGRA  
t
1
t
6
t
t
3
t
4
2
SCK  
t
t
11  
9
SDI  
A3  
A2  
A1  
X1  
X0  
t
t
7
5
CS/LD  
1662 TD  
U
OPERATIO  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
A3  
A2  
A1  
A0  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
X1  
X0  
SDI  
CONTROL CODE  
INPUT CODE  
INPUT WORD W  
DON’T CARE  
0
(INSTRUCTION  
(SCK ENABLED)  
CS/LD  
1662 F01  
EXECUTED)  
Figure 1. Register Loading Sequence  
7
LTC1662  
U
OPERATIO  
Table 1. DAC Control Functions  
CONTROL  
INPUT REGISTER  
DAC REGISTER  
STATUS  
POWER-DOWN STATUS  
(SLEEP/WAKE)  
A3 A2 A1 A0  
STATUS  
COMMENTS  
0
0
0
1
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
No Change  
No Update  
No Change  
No Change  
No Change  
Wake  
No Operation. Power-Down Status Unchanged  
(Part Stays In Wake or Sleep Mode)  
Load DAC A  
Load DAC B  
No Change  
Load DAC A  
No Update  
Load Input Register A with Data. DAC Outputs  
Unchanged. Power-Down Status Unchanged  
No Update  
Load Input Register B with Data. DAC Outputs  
Unchanged. Power-Down Status Unchanged  
Update Outputs  
Update Outputs  
Load Both DAC Regs with Existing Contents of Input  
Regs. Outputs Update. Part Wakes Up  
Wake  
Load Input Reg A. Load DAC Regs with New Contents  
of Input Reg A and Existing Contents of Reg B. Outputs  
Update. Part Wakes Up  
1
0
1
0
Load DAC B  
Update Outputs  
Wake  
Load Input Reg B. Load DAC Regs with Existing Contents  
of Input Reg A and New Contents of Reg B. Outputs  
Update. Part Wakes Up  
1
1
1
1
1
1
0
1
1
1
0
1
No Change  
No Change  
No Update  
No Update  
Wake  
Sleep  
Wake  
Part Wakes Up. Input and DAC Regs Unchanged. DAC  
Outputs Reflect Existing Contents of DAC Regs  
Part Goes to Sleep. Input and DAC Regs Unchanged. DAC  
Outputs Set to High Impedance State  
Load DACs A, B  
with Same  
Update Outputs  
Load Both Input Regs. Load Both DAC Regs with New  
Contents of Input Regs. Outputs Update. Part Wakes Up  
10-Bit Code  
Note: All control codes other than those shown are undefined and not subject to test.  
Transfer Function  
at VCC (Pin 6) is in transition. If it is not possible to  
sequence the supplies, clamp the voltage at REF by  
connecting a Schottky diode between Pin 4 (anode) and  
Pin 6 (cathode).  
The transfer function for the LTC1662 is:  
k
VOUT(IDEAL)  
=
VREF  
1024  
Serial Interface  
where k is the decimal equivalent of the binary DAC input  
code D9-D0 and VREF is the voltage at REF (Pin 4).  
See Table 2. The 16-bit Input word consists of the 4-bit  
Controlcode,the10-bitInputcodeandtwodon’t-carebits.  
Table 2. LTC1662 Input Word  
Power-On Reset  
Input Word  
The LTC1662 actively clears the outputs to zero scale  
when power is first applied, making system initialization  
consistent and repeatable.  
A3 A2 A1 A0 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 X1 X0  
Control Code  
Input Code  
Don’t  
Care  
Power Supply Sequencing  
The voltage at REF (Pin 4) should be kept within the range  
–0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken during power  
supply turn-on and turn-off sequences, when the voltage  
AftertheInputwordisloadedintotheregister(seeFigure 1),  
it is internally converted from serial to parallel format. The  
parallel 10-bit-wide Input code data path is then buffered  
by two latch registers.  
8
LTC1662  
U
OPERATIO  
Thefirstofthese,theInputRegister,isusedforloadingnew  
input codes. The second buffer, the DAC Register, is used  
forupdatingtheDACoutputs. EachDAChasitsown10-bit  
Input Register and 10-bit DAC Register.  
Alternatively, one DAC may be loaded with a new input  
code during Sleep; then with just one command, the other  
DAC is loaded, the part is awakened and both outputs are  
updated.  
Byselectingtheappropriate4-bitControlcode(seeTable 1)  
itispossibletoperformsingleoperations, suchasloading  
one DAC or changing Power-Down status (Sleep/Wake).  
In addition, some Control codes perform two or more  
operations at the same time. For example, one such code  
loads DAC A, updates both outputs and Wakes the part up.  
The DACs can be loaded separately or together, but the  
outputs are always updated together.  
For example, control code 0001b is used to load DAC A  
during Sleep. Then Control code 0101b loads DAC B,  
wakes the part and simultaneously updates both DAC  
outputs.  
Voltage Outputs  
Each of the rail-to-rail output amplifiers contained in the  
LTC1662 can typically source or sink at least 1mA  
(VCC = 5V). The outputs swing to within a few millivolts  
of either supply when unloaded and have an equivalent  
output resistance of 130(typical) when driving a load  
to the rails. The output amplifiers are stable driving  
capacitive loads of up to 1000pF.  
Register Loading Sequence  
See Figure 1. With CS/LD held low, data on the SDI input  
isshiftedintothe16-bitShiftRegisteronthepositiveedge  
of SCK. The 4-bit Control code, A3-A0, is loaded first, then  
the10-bitInputcode,D9-D0,orderedMSB-to-LSBineach  
case. Two don’t-care bits, X1 and X0, are loaded last.  
When the full 16-bit Input word has been shifted in, CS/LD  
ispulledhigh, causingthesystemtorespondaccordingto  
Table 1. The clock is disabled internally when CS/LD is  
high. Note: SCK must be low when CS/LD is pulled low.  
A small resistor placed in series with the output can be  
used to achieve stability for any load capacitance. Please  
see the Output Minimum Resistance vs Load Capaci-  
tance curve in the Typical Performance Characteristics  
section.  
Rail-to-Rail Output Considerations  
Sleep Mode  
In any rail-to-rail DAC, the output swing is limited to  
voltages within the supply range.  
DAC control code 1110b is reserved for the special Sleep  
instruction (see Table 1). In this mode, static power  
consumption is greatly reduced. The reference input and  
analog outputs are set in a high impedance state and all  
DAC settings are retained in memory so that when Sleep  
mode is exited, the outputs of DACs not updated by the  
Wake command are restored to their last active state.  
If the DAC offset is negative, the output for the lowest  
codes limits at 0V as shown in Figure 2b.  
Similarly, limiting can occur near full scale when the REF  
pin is tied to VCC. If VREF = VCC and the DAC full-scale error  
(FSE = VOS + GE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 2c. No full-scale  
limiting can occur if VREF is less than VCC – FSE.  
Sleep mode is initiated by performing a load sequence  
using control code 1110b (the DAC input code D9-D0 is  
ignored).  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
Tosaveinstructioncycles, theDACsmaybepreparedwith  
new input codes during Sleep (control codes 0001b and  
0010b); then, a single command (1000b) can be used both  
to wake the part and to update the output values.  
9
LTC1662  
U
OPERATIO  
POSITIVE  
FSE  
V
REF  
= V  
CC  
OUTPUT  
VOLTAGE  
INPUT CODE  
(2c)  
V
= V  
CC  
REF  
OUTPUT  
VOLTAGE  
0
512  
1023  
INPUT CODE  
(2a)  
OUTPUT  
VOLTAGE  
0V  
NEGATIVE  
OFFSET  
INPUT CODE  
1662 F02  
(2b)  
Figure 2. Effects of Rail-to-Rail Operation On a DAC Transfer Curve. (a) Overall Transfer Function (b) Effect of Negative  
Offset for Codes Near Zero Scale (c) Effect of Positive Full-Scale Error for Input Codes Near Full Scale When VREF = VCC  
U
TYPICAL APPLICATIO S  
Micropower Trim Circuit with Coarse/Fine Adjustment. Total Supply Current Is 9.5µA  
3.3V  
0.1µF  
R2  
1.1M  
R1  
11k  
3.3V  
6
0.1µF  
2
3.3V  
8
1
2.5V  
0.1µF  
LTC1258-2.5  
4
4
REF  
V
CC  
2
3
+
R1  
COARSE  
11k  
1
LT1495  
4
V
OUT  
8
DAC A  
V
OUT A  
0.1µF  
1
3
2
CS/LD  
SDI  
LTC1662  
U1  
CODE A R1 CODE B  
R2  
FINE  
1.1M  
V
= V  
+
SCK  
OUT  
REF  
(
)
)
1024  
R2  
1024  
5
DAC B  
V
OUT B  
CODE A  
1024  
1
CODE B  
= 2.5V  
+
(
100 1024  
7
GND  
1662 F04  
10  
LTC1662  
U
TYPICAL APPLICATIO S  
Using the LTC1258 and the LTC1662 In a Portable Application  
Powered by a Single Li-Ion Battery. Total Supply Current Is 8.2µA  
Li-Ion BATTERY INPUT  
V
4.3V  
IN  
0.1µF  
0.1µF  
6
2
V
CC  
1
4
3
2
1
8
0V TO 4.096V  
(4mV/BIT)  
LTC1258-4.1  
4
REF  
SDI  
SCK  
V
OUT A  
4.096V  
LTC1662  
5
0V TO 4.096V  
(4mV/BIT)  
CS/LD  
V
OUT B  
GND  
7
1662 F03  
U
PACKAGE DESCRIPTIO  
Dimensions in inches (millimeters) unless otherwise noted.  
MS8 Package  
8-Lead Plastic MSOP  
(LTC DWG # 05-08-1660)  
0.118 ± 0.004*  
(3.00 ± 0.102)  
8
7
6
5
0.040 ± 0.006  
(1.02 ± 0.15)  
0.034 ± 0.004  
(0.86 ± 0.102)  
0.007  
(0.18)  
0° – 6° TYP  
0.118 ± 0.004**  
(3.00 ± 0.102)  
SEATING  
PLANE  
0.193 ± 0.006  
(4.90 ± 0.15)  
0.012  
(0.30)  
REF  
0.021 ± 0.006  
(0.53 ± 0.015)  
0.006 ± 0.004  
(0.15 ± 0.102)  
0.0256  
(0.65)  
BSC  
MSOP (MS8) 1098  
1
2
3
4
* DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH,  
PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
** DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE  
N8 Package  
8-Lead PDIP (Narrow 0.300)  
(LTC DWG # 05-08-1510)  
0.400*  
(10.160)  
MAX  
0.130 ± 0.005  
0.300 – 0.325  
0.045 – 0.065  
(3.302 ± 0.127)  
(1.143 – 1.651)  
(7.620 – 8.255)  
8
1
7
6
5
0.065  
(1.651)  
TYP  
0.255 ± 0.015*  
(6.477 ± 0.381)  
0.009 – 0.015  
(0.229 – 0.381)  
0.125  
0.020  
(0.508)  
MIN  
(3.175)  
MIN  
+0.035  
–0.015  
2
4
3
0.325  
0.018 ± 0.003  
0.100  
(2.54)  
BSC  
+0.889  
8.255  
(0.457 ± 0.076)  
(
)
N8 1098  
–0.381  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC1662  
U
TYPICAL APPLICATIO  
Ultralow Power DAC Optimizes Mixer Performance  
3.3V  
0.1µF  
3.3V  
6
0.1µF  
2
I
I
P
LO  
1
2.5V  
LTC1258-2.5  
V
4
REF  
CC  
4
3.9k  
0.1%  
3.9k  
0.1%  
560k  
3.9k, 0.1%  
8
DAC A  
V
OUT A  
3.9k  
0.1%  
1
CS/LD  
I
I
P
I + Q  
MIXER  
3
LO  
RF  
LTC1662  
DAC B  
SDI  
Q
Q
P
2
SCK  
3.9k  
0.1%  
560k  
3.9k, 0.1%  
5
V
OUT B  
3.9k  
0.1%  
3.9k  
0.1%  
7
GND  
Q
Q
Q
P
1662 TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1661  
Dual 10-Bit V  
DAC in 8-Lead MSOP Package  
V
V
V
V
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
= 2.7V to 5.5V, Internal Reference, 60µA  
OUT  
CC  
CC  
CC  
CC  
LTC1663  
Single 10-Bit V  
DAC with 2-Wire Interface in SOT-23 Package  
OUT  
LTC1664  
Quad 10-Bit V  
DAC in 16-Pin Narrow SSOP  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
= 2.7V to 5.5V, 60µA per DAC, Rail-to-Rail Output  
OUT  
LTC1665/LTC1660  
LTC1446/LTC1446L  
Octal 8/10-Bit V  
DAC in 16-Pin Narrow SSOP  
OUT  
Dual 12-Bit V  
DACs in SO-8 Package with Internal Reference  
DAC in SO-8 Package  
LTC1446: V = 4.5V to 5.5V, V  
LTC1446L: V = 2.7V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
= 0V to 2.5V  
CC  
OUT  
LTC1448  
Dual 12-Bit V  
Dual 12-Bit V  
V
= 2.7V to 5.5V, External Reference Can Be Tied to V  
OUT  
CC CC  
LTC1454/LTC1454L  
DACs in SO-16 Package with Added Functionality LTC1454: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
OUT  
CC  
OUT  
LTC1454L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
LTC1458/LTC1458L  
LTC1659  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
Single Rail-to-Rail 12-Bit V DAC in 8-Lead MSOP Package  
LTC1458: V = 4.5V to 5.5V, V  
= 0V to 4.095V  
CC  
OUT  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
OUT  
Low Power Multiplying V  
DAC. Output Swings from  
OUT  
OUT  
V
: 2.7V to 5.5V  
CC  
GND to REF. REF Input Can Be Tied to V  
CC  
1662f LT/LCG 1000 4K • PRINTED IN THE USA  
LINEAR TECHNOLOGY CORPORATION 2000  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408)432-1900 FAX:(408)434-0507 www.linear-tech.com  

相关型号:

LTC1662CMS8#TRPBF

暂无描述
Linear

LTC1662CN8

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662CN8#PBF

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: PDIP; Pins: 8; Temperature Range: 0°C to 70°C
Linear

LTC1662CN8#TR

D/A Converter, 1 Func, Serial Input Loading, 750us Settling Time, PDIP8
Linear

LTC1662CN8#TRPBF

IC SERIAL INPUT LOADING, 750 us SETTLING TIME, 10-BIT DAC, PDIP8, 0.300 INCH, LEAD FREE, PLASTIC, DIP-8, Digital to Analog Converter
Linear

LTC1662I

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662IMS8

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662IMS8#PBF

暂无描述
Linear

LTC1662IMS8#TR

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: MSOP; Pins: 8; Temperature Range: -40°C to 85°C
Linear

LTC1662IMS8#TRPBF

暂无描述
Linear

LTC1662IN8

Ultralow Power, Dual 10-Bit DAC in MSOP
Linear

LTC1662IN8#PBF

LTC1662 - Ultralow Power, Dual 10-Bit DAC in MSOP; Package: PDIP; Pins: 8; Temperature Range: -40°C to 85°C
Linear