LTC2373-18_15 [Linear]

18-Bit, 1Msps, 8-Channel SAR ADC with 100dB SNR;
LTC2373-18_15
型号: LTC2373-18_15
厂家: Linear    Linear
描述:

18-Bit, 1Msps, 8-Channel SAR ADC with 100dB SNR

文件: 总50页 (文件大小:1927K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2373-18  
18-Bit, 1Msps, 8-Channel  
SAR ADC with 100dB SNR  
FeaTures  
DescripTion  
The LTC®2373-18 is a low noise, high speed, 8-channel  
18-bitsuccessiveapproximationregister(SAR)ADC.Oper-  
atingfromasingle5Vsupply,theLTC2373-18hasahighly  
configurable, low crosstalk 8-channel input multiplexer,  
supporting fully differential, pseudo-differential unipolar  
and pseudo-differential bipolar analog input ranges. The  
LTC2373-18 achieves 2.75LSB INL (maximum) in all  
inputranges, nomissingcodesat18-bitsand100dB(fully  
differential)/ 95dB (pseudo-differential) SNR (typical).  
n
1Msps Throughput Rate  
n
18-Bit Resolution with No Missing Codes  
n
8-Channel Multiplexer with Selectable Input Range  
n
Fully Differential (±±4.096V  
n
Pseudo-Differential Unipolar (.6 to ±4.096V  
n
Pseudo-Differential Bipolar (±ꢀ4.±86V  
n
INL: ±ꢀ4ꢁ7LSB (MaxiꢂuꢂV  
n
SNR: 1..dB (Fully DifferentialV/07dB (Pseudo-  
DifferentialV (TypicalV at f = 1kHz  
IN  
IN  
n
n
n
n
n
n
n
n
n
n
THD: –11.dB (TypicalV at f = 1kHz  
TheLTC2373-18hasanonboardlowdrift(20ppm/°Cmax)  
2.048V temperature-compensated referenceanda single-  
shot capable reference buffer. The LTC2373-18 also has a  
high speed SPI-compatible serial interface that supports  
1.8V, 2.5V, 3.3V and 5V logic through which a sequencer  
with a depth of 16 may be programmed. An internal os-  
cillator sets the conversion time, easing external timing  
considerations. The LTC2373-18 dissipates only 40mW  
and automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided to reduce the power  
consumption of the LTC2373-18 to 300μW for further  
power savings during inactive periods.  
Programmable Sequencer  
Selectable Digital Gain Compression  
Single 5V Supply with 1.8V to 5V I/O Voltages  
SPI-Compatible Serial I/O  
Onboard 2.048V Reference and Reference Buffer  
No Pipeline Delay, No Cycle Latency  
Power Dissipation 40mW (Typical)  
Guaranteed Operation to 125°C  
32-Lead 5mm × 5mm QFN Package  
applicaTions  
n
Programmable Logic Controllers  
n
Industrial Process Control  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and  
SoftSpan is a trademark of Linear Technology Corporation. All other trademarks are the property  
of their respective owners. Protected by U.S. Patents, including 7705765, 7961132, 8319673.  
n
High Speed Data Acquisition  
n
Portable or Compact Instrumentation  
n
ATE  
Integral Nonlinearity  
Typical applicaTion  
vs Output Code  
5V  
2.0  
4.096V  
1.8V TO 5V  
FULLY DIFFERENTIAL  
BIPOLAR  
UNIPOLAR  
0V  
1.5  
1.0  
10µF  
2.2µF  
0.1µF  
0V  
10Ω  
V
V
OV  
DD  
DD  
DDLBYP  
0.5  
4.096V  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
RESET  
RDL  
+
LTC2373-18  
1200pF  
1200pF  
0V  
4.096V  
0V  
0
+
MUX  
18-BIT  
SAMPLING ADC  
SDO  
SCK  
SDI  
BUSY  
CNV  
10Ω  
–0.5  
–1.0  
–1.5  
–2.0  
SAMPLE  
CLOCK  
4.096V  
0V  
REFBUF REFIN  
47µF 0.1µF  
GND  
237318 TA01a  
0
65536  
131072  
OUTPUT CODE  
196608  
262144  
2.048V  
2373 TA01b  
237318f  
1
For more information www.linear.com/LTC2373-18  
LTC2373-18  
absoluTe MaxiMuM raTings  
pin conFiguraTion  
(Notes 1, ꢀV  
Supply Voltage (V )................................................. 6V  
TOP VIEW  
DD  
Supply Voltage (OV )............................................... 6V  
DD  
Analog Input Voltage (Note 3)  
CH0 to CH7, COM ........ (GND – 0.3V) to (V + 0.3V)  
DD  
32 31 30 29 28 27 26 25  
REFBUF ....................... (GND – 0.3V) to (V + 0.3V)  
DD  
CH2  
1
2
3
4
5
6
7
8
24 RESET  
23 GND  
REFIN...................................................................... 2.8V  
CH3  
+
Digital Input Voltage  
MUXOUT  
SDO  
SCK  
22  
21  
+
ADCIN  
ADCIN  
(Note 3)...........................(GND –0.3V) to (OV + 0.3V)  
DD  
33  
20 SDI  
Digital Output Voltage  
MUXOUT  
BUSY  
19  
(Note 3)...........................(GND –0.3V) to (OV + 0.3V)  
DD  
CH4  
CH5  
18 RDL  
17 GND  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
9
10 11 12 13 14 15 16  
LTC2373C................................................0°C to 70°C  
LTC2373I .............................................–40°C to 85°C  
LTC2373H..........................................–40°C to 125°C  
Storage Temperature Range ..................–65°C to 150°C  
UH PACKAGE  
32-LEAD (5mm × 5mm) PLASTIC QFN  
T
JMAX  
= 125°C, θ = 44°C/W  
JA  
EXPOSED PAD IS GND (PIN 33) MUST BE SOLDERED TO PCB  
orDer inForMaTion  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING*  
PACKAGE DESCRIPTION  
32-Lead (5mm × 5mm) Plastic QFN  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2373CUH-18#PBF  
LTC2373IUH-18#PBF  
LTC2373HUH-18#PBF  
LTC2373CUH-18#TRPBF 237318  
LTC2373IUH-18#TRPBF 237318  
LTC2373HUH-18#TRPBF 237318  
32-Lead (5mm × 5mm) Plastic QFN  
32-Lead (5mm × 5mm) Plastic QFN  
–40°C to 85°C  
–40°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on nonstandard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
237318f  
2
For more information www.linear.com/LTC2373-18  
LTC2373-18  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
+
l
V
V
Absolute Input Range (CH0 to CH7) (Note 5)  
–0.1  
V
V
+ 0.1  
V
IN  
IN  
REFBUF  
+
l
l
l
Absolute Input Range  
(CH0 to CH7, COM)  
Fully Differential (Note 5)  
Pseudo-Differential Unipolar (Note 5)  
Pseudo-Differential Bipolar (Note 5)  
–0.1  
–0.1  
+ 0.1  
V
V
V
REFBUF  
0
0.1  
V
/2 – 0.1  
REFBUF  
V
/2  
V /2 + 0.1  
REFBUF  
REFBUF  
l
l
l
V
V
– V  
Input Differential Voltage Range  
Common Mode Input Range  
Fully Differential  
–V  
V
V
V
V
V
V
IN  
IN  
REFBUF  
0
REFBUF  
REFBUF  
/2  
REFBUF  
Pseudo-Differential Unipolar  
Pseudo-Differential Bipolar  
–V  
/2  
REFBUF  
Pseudo-Differential Bipolar and  
Fully Differential (Note 6)  
CM  
IN  
l
l
–V  
/2 – 0.1  
REFBUF  
V
/2  
V
/2 + 0.1  
REFBUF  
V
REFBUF  
I
IN  
Analog Input Leakage Current  
Analog Input Capacitance  
–1  
1
µA  
C
Sample Mode  
Hold Mode  
75  
5
pF  
pF  
CMRR  
Input Common Mode Rejection Ratio Fully Differential, f = 500kHz  
67  
66  
66  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar, f = 500kHz  
IN  
Pseudo-Differential Bipolar, f = 500kHz  
IN  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
18  
TYP  
MAX  
UNITS  
Bits  
l
l
Resolution  
No Missing Codes  
18  
Bits  
Transition Noise  
Fully Differential  
Pseudo-Differential Unipolar  
Pseudo-Differential Bipolar  
0.85  
1.5  
1.5  
LSB  
LSB  
LSB  
RMS  
RMS  
RMS  
l
l
l
INL  
Integral Linearity Error  
Differential Linearity Error  
Zero-Scale Error  
Fully Differential (Note 7)  
–2  
0.5  
0.8  
0.8  
2
LSB  
LSB  
LSB  
Pseudo-Differential Unipolar (Note 7)  
Pseudo-Differential Bipolar (Note 7)  
–2.75  
–2.75  
2.75  
2.75  
l
l
l
DNL  
ZSE  
Fully Differential (Note 6)  
Pseudo-Differential Unipolar (Note 6)  
Pseudo-Differential Bipolar (Note 6)  
–0.9  
–0.9  
–0.9  
0.25  
0.25  
0.25  
0.9  
0.9  
0.9  
LSB  
LSB  
LSB  
l
l
l
Fully Differential (Note 8)  
Pseudo-Differential Unipolar (Note 8)  
Pseudo-Differential Bipolar (Note 8)  
–15  
–30  
–30  
2
2
2
15  
30  
30  
LSB  
LSB  
LSB  
Zero-Scale Error Drift  
Zero-Scale Error Match  
Full-Scale Error  
Fully Differential  
20  
30  
30  
mLSB/°C  
mLSB/°C  
mLSB/°C  
Pseudo-Differential Unipolar  
Pseudo-Differential Bipolar  
l
l
l
Fully Differential  
Pseudo-Differential Unipolar  
Pseudo-Differential Bipolar  
–18  
–24  
–28  
2
4
4
18  
24  
28  
LSB  
LSB  
LSB  
FSE  
Fully Differential  
l
l
REFBUF = 4.096V (REFBUF Overdriven) (Notes 8, 9)  
REFIN = 2.048V (REFIN Overdriven) (Note 8)  
Pseudo-Differential Unipolar  
–50  
–100  
7
11  
50  
100  
LSB  
LSB  
l
l
REFBUF = 4.096V (REFBUF Overdriven) (Notes 8, 9)  
REFIN = 2.048V (REFIN Overdriven) (Note 8)  
Pseudo-Differential Bipolar  
REFBUF = 4.096V (REFBUF Overdriven) (Notes 8, 9)  
REFIN = 2.048V (REFIN Overdriven) (Note 8)  
–75  
–200  
5
14  
75  
200  
LSB  
LSB  
l
l
–50  
–120  
8
12  
50  
120  
LSB  
LSB  
237318f  
3
For more information www.linear.com/LTC2373-18  
LTC2373-18  
converTer characTerisTics The l denotes the specifications which apply over the full operating  
teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL PARAMETER  
Full-Scale Error Drift  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Fully Differential  
REFBUF = 4.096V (REFBUF Overdriven) (Note 9)  
Pseudo-Differential Unipolar  
0.2  
0.2  
0.2  
ppm/°C  
ppm/°C  
ppm/°C  
REFBUF = 4.096V (REFBUF Overdriven) (Note 9)  
Pseudo-Differential Bipolar  
REFBUF = 4.096V (REFBUF Overdriven) (Note 9)  
Full-Scale Error Match  
Fully Differential  
l
l
l
REFBUF = 4.096V (REFBUF Overdriven) (Note 9)  
Pseudo-Differential Unipolar  
–18  
–24  
–28  
2
4
4
18  
24  
28  
LSB  
LSB  
LSB  
REFBUF = 4.096V (REFBUF Overdriven) (Note 9)  
Pseudo-Differential Bipolar  
REFBUF = 4.096V (REFBUF Overdriven) (Note 9)  
The l denotes the specifications which apply over the full operating teꢂperature range,  
DynaMic accuracy  
otherwise specifications are at TA = ꢀ7°C and AIN = –1dBFS4 (Notes ±, 1.V  
SYMBOL PARAMETER  
SINAD Signal-to-(Noise + Distortion) Ratio Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
l
f
IN  
96  
99.5  
94.8  
94.8  
dB  
dB  
dB  
Pseudo-Differential Unipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
90.5  
90.5  
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
Fully Differential  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
101.4  
96.6  
96.6  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
98.4  
93.3  
dB  
dB  
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
IN  
SNR  
Signal-to-Noise Ratio  
Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
l
l
l
f
96.5  
91  
100  
95.0  
95.0  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
91  
Fully Differential  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
102  
96.8  
96.8  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
98.5  
93.4  
dB  
dB  
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
IN  
237318f  
4
For more information www.linear.com/LTC2373-18  
LTC2373-18  
The l denotes the specifications which apply over the full operating teꢂperature range,  
DynaMic accuracy  
otherwise specifications are at TA = ꢀ7°C and AIN = –1dBFS4 (Notes ±, 1.V  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
THD  
Total Harmonic Distortion  
Fully Differential  
IN  
l
l
l
f
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
–104  
–99  
–114  
–110  
–110  
dB  
dB  
dB  
Pseudo-Differential Unipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
–99  
Fully Differential  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
–111  
–110  
–110  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
–113  
–110  
dB  
dB  
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
IN  
SFDR  
Spurious Free Dynamic Range  
Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
l
l
l
f
104  
99  
114  
110  
110  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFIN = 2.048V (REFIN Overdriven)  
f
IN  
99  
Fully Differential  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
112  
112  
112  
dB  
dB  
dB  
IN  
Pseudo-Differential Unipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Pseudo-Differential Bipolar  
= 1kHz, REFBUF = 5V (REFBUF Overdriven) (Note 9)  
f
IN  
Fully Differential  
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
f
112.5  
dB  
IN  
Pseudo-Differential Bipolar  
f
f
= 1kHz, REFIN = 2.048V (REFIN Overdriven), SEL = 1  
= 100kHz, Signal Applied to an OFF Channel  
113.5  
–107  
22  
dB  
dB  
IN  
Channel-to-Channel Crosstalk  
–3dB Input Linear Bandwidth  
Aperture Delay  
IN  
MHz  
ps  
500  
4
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
460  
ns  
inTernal reFerence characTerisTics The l denotes the specifications which apply over the  
full operating teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
2.048  
4
MAX  
2.053  
20  
UNITS  
V
V
Internal Reference Output Voltage  
2.043  
REFIN  
l
V
REFIN  
Temperature Coefficient  
(Note 11)  
ppm/°C  
kΩ  
REFIN Output Impedance  
Line Regulation  
15  
V
REFIN  
V
= 4.75V to 5.25V  
DD  
0.06  
mV/V  
V
REFIN Input Voltage Range  
(REFIN Overdriven) (Note 5)  
1.25  
2.4  
237318f  
5
For more information www.linear.com/LTC2373-18  
LTC2373-18  
reFerence buFFer characTerisTics The l denotes the specifications which apply over the full  
operating teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL PARAMETER  
CONDITIONS  
= 2.048V  
MIN  
4.088  
2.5  
TYP  
MAX  
4.104  
5
UNITS  
l
l
V
Reference Buffer Output Voltage  
REFBUF Input Voltage Range  
REFBUF Output Impedance  
REFBUF Load Current  
V
4.096  
V
V
REFBUF  
REFIN  
(REFBUF Overdriven) (Notes 5, 9)  
V
= 0V (Buffer Disabled)  
13  
kΩ  
REFIN  
l
I
V
V
= 5V (REFBUF Overdriven) (Notes 9, 12)  
= 5V, Nap Mode (REFBUF Overdriven) (Note 9)  
1.1  
0.38  
1.5  
mA  
mA  
REFBUF  
REFBUF  
REFBUF  
DigiTal inpuTs anD DigiTal ouTpuTs The l denotes the specifications which apply over the  
full operating teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8 • OV  
DD  
0.2 • OV  
V
DD  
I
V
IN  
= 0V to OV  
DD  
–10  
10  
μA  
pF  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA  
O
OV – 0.2  
DD  
V
OH  
OL  
I = 500µA  
O
0.2  
10  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
power requireMenTs The l denotes the specifications which apply over the full operating teꢂperature  
range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
4.75  
1.71  
TYP  
MAX  
5.25  
5.25  
11  
UNITS  
l
l
V
5
V
V
DD  
OV  
DD  
l
l
l
l
I
I
I
I
Supply Current  
1Msps Sample Rate  
8.0  
0.7  
1.25  
60  
mA  
mA  
mA  
μA  
VDD  
OVDD  
NAP  
Supply Current  
1Msps Sample Rate (C = 20pF)  
L
Nap Mode Current  
Sleep Mode Current  
Conversion Done (I  
+ I  
)
1.5  
120  
VDD  
OVDD  
Sleep Mode (I  
+ I )  
OVDD  
SLEEP  
VDD  
P
Power Dissipation  
Nap Mode  
Sleep Mode  
1Msps Sample Rate  
Conversion Done (I  
40  
6.25  
300  
55  
7.5  
600  
mW  
mW  
µW  
D
+ I  
)
VDD  
OVDD  
Sleep Mode (I  
+ I  
)
OVDD  
VDD  
aDc TiMing characTerisTics  
The l denotes the specifications which apply over the full operating  
teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
CONV  
ACQ  
460  
460  
1
527  
Acquisition Time  
t
= t  
– t  
– t (Note 6)  
BUSYLH  
ns  
ACQ  
CYC  
CONV  
Time Between Conversions  
CNV High Time  
µs  
CYC  
20  
ns  
CNVH  
CNVL  
BUSYLH  
RESETH  
QUIET  
Minimum Low Time for CNV  
CNVto BUSYDelay  
RESET Pulse Width  
(Note 14)  
20  
ns  
C = 20pF  
L
13  
ns  
200  
20  
ns  
(Note 6)  
ns  
SCK, SDI and RDL Quiet Time from CNV↑  
237318f  
6
For more information www.linear.com/LTC2373-18  
LTC2373-18  
elecTrical characTerisTics The l denotes the specifications which apply over the full operating  
teꢂperature range, otherwise specifications are at TA = ꢀ7°C4 (Note ±V  
l
t
t
t
t
t
t
SCK Period  
(Notes 13, 14)  
10  
4
ns  
ns  
ns  
ns  
ns  
SCK  
l
l
l
l
SCK High Time  
SCKH  
SCK Low Time  
4
SCKL  
(Note 13)  
4
SDI Setup Time From SCK↑  
SDI Hold Time From SCK↑  
SDO Data Valid Delay from SCK↑  
SSDISCK  
HSDISCK  
DSDO  
(Note 13)  
1
l
l
l
C = 20pF, OV = 5.25V  
7.5  
8
9.5  
ns  
ns  
ns  
L
DD  
C = 20pF, OV = 2.5V  
L
DD  
C = 20pF, OV = 1.71V  
L
DD  
l
l
l
l
t
t
t
t
t
t
t
t
C = 20pF (Note 6)  
1
ns  
ns  
ns  
ns  
ms  
ns  
ns  
ns  
SDO Data Remains Valid Delay from SCK↑  
SDO Data Valid Delay from BUSY↓  
Bus Enable Time After RDL↓  
Bus Relinquish Time After RDL↑  
REFBUF Wake-Up Time  
HSDO  
L
C = 20pF (Note 6)  
L
5
DSDOBUSYL  
EN  
(Note 13)  
(Note 13)  
16  
13  
DIS  
C
= 47μF, C = 0.1µF  
REFIN  
200  
WAKE  
REFBUF  
l
l
l
38  
36  
40  
CNVto MUX Starts Resetting Delay  
MUX Reset Time During Conversion  
CNVMRST  
MRST1  
VLDMRST  
8th SCKto MUX Starts Resetting Delay After  
Programming 1st Valid Configuration Word  
l
t
MUX Reset Time During Acquisition After  
Programming 1st Valid Configuration Word  
42  
ns  
MRST2  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
0.5LSB when the output code flickers between 00 0000 0000 0000 0000  
and 00 0000 0000 0000 0001. Bipolar zero-scale error is the offset volt-  
age measured from –0.5LSB when the output code flickers between 00  
0000 0000 0000 0000 and 11 1111 1111 1111 1111. Fully differential full-  
scale error is the worst-case deviation of the first and last code transitions  
from ideal and includes the effect of offset error. Unipolar full-scale error  
is the deviation of the last code transition from the ideal and includes the  
effect of offset error. Bipolar full-scale error is the worst-case deviation  
of the first and last code transitions from ideal and includes the effect of  
offset error.  
Note ꢀ: All voltage values are with respect to ground.  
Note 3: When these pin voltages are taken below ground or above V or  
DD  
OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 100mA below ground or above V or OV without  
DD  
DD  
latchup.  
Note ±: V = 5V, OV = 2.5V, f  
= 1MHz, REFIN = 2.048V unless  
DD  
DD  
SMPL  
Note 0: When REFBUF is overdriven, the internal reference buffer must be  
turned off by setting REFIN=0V.  
otherwise noted.  
Note 7: Recommended operating conditions.  
Note 9: Guaranteed by design, not subject to test.  
Note ꢁ: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 8: Fully differential zero-scale error is the offset voltage measured  
from –0.5LSB when the output code flickers between 01 1111 1111 1111  
1111 and 10 0000 0000 0000 0000 in straight binary format and 00 0000  
0000 0000 0000 and 11 1111 1111 1111 1111 in two’s complement  
format. Unipolar zero-scale error is the offset voltage measured from  
Note 1.: All specifications in dB are referred to a full-scale  
differential), 0V to V (pseudo-differential unipolar), or  
V
(fully  
REFBUF  
V
/2  
REFBUF  
REFBUF  
(pseudo-differential bipolar) input.  
Note 11: Temperature coefficient is calculated by dividing the maximum  
change in output voltage by the specified temperature range.  
Note 1ꢀ: f  
= 1MHz, I  
varies proportionally with sample rate.  
SMPL  
REFBUF  
Note 13: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
DD  
DD  
and OV = 5.25V.  
DD  
Note 1±: t  
of 10ns maximum allows a shift clock frequency up to  
SCK  
100MHz for rising edge capture.  
0.8 • OV  
DD  
t
WIDTH  
0.2 • OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
237318 F01  
0.8 • OV  
0.8 • OV  
0.2 • OV  
DD  
DD  
DD  
DD  
0.2 • OV  
Figure 14 6oltage Levels for Tiꢂing Specifications  
237318f  
7
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
Typical perForMance characTerisTics  
Fully Differential Range, 6CM = ꢀ4.±86, fSMPL = 1Msps, unless otherwise noted4  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histograꢂ (Zero-ScaleV  
2.0  
1.5  
1.0  
0.8  
140000  
σ = 0.85  
120000  
0.6  
1.0  
100000  
80000  
60000  
40000  
20000  
0
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
–4 –3 –2 –1  
0
1
2
3
4
OUTPUT CODE  
OUTPUT CODE  
CODE  
237318 G01  
237318 G02  
237318 G03  
3ꢀk Point FFT fSMPL = 1Msps,  
fIN = 1kHz  
3ꢀk Point FFT fSMPL = 1Msps,  
fIN = 1kHz, REFBUF = 76  
DC Histograꢂ (Near Full-ScaleV  
120000  
100000  
80000  
60000  
40000  
20000  
0
0
–20  
0
–20  
SNR = 100.7dB  
THD = –114dB  
SINAD = 100.5dB  
SFDR = 115.3dB  
SNR = 102.3dB  
THD = –111.5dB  
SINAD = 101.8dB  
SFDR = 111.9dB  
σ = 1.00  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
–180  
131052 131054 131056 131058 131060  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
CODE  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237318 G04  
237318 G05  
237318 G06  
SNR, SINAD vs Input Level,  
fIN = 1kHz  
THD, Harꢂonics vs REFBUF,  
fIN = 1kHz  
SNR, SINAD vs REFBUF, fIN = 1kHz  
103  
102  
–105  
–110  
101.0  
100.5  
100.0  
SNR  
SNR  
101  
100  
99  
SINAD  
SINAD  
–115  
–120  
–125  
–130  
THD  
3RD  
98  
99.5  
99.0  
97  
2ND  
96  
2.5  
3
3.5  
4
4.5  
5
4.5  
–20  
–10  
2.5  
3
3.5  
4
5
–40  
–30  
0
REFBUF VOLTAGE (V)  
REFBUF VOLTAGE (V)  
INPUT LEVEL (dB)  
237318 G07  
237318 G08  
237318 G09  
237318f  
8
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
Typical perForMance characTerisTics  
Fully Differential Range, 6CM = ꢀ4.±86, fSMPL = 1Msps, unless otherwise noted4  
THD, Harꢂonics vs Input  
Frequency  
SNR, SINAD vs Input Frequency  
CMRR vs Input Frequency  
105  
100  
95  
–70  
–80  
80  
75  
70  
65  
60  
SNR  
–90  
90  
SINAD  
–100  
–110  
–120  
–130  
85  
80  
THD  
2ND  
3RD  
55  
50  
75  
70  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 G10  
237318 G11  
237318 G12  
SNR, SINAD vs Teꢂperature,  
fIN = 1kHz  
THD, Harꢂonics vs Teꢂperature,  
fIN = 1kHz  
PSRR vs Frequency  
102  
101  
100  
99  
–110  
–115  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
THD  
SNR  
3RD  
SINAD  
–120  
–125  
–130  
2ND  
98  
97  
96  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
1
100  
10  
FREQUENCY (kHz)  
1k  
237318 G14  
237318 G15  
237318 G13  
Full-Scale Error vs Teꢂperature  
REFBUF = ±4.096  
INL vs Teꢂperature  
Zero-Scale Error vs Teꢂperature  
2
1
4
3
2
2.0  
1.5  
1.0  
–FS  
MAX INL  
MIN INL  
1
0
0.5  
0
+FS  
0
–1  
–2  
–1  
–2  
–3  
–4  
–0.5  
–1.0  
–1.5  
–2.0  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
237318 G16  
237318 G17  
237318 G18  
237318f  
9
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
DC Histograꢂ (Zero-ScaleV  
Typical perForMance characTerisTics  
Pseudo-Differential Unipolar Range, fSMPL = 1Msps, unless otherwise noted4  
Integral Nonlinearity vs Output  
Code  
Differential Nonlinearity vs  
Output Code  
2.0  
1.5  
1.0  
0.8  
80000  
σ = 1.54  
0.6  
60000  
40000  
20000  
0
1.0  
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
4
6
8
10 12 14 16 18 20  
OUTPUT CODE  
OUTPUT CODE  
CODE  
237318 G19  
237318 G20  
237318 G21  
3ꢀk Point FFT fSMPL = 1Msps,  
fIN = 1kHz, REFBUF = 76  
3ꢀk Point FFT fSMPL = 1Msps,  
fIN = 1kHz  
DC Histograꢂ (Near Full-ScaleV  
60000  
40000  
20000  
0
0
–20  
0
–20  
SNR = 95.1dB  
THD = –110dB  
SINAD = 94.9dB  
SFDR = 113.3dB  
SNR = 96.9dB  
THD = –111dB  
SINAD = 96.7dB  
SFDR = 112.8dB  
σ = 1.89  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
–180  
262122  
262128  
262134 262140  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
CODE  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237318 G22  
237318 G23  
237318 G24  
THD, Harꢂonics vs REFBUF,  
fIN = 1kHz  
SNR, SINAD vs Input Level,  
IN = 1kHz  
SNR, SINAD vs REFBUF, fIN = 1kHz  
f
98  
97  
–105  
–110  
96.0  
95.5  
95.0  
94.5  
94.0  
THD  
2ND  
SNR  
96  
95  
94  
93  
92  
91  
90  
SINAD  
–115  
–120  
–125  
–130  
SNR  
–10  
3RD  
SINAD  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
–40  
–30  
–20  
0
REFBUF VOLTAGE (V)  
REFBUF VOLTAGE (V)  
INPUT LEVEL (dB)  
237318 G25  
237318 G26  
237318 G27  
237318f  
10  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
Typical perForMance characTerisTics  
Pseudo-Differential Unipolar Range, fSMPL = 1Msps, unless otherwise noted4  
THD, Harꢂonics vs Input  
Frequency  
SNR, SINAD vs Input Frequency  
CMRR vs Input Frequency  
100  
95  
–60  
–70  
80  
75  
70  
65  
60  
SNR  
90  
85  
80  
75  
70  
65  
–80  
–90  
–100  
–110  
–120  
–130  
SINAD  
THD  
2ND  
3RD  
55  
50  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 G28  
237318 G29  
237318 G30  
SNR, SINAD vs Teꢂperature,  
fIN = 1kHz  
THD, Harꢂonics vs Teꢂperature,  
fIN = 1kHz  
PSRR vs Frequency  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
97  
96  
95  
94  
–100  
–105  
–110  
–115  
SNR  
THD  
SINAD  
3RD  
2ND  
93  
92  
–120  
–125  
1
100  
FREQUENCY (kHz)  
1k  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
10  
237318 G31  
237318 G32  
237318 G33  
Full-Scale Error vs Teꢂperature  
REFBUF = ±4.096  
INL vs Teꢂperature  
Zero-Scale Error vs Teꢂperature  
2
1
0
5
4
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX INL  
3
2
1
MIN INL  
0
–1  
–2  
–1  
–0.5  
–2  
–1.0  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
237318 G34  
237318 G35  
237318 G36  
237318f  
11  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
DC Histograꢂ (Zero-ScaleV  
Typical perForMance characTerisTics  
Pseudo-Differential Bipolar Range, fSMPL = 1Msps, unless otherwise noted4  
Integral Nonlinearity vs Output  
Code  
Differential Nonlinearity vs  
Output Code  
2.0  
1.5  
1.0  
0.8  
80000  
σ = 1.55  
0.6  
1.0  
60000  
40000  
20000  
0
0.4  
0.5  
0.2  
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
0
65536  
131072  
196608  
262144  
0
65536  
131072  
196608  
262144  
–7  
–5 –3  
–1  
1
3
5
7
OUTPUT CODE  
OUTPUT CODE  
CODE  
237318 G37  
237318 G38  
237318 G39  
3ꢀk Point FFT fSMPL = 1Msps,  
fIN = 1kHz, REFBUF = 76  
3ꢀk Point FFT fSMPL = 1Msps,  
fIN = 1kHz  
DC Histograꢂ (Near Full-ScaleV  
80000  
60000  
40000  
20000  
0
0
–20  
0
–20  
SNR = 95.6dB  
σ = 1.65  
SNR = 97.2dB  
THD = –109.8dB  
SINAD = 95.5dB  
SFDR = 111.6dB  
THD = –109.2dB  
SINAD = 96.9dB  
SFDR = 112.2dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–100  
–120  
–140  
–160  
–180  
–180  
131055 131058 131061 131063 131066 131069  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
CODE  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237318 G41  
237318 G40  
237318 G42  
THD, Harꢂonics vs REFBUF,  
fIN = 1kHz  
SNR, SINAD vs Input Level,  
fIN = 1kHz  
SNR, SINAD vs REFBUF, fIN = 1kHz  
98  
96.0  
95.5  
95.0  
94.5  
94.0  
–105  
–110  
THD  
2ND  
97  
96  
95  
94  
93  
92  
91  
90  
SNR  
SINAD  
SNR  
SINAD  
–115  
–120  
–125  
–130  
3RD  
2.5  
3
3.5  
4
4.5  
5
–40  
–30  
–20  
–10  
0
2.5  
3
3.5  
4
4.5  
5
REFBUF VOLTAGE (V)  
INPUT LEVEL (dB)  
REFBUF VOLTAGE (V)  
237318 G43  
237318 G45  
237318 G44  
237318f  
12  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
Typical perForMance characTerisTics  
Pseudo-Differential Bipolar Range, fSMPL = 1Msps, unless otherwise noted4  
THD, Harꢂonics vs Input  
Frequency  
SNR, SINAD vs Input Frequency  
CMRR vs Input Frequency  
100  
95  
90  
85  
80  
75  
70  
65  
–60  
–70  
80  
75  
70  
65  
60  
SNR  
–80  
–90  
SINAD  
–100  
–110  
–120  
–130  
THD  
2ND  
3RD  
55  
50  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
25 50 75 100 125 150 175 200  
FREQUENCY (kHz)  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 G46  
237318 G47  
237318 G48  
SNR, SINAD vs Teꢂperature,  
THD, Harꢂonics vs Teꢂperature,  
fIN = 1kHz  
PSRR vs Frequency  
f
IN = 1kHz  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
97  
96  
95  
94  
93  
–100  
–105  
–110  
–115  
–120  
SNR  
THD  
3RD  
SINAD  
2ND  
92  
–125  
1
100  
10  
FREQUENCY (kHz)  
1k  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237318 G49  
237318 G50  
237318 G51  
Full-Scale Error vs Teꢂperature  
REFBUF = ±4.096  
INL vs Teꢂperature  
Zero-Scale Error vs Teꢂperature  
2
1
3
2
2.0  
1.5  
+FS  
–FS  
MAX INL  
1.0  
1
0.5  
0
0
0
MIN INL  
–0.5  
–1.0  
–1.5  
–2.0  
–1  
–2  
–3  
–1  
–2  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237318 G52  
237318 G53  
237318 G54  
237318f  
13  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TA = ꢀ7°C, 6DD = 76, O6DD = ꢀ476, REFIN = ꢀ4.±86,  
Typical perForMance characTerisTics  
fSMPL = 1Msps, unless otherwise noted4  
Input Leakage Current vs Teꢂperature  
(MUXOUT± Shorted to ADCIN±V  
Supply Current vs Teꢂperature  
Sleep Current vs Teꢂperature  
10  
8
100  
80  
200  
ON CHANNEL, V(CHx,COM) = 5V  
OFF CHANNEL, V(CHx,COM) = 5V  
ON CHANNEL, V(CHx,COM) = 0V  
OFF CHANNEL, V(CHx,COM) = 0V  
100  
60  
I
VDD  
6
4
2
0
60  
40  
20  
0
–100  
I
OVDD  
–200  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
237318 G55  
237318 G56  
237318 G57  
Internal Reference Output vs  
Teꢂperature  
Internal Reference Output  
Teꢂperature Coefficient Distribution  
Supply Current vs Saꢂpling Rate  
40  
35  
30  
25  
20  
15  
10  
5
2.052  
2.051  
10  
8
2.050  
2.049  
2.048  
2.047  
2.046  
2.045  
2.044  
I
VDD  
6
4
2
0
I
OVDD  
0
–12 –10 –8 –6 –4 –2  
0 2 4 6 8 10 12  
–40 –25 –10  
5
20 35 50 65 80 95 110 125  
TEMPERATURE (°C)  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLING FREQUENCY (kHz)  
DRIFT (ppm/°C)  
237318 G59  
237318 G58  
237318 G60  
Crosstalk FFT (AC Crosstalk-  
Channel Adjacent to MUXOUTV  
Crosstalk FFT (AC Crosstalk-  
Channel NOT Adjacent to MUXOUTV  
0
–20  
–40  
–60  
–80  
0
–20  
SFDR = 107.3dB  
SFDR = 130dB  
f
IN  
= 100kHz  
f
IN  
= 100kHz  
–40  
–60  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
–160  
–180  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237318 G61  
237318 G62  
237318f  
14  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
pin FuncTions  
CH. to CHꢁ (Pins 1, ꢀ, ꢁ, 8, 0, 1., 31 and 3ꢀV: Analog  
Inputs. CH0 to CH7 can be configured as single-ended  
inputs relative to COM, or as pairs of differential input  
channels. See the Analog Input Multiplexer section.  
UnusedanaloginputsshouldbetiedtoaDCvoltagewithin  
the analog input voltage range of (GND – 0.3V) to (V  
0.3V) as specified in Absolute Maximum Ratings.  
SDI (Pin ꢀ.V: Serial Data Input. Data provided on this pin  
in synchrony with SCK can be used to program the MUX  
channel configuration, converter input range and digital  
gain compression setting via the sequencer. Input data on  
SDI is latched on rising edges of SCK when the serial data  
+
I/O bus is enabled. Logic levels are determined by OV .  
DD  
DD  
SCK (Pin ꢀ1V: Serial Data Clock Input. When the serial  
data I/O bus is enabled, the conversion result followed  
by configuration information is shifted out at SDO on  
the rising edges of this clock MSB first. Serial input data  
is latched on the rising edges of this clock at SDI. Logic  
+
MUXOUT , MUXOUT (Pin 3, Pin 9V: Analog Output Pins  
of MUX.  
+
ADCIN , ADCIN (Pin ±, Pin 7V: Analog Input Pins of  
ADC Core.  
levels are determined by OV .  
DD  
GND (Pins 11, 1±, 17, 1ꢁ, ꢀ3, ꢀ9, ꢀꢁ and Exposed Pad  
Pin 33V: Ground.  
SDO (Pin ꢀꢀV: Serial Data Output. The conversion result  
followed by configuration information is output on this  
pin on each rising edge of SCK MSB first when the serial  
data I/O bus is enabled. The output data format is de-  
termined by the converter operating mode. Logic levels  
REFBUF (Pin 1ꢀV: Reference Buffer Output. An onboard  
buffer nominally outputs 4.096V to this pin. This pin is  
referred to GND and should be decoupled closely to the  
pin with a 47μF ceramic capacitor. The internal buffer  
driving this pin may be disabled by grounding its input  
at REFIN. Once the buffer is disabled, an external refer-  
ence may overdrive this pin in the range of 2.5V to 5V.  
A resistive load greater than 500k can be placed on the  
reference buffer output.  
are determined by OV .  
DD  
RESET(Pin±V:ResetInput.Whenthispinisbroughthigh,  
the LTC2373-18 is reset. If this occurs during a conver-  
sion, the conversion is halted and the data bus becomes  
Hi-Z. Logic levels are determined by OV .  
DD  
O6 (Pin ꢀ7V: I/O Interface Digital Power. The range of  
DD  
REFIN (Pin 13V: Reference Output/Reference Buffer In-  
put. An onboard bandgap reference nominally outputs  
2.048V at this pin. Bypass this pin with a 0.1μF ceramic  
capacitor to GND to limit the reference output noise. If  
more accuracy is desired, this pin may be overdriven by  
an external reference in the range of 1.25V to 2.4V.  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). Bypass OV to GND with a 0.1μF capacitor.  
DD  
6
(Pin ꢀ8V: 2.5V Supply Bypass Pin. The voltage on  
DDLBYP  
this pin is generated via an onboard regulator off of V .  
DD  
This pin must be bypassed with a 2.2μF ceramic capacitor  
to GND. Applying an external voltage to this pin can cause  
damage to the IC or improper operation.  
CN6 (Pin 19V: Convert Input. A rising edge on this input  
powers up the part and initiates a new conversion. Logic  
levels are determined by OV .  
DD  
6
(Pin ꢀ0V: 5V Power Supply. The range of V is 4.75V  
DD  
DD  
RDL(Pin18V:ReadLowInput.WhenRDLislow,theserial  
data I/O bus is enabled. When RDL is high, the serial data  
I/O bus becomes Hi-Z. RDL also gates the external shift  
to5.25V.BypassV toGNDwitha1Fceramiccapacitor.  
DD  
COM (Pin 3.V: Common Input. This is the reference point  
for all single-ended inputs. It must be free of noise and  
connectedtoGNDforunipolarconversionsandREFBUF/2  
for bipolar conversions. If unused, this input should be  
tied to a DC voltage within the analog input voltage range  
clock. Logic levels are determined by OV .  
DD  
BUSY (Pin 10V: BUSY Indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by OV .  
DD  
of (GND – 0.3V) to (V + 0.3V) as specified in Absolute  
DD  
Maximum Ratings.  
237318f  
15  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
FuncTional block DiagraM  
OV = 1.8V  
DD  
TO 5V  
V
= 5V  
V
= 2.5V  
DDLBYP  
DD  
LTC2373-18  
LDO  
CNV  
BUSY  
RESET  
CONTROL LOGIC  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SEQUENCER  
SPI  
PORT  
RDL  
SDO  
SDI  
+
18-BIT SAMPLING ADC  
SCK  
15k  
2.048V  
REFERENCE  
2x REFERENCE  
BUFFER  
GND  
237318 BD01  
MUXOUT  
ADCIN REFBUF = 2.5V REFIN = 1.25V  
+
+
MUXOUT ADCIN  
TO 5V  
TO 2.4V  
TiMing DiagraM  
Typical Conversion and Serial Interface Tiꢂing  
RESET = 0  
CNV  
N
N + 1  
CONVERT  
NAP  
BUSY  
SCK  
RDL  
SDO  
SDI  
Hi-Z  
Hi-Z  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 SOS A3 A2 A1 A0 R1 R0 SEL  
DATA FROM CONVERSION N  
CONFIGURATION WORD  
FROM CONVERSION N  
C7 C6 C5 C4 C3 C2 C1 C0  
237318 TD01  
CONFIGURATION WORD  
FOR CONVERSION N + 1  
237318f  
16  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
O6ER6IEW  
TRANSFER FUNCTION  
The LTC2373-18 is a low noise, high speed, highly con-  
figurable 8-channel 18-bit successive approximation  
register (SAR) ADC. The LTC2373-18 features a low  
crosstalk 8-channel input multiplexer (MUX) and a high  
performance 18-bit accurate ADC core that can be con-  
figured to accept fully-differential, pseudo-differential  
unipolarand pseudo-differentialbipolarinputsignals. The  
input range of the ADC core can be set independently of  
the MUX input channel configuration. The outputs of the  
MUX and inputs of the ADC core are pinned out, allowing  
flexibility in how the MUX is connected to the ADC core.  
The MUX may be wired directly to the ADC core or signal  
conditioning circuitry may be inserted between the MUX  
andADCcore,dependingontheapplication.TheLTC2373-  
18 also has a selectable digital gain compression (DGC)  
feature. The LTC2373-18 has a programmable sequencer  
that can be programmed with configuration words  
ranging from a depth of one up to a maximum depth of  
16 configuration words.  
The LTC2373-18 digitizes the full-scale voltage of 2 ×  
REFBUF in fully differential mode and REFBUF in pseudo-  
18  
differential mode into 2 levels. With REFBUF = 4.096V,  
the resulting LSB sizes in fully differential and pseudo-  
differentialmodesare31.25μVand15.625μV,respectively.  
The binary format of the conversion result depends on the  
converter input range as described in Table 6. The ideal  
two’s complement transfer function is shown in Figure 2,  
whiletheidealstraightbinarytransferfunctionisshownin  
Figure 3. The ideal straight binary transfer function can be  
obtained from the two’s complement transfer function by  
invertingthemostsignificantbit(MSB)ofeachoutputcode.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
The LTC2373-18 has an onboard low drift reference and  
a single-shot capable reference buffer. The LTC2373-18  
also has a high speed SPI-compatible serial interface that  
supports 1.8V, 2.5V, 3.3V and 5V logic. The LTC2373-  
18 automatically naps between conversions, leading to  
reduced power dissipation that scales with the sampling  
rate. A sleep mode is also provided for further power  
savings during inactive periods.  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/262144  
–1 0V  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
LSB  
INPUT VOLTAGE (V)  
237318 F02  
Figure ꢀ4 LTCꢀ3ꢁ3-18 Two’s Coꢂpleꢂent Transfer Function4  
Straight Binary Transfer Function Can Be Obtained by Inverting  
the Most Significant Bit (MSBV of Each Output Code  
CON6ERTER OPERATION  
The LTC2373-18 operates in two phases. During the ac-  
111...111  
111...110  
+ –  
/
+ –  
/
quisition phase when MUXOUT is wired to ADCIN  
,
the charge redistribution capacitor D/A converter (CDAC)  
is connected through the MUX to the selected MUX  
analog input pins. A rising edge on the CNV pin initiates  
a conversion. During the conversion phase, the 18-bit  
CDAC is sequenced through a successive approximation  
algorithm, effectively comparing the sampled input with  
binary-weighted fractions of the reference voltage (e.g.  
100...001  
100...000  
UNIPOLAR  
011...111  
ZERO  
011...110  
000...001  
FSR = +FS  
000...000  
1LSB = FSR/262144  
V
/2, V  
/4 … V  
/262144) using a dif-  
REFBUF  
REFBUF  
REFBUF  
ferential comparator. At the end of conversion, the CDAC  
output approximates the sampled analog input. The ADC  
control logic then prepares the 18-bit digital output code  
for serial transfer.  
0V  
FSR – 1LSB  
INPUT VOLTAGE (V)  
237318 F03  
Figure 34 LTCꢀ3ꢁ3-18 Straight Binary Transfer Function  
237318f  
17  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
ANALOG INPUTS  
ground, C , at the output summing node of the MUX.  
PAR  
PAR  
C
is a lumped capacitance on the order of 20pF formed  
The LTC2373-18 can be configured to accept one of  
three voltage ranges: fully differential ( 4.096V), pseudo-  
differentialunipolar(0Vto4.096V),andpseudo-differential  
bipolar( 2.048V).Inallthreeranges,theADCsamplesand  
digitizes the voltage difference between the two ADC core  
primarily by pin parasitics and diode junctions. Parasitic  
capacitances from the PCB will also contribute to C  
.
PAR  
Thiscapacitanceisdischargedthroughaswitchtoground  
everyconversioncycleorwhenafirstnewconfigurationis  
programmed to minimize crosstalk due to charge sharing  
between channels.  
+
analog input pins (ADCIN − ADCIN ), and any unwanted  
signal that is common to both inputs is reduced by the  
common mode rejection ratio (CMRR) of the ADC. The  
MUXoutputsthevoltagesoftheselectedMUXanaloginput  
During acquisition, each active MUX analog input sees a  
cascade of two first order lowpass filters formed by R  
,
SW  
+ –  
/
+ –  
/
channels to MUXOUT , according to the MUX configu-  
C
and the ADC sampling network when MUXOUT is  
PAR  
+ –  
/
+ –  
+ –  
/
+ –  
/
/
ration. MUXOUT may be wired directly to ADCIN or  
connected through a buffer. Refer to the Configuring the  
LTC2373-18sectionfordetailsonhowtoselecttheanalog  
input range and MUX channel configuration.  
wired directly to ADCIN . If a buffer is inserted between  
+ –  
/
MUXOUT and ADCIN , then each active MUX analog  
input only sees a first order lowpass filter formed by R  
SW  
and C  
that is loaded with the input impedance of the  
PAR  
buffer.  
Independentoftheselectedrangeorchannelconfiguration,  
the MUX analog inputs can be modeled by the equivalent  
circuit shown in Figure 4. CHx and CHy are distinct input  
pins selected from the CH0 to CH7 MUX analog inputs,  
depending on the MUX configuration. Each pin has ESD  
BothC andC drawcurrentspikeswhilebeingcharged  
IN  
PAR  
+ –  
/
during acquisition. If MUXOUT is wired directly to  
+ –  
/
ADCIN , the current spikes from the charging of both  
capacitors are drawn from the active MUX analog inputs.  
+ –  
+ –  
/
+ –  
/
/
protection diodes. The ADC core analog inputs, ADCIN  
,
A buffer inserted between MUXOUT and ADCIN will  
each see a sampling network consisting of approximately  
absorbthecurrentspikefromC ,leavingthecurrentspike  
IN  
50pF (C ) from the sampling CDAC in series with 40Ω  
from C to be drawn from the active MUX analog inputs.  
IN  
PAR  
(R ) from the on-resistance of the sampling switch.  
During conversion and sleep, the MUX analog inputs and  
ADC core analog inputs draw only a small leakage current.  
ON  
The MUX is modeled by a 40Ω resistor representing the  
MUX switch on-resistance (R ) and a capacitance to  
SW  
V
V
DD  
DD  
V
DD  
C
50pF  
IN  
R
40Ω  
R
ON  
40Ω  
SW  
OR  
+
+
CH  
MUXOUT  
ADCIN  
X
C
20pF  
PAR  
BIAS  
VOLTAGE  
V
V
DD  
DD  
V
DD  
C
50pF  
IN  
R
40Ω  
R
ON  
40Ω  
SW  
OR  
CH , COM  
Y
MUXOUT  
ADCIN  
C
20pF  
PAR  
237318 F04  
ADC CORE  
MUX  
Figure ±4 Equivalent Circuit for the Differential Analog Inputs of the LTCꢀ3ꢁ3-18  
237318f  
18  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Fully Differential Input Range  
INPUT DRI6E CIRCUITS  
+ −  
+ −  
/
/
Whether MUXOUT is wired directly to ADCIN or  
through a buffer with high input impedance, the MUX  
analog inputs of the LTC2373-18 are high impedance. In  
either case, a low impedance source can directly drive the  
MUX analog inputs without gain error. A high impedance  
source should be buffered in both cases to minimize set-  
tlingtimeduringacquisitionandtooptimizeADClinearity.  
The fully differential input range provides the widest  
input signal swing, configuring the ADC to digitize the  
+
differentialanaloginputvoltagetotheADCcore(ADCIN −  
ADCIN )providedthroughtheselectedMUXanaloginputs  
+
over a span of V  
. In this range, the ADCIN and  
REFBUF  
ADCIN pins should be driven 180 degrees out-of-phase  
with respect to each other, centered around a common  
+
mode voltage (ADCIN + ADCIN )/2 that is restricted to  
For best performance, a buffer amplifier should be used  
to drive the MUX analog inputs of the LTC2373-18 with  
+
(V  
/2 0.1V). Both the ADCIN and ADCIN pins are  
REFBUF  
allowed to swing from (GND − 0.1V) to (V  
+ 0.1V).  
+ −  
/
+ −  
/
REFBUF  
MUXOUT wired directly to ADCIN . The amplifier  
provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
It also provides isolation between the signal source and  
the current spikes drawn by the MUX analog inputs when  
entering acquisition.  
Unwanted signals common to both inputs are reduced  
by the CMRR of the ADC. The output data format may be  
selected as straight binary or two’s complement.  
Pseudo-Differential Unipolar Input Range  
In the pseudo-differential unipolar input range, the ADC  
digitizes the differential analog input voltage to the ADC  
Noise and Distortion  
+
core (ADCIN − ADCIN ) provided through the selected  
Thenoiseanddistortionofthebufferamplifiersandsignal  
sources must be considered since they add to the ADC  
noise and distortion. Noisyinput signalsshould be filtered  
prior to the inputs of the buffers driving the MUX analog  
inputs with an appropriate filter to minimize noise. The  
simple 1-pole RC lowpass filter (LPF1) shown in Figure 5  
is sufficient for many applications.  
MUX analog inputs over a span of (0V to V  
). In this  
REFBUF  
range, a single-ended unipolar input signal, driven on the  
+
ADCIN pin, ismeasured with respecttothesignal ground  
+
reference level, driven on the ADCIN pin. The ADCIN  
pin is allowed to swing from (GND − 0.1V) to (V  
+
REFBUF  
0.1V), while the ADCIN pin is restricted to (GND 0.1V).  
Unwanted signals common to both inputs are reduced by  
the CMRR of the ADC. The output data format is straight  
binary.  
Buffer amplifiers with low noise density must be selected  
to minimize SNR degradation. Coupling filter networks  
(LPF2) should be placed between the buffer outputs and  
MUX analog inputs to both minimize the noise contribu-  
tion of the buffers and reduce disturbances reflected into  
the buffer from MUX analog input sampling transients.  
Pseudo-Differential Bipolar Input Range  
In the pseudo-differential bipolar input range, the ADC  
digitizes the differential analog input voltage to the ADC  
+ −  
/
If a buffer amplifier is used between MUXOUT and  
+
core (ADCIN − ADCIN ) provided through the selected  
+ −  
/
ADCIN , a coupling filter network (LPF3) should be  
placed between the buffer output and ADC core analog  
inputs to both minimize the noise contribution of the buf-  
fer and reduce disturbances reflected into the buffer from  
the ADC core analog input sampling transients. Long RC  
time constants at the MUX or ADC core analog inputs will  
slow down the settling of those inputs. Therefore, LPF2  
and LPF3 typically require wider bandwidths than LPF1.  
MUX analog inputs over a span of ( V  
/2). In this  
REFBUF  
range, a single-ended bipolar input signal, driven on the  
+
ADCIN pin, is measured with respect to the signal mid-  
+
scalereferencelevel,drivenontheADCIN pin.TheADCIN  
pin is allowed to swing from (GND − 0.1V) to (V  
REFBUF  
+ 0.1V), while the ADCIN pin is restricted to (V  
/2  
REFBUF  
0.1V). Unwanted signals common to both inputs are  
reduced by the CMRR of the ADC. The output data format  
is two’s complement.  
237318f  
19  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Table 1 lists typical recommended values for the R and C  
of each LPF mentioned.  
coupling filters that are used to both filter noise and re-  
duce sampling transients due to the current spikes.  
Table 14 Recoꢂꢂended R and C 6alues for Each Lowpass Filter  
The MUX and ADC core analog inputs may be modeled  
as a switched capacitor load on the drive circuit. A drive  
circuitmayrelypartiallyonattenuatingswitched-capacitor  
Rx(ΩV  
Cx(pFV  
BANDWIDTH  
LPF1  
LPF2  
LPF3  
50  
10  
25  
100000  
1200  
31.8kHz  
13MHz  
2.4MHz  
current spikes with small filter capacitors C  
placed  
FILT  
directlyattheADCinputsandpartiallyonthedriveramplifier  
having sufficient bandwidth to recover from the residual  
disturbance.AmplifiersoptimizedforDCperformancemay  
not have sufficient bandwidth to fully recover at the ADC’s  
maximumconversionrate,whichcanproducenonlinearity  
and other errors. Coupling filter circuits may be classified  
in three broad categories:  
2700  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.NPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
Fully Settled: This case is characterized by filter time  
constants and an overall settling time that are consider-  
ably shorter than the sample period. When acquisition  
begins, the coupling filter is disturbed. For a typical first  
order RC filter, the disturbance will look like an initial step  
with an exponential decay. The amplifier will have its own  
response to the disturbance, which may include ringing. If  
the input settles completely (to within the accuracy of the  
LTC2373-18),thedisturbancewillnotcontributeanyerror.  
Input Currents  
One of the biggest challenges in coupling an amplifier to  
the LTC2373-18 is in dealing with current spikes drawn  
by the MUX and ADC core analog inputs at the start of  
each acquisition phase. LPF2 and LPF3 are examples of  
LTC2373-18  
CH0  
LPF1  
LPF1  
LPF2  
LPF2  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
SIGNAL  
SOURCES  
+
LPF1  
LPF2  
18-BIT ADC CORE  
LPF1  
LPF2  
1/2 LPF1  
1/2 LPF2  
237318 F05  
+ –  
/
+ –  
/
MUXOUT  
ADCIN  
BANDLIMITING  
SIGNAL SOURCE  
NOISE  
BANDLIMITING  
BUFFER NOISE  
AND REDUCING  
SAMPLING TRANSIENTS  
LPF3  
R
X
C
C
X
BANDLIMITING  
BUFFER NOISE  
AND REDUCING  
LPFx  
R
X
X
SAMPLING TRANSIENTS  
Figure 74 Input Signal Chain  
237318f  
20  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Partially Settled: In this case, the beginning of acquisition  
causes a disturbance of the coupling filter, which then  
begins to settle out towards the nominal input voltage.  
However, acquisition ends (and the conversion begins)  
before the input settles to its final value. This generally  
produces a gain error, but as long as the settling is linear,  
no distortion is produced. The coupling filter’s response  
is affected by the amplifier’s output impedance and other  
parameters. A linear settling response to fast switched-  
capacitor current spikes can NOT always be assumed for  
precision, low bandwidth amplifiers. The coupling filter  
serves to attenuate the current spikes’ high frequency  
energy before it reaches the amplifier.  
The first form of crosstalk is often referred to as static  
crosstalk. In static crosstalk, a signal applied to an OFF  
channel, V  
, couples capacitively into the input  
INTERFERER  
signal path, thus corrupting the input signal of the ON  
channel,V .Figure7showsanRCmodeloftwoMUX  
SIGNAL  
input channels and the associated parasitic capacitances.  
Capacitive coupling from an OFF channel into the input  
signal path can occur through C of an OFF switch to  
SW  
+ –  
/
the MUXOUT output pins or through C to an adja-  
PIN  
+ –  
+ –  
/
/
cent input pin or the MUXOUT output pins. Coupling  
through C  
to the MUXOUT pins is the dominant  
PIN  
coupling mechanism that limits the crosstalk to –107dB  
with a 100kHz input signal applied to an OFF CH3 or CH4.  
+
These pins sit adjacent to the MUXOUT and MUXOUT  
+ –  
/
Fully Averaged: Consider the case where MUXOUT is  
pins, respectively.  
+ –  
/
directly wired to ADCIN . If the coupling filter’s capaci-  
tors (C ) at the MUX analog inputs are much larger than  
The second form of crosstalk is referred to as adjacent  
channel crosstalk, which has to do with memory from the  
inputofonechannelaffectingthesampledvalueofanother  
FILT  
the sum of the ADC’s sample capacitors (50pF) and the  
MUX’soutputsummingnodecapacitances(20pF),thenthe  
samplingglitchisgreatlyattenuated. Thedrivingamplifier  
effectively only sees the average sampling current, which  
is quite small. At 1Msps, the equivalent input resistance is  
approximately 14k (as shown in Figure 6), a benign resis-  
tive load for most precision amplifiers. However, resistive  
voltage division will occur between the coupling filter’s  
DC resistance and MUX’s equivalent (switched-capacitor)  
input resistance, thus producing a gain error.  
channel. In this case, C  
at the output summing nodes  
PAR  
+ –  
/
of the MUX, MUXOUT , can act as memory storage  
elements if not dealt with properly. The potential cross-  
talk mechanism here is through charge sharing. C  
is  
PAR  
charged approximately to the voltage of each channel that  
is sampled. If that charge is not cleared when switching  
fromonechanneltothenext,thenchargesharingbetween  
the charge on the filter capacitor (C ) of one channel  
FILT  
will occur with the charge from another channel stored on  
LTC2373-18  
C
.TheunwantedchargefromC cantakealongtime  
R
CH  
X
EQ  
PAR  
PAR  
to settle out depending on the input filter bandwidth. C  
PAR  
C
C
>> C  
TOT  
FILT  
FILT  
BIAS  
VOLTAGE  
is discharged through a low impedance switch to ground  
every conversion cycle or when a first new configuration  
is programmed to mitigate this effect.  
R
EQ  
CH , COM  
Y
>> C  
TOT  
237318 F06  
+ –  
/
1
MUXOUT  
R
EQ  
=
C
= C + C = 70pF  
IN PAR  
TOT  
f
C  
TOT  
SMPL  
C
PAR  
Figure 94 Equivalent Circuit for the MUX Analog Inputs of the  
LTCꢀ3ꢁ3-18 at 1Msps  
C
C
PIN  
PIN  
R
R
SW  
CH3/CH4  
V
INTERFERER  
Crosstalk  
OFF CHANNEL  
C
SW  
C
FILT  
Crosstalk is a typical concern in systems that employ  
multiplexers. The LTC2373-18 features a low crosstalk  
8-channel MUX. There are two forms of crosstalk in the  
LTC2373-18 that potentially allow the signal from one  
channel to corrupt the signal from another channel being  
sampled.  
SW  
CH2/CH5  
V
SIGNAL  
ON CHANNEL  
C
SW  
C
FILT  
237318 F07  
Figure 4 RC Equivalent Circuit for Two MUX Analog  
Input Channels  
237318f  
21  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Driving the MUX Analog Inputs  
sity, enabling it to achieve the full ADC data sheet SNR  
and THD specifications for all input ranges, as shown in  
the FFT plots in Figures 8b, 8c and 8d. The RC filter time  
constant is chosen to allow for sufficient transient settling  
of the LTC2373-18 MUX analog inputs during acquisition.  
With a maximum supply current of 7.8mA, the LT6237  
is a perfect complement to the low power LTC2373-18.  
The LTC2373-18 can be programmed to accept fully  
differential or pseudo-differential input signals. In most  
applications, it is recommended that the LTC2373-18 be  
driven using the LT6237 ADC driver configured as two  
unity-gain buffers regardless of the input range, as shown  
in Figure 8a. The LT6237 combines fast settling and good  
DC linearity with a 1.1nV/√Hz input-referred noise den-  
+
4.096V  
V
0V  
8
MUX CHANNELS  
CH0 AND CH1  
SELECTED  
0V  
2
3
+
LTC2373-18  
10Ω  
10Ω  
CH0  
1
7
4.096V  
0V  
CH1  
1200pF  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
LT6237  
4.096V  
0V  
5
6
+
1200pF  
+
18-BIT ADC CORE  
4.096V  
0V  
4
V
2.048V  
237318 F08a  
+ –  
/
MUXOUT  
SHORTED TO  
+ –  
/
ADCIN  
Figure 8a4 LT9ꢀ3ꢁ Buffering a Fully Differential or Pseudo-Differential Signal Source  
0
–20  
0
–20  
0
–20  
SNR = 100dB  
SNR = 94.8dB  
SNR = 94.8dB  
THD = –113dB  
SINAD = 99.7dB  
SFDR = 113.8dB  
THD = –106.1dB  
SINAD = 94.6dB  
SFDR = 107.1dB  
THD = –105.5dB  
SINAD = 94.6dB  
SFDR = 107.1dB  
–40  
–40  
–40  
–60  
–60  
–60  
–80  
–80  
–80  
–100  
–120  
–140  
–100  
–120  
–140  
–100  
–120  
–140  
–160  
–180  
–160  
–180  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
FREQUENCY (kHz)  
237318 F08b  
237318 F08c  
237318 F08d  
Figure 8b4 3ꢀk Point FFT fSMPL  
=
Figure 8c4 3ꢀk Point FFT fSMPL  
=
Figure 8d4 3ꢀk Point FFT fSMPL =  
1Msps, fIN = 1kHz for Circuit Shown  
in Figure 8a; Driven with Fully  
Differential Inputs  
1Msps, fIN = 1kHz for Circuit Shown  
in Figure 8a; Driven with Unipolar  
Inputs  
1Msps, fIN = 1kHz for Circuit Shown  
in Figure 8a; Driven with Bipolar  
Inputs  
237318f  
22  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Maximizing SNR with a Single-Ended to Differential  
Conversion  
0
–20  
SNR = 100dB  
THD = –106.2dB  
SINAD = 99.4dB  
SFDR = 108.1dB  
–40  
A single-ended input signal may be converted to a fully  
differential signal prior to driving the MUX analog inputs  
of the LTC2373-18 to take advantage of the higher SNR  
of the LTC2373-18 in the fully differential input range.  
The LT6350 ADC driver shown in Figure 9a can be used  
to convert a 0V to 4.096V input signal to a fully differential  
4.096V output signal. The RC time constant is larger in  
this case to limit the high frequency noise contribution  
of the LT6350. This topology provides a 5dB increase in  
SNR over single-ended operation and achieves the full  
data sheet SNR performance of the fully differential input  
range of 100dB as shown in the FFT plot in Figure 9b. The  
maximum supply current of 10.4mA makes the LT6350 a  
good companion to the low power LTC2373-18.  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 F09b  
Figure 9b. 32k Point FFT fSMPL = 1Msps,  
fIN = 1kHz for Circuit Shown in Figure 9a  
Maximizing SNR for Eight Single-Ended Inputs Using  
a Shared Amplifier Between MUXOUT and ADCIN  
+ –  
/
+ –  
/
While converting a single-ended signal to a fully differ-  
ential signal offers the benefit of higher SNR, two input  
channels are required per single-ended input, leading to  
a reduced number of single-ended input signals that can  
be interfaced to the LTC2373-18. Performing the sin-  
gle-ended to differential conversion using the LT6237  
4.096V  
+
V
3
OUT1  
0V  
MUX CHANNELS  
CH0 AND CH1  
SELECTED  
LT6350  
LTC2373-18  
10Ω  
10Ω  
CH0  
CH1  
4
5
4.096V  
0V  
3300pF  
3300pF  
8
1
+
R
R
INT  
INT  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
3300pF  
+
+
2
18-BIT ADC CORE  
6
4.096V  
0V  
+
V
CM  
= 2.048V  
OUT2  
V
237318 F09a  
+ –  
/
MUXOUT  
SHORTED TO  
+ –  
/
ADCIN  
Figure 9a. LT6350 Converting a 0V to 4 .096V Single-Ended Signal to a ±4 .096V Fully Differential Signal  
237318f  
23  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
+/–  
+/–  
betweenMUXOUT andADCIN asshowninFigure10a  
provides the SNR benefits of the fully differential range  
without sacrificing additional MUX inputs to do so. Using  
the MUX configurations where CH0 to CH7 is output to  
inputs achieve an SNR of 99dB with this circuit as shown  
in Figure 10b, which is a 4dB improvement in SNR over  
single-ended operation.  
0
+
SNR = 99dB  
MUXOUT and COM to MUXOUT enables eight single-  
ended inputs to be converted with the fully differential  
input range. The COM MUX input channel is used in the  
feedback connection of the buffer amplifier connected  
in a follower configuration to improve the distortion  
performance of the circuit. THD degradation would oth-  
erwise occur due to the non-linear voltage drop across  
the MUX switch from the input current of the buffer and  
the non-linear on-resistance of the MUX switch. The 1k  
–20  
–40  
THD = –108dB  
SINAD = 98.4dB  
SFDR = 107.7dB  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 F10b  
resistor between COM and MUXOUT maintains negative  
Figure 10b. 32k Point FFT fSMPL = 1Msps,  
fIN = 1kHz for Circuit Shown in Figure 10a  
feedback around the buffer when the MUX turns OFF, so  
that the buffer output does not rail. Eight single-ended  
+
V
MUX CHANNELS  
CH0 AND COM  
SELECTED  
6
3
4
+
4.096V  
0V  
LTC2373-18  
10Ω  
CH0  
LT6236  
1
1200pF  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
2
5
V
+
18-BIT ADC CORE  
CH7  
COM  
237318 F10a  
+
+
MUXOUT  
MUXOUT  
ADCIN  
ADCIN  
+
V
1k  
8
7
6
5
+
24.9Ω  
100pF  
499Ω  
100pF  
2700pF  
2700pF  
499Ω  
2
3
24.9Ω  
LT6237  
1
+
4
+
= 2.048V  
V
CM  
V
Figure 10a. LT6236 Buffering a Single-Ended 0V to 4 .096V Input Signal and the LT6237 Configured to Perform a  
Single-Ended to Differential Conversion to the ±4 .096V Fully Differential Input Range  
237318f  
24  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Using Digital Gain Compression for Single Supply  
Operation  
ADC driver results in additional power savings for the  
entire system versus conventional systems that have a  
negative supply for the ADC driver.  
The LTC2373-18 offers a digital gain compression (DGC)  
feature which defines the full-scale input swing to be be-  
With DGC enabled, the LTC2373-18 can be driven by the  
low power LTC6362 differential driver which is powered  
fromasingle5Vsupply.Figure11bshowshowtoconfigure  
the LTC6362 to accept a 3.28V true bipolar single-ended  
input signal and level shift the signal to the reduced input  
range of the LTC2373-18 when digital gain compression  
is enabled. Using the LT6236 to buffer the resistor divider  
tween 10% and 90% of the V  
analog input range.  
REFBUF  
This feature allows the ADC driver to be powered off of a  
single positive supply since each input swings between  
0.41V and 3.69V with V  
= 4.096V as in Figure 11a.  
REFBUF  
Needing only a positive supply and ground to power the  
that creates V , the entire signal chain solution can be  
V
= 4.096V  
3.69V  
REFBUF  
CM  
powered from a single 5V supply, minimizing power  
consumption and reducing complexity. The reduced input  
signal swing of this single 5V supply solution limits the  
achievableSNRto98dB,asshownintheFFT ofFigure11c.  
To enable DGC, set SEL=1 in the configuration word.  
0.41V  
0V  
237318 F11a  
Figure 11a. Input Swing of the LTC2373-18 with Digital Gain  
Compression Enabled and V REFBUF = 4 .096V  
5V  
6
0.1µF  
+
3
4
4.096V  
1
LT6236  
2
47µF  
10µF  
5
0.1µF  
1k  
MUX CHANNELS  
CH0 AND CH1  
SELECTED  
3.69V  
0.41V  
V
CM  
1k  
2
3
5
10µF  
1k  
+
V
V
REFBUF  
LTC2373-18  
DD  
35.7Ω  
35.7Ω  
CH0  
CH1  
150Ω  
850Ω  
850Ω  
1500pF  
8
1
+
0.22µF  
0.22µF  
3.28V  
0V  
–3.28V  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
LTC6362  
100Ω  
1500pF  
R
= 50Ω  
4
6
SOURCE  
+
3.69V  
0.41V  
V
18-BIT ADC CORE  
V
SOURCE  
1k  
DIGITAL GAIN COMPRESSION ENABLED BY SETTING  
SEL = 1 IN THE CONFIGURATION WORD  
237318 F11b  
+ –  
/
MUXOUT  
SHORTED TO  
+ –  
/
ADCIN  
Figure 11b. LTC6362 Configured to Accept a ±3.28V Input Signal While Running from a Single 5V Supply When  
Digital Gain Compression is Enabled in the LTC2373-18  
237318f  
25  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
0
Internal Reference with Internal Buffer  
SNR = 98dB  
THD = –106.1dB  
SINAD = 97.5dB  
SFDR = 110dB  
–20  
–40  
The LTC2373-18 has an on-chip, low noise, low drift  
(20ppm/°C), temperature compensated bandgap refer-  
ence that is factory trimmed to 2.048V. It is internally  
connected to a reference buffer as shown in Figure 12a  
and is available at REFIN (Pin 13). REFIN should be by-  
passedto GND with a 0.1μFceramiccapacitorto minimize  
noise. The reference buffer gains the REFIN voltage by 2  
to 4.096V at REFBUF (Pin 12). Bypass REFBUF to GND  
withatleast4Fceramiccapacitor(X7R, 10V, 1210size)  
to compensate the reference buffer and minimize noise.  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 F11c  
Figure 11c. 32k Point FFT fSMPL = 1Msps, fIN = 1kHz for  
Circuit Shown in Figure 11b  
LTC2373-18  
15k  
REFIN  
BANDGAP  
REFERENCE  
ADC REFERENCE  
0.1µF  
There are three ways of providing the ADC reference. The  
first is to use both the internal reference and reference  
buffer. The second is to externally overdrive the internal  
reference and use the internal reference buffer. The third  
is to disable the internal reference buffer and overdrive  
the REFBUF pin from an external source. The following  
tables give examples of these cases and the resulting fully  
differential, unipolar and bipolar input ranges.  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
47µF  
6.5k  
GND  
237318 F12a  
Figure 12a. LTC2373-18 Internal Reference Circuit  
Table 2. Internal Reference with Internal Buffer  
FULLY  
External Reference with Internal Buffer  
DIFFERENTIAL UNIPOLAR  
BIPOLAR  
REFIN  
REFBUF INPUT RANGE INPUT RANGE INPUT RANGE  
If more accuracy and/or lower drift is desired, REFIN  
can be easily overdriven by an external reference since a  
15k resistor is in series with the reference as shown in  
Figure 12b. REFIN can be overdriven in the range from  
1.25V to 2.4V. The resulting voltage at REFBUF will be  
2 × REFIN. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
2.048V  
4.096V  
4.096V  
0V to 4.096V  
2.048V  
Table 3. External Reference with Internal Buffer  
FULLY  
REFIN  
DIFFERENTIAL UNIPOLAR  
BIPOLAR  
(OV ERDRIV E) REFBUF INPUT RANGE INPUT RANGE INPUT RANGE  
1.25 (Min)  
2.048V  
2.5V  
4.096V  
4.8V  
2.5V  
4.096V  
4.8V  
0V to 2.5V  
0V to 4.096V  
0V to 4.8V  
1.25V  
2.048V  
2.4V  
2.4V (Max)  
LTC2373-18  
15k  
REFIN  
BANDGAP  
REFERENCE  
Table 4 . External Reference Unbuffered  
FULLY  
2.7µF  
REFBUF  
REFERENCE  
BUFFER  
DIFFERENTIAL UNIPOLAR  
BIPOLAR  
REFIN  
REFBUF INPUT RANGE INPUT RANGE INPUT RANGE  
6.5k  
2.5V  
LTC6655-2.048  
47µF  
0V  
2.5V  
5V  
0V to 2.5V  
0V to 5V  
1.25V  
2.5V  
(Min)  
6.5k  
5V  
(Max)  
GND  
0V  
237318 F12b  
Figure 12b. Using the LTC6655-2.04 8 as an External Reference  
237318f  
26  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
manyapplications.Withitssmallsize,lowpower,andhigh  
accuracy, the LTC6655-2.048 is well suited for use with  
the LTC2373-18 when overdriving the internal reference.  
The LTC6655-2.048 offers 0.025% (max) initial accuracy  
and 2ppm/°C (max) temperature coefficient for high pre-  
cision applications. The LTC6655-2.048 is fully specified  
over the H-grade temperature range and complements  
the extended temperature range of the LTC2373-18 up to  
125°C.BypassingtheLTC6655-2.048witha2.7μFto100μF  
ceramiccapacitorclosetotheREFINpinisrecommended.  
external reference must provide all of this charge with a  
DC current equivalent to I  
= Q  
/t . Thus, the  
REFBUF  
CONV CYC  
DC current draw of REFBUF depends on the sampling rate  
and output code. In applications where a burst of samples  
istakenafteridlingforlongperiods,asshowninFigure13,  
I
quicklygoesfromapproximately380µAtoamaxi-  
REFBUF  
mum of 1.5mA for REFBUF = 5V at 1Msps. This step in DC  
current draw triggers a transient response in the external  
reference that must be considered since any deviation in  
thevoltageatREFBUFwillaffecttheaccuracyoftheoutput  
code. IfanexternalreferenceisusedtooverdriveREFBUF,  
the fast settling LTC6655-5 reference is recommended.  
External Reference Unbuffered  
The internal reference buffer can also be overdriven from  
2.5V to 5V with an external reference at REFBUF as shown  
inFigure12c.To doso,REFINmustbegroundedtodisable  
the reference buffer. A 13k resistor loads the REFBUF pin  
whenthereferencebufferisdisabled.To maximizetheinput  
signal swing and corresponding SNR, the LTC6655-5 is  
recommendedwhenoverdrivingREFBUF.TheLTC6655-5  
offers the same small size, accuracy, drift and extended  
temperature range as the LTC6655-2.048. By using a 5V  
reference, an SNR of 102dB can be achieved. Bypassing  
the LTC6655-5 with a 47μF ceramic capacitor (X5R, 0805  
size) close to the REFBUF pin is recommended.  
Internal Reference Buffer Transient Response  
Foroptimumtransientperformance,theinternalreference  
buffer should be used. The internal reference buffer uses a  
proprietarydesignthatresultsinanoutputvoltagechange  
atREFBUFoflessthan1LSBwhenrespondingtoasudden  
burst of conversions. This makes the internal reference  
buffer of the LTC2373-18 truly single-shot capable since  
the first sample taken after idling will yield the same re-  
sult as a sample taken after the transient response of the  
internal reference buffer has settled. Figures 14a, 14b,  
and 14c show the transient responses of the LTC2373-  
18 with the internal reference buffer and with the internal  
reference buffer overdriven by the LTC6655-5, both with  
a bypass capacitance of 47μF in fully differential, pseudo-  
differential unipolar, and pseudo-differential bipolar input  
ranges, respectively.  
LTC2373-18  
15k  
REFIN  
BANDGAP  
REFERENCE  
REFBUF  
REFERENCE  
BUFFER  
6.5k  
DYNAMIC PERFORMANCE  
LTC6655-5  
47µF  
6.5k  
Fast fourier transform (FFT) techniques are used to test the  
ADC’s frequency response, distortion and noise at the rated  
throughput. By applying a low distortion sine wave and ana-  
lyzing the digital output using an FFT algorithm, the ADC’s  
spectralcontentcanbeexaminedforfrequenciesoutsidethe  
fundamental. The LTC2373-18 provides guaranteed tested  
limits for both AC distortion and noise measurements.  
GND  
237318 F12c  
Figure 12c. Overdriving REFBUF Using the LTC6655-5  
TheREFBUFpinoftheLTC2373-18drawsacharge(Q  
fromtheexternalbypasscapacitorduringeachconversion  
cycle. If the internal reference buffer is overdriven, the  
)
CONV  
CNV  
237318 F13  
IDLE  
PERIOD  
IDLE  
PERIOD  
Figure 13. CNV Waveform Showing Burst Sampling  
237318f  
27  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
8
components at the A/D output. The output is band limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure15showsthattheLTC2373-18achieves  
a typical SINAD of 100dB (fully differential) at a 1MHz  
sampling rate with a 1kHz input.  
INTERNAL REFERENCE BUFFER  
EXTERNAL SOURCE ON REFBUF  
6
4
2
0
0
SNR = 100.7dB  
–20  
–40  
THD = –114dB  
SINAD = 100.5dB  
SFDR = 115.3dB  
–2  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
–60  
237318 F11c  
–80  
Figure 14 a. Transient Response of the LTC2373-18 in the  
Fully Differential Input Range  
–100  
–120  
–140  
–160  
8
INTERNAL REFERENCE BUFFER  
EXTERNAL SOURCE ON REFBUF  
6
4
–180  
0
100  
200  
300  
400  
500  
FREQUENCY (kHz)  
237318 F15  
2
Figure 15. 32k Point FFT fSMPL = 1Msps, fIN = 1kHz  
0
Signal-to-Noise Ratio (SNR)  
–2  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
The signal-to-noise ratio (SNR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 15 shows  
thattheLTC2373-18achievesatypicalSNRof100dB(fully  
differential) at a 1MHz sampling rate with a 1kHz input.  
237318 F14b  
Figure 14 b. Transient Response of the LTC2373-18 in the  
Pseudo-Differential Unipolar Input Range  
2
0
Total Harmonic Distortion (THD)  
Totalharmonicdistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
–2  
–4  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
INTERNAL REFERENCE BUFFER  
EXTERNAL SOURCE ON REFBUF  
–6  
0
100 200 300 400 500 600 700 800 900 1000  
TIME (µs)  
2
237318 F14c  
V22 +V32 +V42 +…+VN  
THD=20log  
V1  
Figure 14 c. Transient Response of the LTC2373-18 in the  
Pseudo-Differential Bipolar Input Range  
where V1 is the RMS amplitude of the fundamental  
Signal-to-Noise and Distortion Ratio (SINAD)  
frequency and V2 through V are the amplitudes of the  
N
second through Nth harmonics. Figure 15 shows that  
the LTC2373-18 achieves a typical THD of –114dB (fully  
differential) at a 1MHz sampling rate with a 1kHz input.  
The signal-to-noise and distortion ratio (SINAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
237318f  
28  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
POWER CONSIDERATIONS  
mum acquisition time of 460ns, throughput performance  
of 1Msps is guaranteed without any external adjustments.  
The LTC2373-18 provides two power supply pins: the 5V  
power supply (V ), and the digital input/output interface  
DD  
Auto Nap Mode  
power supply (OV ). The flexible OV supply allows the  
DD  
DD  
The LTC2373-18 automatically enters nap mode after a  
conversion has been completed and completely powers  
up once a new conversion is initiated on the rising edge of  
CNV. During nap mode, only the ADC core powers down  
and all other circuits remain active. During nap, data from  
thelastconversioncanbeclockedout. Theautonapmode  
featurewillreducethepowerdissipationoftheLTC2373-18  
as the sampling frequency is reduced. Since full power is  
consumed only during a conversion, the ADC core of the  
LTC2373-18remainspowereddownforalargerfractionof  
LTC2373-18tocommunicatewithanydigitallogicoperating  
between 1.8V and 5V, including 2.5V and 3.3V systems.  
Power Supply Sequencing  
The LTC2373-18 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2373-18  
has a power-on-reset (POR) circuit that will reset the  
LTC2373-18 at initial power-up or whenever the power  
supply voltage drops below 2V. Once the supply voltage  
re-enters the nominal supply voltage range, the POR will  
reinitialize the ADC. No conversions should be initiated  
until 100ms after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
the conversion cycle (t ) at lower sample rates, thereby  
CYC  
reducing the average power dissipation which scales with  
the sampling rate as shown in Figure 16.  
10  
8
I
VDD  
6
4
2
0
TIMING AND CONTROL  
CNV Timing  
The LTC2373-18 conversion is controlled by CNV. A ris-  
ing edge on CNV will start a conversion and power up the  
LTC2373-18.Onceaconversionhasbeeninitiated,itcannot  
berestarteduntiltheconversioniscomplete.Foroptimum  
performance, CNV should be driven by a clean low jitter  
signal. Converter status is indicated by the BUSY output  
which remains high while the conversion is in progress.  
To ensure that no errors occur in the digitized results, any  
additional transitions on CNV should occur within 40ns  
from the start of the conversion or after the conversion  
has been completed. Once the conversion has completed,  
the LTC2373-18 powers down and begins acquiring the  
input signal. It is not necessary to clock out all of the data  
and configuration bits before starting a new conversion.  
I
OVDD  
0
100 200 300 400 500 600 700 800 900 1000  
SAMPLING FREQUENCY (kHz)  
237318 F16  
Figure 16. Power Supply Current of the LTC2373-18 vs  
Sampling Rate  
Sleep Mode  
Theautonapmodefeatureprovideslimitedpowersavings  
since only the ADC core powers down. To obtain greater  
power savings, the LTC2373-18 provides a sleep mode.  
During sleep mode, the entire part is powered down  
except for a small standby current resulting in a power  
dissipation of 300μW. To enter sleep mode, toggle CNV  
twice with no intervening rising edge on SCK. The part  
will enter sleep mode on the falling edge of BUSY from  
the last conversion initiated. Once in sleep mode, a rising  
Internal Conversion Clock  
The LTC2373-18 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof527ns.Withamini-  
237318f  
29  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
edge on SCK will wake the part up. Upon emerging from  
Configuring the LTC2373-18  
sleep mode, wait t  
ms before initiating a conversion  
WAKE  
The various modes of operation of the LTC2373-18 are  
programmedbysevenbitsofan8-bitcontrolword,C[7:0].  
The control word is shifted in at SDI on the rising edges  
of SCK, MSB first. The control word is defined as follows:  
to allow the reference and reference buffer to wake-up  
and charge the bypass capacitors at REFIN and REFBUF.  
(Refer to the Timing Diagrams section for more detailed  
timing information about sleep mode.)  
C[7]  
X
C[6]  
A[3]  
C[5]  
A[2]  
C[4]  
A[1]  
C[3]  
A[0]  
C[2]  
R[1]  
C[1]  
R[0]  
C[0]  
SEL  
DIGITAL INTERFACE  
The LTC2373-18 has a serial digital interface. The flexible  
The MSB of the control word, C[7], is used during the  
programming of the sequencer and does not control  
the operating mode or configuration of the MUX or ADC  
(see Programming the Sequencer section). Referring to  
Table 6, bits A[3:0] (C[6:3]) control the analog input MUX  
channel configuration. Bits R[1:0] (C[2:1]) control the  
input range configuration of the ADC and the SEL (C[0])  
bit enables/disables the digital gain compression feature  
(see Using Digital Gain Compression for Single Supply  
Operation section).  
OV supplyallowstheLTC2373-18tocommunicatewith  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial data I/O bus is enabled when RDL is low. Serial  
output data is clocked out on the SDO pin and serial input  
configurationdataisclockedinattheSDIpinwhenanexternal  
clock is applied to the SCK pin if the serial data I/O bus is  
enabled.SerialoutputdatatransitionsonrisingedgesofSCK  
and serial input data is latched on rising edges of SCK. D17  
remains valid till the first rising edge of SCK. After the 18 bits  
of the conversion result are shifted out, a start-of-sequence  
(SOS) bit followed by the 7-bit control word corresponding  
to the conversion result is shifted out. SDO will remain low  
after 26 SCK rising edges have been issued. Clocking out the  
data and configuration information after the conversion will  
yield the best performance. Table 5 lists the minimum shift  
clock frequency needed to achieve 1Msps throughput when  
shifting out a different number of bits.  
Table 6. Description of Decoded Configuration Bits  
BITS  
NAME  
BEHAV IOR  
[A3:A0] MUX Channel  
Configuration Bits  
See Table 7  
[R1:R0] Input Range  
Selection Bits  
00 – Pseudo-Differential Unipolar Input  
(Straight Binary Output Data Format)  
01 – Pseudo-Differential Bipolar Input  
(Two’s-Complement Output Data  
Format)  
10 – Fully Differential Input  
(Straight Binary Output Data Format)  
11 – Fully Differential Input  
(Two’s-Complement Output Data  
Format)  
Table 5. Minimum Shift Clock Frequency vs Number of Bits for 1Msps  
NUMBER OF BITS  
f (MHz)  
SCK  
Conversion Result  
18  
19  
26  
41  
44  
60  
SEL  
Digital Gain  
Compression Bit  
0 – Digital Gain Compression Disabled  
1 – Digital Gain Compression Enabled  
Conversion Result + SOS Bit  
Conversion Result + SOS Bit +  
Configuration Data  
Note: Digital gain compression feature always disabled for the pseudo-  
differential unipolar input range.  
The configuration of the LTC2373-18 is programmed via  
a sequencer through the serial interface. The following  
sectionsdescribethevariouswaystheLTC2373-18canbe  
programmed, the operation of the sequencer and general  
use of the LTC2373-18.  
Analog Input Multiplexer  
The analog input MUX is programmed by the A[3:0]  
(C[6:3]) bits of the input control word. Table 7 lists the  
MUX configurations for all combinations of the configu-  
ration bits. The selected positive (+) channel is output  
+
to MUXOUT and the selected negative (−) channel is  
output to MUXOUT . Figure 17 shows an example of the  
MUX configuration being updated on successive conver-  
sions. Note how the voltages of the selected positive (+)  
237318f  
30  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
CONVERSION #1  
CONVERSION #2  
V(CH2)  
(+)  
(–)  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
(+)  
(–)  
V(CH0)  
V(CH1)  
+
+
+
+
MUXOUT  
MUXOUT  
MUXOUT  
ADCIN  
ADCIN  
18-BIT  
ADC CORE  
18-BIT  
ADC CORE  
V(COM)  
ADCIN  
MUXOUT  
ADCIN  
COM  
COM  
R[1:0] = 10  
FULLY DIFFERENTIAL  
STRAIGHT BINARY  
R[1:0] = 00  
MUX  
MUX  
PSEUDO-DIFFERENTIAL  
A[3:0] = 0000  
A[3:0] = 1010  
UNIPOLAR  
237318 F17  
Figure 17. Changing the Configuration of the LTC2373-18 on Successive Conversions  
+
and negative (−) channels are output at MUXOUT and  
An internal memory pointer determines which of the up  
to 16 programmed control words is currently controlling  
the converter. The pointer is reset to point to the first pro-  
grammedcontrolwordeachtimethesequencermemoryis  
programmed.Uponreachingthefinalprogrammedcontrol  
word stored in memory, the pointer is automatically reset  
to the firstmemorylocationandthe sequenceisrestarted.  
Atpower-uporafterresettingtheLTC2373-18,theinternal  
sequencer memory programming defaults to a depth of 1  
withcontrolwordC0[6:0]=0000000(CH0 /CH1 ,unipolar  
input range, digital gain compression disabled). Figure  
18b shows the sequencer memory programmed with 8  
configurations along with the memory pointer location for  
conversions run after programming.  
MUXOUT , respectively.  
Table 7. Channel Configuration  
MUX CONFIGURATION  
BITS  
MULTIPLEXER CONFIGURATION  
A[3] A[2] A[1] A[0] CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 COM  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
+
+
+
+
+
+
+
+
+
+
Start of Sequence  
+
The start of sequence (SOS) bit is output to SDO on the  
19th SCK cycle during all SPI transactions and indicates  
whether the configuration for the conversion just per-  
formed corresponds to the control word stored in the  
first memory location of the sequencer memory. When  
SOS=1, the current configuration corresponds to the first  
memory location of the sequencer. The SOS bit can be  
used to align the conversion data with the corresponding  
control word when truncated SPI transactions are used  
to maximize throughput. Only one extra bit needs to be  
shifted out to maintain alignment of the configuration  
with the conversion data. This results in needing 19 SCK  
cycles instead of 26, which allows a higher throughput  
to be achieved while being able to keep the configuration  
information properly aligned with the conversion data.  
+
+
+
+
+
+
Sequencer  
The LTC2373-18 features a sequencer that can store up  
to 16 7-bit control words in internal memory. The 7-bit  
controlwordisdefinedintheConfiguringtheLTC2373-18  
section. The sequencer repeatedly cycles through the  
control words stored in sequencer memory on succes-  
sive conversions if no new valid control words are input  
to the part in a given transaction. The sequencer memory  
is shown in Figure 18a.  
237318f  
31  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
SEQUENCER MEMORY  
SEQUENCER PROGRAMMED  
7-BITS WIDE  
WITH EIGHT CONTROL WORDS  
C0[6:0]  
C1[6:0]  
C2[6:0]  
C3[6:0]  
C4[6:0]  
C5[6:0]  
C6[6:0]  
C7[6:0]  
C0[6:0]  
C1[6:0]  
C2[6:0]  
C3[6:0]  
C4[6:0]  
C5[6:0]  
C6[6:0]  
C7[6:0]  
1ST CONVERSION  
9TH CONVERSION  
10TH CONVERSION  
11TH CONVERSION  
12TH CONVERSION  
13TH CONVERSION  
14TH CONVERSION  
15TH CONVERSION  
16TH CONVERSION  
....  
2ND CONVERSION  
3RD CONVERSION  
4TH CONVERSION  
5TH CONVERSION  
6TH CONVERSION  
7TH CONVERSION  
8TH CONVERSION  
MEMORY POINTER  
LOCATION  
16  
CONTROL  
WORDS  
C8[6:0]  
C9[6:0]  
X
X
X
X
X
X
X
X
C10[6:0]  
C11[6:0]  
C12[6:0]  
C13[6:0]  
C14[6:0]  
C15[6:0]  
237318 F18a  
237318 F18b  
Figure 18a. Internal Sequencer Memory  
Figure 18b. Sequencer Programmed with Eight Control Words and the  
Memory Pointer Location for Conversions Run After Programming  
Programming the Sequencer  
Transaction Window  
for their specific application after power-up or resetting  
the part, and then drive the SDI pin to GND. This will force  
the control word bits to all zeros and the converter will  
automaticallysequencethroughtheconfigurationsstored  
in sequencer memory. The following sections provide  
further details on programming the sequencer.  
A transaction window opens at power-up, after resetting  
the LTC2373-18, and every conversion cycle at the falling  
edge of BUSY, allowing the sequencer to be programmed.  
Once the transaction window opens, the state machine  
controlling the programming of the sequencer memory is  
in a reset state, waiting for control words to be shifted in  
at SDI. The transaction window closes at the start of the  
next conversion when BUSY transitions from low to high,  
as shown in Figure 19. Serial input data at SDI is ignored  
by the sequencer state machine when BUSY is high.  
The sequencer memory may be programmed by inputting  
oneormorevalidcontrolwordsatSDI.Eachcontrolwordis  
an8-bitwordasdescribedintheConfiguringtheLTC2373-  
18section.AvalidinputcontrolwordisonewhereC[7]=1  
and the remaining lower 7-bits, C[6:0], have been shifted  
in before the transaction window closes as shown in  
Figure 20a. When the 1st control word is successfully en-  
teredonthe8thrisingedgeofSCK,thesequencermemory  
is cleared, the new configuration, C[6:0], is written into  
the first memory location and is applied to the converter.  
At this point, a new acquisition window begins since the  
Input Control Word  
The input control word is used to determine whether or  
not the sequencer is being programmed. In many cases  
the user will simply need to configure the converter once  
CNV  
BUSY  
237318 F19  
TRANSACTION WINDOW  
Figure 19. Sequencer Programming Transaction Window  
237318f  
32  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
new configuration may result in a different channel being  
acquired. Additional valid input control words are written  
into subsequent memory locations. The sequencer only  
storesvalidinputcontrolwordsanddiscardscontrolwords  
that are partially written or have C[7] = 0. If C[7] = 0 at any  
point during sequencer programming, the LTC2373-18  
closes the input transaction window until the completion  
of the next conversion as shown in Figure 20b. Figure 21  
shows a truncated programming transaction where the  
firstpartialinputcontrolwordisdiscardedandthesecond  
completeinputcontrolwordissuccessfullyprogrammed.  
The transaction window also closes after 16 successive  
valid input control words have been written, since the  
sequencer memory has been filled.  
CNV  
BUSY  
RDL  
SCK  
SDI  
1
2
3
4
5
6
7
8
DONT CARE  
Hi-Z  
C[7]  
D17  
C[6]  
C[5]  
C[4]  
C[3]  
C[2]  
C[1]  
C[0]  
SDO  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
START OF NEW  
TRANSACTION  
WINDOW  
1ST VALID CONTROL WORD ENTERED  
SEQUENCER MEMORY CLEARED AND UPDATED  
NEW CONFIGURATION APPLIED  
NEW ACQUISITION PERIOD BEGINS  
237318 F20a  
Figure 20a. V alid Control Word Successfully Programmed, C[7] = 1  
CNV  
BUSY  
RDL  
SCK  
SDI  
1
2
3
4
5
6
7
8
DONT CARE  
Hi-Z  
DONT CARE  
C[7]  
D17  
SDO  
D16  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
237318 F20b  
START OF NEW  
TRANSACTION WINDOW CLOSED  
TRANSACTION  
WINDOW  
Figure 20b. Invalid Control Word Entered, C[7] = 0  
237318f  
33  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
CNV  
BUSY  
RDL  
SCK  
SDI  
1
2
3
4
5
6
1
2
3
4
5
6
7
8
DONT CARE  
DONT CARE  
C[7]  
A[3] A[2] A[1] A[0] R[1]  
C[7] A[3] A[2] A[1] A[0]  
R[1]  
R[0] SEL  
PARTIAL CONTROL  
WORD DISCARDED  
VALID CONTROL  
WORD ACCEPTED  
Hi-Z  
Hi-Z  
Hi-Z  
SDO  
D17 D16 D15 D14  
D13 D12  
TRANSACTION  
D17 D16 D15 D14 D13 D12 D11 D10  
START OF NEW  
TRANSACTION  
WINDOW  
START OF NEW  
TRANSACTION  
WINDOW  
1ST VALID CONTROL WORD ENTERED  
SEQUENCER MEMORY CLEARED AND UPDATED  
NEW CONFIGURATION APPLIED  
WINDOW CLOSED  
NEW ACQUISITION PERIOD BEGINS  
PARTIAL CONTROL  
WORD DISCARDED  
237318 F21  
Figure 21. Truncated Programming Transaction Followed by the Successful Programming of One Configuration  
237318f  
34  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
applicaTions inForMaTion  
Programming the Sequencer with Two Configurations  
ing and after the programming process. The first stored  
configuration will instruct the converter to sample a fully  
Figure 22 illustrates the sequencer memory being pro-  
grammed while reading out a conversion result. C[7] of  
the first two input control words is 1, so these control  
words are valid and are written to sequencer memory  
in succession. C[7] of the third control word is 0, so the  
input transaction is terminated at this point. Since there  
were only two valid control words entered, the sequencer  
memory is programmed with a depth of two. Figure 23  
shows the state of the sequencer memory before, dur-  
+
differential signal on the CH7 /CH6 pair with digital gain  
compression disabled, and the second stored configura-  
tion will instruct the converter to sample a unipolar signal  
on the CH3/COM pair with digital gain compression dis-  
abled. The converter will then alternate between the two  
programmed configurations on successive conversions.  
Note that configurations stored in sequencer memory are  
retained until the power is cycled, the part is reset, or a  
newseriesofconfigurationprogrammingwordsareinput.  
CNV  
BUSY  
RDL  
SCK  
SDI  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
DONT CARE  
DONT CARE  
C[7]  
A[3] A[2] A[1] A[0] R[1] R[0] SEL C[7] A[3] A[2] A[1] A[0]  
R[1] R[0] SEL C[7]  
CONTROL WORD #1  
CONTROL WORD #2  
Hi-Z  
Hi-Z  
D0  
SDO  
D17 D16 D15 D14  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
START OF NEW  
TRANSACTION  
WINDOW  
1ST VALID CONTROL WORD ENTERED  
SEQUENCER MEMORY CLEARED AND UPDATED  
NEW CONFIGURATION APPLIED  
TRANSACTION  
WINDOW CLOSED  
NEW ACQUISITION PERIOD BEGINS  
2ND VALID CONTROL WORD ENTERED  
237318 F22  
SEQUENCER MEMORY UPDATED  
Figure 22. Sequencer Programmed with Two Control Words  
SEQUENCER MEMORY  
FROM PREVIOUS  
PROGRAMMING  
SEQUENCER MEMORY  
AFTER PROGRAMMING  
1ST CONTROL WORD  
SEQUENCER MEMORY  
AFTER PROGRAMMING  
2ND CONTROL WORD  
....  
C0[6:0]  
C1[6:0]  
C2[6:0]  
C3[6:0]  
C4[6:0]  
C5[6:0]  
C6[6:0]  
C7[6:0]  
C8[6:0]  
C9[6:0]  
C10[6:0]  
C11[6:0]  
C12[6:0]  
C13[6:0]  
C14[6:0]  
C15[6:0]  
C0[6:0] = 0111100  
C0[6:0] = 0111100  
C1[6:0] = 1011000  
1ST CONVERSION  
2ND CONVERSION  
3RD CONVERSION  
4TH CONVERSION  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
MEMORY POINTER  
LOCATION  
X
237318 F23  
Figure 23. Sequencer Memory Before, During and After Programming  
237318f  
35  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TiMing DiagraMs  
MUX Reset Timing  
The MUX turns OFF and begins resetting t  
ns  
CNVMRST  
after a conversion is initiated by the rising edge of CNV.  
The parasitic capacitances (C ) on the output summing  
PAR  
After t  
ns, the MUX turns ON to the next channel  
+ –  
/
MRST1  
nodes of the MUX, MUXOUT , are discharged to ground  
every conversion cycle and when a first new valid con-  
figuration word is programmed into the sequencer. This  
is done to avoid crosstalk between input channels due to  
programmed in the sequencer.  
TheMUXalsoturnsOFFandresetsaftert  
nswhen  
VLDMRST  
afirstnewvalidconfigurationwordisprogrammedintothe  
sequencer on the 8th rising edge of SCK. This is because  
the MUX may need to switch channels based on the newly  
input configuration, so memory of the previous channel  
needstobecleared. Anewacquisitionperiodbeginswhen  
charge sharing from C . The bottom most waveform in  
PAR  
Figure24representsthevoltagesoftheMUXoutputnodes.  
+ –  
/
The MUX is being reset when V(MUXOUT ) sits at 0V.  
the MUX is reconnected after t  
ns.  
MRST2  
t
CNVMRST  
t
ACQ  
CNV  
BUSY  
SCK  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
SDI  
C[7] C[6] C[5] C[4] C[3] C[2] C[1] C[0]  
SDO  
D17 D16 D15 D14 D13 D12 D11 D10 D9  
D8  
t
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SOS  
t
t
VLDMRST  
MRST1  
MRST2  
+ –  
/
V(MUXOUT  
)
237318 F24  
0V  
Figure 24 . MUX Reset Timing  
237318f  
36  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TiMing DiagraMs  
Single Device, Sequencer Not Programmed  
availableatthefallingedgeofBUSY.Thestart-of-sequence  
(SOS) bit followed by the current configuration is shifted  
out after the conversion data.  
RDL enables or disables the serial data I/O bus. If RDL is  
high, the serial data I/O bus is disabled and the serial shift  
clock SCK is ignored. If RDL is low, SDO is driven and  
serial input data may be shifted in at SDI. Figure 25 shows  
a single LTC2373-18 operated with RDL and RESET tied  
to ground. With RDL grounded, the serial data I/O bus is  
enabled and the MSB(D17) of the new conversion data is  
Bringing SDI low during data readback as shown closes  
the sequencer programming window at the first rising  
edge of SCK after the falling edge of BUSY since C[7] = 0.  
As a result, the sequencer is not programmed.  
CONVERT  
DIGITAL HOST  
CNV  
RDL  
BUSY  
IRQ  
LTC2373-18  
RESET  
SDO  
SDI  
DATA IN  
SDI  
SCK  
CLK  
NAP AND  
ACQUIRE  
CONVERT  
NAP AND ACQUIRE  
CONVERT  
t
CYC  
RDL = 0  
RESET = 0  
t
CNVL  
CNV  
BUSY  
SCK  
t
CNVH  
– t  
BUSYLH  
t
= t  
ACQ CYC CONV  
– t  
t
ACQ  
t
CONV  
t
t
SCK  
BUSYLH  
t
t
SCKH  
QUIET  
1
2
3
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
t
SCKL  
t
HSDO  
SDI  
t
DSDO  
t
DSDOBUSYL  
SDO  
D17 D16 D15  
D0  
SOS A[3] A[2] A[1] A[0] R[1] R[0] SEL  
237318 F25  
Figure 25. Using a Single LTC2373-18 without Programming the Sequencer  
237318f  
37  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TiMing DiagraMs  
Single Device, Sequencer Programmed  
open, a valid input configuration is detected on the 8th  
rising edge of SCK. At this point, the MUX turns OFF and  
resets and sequencer memory is reset and updated with  
the new configuration. The new channel configuration is  
applied when the MUX turns ON, marking the beginning  
of a new acquisition period.  
Figure 26 shows the timing for a single device being  
operated with RDL and RESET tied to ground. With RDL  
grounded, the serial data I/O bus is enabled and the  
MSB(D17) of the new conversion data is available at the  
falling edge of BUSY. The start-of-sequence (SOS) bit  
followed by the configuration used for the conversion just  
performed is shifted out after the new conversion data.  
‘On the Fly’ Device Programming  
The sequencer may be programmed with one control  
word as shown in Figure 26 every conversion cycle to  
achieve complete flexibility in the multiplexer configura-  
tion, input range and digital gain compression setting on  
each conversion.  
When SDI is high at the first rising edge of SCK after  
the falling edge of BUSY as shown, the sequencer pro-  
gramming window stays open, allowing the sequencer to  
beprogrammed.Withthesequencerprogrammingwindow  
CONVERT  
NAP  
NAP  
CONVERT  
RDL = 0  
RESET = 0  
t
CNVL  
CNV  
BUSY  
SCK  
t
CNVH  
+ t  
ACQ  
t
+ t  
VLDMRST MRST2  
t
CONV  
t
SCK  
t
BUSYLH  
t
t
SCKH  
QUIET  
1
2
3
4
5
6
7
8
9
23  
24  
25  
26  
t
t
SCKL  
SSDISCK  
HSDISCK  
t
t
HSDO  
t
DSDO  
SDI  
C[7] C[6] C[5] C[4] C[3] C[2] C[1] C[0]  
t
DSDOBUSYL  
SDO  
D17 D16 D15 D14 D13 D12 D11 D10 D9  
R[1] R[0] SEL  
237318 F26  
Figure 26. Using a Single LTC2373-18 Programming the Sequencer  
237318f  
38  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TiMing DiagraMs  
Multiple Devices  
avoid bus conflicts. RDL must also be used to selectively  
program each ADC through the shared SDI input line. The  
RDLinputsidlehighandareindividuallybroughtlowtoread  
data out of and selectively program each device between  
conversions. When RDL is brought low, the MSB(D17)  
of the selected device is output onto SDO.  
Figure 27 shows the multiple LTC2373-18 devices operat-  
ing and sharing CNV, SDI, SCK and SDO. By sharing CNV,  
SDI, SCK and SDO, the number of signals required to  
operate multiple ADCs in parallel is reduced. Since SDO is  
shared, the RDL input of each ADC must be used to allow  
only one LTC2373-18 to drive SDO at a time in order to  
RDL  
RDL  
B
A
CONVERT  
DIGITAL HOST  
IRQ  
CNV  
CNV  
RDL  
BUSY  
SDI  
RDL  
BUSY  
SDI  
LTC2373-18  
B
LTC2373-18  
A
RESET  
RESET  
SCK  
SDO  
SCK  
SDO  
SDI  
DATA IN  
CLK  
CONVERT  
NAP  
NAP  
RESET = 0  
CONVERT  
t
CNVL  
CNV  
t
CNVH  
BUSY  
t
CONV  
t
BUSYLH  
RDL  
RDL  
A
B
t
SCK  
t
t
QUIET  
SCKH  
SCK  
SDI  
1
2
3
16  
17  
18  
19  
20  
21  
34  
35  
36  
t
SSDISCK  
HSDISCK  
t
SCKL  
t
DONT CARE  
Hi-Z  
C [7] C [6] C [5]  
C [7] C [6] C [5]  
B B B  
A
A
A
t
HSDO  
t
t
t
EN  
DIS  
DSDO  
Hi-Z  
Hi-Z  
SDO  
D17  
D16  
D15  
D1  
A
D0  
D17  
D16 D15  
D1  
B
D0  
B
A
A
A
A
B
B
B
237318 F27  
Figure 27. Multiple Devices Sharing CNV , SCK and SDO  
237318f  
39  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TiMing DiagraMs  
Sleep Mode  
partwillentersleepmodeonthefallingedgeofBUSYfrom  
the last conversion initiated. Once in sleep mode, a rising  
edge on SCK will wake the part up. Upon emerging from  
The LTC2373-18 automatically naps and starts acquiring  
the input once a conversion has completed. Only the ADC  
core powers down in nap mode. As a result, the auto nap  
feature provides limited power savings. To obtain greater  
power savings, the LTC2373-18 provides a sleep mode.  
Duringsleepmode,theentirepartispowereddownexcept  
for a small standby current resulting in a 300μW power  
dissipation. To entersleepmode, toggleCNVtwicewithno  
intervening rising edge on SCK as shown in Figure 28. The  
sleep mode, wait t  
ms before initiating a conversion  
WAKE  
to allow the reference and reference buffer to wake-up and  
charge the bypass capacitors at REFIN and REFBUF. The  
serial data I/O bus is enabled or disabled by RDL during  
sleep mode. Sleep mode does not affect the state of the  
sequencer memory or memory pointer.  
CONVERT  
CNVH  
NAP  
CONVERT  
SLEEP  
NAP  
RDL = DONT CARE  
SDI = DONT CARE  
CONVERT  
t
t
WAKE  
CNV  
BUSY  
t
t
CONV  
CONV  
t
BUSYLH  
SCK  
CONVERT  
SLEEP  
NAP  
RDL = DONT CARE  
SDI = DONT CARE  
CONVERT  
t
CNVH  
t
WAKE  
CNV  
BUSY  
t
CONV  
t
BUSYLH  
SCK  
237318 F28  
Figure 28. Sleep Mode Timing Diagram  
237318f  
40  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
TiMing DiagraMs  
RESET Timing  
is immediately halted. During reset, requests for new  
conversions are ignored. Once RESET returns low, the  
LTC2373-18 is ready to start a new conversion after the  
acquisition time has been met.  
When the RESET pin is high, the LTC2373-18 is reset and  
the serial I/O data bus is put into a high impedance mode,  
as shown in Figure 29. The serial data output register and  
sequencermemoryarealsoclearedandsettotheirdefault  
states. If this occurs during a conversion, the conversion  
t
RESETH  
RESET  
CNV  
t
ACQ  
Hi-Z  
SDO  
237318 F29  
Figure 29. RESET Pin Timing  
boarD layouT  
To obtain the best performance from the LTC2373-18  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCB) should ensure the digital and  
analog signal lines are separated as much as possible.  
In particular, care should be taken not to run any digital  
clocks or signals alongside analog signals or underneath  
the ADC.  
Recommended Layout  
ThefollowingisanexampleofarecommendedPCBlayout.  
A single solid ground plane is used. Bypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC2071, the  
evaluation kit for the LTC2373-18.  
237318f  
41  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
boarD layouT  
Figure 30. Top Silkscreen  
237318f  
42  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
boarD layouT  
Figure 31. Layer 1 Component Side  
237318f  
43  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
boarD layouT  
Figure 32. Layer 2 Ground Plane  
237318f  
44  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
boarD layouT  
Figure 33. Layer 3 Power Plane  
237318f  
45  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
boarD layouT  
Figure 34 . Layer 4 Bottom Layer  
237318f  
46  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
scheMaTics  
5
3
5
3
G N D  
V C  
4
1
D
Q
Q
2
1
5
3
P C  
2
C
5
3
N I E F R  
3 1  
D
D
G N  
G N  
3 3  
3 2  
F
B U E F R  
2 1  
5 2  
8 2  
9 2  
D
O G N  
6 2  
D D O V  
Y P B L D V D  
D
D
D
D
D
G N  
G N  
G N  
G N  
G N  
1 1  
4 1  
5 1  
7 1  
7 2  
D
V D  
+ N I  
A D C  
- N I  
A D C  
5
4
3
+ T U X O U M  
- T U X O U M  
6
X U M C 8 H -  
8
4
8
4
6
2
5
237318f  
47  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
scheMaTics  
S H D N  
7
3
V +  
V -  
6
N
+ V  
H S D  
M
V O C  
7
3
2
- V  
6
1
2
3
9
8
4
8
4
4
8
8
4
1
2
3
1
2
3
237318f  
48  
For more information www.linear.com/LTC2373-18  
LTC2373-18  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
UH Package  
32-Lead Plastic QFN (5mm × 5mm)  
(Reference LTC DWG # 05-08-1693 Rev D)  
0.70 ±0.05  
5.50 ±0.05  
4.10 ±0.05  
3.45 ±0.05  
3.50 REF  
(4 SIDES)  
3.45 ±0.05  
PACKAGE OUTLINE  
0.25 ±0.05  
0.50 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
BOTTOM VIEW—EXPOSED PAD  
PIN 1 NOTCH R = 0.30 TYP  
OR 0.35 × 45° CHAMFER  
R = 0.05  
TYP  
0.00 – 0.05  
R = 0.115  
TYP  
0.75 ±0.05  
5.00 ±0.10  
(4 SIDES)  
31 32  
0.40 ±0.10  
PIN 1  
TOP MARK  
(NOTE 6)  
1
2
3.45 ±0.10  
3.50 REF  
(4-SIDES)  
3.45 ±0.10  
(UH32) QFN 0406 REV D  
0.200 REF  
0.25 ±0.05  
0.50 BSC  
NOTE:  
1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE  
M0-220 VARIATION WHHD-(X) (TO BE APPROVED)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
237318f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
49  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
LTC2373-18  
Typical applicaTion  
LTC6362 Configured to Accept a ±10V Input Signal Using a Single 5V Supply with Digital  
Gain Compression Enabled on the LTC2373-18  
5V  
6
3
4
+
4.096V  
1
LT6236  
2
10µF  
10µF  
5
1k  
1k  
V
CM  
47µF  
MUX CHANNELS  
CH0 AND CH1  
SELECTED  
3.69V  
0.41V  
333Ω  
10µF  
2
3
5
+
V
REFBUF  
V
DD  
35.7Ω  
CH0  
150Ω  
100Ω  
850Ω  
CH1  
8
1
LTC2373-18  
1500pF  
+
0.22µF  
0.22µF  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
COM  
10V  
0V  
LTC6362  
1500pF  
–10V  
35.7Ω  
850Ω  
4
6
+
R
= 50Ω  
SOURCE  
V
3.69V  
0.41V  
18-BIT ADC CORE  
V
SOURCE  
333Ω  
DIGITAL GAIN COMPRESSION ENABLED BY SETTING  
SEL = 1 IN THE CONFIGURATION WORD  
237318 TA02  
+ –  
+ –  
/
/
MUXOUT SHORTED TO ADCIN  
relaTeD parTs  
PART NUMBER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2378-20/LTC2377-20 20-Bit, 1Msps/500ksps/250ksps, 0.5ppm 2.5V Supply, 5V Fully Differential Input, 104dB SNR, MSOP-16 and  
LTC2376-20  
INL Serial, Low Power ADC  
4mm × 3mm DFN-16 Packages  
LTC2379-18/LTC2378-18 18-Bit, 1.6Msps/1Msps/500ksps/250ksps  
LTC2377-18/LTC2376-18 Serial, Low Power ADC  
2.5V Supply, Differential Input, 101.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16 16-Bit, 2Msps/1Msps/500ksps/250ksps  
LTC2377-16/LTC2376-16 Serial, Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2369-18/LTC2368-18 18-Bit, 1.6Msps/1Msps/500ksps/250ksps  
LTC2367-18/LTC2364-18 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 96.5dB SNR, 0V to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2370-16/LTC2368-16 16-Bit, 2Msps/1Msps/500ksps/250ksps  
LTC2367-16/LTC2364-16 Serial, Low Power ADC  
2.5V Supply, Pseudo-Differential Unipolar Input, 94dB SNR, 0V to 5V Input  
Range, Pin-Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
DACs  
LTC2756  
18-Bit, Serial I  
SoftSpan™ DAC  
1LSB INL/DNL, Software-Selectable Ranges, SSOP-28 Package  
OUT  
LTC2641  
LTC2630  
References  
LTC6655  
16-Bit/14-Bit/12-Bit Single Serial V  
DAC  
1LSB INL/DNL, MSOP-8 Package, 0V to 5V Output  
SC70 6-Pin Package, Internal Reference, 1LSB INL (12 Bits)  
OUT  
12-Bit/10-Bit/8-Bit Single V  
DACs  
OUT  
Precision Low Drift Low Noise Buffered  
Reference  
Precision Low Drift Low Noise Buffered  
Reference  
5V/2.5V/2.048V/1.2V, 5ppm/°C, 0.25ppm Peak-to-Peak Noise, MSOP-8 Package  
5V/2.5V/2.048V/1.2V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise, MSOP-8 Package  
LTC6652  
Amplifiers  
LT6237/LT6236  
LT6350  
Dual/Single Rail-to-Rail Output ADC Driver  
Low Noise Single-Ended-to-Differential ADC Rail-to-Rail Inputs and Outputs, 240ns, 0.01% Settling Time  
Driver  
215MHz GBW, 1.1nV/√Hz, 3.5mA Supply Current  
LTC6362  
Low Power, Fully Differential Input/Output  
Amplifier/Driver  
Single 2.8V to 5.25V Supply, 1mA Supply Current, MSOP-8 and 3mm × 3mm  
DFN-8 Packages  
237318f  
LT 0115 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
50  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC2373-18  
LINEAR TECHNOLOGY CORPORATION 2015  

相关型号:

LTC2373CUH-18#PBF

LTC2373-18 - 18-Bit, 1Msps, 8-Channel SAR ADC with 100dB SNR; Package: QFN; Pins: 32; Temperature Range: 0°C to 70°C
Linear

LTC2373HUH-16#PBF

LTC2373-16 - 16-Bit, 1Msps, 8-Channel SAR ADC with 96dB SNR; Package: QFN; Pins: 32; Temperature Range: -40°C to 125°C
Linear

LTC2373IUH-16#PBF

LTC2373-16 - 16-Bit, 1Msps, 8-Channel SAR ADC with 96dB SNR; Package: QFN; Pins: 32; Temperature Range: -40°C to 85°C
Linear

LTC2374

16-Bit/18-Bit, 1.6Msps/1Msps/500ksps 8-Channel, SAR ADCs
Linear

LTC2376-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2376-18

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2376-20

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2376CMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC2376CMS-18#PBF

LTC2376-18 - 18-Bit, 250ksps, Low Power SAR ADC with 102dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0°C to 70°C
Linear

LTC2376HMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40°C to 125°C
Linear

LTC2376IDE-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear

LTC2376IDE-16#TRPBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: -40°C to 85°C
Linear