LTC2315ITS8-12#TRMPBF [Linear]

LTC2315-12 - 12-Bit, 5Msps Serial Sampling ADC in TSOT; Package: SOT; Pins: 8; Temperature Range: -40°C to 85°C;
LTC2315ITS8-12#TRMPBF
型号: LTC2315ITS8-12#TRMPBF
厂家: Linear    Linear
描述:

LTC2315-12 - 12-Bit, 5Msps Serial Sampling ADC in TSOT; Package: SOT; Pins: 8; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总22页 (文件大小:689K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2315-12  
12-Bit, 5Msps Serial  
Sampling ADC in TSOT  
FEATURES  
DESCRIPTION  
The LTC®2315-12 is a 12-bit, 5Msps, serial sampling A/D  
converterthatdrawsonly6.4mAfromawiderangeanalog  
supply adjustable from 2.7V to 5.25V. The LTC2315-12  
containsanintegratedbandgapandreferencebufferwhich  
provide a low cost, high performance (20ppm/°C max)  
and space saving applications solution. The LTC2315-12  
achieves outstanding AC performance of 72.6dB SINAD  
and84dBTHDwhilesamplinga500kHzinputfrequency.  
The extremely high sample rate-to-power ratio makes the  
LTC2315-12 ideal for compact, low power, high speed  
systems. The LTC2315-12 also provides both nap and  
sleep modes for further optimization of the device power  
within a system.  
n
5Msps Throughput Rate  
n
Guaranteed 12-Bit No Missing Codes  
n
Internal Reference: 2.048V/4.096V Span  
n
Low Noise: 73dB SNR  
n
Low Power: 6.4mA at 5Msps and 5V  
n
Dual Supply Range: 3V/5V operation  
n
Sleep Mode with < 1µA Typical Supply Current  
n
Nap Mode with Quick Wake-up < 1 conversion  
n
Separate 1.8V to 5V Digital I/O Supply  
n
High Speed SPI-Compatible Serial I/O  
n
Guaranteed Operation from –40°C to 125°C  
n
8-Lead TSOT-23 Package  
APPLICATIONS  
The LTC2315-12 has a high-speed SPI-compatible serial  
interface that supports 1.8V, 2.5V, 3V and 5V logic. The  
fast 5Msps throughput makes the LTC2315-12 ideally  
suited for a wide variety of high speed applications.  
n
Communication Systems  
n
High Speed Data Acquisition  
n
Handheld Terminal Interface  
n
Medical Imaging  
Complete 14-/12-Bit Pin-Compatible SAR ADC Family  
n
Uninterrupted Power Supplies  
500ksps  
2.5Msps  
4.5Msps  
5Msps  
n
Battery Operated Systems  
14-Bit  
12-Bit  
LTC2312-14 LTC2313-14 LTC2314-14  
LTC2312-12 LTC2313-12  
n
Automotive  
LTC2315-12  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Power 3V/5V 9mW/15mW 14mW/25mW 18mW/31mW 19mW/32mW  
TYPICAL APPLICATION  
5V Supply, Internal Reference, 5Msps, 12-bit Sampling ADC  
16k Point FFT, fS = 5Msps, fIN = 500kHz  
0
5V  
V
= 5V  
DD  
LTC2315-12  
2.2µF  
SNR = 73.1dBFS  
SINAD = 72.6dBFS  
THD = –84dB  
–20  
–40  
V
CS  
DD  
2.2µF  
SFDR = 87dBc  
SERIAL DATA LINK TO  
ASIC, PLD, MPU, DSP  
OR SHIFT REGISTERS  
REF  
SCK  
SDO  
–60  
–80  
GND  
DIGITAL OUTPUT SUPPLY  
1.8V TO 5V  
ANALOG INPUT  
0V TO 4.096V  
A
OV  
DD  
IN  
–100  
–120  
–140  
2.2µF  
231512 TA01  
500  
1000  
0
1500  
2000  
2500  
FREQUENCY (kHz)  
231512 TA01a  
231512fa  
1
For more information www.linear.com/LTC2315-12  
LTC2315-12  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Notes 1, 2)  
Supply Voltage (V , OV ) .......................................6V  
DD  
DD  
Reference (REF) and Analog Input (A ) Voltage  
IN  
TOP VIEW  
(Note 3)......................................(–0.3V) to (V + 0.3V)  
DD  
V
1
8 CS  
7 SCK  
6 SDO  
DD  
REF 2  
GND 3  
A
Digital Input Voltage (Note 3).. (–0.3V) to (OV + 0.3V)  
DD  
Digital Output Voltage............. (–0.3V) to (OV + 0.3V)  
DD  
4
5 OV  
DD  
IN  
Power Dissipation...............................................100mW  
TS8 PACKAGE  
8-LEAD PLASTIC TSOT-23  
Operating Temperature Range  
T
= 150°C, θ = 195°C/W  
JA  
JMAX  
LTC2315C ................................................ 0°C to 70°C  
LTC2315I..............................................–40°C to 85°C  
LTC2315H .......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature Range (Soldering, 10 sec)........300°C  
ORDER INFORMATION  
Lead Free Finish  
TAPE AND REEL (MINI)  
TAPE AND REEL  
PART MARKING*  
LTFZG  
PACKAGE DESCRIPTION  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
8-Lead Plastic TSOT-23  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2315CTS8-12#TRMPBF  
LTC2315ITS8-12#TRMPBF  
LTC2315HTS8-12#TRMPBF  
LTC2315CTS8-12#TRPBF  
LTC2315ITS8-12#TRPBF  
LTC2315HTS8-12#TRPBF  
LTFZG  
–40˚C to 85˚C  
LTFZG  
–40˚C to 125˚C  
TRM = 500 pieces. *Temperature grades are identified by a label on the shipping container.  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
231512fa  
2
For more information www.linear.com/LTC2315-12  
LTC2315-12  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
–0.05  
0
TYP  
MAX  
+ 0.05  
DD  
UNITS  
l
l
V
AIN  
V
IN  
Absolute Input Range  
V
V
V
Input Voltage Range  
(Note 11)  
V
REF  
I
Analog Input DC Leakage Current  
Analog Input Capacitance  
–1  
1
µA  
IN  
C
Sample Mode  
Hold Mode  
13  
3
pF  
pF  
IN  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
12  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
12  
Bits  
Transition Noise  
(Note 6)  
0.33  
LSB  
RMS  
l
l
INL  
Integral Linearity Error  
V
V
= 5V (Note 5)  
= 3V (Note 5)  
–1.25  
–1.5  
0.25  
0.3  
1.25  
1.5  
LSB  
LSB  
DD  
DD  
l
l
DNL  
Differential Linearity Error  
Offset Error  
V
V
= 5V  
= 3V  
–0.99  
–0.99  
0.15  
0.2  
0.99  
0.99  
LSB  
LSB  
DD  
DD  
l
l
V
V
= 5V  
= 3V  
–4  
–6  
0.5  
1
4
6
LSB  
LSB  
DD  
DD  
l
l
Full-Scale Error  
V
DD  
V
DD  
= 5V  
= 3V  
–7  
–9  
1.5  
2
7
9
LSB  
LSB  
l
l
Total Unadjusted Error  
V
DD  
V
DD  
= 5V  
= 3V  
–8  
–10  
2
2.5  
8
10  
LSB  
LSB  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dBFS. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
SINAD  
Signal-to-(Noise + Distortion) Ratio  
f
f
= 500kHz, V = 5V  
69.5  
67.5  
72.6  
69.5  
dB  
dB  
IN  
IN  
DD  
= 500kHz, V = 3V  
DD  
l
l
SNR  
Signal-to-Noise Ratio  
f
f
= 500kHz, V = 5V  
70  
68  
73  
70  
dB  
dB  
IN  
IN  
DD  
= 500kHz, V = 3V  
DD  
l
l
THD  
Total Harmonic Distortion  
First 5 Harmonics  
f
f
= 500kHz, V = 5V  
–84  
–84  
–76  
–75  
dB  
dB  
IN  
IN  
DD  
= 500kHz, V = 3V  
DD  
l
l
SFDR  
IMD  
Spurious Free Dynamic Range  
f
f
= 500kHz, V = 5V  
87  
87  
78  
77  
dB  
dB  
IN  
IN  
DD  
= 500kHz, V = 3V  
DD  
Intermodulation Distortion  
2nd Order Terms  
3rd Order Terms  
f
A
= 461kHz, f = 541kHz  
IN1 IN2  
–77  
–89  
dBc  
dBc  
IN1  
IN2  
, A = –7dBFS  
Full Power Bandwidth  
At 3dB  
At 0.1dB  
130  
20  
MHz  
MHz  
–3dB Input Linear Bandwidth  
Aperture Delay  
SINAD ≥ 68dB  
5
1
MHz  
ns  
t
t
AP  
Aperture Jitter  
10  
ps  
RMS  
JITTER  
231512fa  
3
For more information www.linear.com/LTC2315-12  
LTC2315-12  
REFERENCE INPUT/OUTPUT The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
Output Voltage  
2.7V ≤ V ≤ 3.6V  
2.040  
4.080  
2.048  
4.096  
2.056  
4.112  
V
V
REF  
REF  
DD  
4.75 ≤ V ≤ 5.25V  
DD  
l
V
V
Temperature Coefficient  
Output Resistance  
7
20  
ppm/°C  
REF  
Normal Operation  
2
52  
Ω
kΩ  
REF  
Overdrive Condition  
(V  
≥ V  
+ 50mV)  
REFOUT  
REFIN  
V
REF  
Line Regulation  
2.7V ≤ V ≤ 3.6V  
2
0.8  
mV/V  
mV/V  
DD  
4.75 ≤ V ≤ 5.25V  
DD  
V
V
V
2.048V/4.096V Supply Threshold  
2.048V/4.096V Supply Threshold Hysteresis  
Input Voltage Range  
4.15  
150  
V
REF  
REF  
REF  
mV  
l
l
2.7V ≤ V ≤ 3.6V  
V
REF  
+50mV  
+50mV  
V
DD  
4.3  
V
V
DD  
REF  
(External Reference Input)  
4.75 ≤ V ≤ 5.25V  
V
DD  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
0.8 • OV  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
IH  
IL  
DD  
0.2 • OV  
V
DD  
I
V
= 0V to OV  
DD  
–10  
10  
μA  
pF  
IN  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
High-Z Output Leakage Current  
High-Z Output Capacitance  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA (Source)  
O
OV –0.2  
DD  
V
OH  
OL  
I = 500µA (Sink)  
O
0.2  
10  
V
I
OZ  
V
= 0V to OV , CS = High  
–10  
µA  
pF  
OUT  
DD  
C
OZ  
CS = High  
4
I
I
V
V
= 0V, OV = 1.8V  
–20  
20  
mA  
mA  
SOURCE  
SINK  
OUT  
OUT  
DD  
= OV = 1.8V  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
DD  
Supply Voltage  
3V Operational Range  
5V Operational Range  
l
l
2.7  
4.75  
3
5
3.6  
5.25  
V
V
l
OV  
DD  
Digital Output Supply Voltage  
1.71  
5.25  
V
l
l
I
=
IOV  
Supply Current, Static Mode  
Operational Mode  
Nap Mode  
CS = 0V, SCK = 0V  
CS = 0V, SCK = 0V  
3.5  
6.4  
1.8  
0.8  
4
mA  
mA  
mA  
µA  
TOTAL  
DD +  
IV  
7.5  
DD  
l
Sleep Mode  
5
l
l
P
Power Dissipation, Static Mode  
Operational Mode  
Nap Mode  
17.5  
32  
9
20  
37.5  
mW  
mW  
mW  
µW  
D
l
Sleep Mode  
4
25  
231512fa  
4
For more information www.linear.com/LTC2315-12  
LTC2315-12  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. (Note 4)  
SYMBOL  
PARAMETER  
CONDITIONS  
(Notes 7, 8)  
(Notes 7, 8)  
MIN  
TYP  
MAX  
5
UNITS  
MHz  
MHz  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
f
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Shift Clock Frequency  
Shift Clock Period  
SAMPLE(MAX)  
87.5  
SCK  
11.4  
SCK  
Minimum Throughput Time, t  
Conversion Time  
+ t  
CONV  
200  
ns  
THROUGHPUT  
ACQ  
160  
40  
5
ns  
CONV  
Acquisition Time  
ns  
ACQ  
1
Minimum CS Pulse Width  
SCK Setup Time After CS↓  
SDO Enable Time After CS↓  
(Note 7)  
ns  
(Note 7)  
5
ns  
2
(Notes 7, 8)  
(Notes 7, 8, 9)  
10  
ns  
3
SDO Data Valid Access Time after SCK↓  
SCLK Low Time  
9.1  
ns  
4
4.5  
4.5  
1
ns  
5
SCLK High Time  
ns  
6
SDO Data Valid Hold Time After SCK↓  
SDO into Hi-Z State Time After 16th SCK↓  
SDO into Hi-Z State Time After CS↑  
CSSetup Time After 14th SCK↓  
Latency  
(Notes 7, 8, 9)  
(Notes 7, 8, 10)  
(Notes 7, 8, 10)  
(Note 7)  
ns  
7
3
10  
10  
ns  
8
3
ns  
9
5
ns  
10  
1 Cycle Latency  
t
t
_
Power-Up Time from Nap Mode  
Power-Up Time from Sleep Mode  
See Nap Mode Section  
See Sleep Mode Section  
50  
ns  
WAKE NAP  
_
1.1  
ms  
WAKE SLEEP  
Note 1. Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 6. Typical RMS noise at code transitions.  
Note 7. Parameter tested and guaranteed at OV = 2.5V. All input signals  
DD  
are specified with t = t = 1nS (10% to 90% of OV ) and timed from a  
r
f
DD  
voltage level of OV /2.  
DD  
Note 2. All voltage values are with respect to ground.  
Note 8. All timing specifications given are with a 10pF capacitance load.  
Note 3. When these pin voltages are taken below ground or above V  
Load capacitances greater than this will require a digital buffer.  
DD  
(A , REF) or OV (SCK, CS, SDO) they will be clamped by internal  
IN  
DD  
Note 9. The time required for the output to cross the V or V voltage.  
Note 10. Guaranteed by design, not subject to test.  
Note 11. Recommended operating conditions.  
IH  
IL  
diodes. This product can handle input currents up to 100mA below ground  
or above V or OV without latch-up.  
DD  
DD  
Note 4. V = 5V, OV = 2.5V, f  
= 5MHz, f = 87.5MHz, A =  
SCK IN  
DD  
DD  
SMPL  
–1dBFS and internal reference unless otherwise noted.  
Note 5. Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
231512fa  
5
For more information www.linear.com/LTC2315-12  
LTC2315-12  
TA = 25°C, VDD = 5V, OVDD = 2.5V, fSMPL = 5Msps,  
TYPICAL PERFORMANCE CHARACTERISTICS  
unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram Near Mid-Scale  
(Code 2048)  
1.0  
0.8  
1.0  
0.8  
60000  
σ = 0.33  
50000  
40000  
30000  
20000  
10000  
0
0.6  
0.6  
0.4  
0.4  
0.2  
0.2  
0.0  
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
2048  
3072  
4096  
0
2048  
3072  
4096  
1024  
1024  
2047  
2049  
2050  
2051  
2048  
OUTPUT CODE  
OUTPUT CODE  
CODE  
231512 G03  
231512 G01  
231512 G02  
16k Point FFT, fS = 5Msps  
fIN = 500kHz  
SNR, SINAD vs Input Frequency  
(100kHz to 2.2MHz)  
THD, Harmonics vs Input  
Frequency (100kHz to 2.2MHz)  
0
–20  
74  
73  
72  
71  
70  
69  
–75  
–80  
V
= 5V  
R /C = 50Ω/47pF  
IN IN  
DD  
SNR = 73.1dBFS  
SINAD = 72.6dBFS  
THD = –84dB  
f = 5Msps  
S
DD  
V
= 3V  
SNR  
–40  
V
DD  
= 5V  
SFDR = 87dBc  
THD  
SINAD  
2ND  
–85  
–60  
3RD  
–80  
–90  
SNR  
–100  
–120  
–140  
V
DD  
= 3V  
SINAD  
–95  
–100  
0
1500  
2000  
2500  
0
1500  
2000  
2500  
500  
1000  
500  
1000  
500  
1000  
0
1500  
2000  
2500  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
INPUT FREQUENCY (kHz)  
231512 G04  
231512 G05  
231512 G06  
THD, Harmonics vs Input  
Frequency (100kHz to 2.2MHz)  
SNR, SINAD vs Temperature,  
fIN = 500kHz  
THD, Harmonics vs Temperature,  
fIN = 500kHz  
–75  
–80  
75  
74  
73  
72  
71  
70  
69  
68  
–75  
–80  
V
DD  
= 3V  
R
/C = 50Ω/47pF  
= 5Msps  
= 5V  
IN IN  
f
V
S
DD  
THD  
2ND  
V
DD  
= 5V  
SNR  
THD  
SINAD  
–85  
–85  
2ND  
3RD  
3RD  
–90  
–90  
SNR  
V
DD  
= 3V  
SINAD  
–95  
–95  
–100  
–100  
0
1500  
2000  
2500  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
500  
1000  
INPUT FREQUENCY (kHz)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
231512 G06a  
231512 G07  
231512 G08  
231512fa  
6
For more information www.linear.com/LTC2315-12  
LTC2315-12  
TA = 25°C, VDD = 5V, OVDD = 2.5V, fSMPL = 5Msps,  
TYPICAL PERFORMANCE CHARACTERISTICS  
unless otherwise noted.  
THD, Harmonics vs Temperature,  
fIN = 500kHz  
SNR, SINAD vs Reference Voltage  
fIN = 500kHz  
Reference Current  
vs Reference Voltage  
–75  
–80  
74  
73  
72  
71  
70  
600  
500  
400  
300  
200  
100  
0
V
DD  
= 5V  
f
f
= 5Msps  
S
S
SNR  
= 5V  
f
= 5Msps  
S
V
DD  
V
DD  
= 5V  
SNR  
THD  
V = 3.6V  
DD  
–85  
3RD  
V
DD  
= 3.6V  
SINAD  
= 3Msps  
f
= 3Msps  
SINAD  
S
–90  
2ND  
OPERATION  
NOT ALLOWED  
OPERATION  
–95  
NOT ALLOWED  
–100  
–55 –35 –15  
5
25 45 65 85 105 125  
2
2.5  
3
3.5  
4
4.5  
2
2.5  
3
3.5  
4
4.5  
TEMPERATURE (°C)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
231512 G08a  
231512 G10  
231512 G11  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
Supply Current vs Temperature  
4
3
1
0.5  
0
6.5  
6.25  
6
V
DD  
= 5V  
2
1
0
5.75  
5.5  
5.25  
5
V
DD  
= 3V  
–1  
–2  
–3  
–4  
–0.5  
–1  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
231512 G12  
231512 G13  
231512 G14  
Supply Current vs SCK Frequency  
Shutdown Current vs Temperature  
7
6
5
4
3
2
1
0
1
0.75  
0.5  
V
DD  
= 3V  
I
+ I  
VDD OVDD  
OV = 1.8V  
DD  
I
I
TOT  
VDD  
V
= 3V  
= 5V  
0.25  
DD  
I
OVDD  
V
DD  
0
10 20 30 40 50 60 70 80 90  
–55 –35 –15  
5
25 45 65 85 105 125  
SCK FREQUENCY (MHz)  
TEMPERATURE (°C)  
231512 G16  
231512 G15  
231512fa  
7
For more information www.linear.com/LTC2315-12  
LTC2315-12  
TA = 25°C, VDD = 5V, OVDD = 2.5V, fSMPL = 5Msps,  
TYPICAL PERFORMANCE CHARACTERISTICS  
unless otherwise noted.  
Supply Current (IVDD  
)
Output Supply Current (IOVDD)  
vs Output Supply Voltage (OVDD)  
vs Supply Voltage (VDD  
)
6.50  
6.25  
6.00  
5.75  
5.50  
5.25  
5.00  
4.75  
4.50  
2.5  
2.0  
1.5  
1.0  
0.5  
0
5Msps  
5Msps  
f
= 87.5MHz  
5Msps  
SCK  
f
= 87.5MHz  
SCK  
OPERATION  
NOT ALLOWED  
3Msps  
3Msps  
= 52.5MHz  
3Msps  
= 52.5MHz  
f
f
SCK  
SCK  
2.6 2.9 3.2 3.5 3.8 4.1 4.4 4.7 5.0 5.3  
1.7  
2.3  
2.9  
3.5  
4.1  
4.7  
5.3  
SUPPLY VOLTAGE (V)  
OUTPUT SUPPLY VOLTAGE (V)  
231512 G17  
231512 G18  
PIN FUNCTIONS  
V
(Pin 1): Power Supply. The ranges of V are 2.7V  
SDO(Pin6):SerialDataOutput.TheA/Dconversionresult  
is shifted out on SDO as a serial data stream with the MSB  
first through the LSB last. There is 1 cycle of conversion  
DD  
DD  
to 3.6V and 4.75V to 5.25V. Bypass V to GND with a  
DD  
2.2µF ceramic chip capacitor.  
latency. Logic levels are determined by OV .  
DD  
REF (Pin 2): Reference Input/Output. The REF pin volt-  
age defines the input span of the ADC, 0V to V . By  
SCK (Pin 7): Serial Data Clock Input. The SCK serial clock  
falling edge advances the conversion process and outputs  
a bit of the serialized conversion result, MSB first to LSB  
last. SDO data transitions on the falling edge of SCK. A  
continuous or burst clock may be used. Logic levels are  
REF  
default, REF is an output pin and produces a reference  
voltage V  
DD  
of either 2.048V or 4.096V depending on  
REF  
V
(see Table 2). Bypass to GND with a 2.2µF, low ESR,  
high quality ceramic chip capacitor. The REF pin may be  
overdriven with a voltage at least 50mV higher than the  
internal reference voltage output.  
determined by OV .  
DD  
CS (Pin 8): Chip Select Input. This active low signal starts  
a conversion on the falling edge and frames the serial data  
transfer. Bringing CS high places the sample-and-hold  
into sample mode and also forces the SDO pin into high  
GND (Pin 3): Ground. The GND pin must be tied directly  
to a solid ground plane.  
A (Pin 4): Analog Input. A is a single-ended input with  
IN  
IN  
impedance. Logic levels are determined by OV .  
DD  
respect to GND with a range from 0V to V  
.
REF  
OV (Pin 5): I/O Interface Digital Power. The OV range  
DD  
DD  
is 1.71V to 5.25V. This supply is nominally set to the  
same supply as the host interface (1.8V, 2.5V, 3.3V or  
5V). Bypass to GND with a 2.2µF ceramic chip capacitor.  
231512fa  
8
For more information www.linear.com/LTC2315-12  
LTC2315-12  
BLOCK DIAGRAM  
2.2µF  
2.2µF  
ANALOG SUPPLY  
RANGE 2.7V TO 5.25V  
DIGITAL SUPPLY  
RANGE 1.71V TO 5.25V  
1
5
V
DD  
OV  
DD  
2.5V LDO  
A
IN  
ANALOG  
INPUT RANGE  
4
+
THREE-STATE  
SERIAL  
OUTPUT  
PORT  
SDO  
0V TO V  
REF  
12-BIT SAR ADC  
6
S/H  
REF  
SCK  
2
3
7
8
TIMING  
LOGIC  
2.2µF  
GND  
CS  
1.024V  
BANDGAP  
2×/4×  
TS8 PACKAGE  
231512 BD  
ALL CAPACITORS UNLESS  
NOTED ARE HIGH QUALITY,  
CERAMIC CHIP TYPE  
TIMING DIAGRAMS  
16TH EDGE  
t
t
9
8
SCK  
CS  
OV /2  
DD  
OV /2  
DD  
Hi-Z  
Hi-Z  
SDO  
SDO  
Figure 1. SDO Into Hi-Z after 16TH SCK  
Figure 2. SDO Into Hi-Z after CS↑  
231512 TD01  
231512 TD02  
t
t
4
7
SCK  
SDO  
SCK  
SDO  
OV /2  
DD  
OV /2  
DD  
V
OH  
V
OH  
OL  
V
V
OL  
Figure 3. SDO Data Valid Hold after SCK↓  
Figure 4. SDO Data Valid Access after SCK↓  
231512 TD03  
231512 TD04  
t
10  
CS  
t
= 13.5 • t  
+ t + t  
10  
t
= 40ns  
CONV  
2
SCK  
2
ACQ-MIN  
t
t
ACQ-MIN  
CONV  
t
t
6
2
1
3
4
12  
13  
14  
SCK  
SDO  
t
5
t
t
t
t
9
3
4
7
0
B11*  
(MSB)  
B10  
B9  
B0  
0
HI-Z STATE  
t
THROUGHPUT  
*NOTE: SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
231512 TD05  
Figure 5: LTC2315-12 Serial Interface Timing Diagram (SCK Low During tACQ  
)
231512fa  
9
For more information www.linear.com/LTC2315-12  
LTC2315-12  
TIMING DIAGRAMS  
t
10  
CS  
t
= 13 • t  
+ t + t  
2 10  
t
= 40ns  
CONV(MIN)  
SCK  
ACQ-MIN  
t
t
ACQ-MIN  
CONV  
t
t
6
2
SCK  
SDO  
1
2
3
4
5
13  
14  
t
5
t
t
t
t
9
3
4
7
0
0
B11*  
(MSB)  
B10  
B9  
B1  
B0  
0
HI-Z STATE  
t
THROUGHPUT  
*NOTE: SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
231512 TD06  
Figure 6: LTC2315-12 Serial Interface Timing Diagram (SCK High During tACQ  
)
CS  
t
= 14 • t  
t
= 4 • t  
CONV  
SCK  
ACQ  
SCK  
t
t
ACQ  
CONV  
t
t
t
10  
2
6
18  
1
2
3
4
5
13  
14  
15  
16  
17  
18  
SCK  
SDO  
t
5
t
t
t
t
9
3
4
7
t
0
0
B11*  
(MSB)  
B10  
B9  
B1  
= 18 • t  
B0  
0
HI-Z STATE  
THROUGHPUT  
SCK  
*NOTE: SDO REPRESENTS THE ANALOG INPUT FROM THE PREVIOUS CONVERSION  
231512 TD07  
Figure 7: LTC2315-12 Serial Interface Timing Diagram (SCK Continuous)  
231512fa  
10  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
Overview  
illustrate that for the SCK held high during acquisition or  
continuous clocking mode two leading zeros are output.  
Leading zeros allow the 12-bit data result to be framed  
with both leading and trailing zeros for timing and data  
verification. SincetherisingedgeofSCKwillbecoincident  
TheLTC®2315-12isalownoise,highspeed,12-bitsucces-  
sive approximation register (SAR) ADC. The LTC2315-12  
operates over a wide supply range (2.7V to 5.25V) and  
provides a low drift (20ppm/°C maximum), internal refer-  
ence and reference buffer. The internal reference buffer is  
automatically configured to a 2.048V span in low supply  
range (2.7V to 3.6V) and to a 4.096V span in the high  
supply range (4.75V to 5.25V). The LTC2315-12 samples  
at a 5Msps rate and supports an 87.5MHz data clock. The  
LTC2315-12 achieves excellent dynamic performance  
(73dBSNR,84dBTHD)whiledissipatingonly32mWfrom  
a 5V supply at the 5Msps conversion rate.  
with the falling edge of CS, delay t is the delay to the first  
2
falling edge of SCK, which is simply 0.5 • t . Delays t  
SCK  
2
(CS falling edge to SCK leading edge) and t (14th falling  
10  
SCK edge to CS rising edge) must be observed for Figures  
5, 6 and 7 and any timing implementation in order for the  
conversion process and data readout to occur correctly.  
The user can bring CS high after the 14th falling SCK edge  
provided that timing delay t is observed. Prematurely  
10  
terminating the conversion by bringing CS high before  
The LTC2315-12 outputs the conversion data with one  
cycle of conversion latency on the SDO pin. The SDO pin  
output logic levels are supplied by the dedicated OV  
supplypinwhichhasawidesupplyrange(1.71Vto5.25V)  
allowingtheLTC2315-12tocommunicatewith1.8V,2.5V,  
3V or 5V systems.  
the 14th falling SCK edge plus delay t will cause a loss  
10  
of conversion data for that sample. The sample-and-hold  
is placed in sample mode when CS is brought high. As  
showninFigure6, asamplerateof5Mspscanbeachieved  
on the LTC2315-12 by using an 87.5MHz SCK data clock  
and a minimum acquisition time of 40ns which results in  
DD  
TheLTC2315-12providesbothnapandsleeppower-down  
modes through serial interface control to reduce power  
dissipation during inactive periods.  
the minimum throughput time (t ) of 200ns.  
THROUGHPUT  
Note that the maximum throughput of 5Msps can only be  
achieved with the timing implementation of SCK held high  
during acquisition as shown in Figure 6.  
Serial Interface  
The LTC2315-12 also supports a continuous data clock  
as shown in Figure 7. With a continuous data clock the  
acquisition time period and conversion time period must  
be designed as an exact integer number of data clock  
periods. Because the minimum acquisition time is not an  
exact multiple of the minimum SCK period, the maximum  
sample rate for the continuous SCK timing is less than  
5Msps. For example, a 4.86Msps throughput is achieved  
usingexactly18dataclockperiodswiththemaximumdata  
clock frequency of 87.5MHz. For this particular case, the  
acquisition time period and conversion clock period are  
TheLT2315-12communicateswithmicrocontrollers,DSPs  
and other external circuitry via a 3-wire interface. A falling  
CS edge starts a conversion and frames the serial data  
transfer.SCKprovidestheconversionclockforthecurrent  
sample and controls the data readout on the SDO pin of  
the previous sample. CS transitioning low clocks out the  
first leading zero and subsequent SCK falling edges clock  
out the remaining data as shown in Figures 5, 6 and 7 for  
threedifferenttimingschemes.DataisseriallyoutputMSB  
first through LSB last, followed by trailing zeros if further  
SCK falling edges are applied. Figure 5 illustrates that dur-  
ing the case where SCK is held low during the acquisition  
phase, only one leading zero is output. Figures 6 and 7  
designed as 4 data clock periods (T  
= 45.7ns) and 14  
ACQ  
data clock periods (T  
= 160ns) respectively, yielding  
CONV  
a throughput time of 205.7ns.  
231512fa  
11  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
The following table illustrates the maximum throughput  
achievable for each of the three timing patterns. Note  
that in order to achieve the maximum throughput rate of  
5Msps, the timing pattern where SCK is held high during  
the acquisition time must be used.  
digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
Entering Nap/Sleep Mode  
Pulsing CS two times and holding SCK static places the  
LTC2315-12 into nap mode. Pulsing CS four times and  
holding SCK static places the LTC2315-12 into sleep  
mode. In sleep mode, all bias circuitry is shut down,  
including the internal bandgap and reference buffer, and  
only leakage currents remain (0.8µA typical). Because  
the reference buffer is externally bypassed with a large  
capacitor (2.2µF), the LTC2315-12 requires a significant  
wait time (1.1ms) to recharge this capacitance before an  
accurate conversion can be made. In contrast, nap mode  
does not power down the internal bandgap or reference  
bufferallowingforafastwake-upandaccurateconversion  
within one conversion clock cycle. Supply current during  
nap mode is nominally 1.8mA.  
Table 1: Maximum Throughput vs Timing Pattern  
TIMING PATTERN  
MAXIMUM  
THROUGHPUT  
SCK high during T  
5Msps  
ACQ  
SCK low during T  
SCK continuous (t  
4.86Msps  
4.86Msps  
ACQ  
= 18 periods)  
THROUGHPUT  
Serial Data Output (SDO)  
The SDO output is always forced into the high impedance  
state while CS is high. The falling edge of CS starts the  
conversion and enables SDO. The A/D conversion result  
is shifted out on the SDO pin as a serial data stream with  
the MSB first. The data stream consists of either one  
leading zero (SCK held low during acquisition, Fig. 5) or  
two leading zeros (SCK held high during acquisition, Fig.  
6) followed by 12 bits of conversion data. There is 1 cycle  
of conversion latency. Subsequent falling SCK edges after  
the LSB is output will output zeros on the SDO pin. The  
SDO output returns to the high impedance state after the  
16th falling edge of SCK.  
Exiting Nap/Sleep Mode  
WakinguptheLTC2315-12fromeithernaporsleepmode,  
as shown in Figures 8 and 9, requires SCK to be pulsed  
one time. A conversion may be started immediately fol-  
lowing nap mode as shown in Figure 8. A period of time  
allowing the reference voltage to recover must follow  
waking up from sleep mode as shown in Figure 9. The  
wait period required before initiating a conversion for the  
The output swing on the SDO pin is controlled by the  
OV pin voltage and supports a wide operating range  
DD  
recommended value of C of 2.2µF is 1.1ms.  
REF  
from 1.71V to 5.25V independent of the V pin voltage.  
DD  
Power Supply Sequencing  
Power Considerations  
The LTC2315-12 does not have any specific power sup-  
ply sequencing requirements. Care should be taken to  
observe the maximum voltage relationships described in  
the Absolute Maximum Ratings section.  
The LTC2315-12 provides two sets of power supply pins:  
the analog 5V power supply (V ) and the digital input/  
DD  
output interface power supply (OV ). The flexible OV  
DD  
DD  
supply allows the LTC2315-12 to communicate with any  
231512fa  
12  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
1
2
CS  
NAP MODE  
START t  
ACQ  
SCK  
SDO  
HOLD STATIC HIGH or LOW  
HOLD STATIC HIGH or LOW  
HI-Z STATE  
Z
Z
0
0
231512 F08  
Figure 8: LTC2315-12 Entering/Exiting Nap Mode  
1
2
3
4
CS  
V
RECOVERY  
WAIT  
REF  
START t  
ACQ  
t
NAP MODE  
SLEEP MODE  
HI-Z STATE  
SCK  
SDO  
HOLD STATIC HIGH or LOW  
Z
Z
0
0
231512 F09  
Figure 9: LTC2315-12 Entering/Exiting Sleep Mode  
Single-Ended Analog Input Drive  
Choosing an Input Amplifier  
The analog input of the LTC2315-12 is easy to drive. The  
input draws only one small current spike while charging  
the sample-and-hold capacitor at the end of conversion.  
Duringtheconversion,theanaloginputdrawsonlyasmall  
leakage current. If the source impedance of the driving  
circuit is low, then the input of the LTC2315-12 can be  
driven directly. As the source impedance increases, so  
will the acquisition time. For minimum acquisition time  
with high source impedance, a buffer amplifier should be  
used. The main requirement is that the amplifier driving  
the analog input must settle after the small current spike  
beforethenextconversionstarts.Settlingtimemustbeless  
Choosing an input amplifier is easy if a few requirements  
are taken into consideration. First, to limit the magnitude  
of the voltage spike seen by the amplifier from charging  
the sampling capacitor, choose an amplifier that has a low  
output impedance (<50Ω) at the closed-loop bandwidth  
frequency. For example, if an amplifier is used in a gain  
of 1 and has a unity-gain bandwidth of 100MHz, then the  
output impedance at 100MHz must be less than 50Ω. The  
second requirement is that the closed-loop bandwidth  
must be greater than 100MHz to ensure adequate small  
signal settling for full throughput rate. If slower op amps  
are used, more time for settling can be provided by in-  
creasing the time between conversions. The best choice  
for an op amp to drive the LTC2315-12 will depend on the  
application.Generally,applicationsfallintotwocategories:  
AC applications where dynamic specifications are most  
than t  
(40ns) for full performance at the maximum  
ACQ-MIN  
throughput rate. While choosing an input amplifier, also  
keep in mind the amount of noise and harmonic distortion  
the amplifier contributes.  
231512fa  
13  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
critical and time domain applications where DC accuracy  
and settling time are most critical. The following list is a  
summary of the op amps that are suitable for driving the  
LTC2315-12. (More detailed information is available on  
the Linear Technology website at www.linear.com.)  
A simple 1-pole RC filter is sufficient for many applica-  
tions. For example, Figure 10 shows a recommended  
single-ended buffered drive circuit using the LT1818 in  
unity gain mode. The 47pF capacitor from A to ground  
IN  
and 50Ω source resistor limits the input bandwidth to  
68MHz. The47pFcapacitoralsoactsasachargereservoir  
for the input sample-and-hold and isolates the LT1818  
from sampling glitch kick-back. The 50Ω source resistor  
is used to help stabilize the settling response of the drive  
amplifier. When choosing values of source resistance  
and shunt capacitance, the drive amplifier data sheet  
should be consulted and followed for optimum settling  
response. If lower input bandwidths are desired, care  
should be taken to optimize the settling response of the  
driver amplifier with higher values of shunt capacitance  
or series resistance. High quality capacitors and resistors  
should be used in the RC filter since these components  
canadddistortion.NP0/C0Gandsilvermicatypedielectric  
capacitors have excellent linearity. Carbon surface mount  
resistors can generate distortion from self heating and  
from damage that may occur during soldering. Metal film  
surface mount resistors are much less susceptible to both  
problems.Whenhighamplitudeunwantedsignalsareclose  
in frequency to the desired signal frequency, a multiple  
pole filter is required. High external source resistance,  
combined with external shunt capacitance at Pin 4 and  
13pF of input capacitance on the LTC2315-12 in sample  
mode, will significantly reduce the internal 130MHz input  
bandwidth and may increase the required acquisition time  
LT6230: 215MHz GBWP, –80dBc Distortion at 1MHz,  
Unity-Gain Stable, Rail-to-Rail Input and Output, 3.5mA/  
Amplifier, 1.1nV/√Hz.  
LT6200:165MHzGBWP,85dBcDistortionat1MHz,Unity-  
GainStable, R-RInandOut, 15mA/Amplifier, 0.95nV/√Hz.  
LT1818/LT1819: 400MHz GBWP, –85dBc Distortion at  
5MHz, Unity-Gain Stable, 9mA/Amplifier, Single/Dual  
Voltage Mode Operational Amplifier.  
Input Drive Circuits  
TheanaloginputoftheLTC2315-12isdesignedtobedriven  
single-ended with respect to GND. Alow impedance source  
can directly drive the high impedance analog input of the  
LTC2315-12 without gain error. A high impedance source  
shouldbebufferedtominimizesettlingtimeduringacquisi-  
tion and to optimize the distortion performance of the ADC.  
For best performance, a buffer amplifier should be used  
to drive the analog input of the LTC2315-12. The amplifier  
provides low output impedance to allow for fast settling  
of the analog signal during the acquisition phase. It also  
provides isolation between the signal source and the ADC  
inputswhichdrawasmallcurrentspikeduringacquisition.  
beyond the minimum acquisition time (t  
) of 40ns.  
ACQ-MIN  
Input Filtering  
LTC2315-12  
The noise and distortion of the buffer amplifier and other  
circuitry must be considered since they add to the ADC  
noiseanddistortion.Noisyinputcircuitryshouldbefiltered  
prior to the analog inputs to minimize noise. A simple  
1-pole RC filter is sufficient for many applications.  
50Ω  
+
A
ANALOG IN  
IN  
47pF  
LT1818  
GND  
2315112 F10  
Figure 10. RC Input Filter  
Large filter RC time constants slow down the settling at  
the analog inputs. It is important that the overall RC time  
constants be short enough to allow the analog inputs to  
completelysettleto>12-bitresolutionwithintheminimum  
acquisition time (t  
) of 40ns.  
ACQ-MIN  
231512fa  
14  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
ADC Reference  
the internal reference voltage (see Table 2) and must be  
less than or equal to the supply voltage (or 4.3V for the 5V  
supply range). Forexample, a 3.3V externalreference may  
A low noise, low temperature drift reference is critical to  
achieving the full data sheet performance of the ADC. The  
LTC2315-12 provides an excellent internal reference with  
aguaranteed20ppm/°Cmaximumtemperaturecoefficient.  
Foraddedflexibility,anexternalreferencemayalsobeused.  
be used with a 3.3V V supply voltage to provide a 3.3V  
DD  
analog input voltage span (i.e. 3.3V > 2.048V + 50mV).  
Or alternatively, a 2.5V reference may be used with a 3V  
supply voltage to provide a 2.5V input voltage range (i.e.  
2.5V > 2.048V + 50mV). The LTC6655-3.3, LTC6655-2.5,  
available from Linear Technology, may be suitable for  
many applications requiring a high performance external  
reference for either 3.3V or 2.5V input spans respectively.  
The high speed, low noise internal reference buffer is used  
only in the internal reference configuration. The reference  
buffer must be overdriven in the external reference con-  
figuration with a voltage 50mV higher than the nominal  
reference output voltage in the internal configuration.  
Transfer Function  
Using the Internal Reference  
Figure11depictsthetransferfunctionoftheLTC2315-12.  
The code transitions occur midway between successive  
integer LSB values (i.e. 0.5LSB, 1.5LSB, 2.5LSB… FS-  
0.5LSB). The output code is straight binary with 1LSB =  
The internal bandgap and reference buffer are active by  
default when the LTC2315-12 is not in sleep mode. The  
reference voltage at the REF pin scales automatically with  
the supply voltage at the V pin. The scaling of the refer-  
V
/4,096.  
REF  
DD  
ence voltage with supply is shown in the following table.  
Table 2: Reference Voltage vs Supply Range  
SUPPLY VOLTAGE (V  
2.7V –> 3.6V  
)
DD  
REF VOLTAGE (V  
2.048V  
)
REF  
111...111  
111...110  
4.75V –> 5.25V  
4.096V  
Thereferencevoltagealsodeterminesthefull-scaleanalog  
input range of the LTC2315-12. For example, a 2.048V  
referencevoltagewillaccommodateananaloginputrange  
from0Vto2.048V.Ananaloginputvoltagethatgoesbelow  
0V will be coded as all zeros and an analog input voltage  
that exceeds 2.048V will be coded as all ones.  
000...001  
000...000  
0 1LSB  
FS – 1LSB  
INPUT VOLTAGE (V)  
ItisrecommendedthattheREFpinbebypassedtoground  
with a low ESR, 2.2µF ceramic chip capacitor for optimum  
performance.  
231512 F11  
Figure 11. LTC2315-12 Transfer Function  
External Reference  
DC Performance  
An external reference can be used with the LTC2315-12  
if better performance is required or to accommodate a  
larger input voltage span. The only constraints are that  
the external reference voltage must be 50mV higher than  
The noise of an ADC can be evaluated in two ways: signal-to-  
noise ratio (SNR) in the frequency domain and histogram in  
thetimedomain.TheLTC2315-12excelsinboth.Thenoisein  
the time domain histogram is the transition noise associated  
231512fa  
15  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
with a 12-bit resolution ADC which can be measured with a  
fixed DC signal applied to the input of the ADC. The resulting  
outputcodesarecollectedoveralargenumberofconversions.  
The shape of the distribution of codes will give an indication  
of the magnitude of the transition noise. In Figure 12, the  
distribution of output codes is shown for a DC input that has  
been digitized 16,384 times. The distribution is Gaussian and  
theRMScodetransitionnoiseis0.33LSB.Thiscorrespondsto  
a noise level of 73dB relative to a full scale voltage of 4.096V.  
Effective Number of Bits (ENOB)  
The effective number of bits (ENOB) is a measurement of  
the resolution of an ADC and is directly related to SINAD  
by the equation where ENOB is the effective number of  
bits of resolution and SINAD is expressed in dB:  
ENOB = (SINAD – 1.76)/6.02  
At the maximum sampling rate of 5MHz, the LTC2315-12  
maintains an ENOB above 11.7 bits up to the Nyquist input  
frequency of 2.5MHz. (Figure 14)  
60000  
σ = 0.33  
Signal-to-Noise Ratio (SNR)  
50000  
40000  
30000  
20000  
10000  
0
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 13 shows  
that the LTC2315-12 achieves a typical SNR of 73dB at a  
5MHz sampling rate with a 500kHz input frequency.  
Total Harmonic Distortion (THD)  
2047  
2049  
CODE  
2050  
2051  
2048  
231512 F12  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
Figure 12. Histogram for 16384 Conversions  
/2).  
SMPL  
Dynamic Performance  
The LTC2315-12 has excellent high speed sampling  
capability. Fast Fourier Transform (FFT) techniques are  
used to test the ADC’s frequency response, distortion and  
noise at the rated throughput. By applying a low distortion  
sine wave and analyzing the digital output using an FFT  
algorithm, the ADC’s spectral content can be examined  
for frequencies outside the applied fundamental. The  
LTC2315-12 provides guaranteed tested limits for both  
AC distortion and noise measurements.  
V22 + V32 + V42 + VN2  
THD=20log  
V1  
where V1 is the RMS amplitude of the fundamental fre-  
quencyandV2throughV aretheamplitudesofthesecond  
N
through Nth harmonics. THD versus Input Frequency is  
shownintheTypicalPerformanceCharacteristicssection.  
The LTC2315-12 has excellent distortion performance up  
to the Nyquist frequency.  
Signal-to-Noise and Distortion Ratio (SINAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 14 shows the LTC2315-12 maintains a  
SINAD above 71dB up to the Nyquist input frequency of  
2.5MHz.  
Intermodulation Distortion (IMD)  
If the ADC input signal consists of more than one spectral  
component, the ADC transfer function nonlinearity can  
produce intermodulation distortion (IMD) in addition to  
THD. IMD is the change in one sinusoidal input caused  
by the presence of another sinusoidal input at a different  
frequency.  
231512fa  
16  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
0
If two pure sine waves of frequencies f and f are ap-  
a
b
V
= 5V  
DD  
SNR = 73.1dBFS  
SINAD = 72.6dBFS  
THD = –84dB  
plied to the ADC input, nonlinearities in the ADC transfer  
function can create distortion products at the sum and  
–20  
–40  
SFDR = 87dBc  
difference frequencies m • f n • f , where m and n = 0,  
a
b
–60  
1, 2, 3, etc. For example, the 2nd order IMD terms include  
(f f ).Ifthetwoinputsinewavesareequalinmagnitude,  
a
b
–80  
the value (in decibels) of the 2nd order IMD products can  
be expressed by the following formula:  
–100  
–120  
–140  
IMD(f f ) = 20 • log[V (f f )/V (f )]  
a
b
A
a
b
A
a
500  
1000  
The LTC2315-12 has excellent IMD as shown in Figure 15.  
0
1500  
2000  
2500  
FREQUENCY (kHz)  
231512 F13  
Spurious Free Dynamic Range (SFDR)  
Figure 13. 16k Point FFT of the LTC2315-12 at fIN = 500 kHz  
The spurious free dynamic range is the largest spectral  
componentexcludingDC,theinputsignalandtheharmon-  
icsincludedintheTHD. Thisvalueisexpressedindecibels  
relative to the RMS value of a full-scale input signal.  
74  
73  
72  
71  
70  
69  
12.0  
11.8  
11.7  
11.5  
11.3  
11.2  
V
= 5V  
= 3V  
DD  
Full-Power and Full-Linear Bandwidth  
The full-power bandwidth is the input frequency at which  
theamplitudeofthereconstructedfundamentalisreduced  
by 3dB for a full-scale input signal.  
V
DD  
The full-linear bandwidth is the input frequency at which  
the SINAD has dropped to 68dB (11 effective bits). The  
LTC2315-12 has been designed to optimize the input  
bandwidth,allowingtheADCtounder-sampleinputsignals  
withfrequenciesabovetheconverter’sNyquistfrequency.  
The noise floor stays very low at high frequencies and  
SINAD becomes dominated by distortion at frequencies  
beyond Nyquist.  
0
1500  
2000  
2500  
500  
1000  
INPUT FREQUENCY (kHz)  
231512 F14  
Figure 14. LTC2315-12 ENOB/SINAD vs fIN  
0
V
= 5V  
= 5Msps  
f = 461.421kHz  
= 541.421kHz  
DD  
f
S
–20  
–40  
a
b
f
Recommended Layout  
IMD (f + f ) = –77.4dBc  
2
3
b
a
a
IMD (2fb –f ) = –89.4dBc  
–60  
To obtain the best performance from the LTC2315-12 a  
printed circuit board is required. Layout for the printed  
circuit board (PCB) should ensure the digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital clocks or  
signals alongside analog signals or underneath the ADC.  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
–80  
–100  
–120  
–140  
–160  
0
1500  
2000  
2500  
500  
1000  
INPUT FREQUENCY (kHz)  
231512 F15  
Figure 15. LTC2315-12 IMD Plot  
231512fa  
17  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1563, the  
evaluation kit for the LTC2315-12.  
parator. The problem can be eliminated by forcing the  
microprocessor into a “Wait” state during conversion or  
by using three-state buffers to isolate the ADC data bus.  
Bypassing Considerations  
High quality tantalum and ceramic bypass capacitors  
should be used at the V , OV and REF pins. For opti-  
DD  
DD  
mum performance, a 2.2µF ceramic chip capacitor should  
be used for the V and OV pins. The recommended  
DD  
DD  
bypassing for the REF pin is also a low ESR, 2.2µF ceramic  
capacitor. The traces connecting the pins and the bypass  
capacitors must be kept as short as possible and should  
be made as wide as possible avoiding the use of vias.  
ThefollowingisanexampleofarecommendedPCBlayout.  
All analog circuitry grounds should be terminated at the  
LTC2315-12. The ground return from the LTC2315-12 to  
the power supply should be low impedance for noise free  
operation. Digital circuitry grounds must be connected to  
the digital supply common.  
In applications where the ADC data outputs and control  
signals are connected to a continuously active micropro-  
cessor bus, it is possible to get errors in the conversion  
results. These errors are due to feed-through from the  
microprocessor to the successive approximation com-  
Figure 17. Layer 1 Top Layer  
Figure 18. Layer 2 GND Plane  
Figure 16. Top Silkscreen  
231512fa  
18  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
APPLICATIONS INFORMATION  
Figure 19. Layer 3 PWR Plane  
Figure 20. Layer 4 Bottom Layer  
REF  
+
C6  
C7  
4.7µF  
OPT  
U5  
LT1790ACS6-2.048  
9V TO 10V  
V
DD  
VCCIO  
VCM  
4
6
VI  
VO  
GND GND  
C8  
10µF  
R9  
1k  
C9  
4.7µF  
C10  
OPT  
C11  
OPT  
C12  
4.7µF  
1
2
AC DC  
JP1  
COUPLING  
1
2
5
HD1X3-100  
U1  
*
1 2  
3
V
DD  
REF OV  
DD  
8
7
6
CSL  
SCK  
R14  
0k  
R15  
49.9Ω  
CSL  
SCK  
SDO  
J4  
4
A
IN  
A
IN  
0V TO 4.096V  
C18  
OPT  
SDO  
C19  
47pF  
NPO  
C17  
1µF  
GND  
3
JP2  
R16  
33Ω  
V
231512 F21  
CM  
3
2
1
1.024V  
2.048V  
HD1X3-100  
R18  
1k  
Figure 21. Partial DC1563 Demo Board Schematic  
231512fa  
19  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
TS8 Package  
8-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1637 Rev A)  
2.90 BSC  
(NOTE 4)  
0.40  
MAX  
0.65  
REF  
1.22 REF  
1.4 MIN  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
3.85 MAX 2.62 REF  
PIN ONE ID  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.22 – 0.36  
8 PLCS (NOTE 3)  
0.65 BSC  
0.80 – 0.90  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.95 BSC  
TS8 TSOT-23 0710 REV A  
0.09 – 0.20  
(NOTE 3)  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
231512fa  
20  
For more information www.linear.com/LTC2315-12  
LTC2315-12  
REVISION HISTORY  
REV  
DATE  
10/13 Added pin-compatible family table  
Changed T to 150°C  
DESCRIPTION  
PAGE NUMBER  
A
1
2
JMAX  
Changed SINAD condition for –3dB Input Linear Bandwidth to ≥68dB  
Reordered/Renumbered Notes  
3, 16  
3, 4, 5  
231512fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTC2315-12  
TYPICAL APPLICATION  
Low-Jitter Clock Timing with RF Sine Generator Using Clock  
Squaring/Level-Shifting Circuit and Re-Timing Flip-Flop  
V
CC  
NC7SVU04P5X  
0.1µF  
1k  
1k  
MASTER CLOCK  
CC  
V
50Ω  
PRE  
CLR  
D
CONV  
Q
>
CONTROL  
LOGIC  
(FPGA, CPLD,  
DSP, ETC.)  
NL17SZ74  
CONV ENABLE  
CS  
SCK  
LTC2315-12  
NC7SVUO4P5X  
SDO  
33Ω  
231512 TA03  
RELATED PARTS  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2313-12  
12-Bit, 2.5Msps Serial ADC  
12-Bit, 500ksps Serial ADC  
12-Bit, 2.8Msps Serial ADC  
3V/5V, 14mW/25mW, 20ppm/°C Max Internal Reference,  
Single-Ended Input, 8-Lead TSOT-23 Package  
LTC2312-12  
3V/5V, 9mW/15mW, 20ppm/°C Max Internal Reference,  
Single-Ended Input, 8-Lead TSOT-23 Package  
LTC1403/LTC1403-1  
LTC1407/LTC1407-1  
3V, 14mW, Unipolar/Bipolar Inputs, MSOP Package  
12-Bit, 3Msps Simultaneous Sampling ADC  
3V, 2-Channel Differential, Unipolar/Bipolar Inputs, 14mW,  
MSOP Package  
LTC2355/LTC2356  
LTC2365/LTC2366  
Amplifiers  
12-/14-Bit, 3.5Msps Serial ADC  
3.3V Supply, Differential, Input, 18mW, MSOP Package  
3.3V Supply, 8mW, TSOT-23 Package  
12-Bit, 1Msps/3Msps Serial Sampling ADC  
LT6236/LT6237  
Single/Dual Operation Amplifier with Low  
Wideband Noise  
215MHz, 3.5mA/Amplifier, 1.1nV/√Hz  
LT6200/LT6201  
LT6230/LT6231  
LT1818/LT1819  
References  
Single/Dual Operational Amplifiers  
Single/Dual Operational Amplifiers  
Single/Dual Operational Amplifiers  
165MHz, 0.95nV/√Hz  
215MHz, 3.5mA/Amplifier, 1.1nV/√Hz  
400MHz, 9mA/Amplifier, 6nV/√Hz  
LTC6655-2.5/LTC6655-3.3 Precision Low Drift Low Noise Buffered Reference 2.5V/3.3V, 5ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
LT1461-3/LT1461-3.3V Precision Series Voltage Family 0.05% Initial Accuracy, 3ppm Drift  
231512fa  
LT 1013 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
22  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2315-12  
LINEAR TECHNOLOGY CORPORATION 2013  

相关型号:

LTC2320

Quad/Octal 16-Bit/14-Bit/12-Bit, 5Msps/2Msps/1.5Msps, Serial, High Speed SAR ADCs
Linear

LTC2320-12

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2320-14

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2320-16

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2320CUKG-12#PBF

LTC2320-12 - Octal, 12-Bit + Sign, 1.5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2320CUKG-14#PBF

LTC2320-14 - Octal, 14-Bit + Sign, 1.5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2320HUKG-14#PBF

LTC2320-14 - Octal, 14-Bit + Sign, 1.5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2320IUKG-14#PBF

LTC2320-14 - Octal, 14-Bit + Sign, 1.5Msps/Ch Simultaneous Sampling ADC; Package: QFN; Pins: 52; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2321

Dual 16-Bit/14-Bit/12-Bit, 5Msps/2Msps, Serial, High Speed SAR ADCs
Linear

LTC2321-12

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2321-14

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear

LTC2321-16

Quad, 16-Bit, 5Msps/Ch Simultaneous Sampling ADC
Linear