LTC1992 [Linear]

2.5uA, 1% Accurate SOT-23 Comparator and Voltage Reference for Battery Monitoring; 2.5uA , 1 %精度SOT- 23比较器和参考电压电池监控
LTC1992
型号: LTC1992
厂家: Linear    Linear
描述:

2.5uA, 1% Accurate SOT-23 Comparator and Voltage Reference for Battery Monitoring
2.5uA , 1 %精度SOT- 23比较器和参考电压电池监控

电池 比较器 监控
文件: 总8页 (文件大小:145K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC1998  
2.5µA, 1% Accurate  
SOT-23 Comparator and Voltage  
Reference for Battery Monitoring  
U
FEATURES  
DESCRIPTIO  
The LTC®1998 is a micropower comparator and a preci-  
sion adjustable reference in a 6-pin SOT-23 package that  
is optimized for lithium-ion low battery detection circuits.  
High Accuracy Trip Voltage: 1% Max Error Using  
External 1% Resistors  
Adjustable Threshold Voltage and Hysteresis  
Quiescent Current: 2.5µA Typ  
The LTC1998 features a voltage detection circuit with an  
adjustable threshold voltage and hysteresis. The thresh-  
old voltage can be programmed from 2.5V to 3.25V with  
two external resistors. A 10mV to 750mV hysteresis can  
be added with a third external resistor.  
Output Swings Rail-to-Rail  
Thresholds Programmable from 2.5V to 3.25V  
Output State Guaranteed for VBATT 1.5V  
Low Profile (1mm) ThinSOTTM Package  
U
Aproprietaryinternalarchitecturemaintains1%thresh-  
old voltage accuracy over temperature with low cost 1%  
external resistors.  
APPLICATIO S  
Lithium-Ion Battery-Powered Equipment  
PDAs  
Cell Phones  
A separate power supply pin, VLOGIC, allows the battery-  
low logic output to operate below the battery voltage,  
allowing compatibility with low voltage microprocessors  
without a pull-up resistor. Power supply glitches are  
eliminated by preventing the cross-conducting current  
which occurs when the output changes state.  
Handheld Instruments  
Battery Packs  
Pagers  
Palm Top Computers  
POS Terminals  
The LTC1998 operates with battery or supply voltages up  
to 5.5V and its battery-low output is valid for battery  
voltages above 1.5V.  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
ThinSOT is a trademark of Linear Technology Corporation.  
W
BLOCK DIAGRA  
Threshold Voltage Error vs Temperature  
1.0  
0.9  
BATT  
1.1R  
V
SET BY 1%  
TH.A  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
V
LOGIC  
EXTERNAL R,  
THRESHOLD = 3V  
V
HYST.A  
V
= 1V  
TH.A  
THRESHOLD  
ADJUST  
THRESHOLD = 3V  
R
BATTLO  
V
V
SHORTED  
TH.A  
TH.A  
TO GROUND,  
THRESHOLD = 2.5V  
1.2V  
35  
TEMPERATURE (°C)  
75  
95  
–45 –25  
–5  
15  
55  
1998 BD  
1998 G05  
1998f  
1
LTC1998  
W W  
U W  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
ORDER PART  
TOP VIEW  
Total Supply Voltage (BATT or VLOGIC to GND) ......... 6V  
Voltage  
VTH.A, VH.A ........................... BATT + 0.3V to GND – 0.3V  
BATTLO ........................ VLOGIC + 0.3V to GND – 0.3V  
Operating Temperature Range (Note 3) ...–40°C to 85°C  
Specified Temperature Range (Note 4)  
LTC1998C ...........................................–40°C to 85°C  
LTC1998I.............................................–40°C to 85°C  
Storage Temperature Range ................. 65°C to 150°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
NUMBER  
BATT 1  
GND 2  
6 BATTLO  
LTC1998CS6  
LTC1998IS6  
5 V  
LOGIC  
V
TH.A  
3
4 V  
H.A  
S6 PACKAGE  
6-LEAD PLASTIC SOT-23  
S6 PART MARKING*  
LTTY  
TJMAX = 150°C, θJA = 250°C/W  
*The temperature grades are indentified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VGND = 0V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
Supply Voltage Range-BATT  
1.5  
1
5.5  
V
V
Supply Voltage Range-V  
V
BATT  
LOGIC  
Supply Current, V  
TH.A  
= 3V,  
T = 25°C  
LTC1998CS6  
LTC1998IS6  
2.5  
3
3.5  
4.2  
4.5  
µA  
µA  
µA  
BATT  
A
V
= 1.5V  
Supply Current, V  
= 1.5V  
= 5.5V,  
T = 25°C  
4.3  
5.2  
5.5  
µA  
µA  
µA  
BATT  
A
V
LTC1998CS6  
LTC1998IS6  
TH.A  
Monitor  
Threshold Accuracy  
V
V
= 2.5V, Pin 3 Shorted to Ground  
= 3V, Pin 3 Driven by Precision  
0.6  
0.8  
0.85  
1
%
%
BATT.Th  
BATT.Th  
LTC1998C  
LTC1998I  
0.5  
0.6  
0.61  
0.71  
%
%
Voltage Source to 1V  
V
= 3V, V = 1V (Note 5)  
LTC1998C  
LTC1998I  
0.8  
0.9  
1
1.1  
%
%
BATT.Th  
TH.A  
Programmed with 1% Max External Resistors  
V
= 3.25V, Pin 3 Diven by Precision  
LTC1998C  
LTC1998I  
0.6  
0.7  
0.65  
0.85  
%
%
BATT.Th  
Voltage Source to 1.5V  
V
= 3.25V, V  
= 1.5V (Note 5)  
TH.A  
LTC1998C  
LTC1998I  
0.9  
1
1.1  
1.3  
%
%
BATT.Th  
Programmed with1% Max External Resistors  
Hysteresis Accuracy  
V
250mV  
–5  
10  
5
mV  
mV  
HYST  
250mV V  
750mV  
±5  
HYST  
Allowable Hysteresis Range (Note 2)  
Propagation Delay  
750  
mV  
C
= 100pF, Overdrive = 10mV  
Overdrive = 100mV  
350  
150  
µs  
µs  
OUT  
Threshold Adjust Pin Leakage, I  
V
V
1.5V  
0.01  
0.01  
1
1
nA  
nA  
TH.A  
TH.A  
Hysteresis Adjust Pin Leakage, I  
Output  
1.5V  
H.A  
H.A  
BATTLO High Voltage  
BATTLO Low Voltage  
BATTLO Low Voltage  
I
I
I
= –1mA  
V
– 0.3  
LOGIC  
V
V
OUT  
OUT  
OUT  
= 1mA, V  
2V  
0.2  
BATT  
= 0.25mA, V  
= 1V  
0.3  
V
BATT  
1998f  
2
LTC1998  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: Maximum allowable hysteresis depends on desired trip voltages.  
See application notes for details.  
Note 3: LTC1998C and LTC1998I are guaranteed functional over the  
operating temperature range of 40°C to 85°C.  
Note 4: The LTC1998C is guaranteed to meet specified performance from  
0°C to 70°C. The LTC1998C is designed, characterized and expected to  
meet specified performance from –40°C to 85°C but is not tested or QA  
sampled at these temperatures. The LTC1998I is guaranteed to meet  
specified performance from –40°C to 85°C.  
Note 5: This parameter is not 100% tested.  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Quiescent Supply Current vs  
Supply Voltage  
Quiescent Supply Current vs  
Temperature  
Threshold Voltage vs Threshold  
Adjust Voltage  
3.5  
3.0  
2.5  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
= 3V  
T
= 25°C  
LOGIC  
BATT  
LOGIC  
A
V
= V  
BATT  
V
= 1.5V  
TH.A  
V
= 0V  
TH.A  
V
= 1.5V  
TH.A  
1.5  
0
0.5  
1.0  
–50 –30 –10  
10  
30  
50  
70  
90  
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
THRESHOLD ADJUST VOLTAGE (V)  
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
1998 G03  
1998 G02  
1998 G01  
Available Hysteresis vs  
Threshold Voltage  
Threshold Voltage Error vs  
Temperature  
Input Current vs Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
750  
500  
250  
0
10000  
1000  
V
= 1.5V  
IN  
V
SET BY 1%  
TH.A  
EXTERNAL R,  
THRESHOLD = 3V  
V
= 1V  
IN  
100  
V
= 0.5V  
V
= 1V  
IN  
TH.A  
THRESHOLD = 3V  
10  
1
V
SHORTED  
TH.A  
TO GROUND,  
THRESHOLD = 2.5V  
0.1  
35  
TEMPERATURE (°C)  
75  
95  
–45 –25  
–5  
15  
55  
3.25  
2.5  
2.75  
3.0  
35 45 55 65 75 85 95 105 115 125  
LOW BATTERY THRESHOLD VOLTAGE (V)  
TEMPERATURE (°C)  
1998 G05  
1998 G04  
1998 G06  
1998f  
3
LTC1998  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Output Low Voltage vs Load  
Current  
Output High Voltage vs Load  
Current  
Output Short-Circuit Current vs  
Supply Voltage  
120  
100  
80  
60  
40  
20  
0
0.6  
0.4  
0.2  
0
0
–50  
T
= 25°C  
BATT  
T
= 25°C  
LOGIC  
A
A
T
= 85°C  
A
V
= V  
V
= V  
= 3V  
LOGIC  
BATT  
T
= 25°C  
A
T
= –40°C  
T
= 85°C  
A
A
SOURCE CURRENT,  
BATTLO SHORTED TO GND  
–100  
–150  
–200  
–250  
T
= –40°C  
A
T
= 25°C  
T
= 25°C  
A
A
T
= –40°C  
T
= 85°C  
A
A
SINK CURRENT,  
BATTLO SHORTED  
T
= 25°C  
LOGIC  
A
BATT = 3V  
BATT = 5V  
TO V  
V
= V  
LOGIC  
BATT  
5
1
2
3
4
5
1
2
3
4
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0  
SUPPLY VOLTAGE (V)  
OUTPUT SINK CURRENT (mA)  
OUTPUT SOURCE CURRENT (mA)  
1998 G07  
1998 G08  
1998 G09  
U
U
U
PI FU CTIO S  
BATT (Pin 1): Battery Voltage to be monitored. Supply  
current is also drawn from this pin. Board layout should  
connect this pin to the battery(+) terminal, through a trace  
that does not conduct load current.  
VH.A (Pin 4): Hysteresis Adjust. Hysteresis threshold  
voltage VTH2 = 2.5V + (VH.A/2). VH.A can be supplied by a  
voltage source or resistor divider. VH.A must always be  
programmed to a higher potential than VTH.A. Hysteresis  
voltage, VHYST = VTH2 – VBATT.Th  
.
GND (Pin 2): Ground should be connected to the battery  
(–) terminal through a trace that does not conduct load  
return current.  
VLOGIC (Pin 5): Positive Supply Voltage for Output Driver.  
This voltage can be driven from an external logic supply or  
tied to BATT.  
VTH.A (Pin 3): Threshold Adjust Pin. Adjusts the low  
battery threshold voltage, VBATT.Th = 2.5V + (VTH.A/2).  
VTH.A can be supplied by a voltage source or a resistor  
divider.  
BATTLO (Pin 6): Output of Comparator. Low for BATT <  
VBATT.Th (low battery threshold voltage). Output state  
guaranteed for VBATT 1.5V.  
U
QUICK DESIG GUIDE  
How to Calculate the External Resistor Values  
threshold voltage of the LTC1998, the battery low pin  
(BATTLO) will change state, from high to low, to indicate  
a low battery condition. The low battery threshold voltage  
isprogrammedviathevoltagethresholdadjustpin(VTH.A).  
A hysteresis adjust pin (VH.A) will add hysteresis to the  
programmed value of the low battery threshold voltage.  
The LTC1998 is a low battery warning indicator and is  
especially designed for monitoring the voltage of single-  
cell Lithium-Ion batteries. The LTC1998 compares its  
supply pin (BATT) to an accurate internal reference; if the  
battery voltage falls below the programmed low battery  
1998f  
4
LTC1998  
U
QUICK DESIG GUIDE  
Typical Application  
Example 1: A system using a 4.2V (fully charged) Lithium-  
Ion battery requires a low battery threshold of 2.7V,  
100mV hysteresis and can allow up to 4.2µA maximum  
resistor current.  
Table 1: Design Equations for R1, R2, R3, Figure 1  
Choose desired values for:  
• VBATT.Th: Low Battery Threshold Voltage  
• VHYST: Hysteresis Voltage  
• IR: Max Allowable Resistor Current  
Solve:  
RTOTAL = 1M, R1 = 786k, R2 = 66k and R3 = 148k  
Choose standard 1% values.  
R1 = 787k, R2 = 66.5k, R3 = 147k  
V
LOGIC  
1.5V TO 4.2V  
REGULATOR  
0.1µF  
4.2V  
RTOTAL = R1+R2 +R3 =  
IR  
R1  
1
+
1%  
BATT  
5
6
4
3
V
V
LOGIC  
H.A  
R2  
1%  
5V  
µP  
LTC1998  
BATTLO  
R1= RTOTAL  
R2 = RTOTAL  
– 1  
V
BATT.Th + VHYST  
V
TH.A  
GND  
2
R3  
1%  
5V  
– 1 – R1  
1998 F01  
VBATT.Th  
R3 = RTOTAL – R1– R2  
Figure 1. Low Battery Threshold Detector with Hysteresis  
W U U  
U
APPLICATIO S I FOR ATIO  
LOW BATTERY THRESHOLD VOLTAGE AND  
HYSTERESIS ADJUST  
For instance, if the applied voltage at pin 3, VTH.A, is 1V the  
LTC1998 will indicate a low battery condition when the  
battery voltage pin (BATT) falls below 3V.  
Low Battery Threshold Voltage Adjustment, Pin 3  
The voltage at the threshold adjust pin (VTH.A) can be set  
with any voltage source. This pin allows a continuous time  
adjustment, that is, the low battery threshold voltage may  
be changed at any time. The high input impedance of the  
VTH.A pin allows the use of a high valued resistive divider  
(to minimize current drain) from the battery to set the  
battery low threshold voltage, Figure 2.  
The low battery threshold voltage is the battery voltage  
which will trip the (BATTLO) pin high to low. It should be  
adjusted via the threshold adjust pin (VTH.A). This is a high  
input impedance pin that senses an externally applied  
voltage and programs the low battery threshold voltage  
(VBATT.Th). The VTH.A pin is designed to accommodate  
voltages from 0V to 1.5V with respect to ground. This  
allows the low battery threshold voltage to be set to any  
voltage between 2.5V and 3.25V, that is:  
1
+
BATT  
R1  
3
V
TH.A  
(VTH.A  
2
)
LTC1998  
2
R2  
VBATT.Th = 2.5V +  
1998 F02  
Figure 2. Resistor Divider Sets Threshold  
1998f  
5
LTC1998  
W U U  
U
APPLICATIO S I FOR ATIO  
The simple calculations of resistor values R1 and R2 are  
illustrated below. Set a value for R1 + R2. This value will  
affect the max amount of current drawn from the battery  
when fully charged. For instance if R1 + R2 = 1M the  
resistive divider will draw 4.1µA when the battery voltage  
is 4.1V.SetthedesiredvalueofVBATT.Th (thisvalueshould  
be between 2.5V and 3.25V) that is the value of the battery  
voltage that will trip the internal circuitry of the LTC1998  
and change the state of the battery low pin (BATTLO).  
The programming of the hysteresis threshold adjust pin  
(VH.A) is similar to the programming of the voltage thresh-  
old adjust pin (VTH.A) already described in the previous  
paragraph. Pin 4 effectively adjusts the threshold voltage  
at which the low battery pin (BATTLO) changes state from  
low to high. This threshold (VTH2) is defined as:  
(VH.A  
2
)
VTH2 = 2.5V +  
The actual hysteresis voltage is:  
VHYST = VTH2 – VBATT.Th  
5V  
VBATT.Th  
Solve for R1= (R1+R2)  
– 1  
Itisimperativethatthehysteresisthresholdadjustvoltage  
at Pin 4 be set to a higher voltage than the low battery  
threshold adjust voltage at Pin 3, at all times, to avoid  
oscillation at the BATTLO output pin. The hysteresis  
threshold adjust pin may be set with a voltage source or  
with a resistor divider, just as with the low battery thresh-  
old adjust pin.  
Example: A Lithium-Ion battery is monitored and a battery  
low signal should be issued when it discharges to 2.85V,  
that is, VBATT.Th = 2.85V; if (R1 + R2) = 1M, then  
R1 = 754.38k and R2 = 245.62k. Choose the closest 1%  
value of R1 = 750k and R2 = 243k. Calculate the practical  
valueforVBATT.Th asitwillbeslightlydifferentfrom2.85V,  
due to the use of standard 1% resistor values.  
Combined Control of Threshold and Hysteresis  
R1+ R2  
R1+ (R1+R2)  
VBATT.Th = 5V  
= 2.849V  
If a resistor divider is desired, then both threshold adjust  
dividers can be combined in order to save current. This  
simpletechniquealsoguaranteesthatthehysteresisthresh-  
old adjust voltage at Pin 4 is higher than the voltage at the  
VTH.A pin, Figure 3.  
The above low battery threshold of 2.849V is guaranteed  
to within 1% even though 1% resistors are used to  
program the VTH.A voltage applied to Pin 3.  
For sake of completeness, the voltage at Pin 3 (VTH.A) can  
be easily calculated by VTH.A = VBATT.Th (R2/(R1 + R2) =  
0.6972V (when VBATTERY = VBATT.Th).  
R1  
R2  
R3  
1
+
BATT  
4
3
V
H.A  
LTC1998  
Hysteresis Adjustment, Pin 4.  
V
TH.A  
The LTC1998 has an adjustable hysteresis ranging from  
10mV to 0.75V. A large hysteresis is useful in the event  
that a low battery signal at the LTC1998’s BATTLO pin  
causes the system to shed some battery load, thus induc-  
ingsystemconfusionasthepartiallyloadedbatteryrecov-  
ers and changes the status of Pin 6 (BATTLO). The 2.5V to  
3.25V programming window of low battery threshold  
voltage includes the hysteresis. If, for instance, the low  
battery threshold voltage is set to 2.5V, 750mV hysteresis  
can be added on top of the 2.5V. If the low battery  
threshold voltage is set to 3.15V, only 100mV hysteresis  
can be applied.  
1998 F03  
Figure 3. Combined Resistor Divider  
The calculation of the resistor values R1, R2 and R3 is  
quite straightforward and similar to the procedure out-  
lined in the previous paragraph.  
Choose a value for the sum of R1 + R2 + R3 as well as the  
values for low battery threshold and hysteresis.  
Solve for resistor R1:  
1998f  
6
LTC1998  
W U U  
APPLICATIO S I FOR ATIO  
U
has a separate supply pin, (VLOGIC) that can be used to  
provide an output voltage rail matching the VDD logic of  
microprocessors. The VLOGIC pin may be tied to a voltage  
lower than the voltage at the BATT pin. The VLOGIC pin may  
also be tied to a voltage higher than VBATT via a series  
resistor greater than 10k. The output will then act as an  
open-drain device.  
5V  
VTH2  
R1= (R1+R2 +R3)  
– 1  
Solve for the sum of  
5V  
VBATT.Th  
(R1+R2) = (R1+R2 +R3)  
– 1  
In a given application, if it is possible for BATTLO to be  
shorted to GND or a supply, a series resistor should be  
added to limit the short-circuit current to 5mA.  
then solve for R2 and R3.  
Example:Asystemneedstodetectalowbatteryvoltageof  
3V (VBATT.Th = 3V) with 250mV hysteresis (VTH2 = 3.25V).  
Set the value of the resistor divider (R1 + R2 + R3) = 1M.  
3.25V  
PROGRAMMED  
HYSTERESIS  
HYSTERESIS  
R1 = 539k, R1 + R2 = 667k, R2 = 128k, R3 = 333k. Choose  
the closest 1% values, that is 536k, 332k, 127k. Figure 4  
graphically shows the function of the LTC1998 as  
described above.  
THRESHOLD  
PROGRAMMABLE  
THRESHOLD RANGE  
PROGRAMMED  
LOW BATT  
THRESHOLD  
BATTERY VOLTAGE  
RECOVERS UNDER  
REDUCED LOAD  
2.50V  
BATTERY  
VOLTAGE  
VERSATILE OUTPUT DRIVER  
V
LOGIC  
V
LOGIC, BATTLO (Pins 5,6)  
BATTLO  
TheLTC1998usesaCMOSpush-pulloutputstagetodrive  
the low battery output signal. This output pin (BATTLO)  
1998 F04  
Figure 4. LTC1998 Function Plot  
U
PACKAGE DESCRIPTIO  
S6 Package  
6-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1636)  
2.90 BSC  
(NOTE 4)  
0.62  
MAX  
0.95  
REF  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45  
6 PLCS (NOTE 3)  
0.95 BSC  
NOTE:  
0.20 BSC  
DATUM ‘A’  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
0.01 – 0.10  
1.00 MAX  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD  
FLASH AND METAL BURR  
0.80 – 0.90  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
0.30 – 0.50 REF  
1.90 BSC  
0.09 – 0.20  
(NOTE 3)  
S6 TSOT-23 0302  
1998f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
7
LTC1998  
U
TYPICAL APPLICATIO S  
Backup Battery Switchover Circuit  
Single Li-Ion Cell Low Battery Detector  
V
=
MBRM120  
V
=
LOGIC  
1V TO 5V  
BATT  
1.5V TO 4.2V  
2.5V TO 4.2V  
V
OUT  
REGULATOR  
R1  
787k  
1%  
BAT54C  
R4  
1M  
0.1µF  
1
R1  
1%  
1
Si2301  
+
+
BATT  
V
LOGIC  
BATT  
5
6
4
5
4
V
V
H.A  
V
H.A  
V
LOGIC  
R2  
Si2301  
R2  
1%  
LTC1998  
BATTLO  
µP  
68.1k  
LTC1998  
BATTLO  
1%  
BAT54C  
3
3
6
TH.A  
V
TH.A  
R3  
147k  
1%  
3V  
BACKUP  
BATTERY  
GND  
2
+
GND  
2
R3  
1%  
1998 TA01  
SWITCHES TO BACKUP BATTERY WHEN PRIMARY FALLS BELOW 2.7V.  
SWITCHES BACK TO PRIMARY WHEN VOLTAGE RECOVERS TO 2.8V  
1998 TA04  
Micropower 2.9V VCC Threshold  
Detector with 15mV Hysteresis  
3.3V  
High Accuracy Window Comparator  
with Dual Hysteresis  
R1  
715k  
1%  
1
+
V
V
IN  
BATT  
V
LOGIC  
5
6
4
3
V
V
H.A  
R2  
9.09k  
1%  
R1  
619k  
1%  
LTC1998  
BATTLO  
1
R7  
1M  
BATT  
V
LOGIC  
5
6
4
3
OUT  
TH.A  
V
V
H.A  
R3  
274k  
1%  
GND  
2
R2  
6.04k  
1%  
V
OUT  
LTC1998  
BATTLO  
+
2N7002  
TH.A  
V
= V WHEN  
IN  
OUT  
R3  
383k  
1%  
LOW THRESHOLD = 2.9V  
HYSTERESIS = 15mV  
2.6V V 3.1V  
GND  
2
1998 TA03  
Low Battery Load Reduction Circuit  
R4  
909k  
1%  
1
REGULATOR  
BATT  
V
LOGIC  
5
6
4
3
R1  
787k  
1%  
NC  
V
V
H.A  
Si2301  
1
R5  
6.98k  
1%  
+
BATT  
V
LTC1998  
BATTLO  
5
6
4
3
CRITICAL  
CIRCUITRY  
V
V
H.A  
LOGIC  
R2  
TH.A  
LTC1998  
BATTLO  
68.1k  
1%  
R6  
76.8k  
1%  
WINDOW LOW THRESHOLD = 2.6V  
HYSTERESIS = 10mV  
GND  
2
TH.A  
WINDOW HIGH THRESHOLD = 3.1V  
NONCRITICAL  
CIRCUITRY  
R3  
147k  
1%  
GND  
2
HYSTERESIS = 10mV  
1998 TA06  
LOW THRESHOLD = 2.7V  
HYSTERESIS = 100mV  
1998 TA05  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1440/LTC1540  
LTC1441/LTC1442  
Micropower Comparator with 1% Reference  
1.182V ±1% Reference, ±10mV (Max) Input Offset  
1.182V ±1% Reference (LTC1442)  
Micropower Dual Comparator with 1% Reference  
LTC1443/LTC1444/LTC1445 Micropower Quad Comparator with 1% Reference LTC1443 has 1.182V Reference, LTC1444/LTC1445 have 1.221V  
Reference and Adjustable Hysteresis  
1998f  
LT/TP 0802 2K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
8
LINEAR TECHNOLOGY CORPORATION 2001  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC1992-10CMS8

Low Power, Fully Differential Input/Output Amplifier/Driver Family
Linear

LTC1992-10CMS8#PBF

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1992-10CMS8#TR

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1992-10CMS8#TRPBF

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC1992-10HMS8

Low Power, Fully Differential Input/Output Amplifier/Driver Family
Linear

LTC1992-10HMS8#PBF

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1992-10HMS8#TR

Operational Amplifier, 1 Func, 4000uV Offset-Max, CMOS, PDSO8
ADI

LTC1992-10HMS8#TRPBF

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC1992-10IMS8

Low Power, Fully Differential Input/Output Amplifier/Driver Family
Linear

LTC1992-10IMS8#PBF

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC1992-10IMS8#TRPBF

LTC1992 Family - Low Power, Fully Differential Input/Output Amplifier/Driver Family; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
ADI

LTC1992-1CMS8

Low Power, Fully Differential Input/Output Amplifier/Driver Family
Linear