LTC2376-18 [Linear]

Precision, Low Power Rail-to-Rail Input/Output; 高精度,低功耗,轨到轨输入/输出
LTC2376-18
型号: LTC2376-18
厂家: Linear    Linear
描述:

Precision, Low Power Rail-to-Rail Input/Output
高精度,低功耗,轨到轨输入/输出

文件: 总22页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6362  
Precision, Low Power  
Rail-to-Rail Input/Output  
Differential Op Amp/SAR  
ADC Driver  
FEATURES  
DESCRIPTION  
The LTC®6362 is a low power, low noise differential op  
amp with rail-to-rail input and output swing that has been  
optimized to drive low power SAR ADCs. The LTC6362  
draws only 1mA of supply current in active operation, and  
features a shutdown mode in which the current consump-  
tion is reduced to 70μA.  
n
1mA Supply Current  
n
Single 2.8V to 5.25V supply  
n
Fully Differential Input and Output  
n
200μV Max Offset Voltage  
n
260nA Max Input Bias Current  
n
Fast Settling: 550ns to 18-Bit, 8V Output  
P-P  
n
Low Distortion: –116dBc at 1kHz, 8V  
Rail-to-Rail Inputs and Outputs  
3.9nV/√Hz Input-Referred Noise  
180MHz Gain-Bandwidth Product  
34MHz –3dB Bandwidth  
P-P  
The amplifier may be configured to convert a single-  
ended input signal to a differential output signal, and is  
capable of being operated in an inverting or noninverting  
configuration.  
n
n
n
n
n
n
Low offset voltage, low input bias current, and a stable  
high impedance configuration make this amplifier suit-  
able for use not only as an ADC driver but also earlier in  
the signal chain, to convert a precision sensor signal to  
a balanced (differential) signal for processing in noisy  
industrial environments.  
Low Power Shutdown: 70µA  
8-Lead MSOP and 3mm × 3mm 8-Lead DFN Packages  
APPLICATIONS  
n
16-Bit and 18-Bit SAR ADC Drivers  
n
Single-Ended-to-Differential Conversion  
n
Low Power Pipeline ADC Driver  
The LTC6362 is available in an 8-lead MSOP package and  
also in a compact 3mm × 3mm 8-pin leadless DFN pack-  
age, and operates with guaranteed specifications over a  
–40°C to 125°C temperature range.  
n
Differential Line Drivers  
n
Battery-Powered Instrumentation  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
LTC6362 Driving LTC2379-18  
fIN = 2kHz, –1dBFS, 16384-Point FFT  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
DC-Coupled Interface from a Ground-Referenced  
Single-Ended Input to an LTC2379-18 SAR ADC  
V
V
= 5V, 0V  
S
OUTDIFF  
= 8.9V  
P-P  
HD2 = –116.0dBc  
HD3 = –114.9dBc  
SFDR = 110.1dB  
THD = –108.0dB  
SNR = 101.2dB  
SINAD = 99.9dB  
1k  
5V  
2.5V  
5V  
3.9nF  
V
V
DD  
35.7Ω  
35.7Ω  
REF  
1k  
+
A
A
18-BIT  
+
IN  
V
OCM  
LTC2379-18  
SAR ADC  
–90  
V
IN  
3.9nF  
3.9nF  
LTC6362  
0.1µF  
SHDN  
–100  
–110  
–120  
–130  
–140  
–150  
+
1.6Msps  
IN  
GND  
1k  
1k  
6362 TA01a  
0
100 200 300 400 500 600 700 800  
FREQUENCY (kHz)  
6362 TA01b  
6362fa  
1
LTC6362  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
+
Total Supply Voltage (V – V ).................................5.5V  
Specified Temperature Range (Note 5)  
Input Current (+IN, –IN, V , SHDN) (Note 2) ... 10mA  
LTC6362C ................................................ 0°C to 70°C  
LTC6362I .............................................–40°C to 85°C  
LTC6362H.......................................... –40°C to 125°C  
Maximum Junction Temperature .......................... 150°C  
Storage Temperature Range .................. –65°C to 150°C  
OCM  
Output Short-Circuit Duration (Note 3) ............ Indefinite  
Operating Temperature Range (Note 4)  
LTC6362C/LTC6362I............................–40°C to 85°C  
LTC6362H.......................................... –40°C to 125°C  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
–IN  
1
2
3
4
8
7
6
5
+IN  
–IN  
1
2
3
4
8 +IN  
V
SHDN  
OCM  
V
7 SHDN  
OCM  
+
+
V
V
6 V  
V
5 –OUT  
+OUT  
9
+OUT  
–OUT  
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
= 150°C, θ = 273°C/W, θ = 45°C/W  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX  
JA  
JC  
T
= 150°C, θ = 39.7°C/W, θ = 45°C/W  
JA JC  
JMAX  
EXPOSED PAD (PIN 9) IS V , MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC6362CMS8#PBF  
LTC6362IMS8#PBF  
LTC6362HMS8#PBF  
LTC6362CDD#PBF  
LTC6362IDD#PBF  
LTC6362HDD#PBF  
TAPE AND REEL  
PART MARKING*  
LTGCN  
PACKAGE DESCRIPTION  
SPECIFIED TEMPERATURE RANGE  
LTC6362CMS8#TRPBF  
LTC6362IMS8#TRPBF  
LTC6362HMS8#TRPBF  
LTC6362CDD#TRPBF  
LTC6362IDD#TRPBF  
LTC6362HDD#TRPBF  
8-Lead Plastic MSOP  
0°C to 70°C  
LTGCN  
8-Lead Plastic MSOP  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
LTGCN  
8-Lead Plastic MSOP  
LGCM  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
8-Lead (3mm × 3mm) Plastic DFN  
LGCM  
–40°C to 85°C  
–40°C to 125°C  
LGCM  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
6362fa  
2
LTC6362  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 0V, VCM = VOCM = VICM = 2.5V, VSHDN = open. VS is defined  
as (V+ – V). VOUTCM is defined as (V+OUT + V–OUT)/2. VICM is defined as (V+IN + V–IN)/2. VOUTDIFF is defined as (V+OUT – V–OUT).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
(Note 6)  
Differential Offset Voltage (Input Referred)  
V = 3V  
S
OSDIFF  
V
=1.5V  
50  
65  
200  
350  
250  
600  
µV  
µV  
µV  
µV  
ICM  
l
l
V
= 2.75V  
ICM  
V = 5V  
S
V
= 2.5V  
50  
75  
200  
350  
260  
600  
µV  
µV  
µV  
µV  
ICM  
l
l
V
= 4.5V  
ICM  
l
l
Differential Offset Voltage Drift (Input Referred) V = 3V  
0.9  
0.9  
2.5  
2.5  
µV/°C  
µV/°C  
V  
/T (Note 7)  
OSDIFF  
S
V = 5V  
S
I (Note 8)  
B
Input Bias Current  
V = 3V  
S
V
=1.5V  
100  
75  
350  
500  
350  
850  
nA  
nA  
nA  
nA  
ICM  
l
l
V
= 2.5V  
ICM  
V = 5V  
S
V
= 2.5V  
75  
75  
260  
460  
350  
850  
nA  
nA  
nA  
nA  
ICM  
l
l
V
= 4.5V  
ICM  
l
l
Input Bias Current Drift  
Input Offset Current  
V = 3V  
S
1.1  
0.9  
nA/°C  
nA/°C  
I /T  
S
B
V = 5V  
I
(Note 8)  
V = 3V  
S
OS  
V
=1.5V  
75  
325  
650  
nA  
nA  
nA  
nA  
ICM  
l
l
V
= 2.5V  
125  
425  
ICM  
1200  
V = 5V  
S
V
=2.5V  
75  
325  
500  
nA  
nA  
nA  
nA  
ICM  
l
l
V
= 4.5V  
125  
425  
ICM  
1200  
R
Input Resistance  
Common Mode  
Differential Mode  
14  
32  
MΩ  
kΩ  
IN  
C
Input Capacitance  
Differential Mode  
2
pF  
nV/√Hz  
pA/√Hz  
nV/√Hz  
IN  
e
Differential Input Noise Voltage Density  
Input Noise Current Density  
Common Mode Noise Voltage Density  
Input Common Mode Range  
f = 100kHz, Not Including R /R Noise  
3.9  
0.8  
14.3  
n
I
F
i
n
f = 100kHz, Not Including R /R Noise  
I F  
e
f = 100kHz  
V = 3V  
nvocm  
l
l
V
(Note 9)  
0
0
3
5
V
V
ICMR  
S
V = 5V  
S
l
l
CMRRI (Note 10)  
CMRRIO (Note 10)  
PSRR (Note 11)  
Input Common Mode Rejection Ratio  
V = 3V, V  
S
from 0V to 3V  
70  
73  
95  
98  
dB  
dB  
S
ICM  
ICM  
(Input Referred) V /V  
V = 5V, V  
from 0V to 5V  
ICM  
OSDIFF  
l
l
Output Common Mode Rejection Ratio  
(Input Referred) V /V  
V = 3V, V  
from 0.5V to 2.5V  
from 0.5V to 4.5V  
75  
55  
100  
90  
dB  
dB  
S
OCM  
OCM  
V = 5V, V  
OCM  
OSDIFF  
S
l
Differential Power Supply Rejection  
(V /V  
V = 2.8V to 5.25V  
S
80  
105  
dB  
)
OSDIFF  
S
l
PSRRCM (Note 11)  
Output Common Mode Power Supply Rejection V = 2.8V to 5.25V  
S
58  
72  
dB  
(V /V  
)
S
OSCM  
6362fa  
3
LTC6362  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 0V, VCM = VOCM = VICM = 2.5V, VSHDN = open. VS is defined  
as (V+ – V). VOUTCM is defined as (V+OUT + V–OUT)/2. VICM is defined as (V+IN + V–IN)/2. VOUTDIFF is defined as (V+OUT – V–OUT).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
GCM  
V = 3V, V  
S
from 0.5V to 2.5V  
from 0.5V to 4.5V  
1
1
V/V  
V/V  
Common Mode Gain (V  
/V  
)
S
OCM  
OCM  
OUTCM  
OCM  
V = 5V, V  
l
l
Common Mode Gain Error 100 • (GCM – 1)  
Output Balance (V /V  
V = 3V, V  
S
from 0.5V to 2.5V  
from 0.5V to 4.5V  
0.07  
0.07  
0.16  
0.4  
%
%
GCM  
S
OCM  
OCM  
V = 5V, V  
BAL  
)
V  
OUTDIFF  
= 2V  
OUTCM  
OUTDIFF  
l
l
–57  
–57  
–35  
–35  
dB  
dB  
Single-Ended Input  
Differential Input  
A
V
Open-Loop Voltage Gain  
Common Mode Offset Voltage  
(V – V  
95  
dB  
VOL  
l
l
V = 3V  
6
6
30  
30  
mV  
mV  
OSCM  
S
)
V = 5V  
S
OUTCM  
OCM  
l
Common Mode Offset Voltage Drift  
Output Signal Common Mode Range  
(Voltage Range for the V Pin)  
45  
μV/°C  
V  
/T  
(Note 9)  
OSCM  
l
l
V
V
OCM  
V
OCM  
Driven Externally, V = 3V  
0.5  
0.5  
2.5  
4.5  
V
V
OUTCMR  
S
Driven Externally, V = 5V  
OCM  
S
l
l
V
Self-Biased Voltage at the V  
Pin  
V
OCM  
V
OCM  
Not Connected, V = 3V  
1.475  
2.475  
1.5  
2.5  
1.525  
2.525  
V
V
OCM  
OCM  
S
Not Connected, V = 5V  
S
l
R
Input Resistance, V  
Pin  
110  
170  
230  
kΩ  
INVOCM  
OCM  
l
l
V
Output Voltage, High, Either Output Pin  
Output Voltage, Low , Either Output Pin  
I = 0mA, V = 3V  
2.85  
2.75  
2.93  
2.85  
V
V
OUT  
L
S
I = –5mA, V = 3V  
L
S
l
l
I = 0mA, V = 5V  
4.8  
4.7  
4.93  
4.85  
V
V
L
S
I = –5mA, V = 5V  
L
S
l
l
I = 0mA, V = 3V  
0.05  
0.13  
0.15  
0.3  
V
V
L
S
I = 5mA, V = 3V  
L
S
l
l
I = 0mA, V = 5V  
0.05  
0.13  
0.2  
0.4  
V
V
L
S
I = 5mA, V = 5V  
L
S
l
l
I
Output Short-Circuit Current, Either Output Pin V = 3V  
13  
15  
25  
35  
mA  
mA  
SC  
S
V = 5V  
S
SR  
Slew Rate  
Differential 8V Output  
45  
V/μs  
P-P  
GBWP  
Gain-Bandwidth Product  
f
= 200kHz  
145  
90  
180  
MHz  
MHz  
TEST  
l
f
–3dB Bandwidth  
R = R = 1k  
34  
MHz  
–3dB  
I
F
HD2/HD3  
2nd/3rd Order Harmonic Distortion  
Single-Ended Input  
f = 1kHz, V  
= 8V  
–120/–116  
–106/–103  
–84/–76  
dBc  
dBc  
dBc  
OUT  
P-P  
f = 10kHz, V  
= 8V  
P-P  
OUT  
f = 100kHz, V  
= 8V  
P-P  
OUT  
t
Settling Time to a 2V Output Step  
0.1%  
160  
180  
230  
440  
ns  
ns  
ns  
ns  
s
P-P  
0.01%  
0.0015% (16-Bit)  
4ppm (18-Bit)  
Settling Time to a 8V Output Step  
0.1%  
230  
300  
460  
550  
ns  
ns  
ns  
ns  
P-P  
0.01%  
0.0015% (16-Bit)  
4ppm (18-Bit)  
l
V (Note 12)  
Supply Voltage Range  
Supply Current  
2.8  
5.25  
V
S
I
V = 3V, Active  
0.9  
0.96  
1.05  
mA  
mA  
S
S
l
l
V = 3V, Shutdown  
S
55  
1
130  
µA  
V = 5V, Active  
S
1.06  
1.18  
mA  
mA  
l
l
V = 5V, Shutdown  
S
70  
140  
µA  
6362fa  
4
LTC6362  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 5V, V= 0V, VCM = VOCM = VICM = 2.5V, VSHDN = open. VS is defined  
as (V+ – V). VOUTCM is defined as (V+OUT + V–OUT)/2. VICM is defined as (V+IN + V–IN)/2. VOUTDIFF is defined as (V+OUT – V–OUT).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
l
l
V
V
SHDN Input Logic Low  
SHDN Input Logic High  
Turn-On Time  
0.8  
V
V
IL  
IH  
2
t
t
2
2
μs  
μs  
ON  
OFF  
Turn-Off Time  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 9: Input common mode range is tested by verifying that at the limits  
stated in the Electrical Characteristics table, the differential offset (V  
)
OSDIFF  
and common mode offset (V  
) have not deviated by more than 1mV  
OSCM  
and 35mV respectively compared to the V  
= 2.5V (at V = 5V) and  
ICM  
S
V
ICM  
= 1.5V (at V = 3V) cases.  
S
Note 2: Input pins (+IN, –IN, V  
and SHDN) are protected by steering  
OCM  
diodes to either supply. If the inputs should exceed either supply voltage,  
the input current should be limited to less than 10mA. In addition, the  
inputs +IN, –IN are protected by a pair of back-to-back diodes. If the  
differential input voltage exceeds 1.4V, the input current should be limited  
to less than 10mA.  
Output common mode range is tested by verifying that at the limits stated  
in the Electrical Characteristics table, the common mode offset (V  
)
OSCM  
has not deviated by more than 15mV compared to the V  
= 2.5V  
OCM  
(at V = 5V) and V  
= 1.5V (at V = 3V) cases.  
S
OCM  
S
Note 10: Input CMRR is defined as the ratio of the change in the input  
Note 3: A heat sink may be required to keep the junction temperature  
below the absolute maximum rating when the output is shorted  
indefinitely.  
common mode voltage at the pins +IN or –IN to the change in differential  
input referred offset voltage. Output CMRR is defined as the ratio of  
the change in the voltage at the V  
pin to the change in differential  
OCM  
input referred offset voltage. This specification is strongly dependent on  
feedback ratio matching between the two outputs and their respective  
inputs and it is difficult to measure actual amplifier performance (see  
Effects of Resistor Pair Mismatch in the Applications Information section  
of this data sheet). For a better indicator of actual amplifier performance  
independent of feedback component matching, refer to the PSRR  
specification.  
Note 11: Differential power supply rejection (PSRR) is defined as the  
ratio of the change in supply voltage to the change in differential input  
referred offset voltage. Common mode power supply rejection (PSRRCM)  
is defined as the ratio of the change in supply voltage to the change in the  
common mode offset voltage.  
Note 4: The LTC6362C and LTC6362I are guaranteed functional over  
the operating temperature range of –40°C to 85°C. The LTC6362H is  
guaranteed functional over the operating temperature range of –40°C to  
125°C.  
Note 5: The LTC6362C is guaranteed to meet specified performance from  
0°C to 70°C.The LTC6362I is guaranteed to meet specified performance  
from –40°C to 85°C. The LTC6362C is designed, characterized and  
expected to meet specified performance from –40°C to 85°C, but is not  
tested or QA sampled at these temperatures. The LTC6362H is guaranteed  
to meet specified performance from –40°C to 125°C.  
Note 6: Differential input referred offset voltage includes offset due to  
input offset current across 1k source resistance.  
Note 7: Maximum differential input referred offset voltage drift is  
determined by a large sampling of typical parts. Drift is not guaranteed by  
test or QA sampled at this value.  
Note 12: Supply voltage range is guaranteed by power supply rejection  
ratio test.  
Note 8: Input bias current is defined as the maximum of the input currents  
flowing into either of the input pins (–IN and +IN). Input Offset current is  
+
defined as the difference between the input currents (I = I – I ).  
OS  
B
B
6362fa  
5
LTC6362  
TYPICAL PERFORMANCE CHARACTERISTICS  
Differential Input Offset Voltage  
vs Temperature  
Input Offset Current  
vs Temperature  
Differential Input Offset Voltage  
vs Input Common Mode Voltage  
300  
250  
200  
150  
100  
50  
100  
300  
250  
200  
150  
100  
50  
V
V
= 5V, 0V  
= 2.5V  
V
V
V
=
ICM  
OCM  
2ꢀ5V  
= 0V  
= 0V  
V
V
V
=
ICM  
OCM  
2ꢀ5V  
= 0V  
= 0V  
S
OCM  
S
S
75  
50  
TYPICAL UNIT  
FIVE TYPICAL UNITS  
FIVE TYPICAL UNITS  
25  
0
0
0
–25  
–50  
–75  
–50  
–100  
–150  
–200  
–50  
–100  
–150  
–200  
T
T
T
= 125°C  
= 25°C  
= –40°C  
A
A
A
–100  
–25  
0
50  
75 100 125  
1
3
–50  
0
25  
50  
75 100 125  
–50  
25  
0
2
4
5
–25  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
6362 G02  
6362 G03  
6362 G01  
Common Mode Offset Voltage  
vs Temperature  
Input Bias Current vs Input  
Common Mode Voltage  
Supply Current vs Temperature  
800  
600  
15  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
V
= 5V  
S
V
V
V
=
ICM  
OCM  
2ꢀ5V  
= 0V  
= 0V  
S
400  
10  
5
FIVE TYPICAL UNITS  
200  
V
V
= 5V  
= 3V  
S
S
0
–200  
–400  
–600  
–800  
–1000  
–1200  
–1400  
–1600  
0
–5  
–10  
–15  
0
1
2
3
4
5
50  
75 100 125  
–50  
0
25  
50  
75 100 125  
–50  
0
25  
–25  
–25  
TEMPERATURE (°C)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
6362 G05  
6362 G04  
6362 G06  
Supply Current  
vs Supply Voltage  
Shutdown Supply Current  
vs Supply Voltage  
Supply Current vs SHDN Voltage  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V  
S
V
= V  
SHDN  
T
T
T
= 125°C  
= 25°C  
T
T
T
= 125°C  
= 25°C  
A
A
A
A
A
A
T
T
T
= 125°C  
= 25°C  
A
A
A
= –40°C  
= –40°C  
= –40°C  
0
1
2
3
4
5
0
1
2
3
4
5
0
1
2
5
3
4
SUPPLY VOLTAGE (V)  
SHDN VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
6362 G07  
6362 G08  
6362 G09  
6362fa  
6
LTC6362  
TYPICAL PERFORMANCE CHARACTERISTICS  
Turn-On and Turn-Off  
Transient Response  
Differential Output Impedance  
vs Frequency  
Input Noise Density vs Frequency  
1000  
100  
10  
100  
10  
1
100  
10  
1
V
V
=
ICM  
2.ꢀV  
= V  
V
=
2ꢀ.V  
F
S
S
I
= 0V  
R = R = 1k  
OCM  
V
SHDN  
V
OUTDIFF  
e
n
i
n
1
100k  
0.1  
0.1  
10  
100  
1k  
10k 100k  
1M  
10M  
1M  
10M  
100M  
1G  
5µs/DIV  
6362 G10  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
6362 G11  
6362 G12  
Common Mode Rejection Ratio  
vs Frequency  
Differential Power Supply  
Rejection Ratio vs Frequency  
Slew Rate vs Temperature  
100  
90  
80  
70  
60  
50  
40  
30  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
60  
55  
V
= 2ꢀ5V  
V
=
2ꢀ5V  
V
=
2ꢀ5V  
S
S
S
I
+
R = R = 1k  
PSRR  
PSRR  
F
V
= 8V  
P-P  
OUTDIFF  
DIFFERENTIAL INPUT  
SLEW MEASURED 10% TO 90%  
FALLING  
50  
45  
40  
RISING  
50  
–25  
0
75 100 125  
1k  
10k 100k  
1M  
10M 100M 1G  
1k  
10k 100k  
1M  
10M 100M 1G  
–50  
25  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
6362 G13  
6362 G14  
6362 G15  
Overdriven Output Transient  
Response  
Small-Signal Step Response  
Large-Signal Step Response  
V
INDIFF  
V
+OUT  
V
+OUT  
V
–OUT  
V
–OUT  
V
OUTDIFF  
6362 G17  
6362 G16  
636± G18  
100ns/DIV  
100ns/DIV  
P-P  
V
V
= ±±2.V  
1µs/DIV  
V
V
= 2ꢀ5V  
V
V
=
2ꢀ.V  
= 200mV  
S
S
S
= 13V  
= 1k  
= 8V  
= 1k  
INDIFF  
LOAD  
P-P  
INDIFF  
LOAD  
P-P  
INDIFF  
R = R = 1k  
LOAD  
R
R
I
F
R
= 1k  
6362fa  
7
LTC6362  
TYPICAL PERFORMANCE CHARACTERISTICS  
Frequency Response  
vs Closed-Loop Gain  
60  
Frequency Peaking  
vs Load Capacitance  
2.00  
1.75  
1.50  
1.25  
1.00  
0.75  
0.50  
0.25  
0
V
V
=
2ꢀ5V  
= V  
V
V
V
=
ICM  
OCM  
R = R = 1k  
2.5V  
= 0V  
= 0V  
S
S
= 0V  
ICM  
LOAD  
OCM  
= 1k  
50  
40  
R
I
F
R
= 1k  
LOAD  
A
V
A
V
A
V
A
V
A
V
A
V
= 1, R = 1k, R = 1k  
I F  
30  
= 2, R = 500Ω, R = 1k  
I
I
F
F
= 5, R = 400Ω, R = 2k  
20  
= 10, R = 200Ω, R = 2k  
I
F
= 20, R = 100Ω, R = 2k  
I
F
10  
= 100, R = 20Ω, R = 2k  
I
F
0
CAPACITOR VALUES ARE  
FROM EACH OUTPUT TO  
GROUND THROUGH 35Ω  
SERIES RESISTANCE  
–10  
–20  
100k  
1M  
10M  
FREQUENCY (Hz)  
100M  
1G  
10  
100  
1000  
10000  
CAPACITIVE LOAD (pF)  
6362 G19  
6362 G20  
Settling Time to 8VP-P  
Output Step  
Settling Time vs Output Step  
DC Linearity  
700  
600  
500  
400  
300  
200  
100  
0
100  
80  
5
4
150  
120  
90  
V
= 5V, 0V  
F
V
= 5V, 0V  
F
S
I
S
I
R = R = 1k  
R = R = 1k  
18-BIT  
60  
3
40  
2
60  
16-BIT  
20  
1
30  
ERROR  
0
0
0
–20  
–40  
–60  
–80  
–100  
–1  
–2  
–3  
–4  
–5  
–30  
–60  
–90  
V
V
=
ICM  
R = R = 1k  
2ꢀ5V  
= V  
F
S
= 0V  
OCM  
I
V
OUTDIFF  
NO LOAD  
LINEAR FIT FOR –4V < V  
–120  
–150  
< 4V  
INDIFF  
6362 G22  
2
3
4
5
6
7
8
–5 –4 –3  
1
2
3
4
5
–2 –1  
V
0
0.5µs/DIV  
DIFFERENTIAL OUTPUT STEP (V  
)
(V)  
P-P  
INDIFF  
6362 G21  
6362 G23  
Harmonic Distortion vs Input  
Common Mode Voltage  
Harmonic Distortion vs Output  
Amplitude  
Harmonic Distortion vs Frequency  
–70  
–80  
–90  
–70  
–80  
–80  
–90  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
V
V
= 5V, 0V  
= 2.5V  
OCM  
S
OCM  
S
OCM  
S
R = R = 1k  
R = R = 1k  
R = R = 1k  
I
F
I
F
I
F
V
= 8V  
V
IN  
= 8V  
f
= 2kHz  
OUTDIFF  
P-P  
OUTDIFF  
P-P  
IN  
SINGLE-ENDED INPUT,  
GROUND REFERENCED  
f
= 2kHz  
SINGLE-ENDED INPUT,  
GROUND REFERENCED  
–90  
DIFFERENTIAL INPUTS  
–100  
–110  
–120  
–130  
–100  
–110  
–120  
–130  
–140  
HD3  
HD3  
–100  
–110  
–120  
–130  
HD2  
HD2  
HD2  
HD3  
1
10  
FREQUENCY (kHz)  
100  
0
1
2
3
4
5
0
2
4
6
8
10  
INPUT COMMON MODE VOLTAGE (V)  
V
(V  
)
OUTDIFF P-P  
6362 G24  
6362 G25  
6362 G26  
6362fa  
8
LTC6362  
PIN FUNCTIONS  
–IN (Pin 1): Inverting Input of Amplifier. Valid input range  
V (Pin 6/Exposed Pad Pin 9): Negative Power Supply,  
+
is from V to V .  
Typically 0V. Negative supply can be negative as long as  
2.8V ≤ (V – V ) ≤ 5.25V still holds.  
+
V
(Pin 2): Output Common Mode Reference Voltage.  
OCM  
The voltage on this pin sets the output common mode  
voltage level. If left floating, an internal resistor divider  
develops a default voltage of 2.5V with a 5V supply.  
SHDN (Pin 7): When SHDN is floating or directly tied to  
+
V the LTC6362 is in the normal (active) operating mode.  
WhentheSHDNpinisconnectedtoV , thepartisdisabled  
and draws approximately 70µA of supply current.  
+
V (Pin 3): Positive Power Supply. Operational supply  
range is 2.8V to 5.25V when V = 0V.  
+IN (Pin 8): Noninverting Input of Amplifier. Valid input  
range is from V to V .  
+
+OUT (Pin 4): Positive Output Pin. Output capable of  
swinging rail-to-rail.  
–OUT (Pin 5): Negative Output Pin. Output capable of  
swinging rail-to-rail.  
BLOCK DIAGRAM  
8
7
6
5
+IN  
SHDN  
V
–OUT  
+
+
+
V
V
V
V
V
V
+
V
V
+
V
V
340k  
340k  
+
V
+
OCM  
V
+
+
V
V
V
V
V
V
+
–IN  
+OUT  
V
V
OCM  
1
2
3
4
6362 BD  
6362fa  
9
LTC6362  
APPLICATIONS INFORMATION  
Functional Description  
General Amplifier Applications  
The LTC6362 is a low power, low noise, high DC accuracy  
fully differential operational amplifier/ADC driver. The  
amplifier is optimized to convert a fully differential or  
single-ended signal to a low impedance, balanced differ-  
ential output suitable for driving high performance, low  
powerdifferentialsuccessiveapproximationregister(SAR)  
ADCs. The balanced differential nature of the amplifier  
also provides even-order harmonic distortion cancella-  
tion, and low susceptibility to common mode noise (like  
power supply noise).  
In Figure 1, the gain to V  
given by:  
from V and V  
is  
INM  
OUTDIFF  
INP  
RF  
R
VOUTDIFF = V+OUT V–OUT  
VINP – V  
(
)
INM  
I   
Note from the previous equation, the differential output  
voltage (V – V ) is completely independent of  
input and output common mode voltages, or the voltage  
at the common mode pin. This makes the LTC6362 ideally  
suited for pre-amplification, level shifting and conversion  
of single-ended signals to differential output signals for  
driving differential input ADCs.  
+OUT  
–OUT  
The outputs of the LTC6362 are capable of swinging rail-  
to-rail and can source or sink up to 35mA of current. The  
LTC6362 is optimized for high bandwidth and low power  
applications. Load capacitances above 10pF to ground or  
5pF differentially should be decoupled with 10Ω to 100Ω  
of series resistance from each output to prevent oscilla-  
tion or ringing. Feedback should be taken directly from  
the amplifier output. Higher voltage gain configurations  
tend to have better capacitive drive capability than lower  
gain configurations due to lower closed-loop bandwidth.  
Output Common Mode and V  
Pin  
OCM  
The output common mode voltage is defined as the aver-  
age of the two outputs:  
V+OUT + V  
–OUT   
VOUTCM = VOCM  
=
2
As the equation shows, the output common mode voltage  
is independent of the input common mode voltage, and  
Input Pin Protection  
is instead determined by the voltage on the V  
pin, by  
The LTC6362 input stage is protected against differential  
input voltages which exceed 1.4V by two pairs of series  
diodes connected back-to-back between +IN and –IN.  
Moreover, all pins have clamping diodes to both power  
supplies. If any pin is driven to voltages which exceed  
either supply, the current should be limited to under 10mA  
to prevent damage to the IC.  
OCM  
means of an internal common mode feedback loop.  
If the V pin is left open, an internal resistor divider  
OCM  
develops a default voltage of 2.5V with a 5V supply. The  
V
pin can be overdriven to another voltage if desired.  
OCM  
For example, when driving an ADC, if the ADC makes a  
reference available for setting the common mode volt-  
age, it can be directly tied to the V  
pin, as long as  
OCM  
SHDN Pin  
the ADC is capable of driving the 170k input resistance  
presented by the V pin. The Electrical Characteristics  
The LTC6362 has a SHDN pin which when driven to within  
0.8V above the negative rail, will shut down amplifier op-  
eration such that only 70µA is drawn from the supplies.  
Pull-down circuitry should be capable of sinking at least  
4µA to guarantee complete shutdown across all condi-  
tions. For normal operation, the SHDN pin should be left  
floating or tied to the positive rail.  
OCM  
table specifies the valid range that can be applied to the  
pin (V ).  
V
OCM  
OUTCMR  
6362fa  
10  
LTC6362  
APPLICATIONS INFORMATION  
Input Common Mode Voltage Range  
current follows I /V = 75nA/V, with I at V = 2.5V  
B
ICM  
B
ICM  
typically below 75nA on a 5V supply. For common mode  
voltages ranging from 1.1V below the positive supply to  
0.2V below the positive supply, input bias current follows  
The LTC6362’s input common mode voltage (V ) is  
ICM  
defined as the average of the two input pins, V and  
+IN  
V
. The inputs of the LTC6362 are capable of swinging  
–IN  
I /V = 25nA/V, with I at V = 4.5V typically below  
B
ICM  
B
ICM  
rail-to-rail and as such the valid range that can be used for  
75nAona5Vsupply. Operatingwithintheserangesallows  
the amplifier to be used in applications with high source  
resistances where errors due to voltage drops must be  
+
V
ICM  
is V to V . However, due to external resistive divider  
action of the gain and feedback resistors, the effective  
range of signals that can be processed is even wider. The  
input common mode range at the op amp inputs depends  
minimized. For applications where V  
is within 0.2V of  
ICM  
either rail, input bias current may reach values over 1µA.  
on the circuit configuration (gain), V  
and V (refer to  
OCM  
CM  
Figure 1). For fully differential input applications, where  
Input Impedance and Loading Effects  
V
INP  
= –V , the common mode input is approximately:  
INM  
The low frequency input impedance looking into the V  
INP  
V+IN + V–IN  
RI  
RI +RF  
RF  
RI +RF  
or V  
input of Figure 1 depends on how the inputs are  
V
=
VOCM  
+ VCM •  
INM  
ICM  
2
driven. For fully differential input sources (V = –V ),  
INP  
INM  
the input impedance seen at either input is simply:  
With single-ended inputs, there is an input signal compo-  
nent to the input common mode voltage. Applying only  
R
INP  
= R = R  
INM I  
V
(setting V  
to zero), the input common voltage is  
INP  
INM  
For single-ended inputs, because of the signal imbalance  
at the input, the input impedance actually increases over  
thebalanceddifferentialcase.Theinputimpedancelooking  
into either input is:  
approximately:  
V+IN + V–IN  
V
=
ICM  
2
RI  
RI  
RI +RF  
RF  
RI +RF  
V
RF  
RI +RF  
INP  
2
RINP =RINM  
=
VOCM  
+ VCM  
+
F   
RF  
R +R  
1
   
2
   
1–  
   
I
This means that if, for example, the input signal (V  
)
INP  
is a sine, an attenuated version of that sine signal also  
appears at the op amp inputs.  
Inputsignalsourceswithnon-zerooutputimpedancescan  
alsocausefeedbackimbalancebetweenthepairoffeedback  
networks. For the best performance, it is recommended  
that the input source output impedance be compensated.  
If input impedance matching is required by the source, a  
termination resistor R1 should be chosen (see Figure 2)  
such that:  
R
R
F
I
V
+IN  
V
–OUT  
+
V
INP  
+
V
V
OCM  
OCM  
+
V
CM  
+
V
INM  
RINM RS  
R1=  
R
I
R
F
V
–IN  
V
+OUT  
6362 F01  
RINM RS  
Figure 1. Definitions and Terminology  
According to Figure 2, the input impedance looking into  
thedifferentialamp(R )reflectsthesingle-endedsource  
INM  
Input Bias Current  
case, given above. Also, R2 is chosen as:  
Input bias current varies according to V . For common  
ICM  
R1RS  
R2=R1||RS =  
R1+RS  
mode voltages ranging from 0.2V above the negative  
supply to 1.1V below the positive supply, input bias  
6362fa  
11  
LTC6362  
APPLICATIONS INFORMATION  
R
INM  
R
I2  
R
F2  
V
+IN  
V
–OUT  
R
R
R
F
S
I
+
V
INP  
+
R1  
V
S
V
V
VOCM  
OCM  
+
+
V
CM  
+
V
INM  
R1 CHOSEN SO THAT R1 || R  
R2 CHOSEN TO BALANCE R1 || R  
= R  
S
+
INM  
S
R
I1  
R
V
F1  
–IN  
V
+OUT  
6362 F03  
R
R
F
I
6405 F04  
Figure 3. Real-World Application with  
Feedback Resistor Pair Mismatch  
R2 = R || R1  
S
Figure 2. Optimal Compensation for Signal Source Impedance  
When the feedback ratios mismatch (Δβ), common mode  
to differential conversion occurs. Setting the differential  
Effects of Resistor Pair Mismatch  
input to zero (V  
= 0), the degree of common mode  
INDIFF  
to differential conversion is given by the equation:  
Figure 3 shows a circuit diagram which takes into consid-  
eration that real world resistors will not match perfectly.  
Assuming infinite open-loop gain, the differential output  
relationship is given by the equation:  
V
≈ (V – V ) • ∆β/β  
OUTDIFF  
CM  
OCM  
AVG  
In general, the degree of feedback pair mismatch is a  
source of common mode to differential conversion of  
both signals and noise. Using 0.1% resistors or better will  
mitigate most problems. A low impedance ground plane  
should be used as a reference for both the input signal  
V
= V  
– V  
OUT(DIFF)  
+OUT  
–OUT  
R
∆β  
∆β  
β
AVG  
F
V  
+ V  
– V  
INDIFF  
CM  
OCM  
R
β
source and the V  
pin.  
I
AVG  
OCM  
where R is the average of R and R , and R is the  
Noise  
F
F1  
F2  
I
average of R and R .  
I1  
I2  
TheLTC6362’sdifferentialinputreferredvoltageandcurrent  
noisedensitiesare3.9nV/√Hzand0.8pA/√Hz,respectively.  
In addition to the noise generated by the amplifier, the  
surrounding feedback resistors also contribute noise. A  
simplified noise model is shown in Figure 4. The output  
noise generated by both the amplifier and the feedback  
components is given by the equation:  
β
is defined as the average feedback factor from the  
AVG  
outputs to their respective inputs:  
RI1  
RI2  
RI2 +R  
1
βAVG = •  
2
+
R +R  
F2   
I1  
F1  
∆β is defined as the difference in the feedback factors:  
RI2 RI1  
RI2 +RF2 RI1 +RF1  
Here, V and V are defined as the average and  
2  
RF  
RI  
2
∆β =  
e 1+  
+2i R  
(
)
ni  
n
F
eno =  
2  
RI   
CM  
INDIFF  
R
2
F   
the difference of the two input voltages V and V  
respectively:  
,
+ 2e  
+2enRF  
INP  
INM  
nRI  
V
INP + V  
For example, if R = R = 1k, the output noise of the circuit  
no  
F
I
INM  
VCM  
=
e
= 12nV/√Hz.  
2
If the circuits surrounding the amplifier are well balanced,  
common mode noise (e ) does not appear in the dif-  
V
INDIFF  
= V – V  
INP INM  
nvocm  
ferential output noise equation given above.  
6362fa  
12  
LTC6362  
APPLICATIONS INFORMATION  
2
2
speed of the amplifier as well as the feedback factor. Since  
the LTC6362 is designed to be stable in a differential signal  
gain of 1 (where R = R or β = 1/2), the maximum f  
e
nRI  
e
nRF  
R
I
R
F
2
i
n+  
I
F
–3dB  
is obtained and measured in this gain setting, as reported  
in the Electrical Characteristics table.  
+
2
In most amplifiers, the open-loop gain response exhibitsa  
conventionalsingle-poleroll-offformostofthefrequencies  
beforetheunity-gaincrossoverfrequency,andtheGBWand  
unity-gain frequency are close to each other. However, the  
LTC6362 is intentionally compensated in such a way that  
e
no  
2
i
n–  
e
2
ni  
2
2
e
nRI  
e
nRF  
R
I
R
F
its GBW is significantly larger than its f  
. This means  
–3dB  
6362 F04  
that at lower frequencies where the amplifier inputs gen-  
erally operate, the amplifier’s gain and thus the feedback  
loop gain is larger. This has the important advantage of  
further linearizing the amplifier and improving distortion  
at those frequencies.  
Figure 4. Simplified Noise Model  
TheLTC6362’sinputreferredvoltagenoisecontributesthe  
equivalent noise of a 920Ω resistor. When the feedback  
network is comprised of resistors whose values are larger  
than this, the output noise is resistor noise and amplifier  
currentnoisedominant.Forfeedbacknetworksconsisting  
of resistors with values smaller than 920Ω, the output  
noise is voltage noise dominant.  
Feedback Capacitors  
In cases where the LTC6362 is connected such that the  
combinationofparasiticcapacitances(device+PCB)atthe  
inverting input forms a pole whose frequency lies within  
the closed-loop bandwidth of the amplifier, a capacitor  
Lower resistor values always result in lower noise at the  
penalty of increased distortion due to increased loading of  
thefeedbacknetworkontheoutput.Higherresistorvalues  
will result in higher output noise, but typically improved  
distortion due to less loading on the output. For this rea-  
son, when LTC6362 is configured in a differential gain of  
1, using feedback resistors of at least 1k is recommended.  
(C ) can be added in parallel with the feedback resistor  
F
(R ) to cancel the degradation on stability. C should be  
F
F
chosen such that it generates a zero at a frequency close  
to the frequency of the pole.  
In general, a larger value for C reduces the peaking (over-  
F
shoot)oftheamplifierinbothfrequencyandtimedomains,  
but also decreases the closed-loop bandwidth (f  
).  
–3dB  
GBW vs f  
–3dB  
Board Layout and Bypass Capacitors  
Gain-bandwidth product (GBW) and –3dB frequency  
(f )havebeenspecifiedintheElectricalCharacteristics  
For single supply applications, it is recommended that  
high quality 0.1µF ceramic bypass capacitors be placed  
–3dB  
tableastwodifferentmetricsforthespeedoftheLTC6362.  
+
GBW is obtained by measuring the open-loop gain of the  
directly between the V and the V pin with short con-  
amplifier at a specific frequency (f  
), then calculating  
nections. The V pins (including the exposed pad in the  
TEST  
gain • f  
. GBW is a parameter that depends only on the  
DD8 package) should be tied directly to a low impedance  
ground plane with minimal routing. For dual (split) power  
supplies, it is recommended that additional high quality  
TEST  
internal design and compensation of the amplifier and is  
a suitable metric to specify the inherent speed capability  
of the amplifier.  
+
0.1µF ceramic capacitors be used to bypass V to ground  
and V to ground, again with minimal routing. Small  
f
, on the other hand, is a parameter of more practical  
–3dB  
geometry (e.g., 0603) surface mount ceramic capacitors  
have a much higher self-resonant frequency than leaded  
capacitors, and perform best with LTC6362.  
6362fa  
interest in different applications and is by definition the  
frequency at which the closed-loop gain is 3dB lower than  
its low frequency value. The value of f  
depends on the  
–3dB  
13  
LTC6362  
APPLICATIONS INFORMATION  
To prevent degradation in stability response, it is highly  
recommendedthatanystraycapacitanceattheinputpins,  
+IN and –IN, be kept to an absolute minimum by keeping  
printed circuit connections as short as possible.  
Theselectionofanappropriatefilterdependsonthespecific  
ADC, however the following procedure is suggested for  
choosing filter component values. Begin by selecting an  
appropriate RC time constant for the input signal. Gener-  
ally, longer time constants improve SNR at the expense of  
settling time. Output transient settling to 18-bit accuracy  
will typically require over twelve RC time constants. To  
select the resistor value, remember the resistors in the  
decoupling network should be at least 10Ω. Keep in mind  
that these resistors also serve to decouple the LTC6362  
outputs from load capacitance. Too large of a resistor will  
leave insufficient settling time. Too small of a resistor will  
not properly dampen the load transient of the sampling  
process, prolonging the time required for settling. For  
lowest distortion, choose capacitors with low dielectric  
absorption(suchasaC0Gmultilayerceramiccapacitor).In  
general,largecapacitorvaluesattenuatethefixednonlinear  
charge kickback, however very large capacitor values will  
detrimentallyloadthedriveratthedesiredinputfrequency  
and thus cause driver distortion. Smaller input swings will  
in general allow for larger filter capacitor values due to  
decreased loading demands on the driver. This property  
however may be limited by the particular input amplitude  
dependence of differential nonlinear charge kickback for  
the specific ADC used.  
Attheoutput,alwayskeepinmindthedifferentialnatureof  
theLTC6362,becauseitiscriticalthattheloadimpedances  
seen by both outputs (stray or intended), be as balanced  
and symmetric as possible. This will help preserve the  
balanced operation of the LTC6362 that minimizes the  
generation of even-order harmonics and maximizes the  
rejection of common mode signals and noise.  
TheV  
pinshouldbebypassedtothegroundplanewith  
OCM  
a high quality 0.1µF ceramic capacitor. This will prevent  
common mode signals and noise on this pin from being  
inadvertently converted to differential signals and noise  
by impedance mismatches both externally and internally  
to the IC.  
Interfacing to ADCs  
WhendrivinganADC,anadditionalpassivefiltershouldbe  
used between the outputs of the LTC6362 and the inputs  
of the ADC. Depending on the application, a single-pole  
RC filter will often be sufficient. The sampling process  
of ADCs creates a charge transient that is caused by the  
switching in of the ADC sampling capacitor. This mo-  
mentarily “shorts” the output of the amplifier as charge  
is transferred between amplifier and sampling capacitor.  
The amplifier must recover and settle from this load  
transient before the acquisition period has ended, for a  
valid representation of the input signal. The RC network  
between the outputs of the driver and the inputs of the  
ADC decouples the sampling transient of the ADC (see  
Figure 5). The capacitance serves to provide the bulk  
of the charge during the sampling process, while the  
two resistors at the outputs of the LTC6362 are used to  
dampen and attenuate any charge injected by the ADC.  
The RC filter gives the additional benefit of band limiting  
broadband output noise.  
In some applications, placingseries resistorsatthe inputs  
of the ADC may further improve distortion performance.  
These series resistors function with the ADC sampling  
capacitor to filter potential ground bounce or other high  
speed sampling disturbances. Additionally the resistors  
limit the rise time of residual filter glitches that manage to  
propagatetothedriveroutputs.Restrictingpossibleglitch  
propagation rise time to within the small signal bandwidth  
of the driver enables less disturbed output settling.  
For the specific application of LTC6362 driving the  
LTC2379-18 SAR ADC in a gain of A = –1 configuration,  
V
the recommended component values of the RC filter for  
varying filter bandwidths are provided in Figure 5. These  
component values are chosen for optimal distortion per-  
formance. Broadband output noise will vary with filter  
bandwidth.  
6362fa  
14  
LTC6362  
APPLICATIONS INFORMATION  
5V  
R
FILT  
1k  
1k  
C
CM  
8
7
6
5
+IN  
SHDN  
V
–OUT  
LTC6362  
5V  
2.5V  
+
V
+
V
R
V
V
DD  
S
REF  
+
340k  
340k  
+
A
IN  
IN  
LTC2379-18  
SAR ADC  
V
OCM  
C
DIFF  
A
R
S
GND  
V
V
FILTER BW  
(Hz)  
R
C
C
CM DIFF  
R
S
+
FILT  
V
–IN  
V
+OUT  
R
OCM  
(Ω) (pF) (pF) (Ω)  
1
2
3
4
110k  
380k  
1.1M  
3.0M  
10M  
29M  
125 3900 3900  
35.7 3900 3900  
100 470 470  
175 100 100  
75  
100 18  
0
0
0
0
0
0
1k  
1k  
FILT  
0.1µF  
C
CM  
V
IN  
68  
68  
18  
0.1µF  
6362 F05  
5V  
Figure 5. Recommended Interface Solutions for Driving the LTC2379-18 SAR ADC  
TYPICAL APPLICATIONS  
Single-Ended-to-Differential Conversion of a 20VP-P Ground-Referenced Input with Gain of AV = –0.4 to Drive an ADC  
4.5V  
V
+OUT  
10V  
806Ω  
0.5V  
5V  
2.5V  
V
IN  
3.9nF  
0Ω  
5V  
–10V  
V
V
DD  
35.7Ω  
35.7Ω  
REF  
2k  
+
A
A
+
IN  
V
OCM  
LTC2379-18  
SAR ADC  
V
LTC6362  
3.9nF  
IN  
0.1µF  
SHDN  
0Ω  
+
IN  
3.9nF  
GND  
2k  
806Ω  
6362 TA02  
4.5V  
V
–OUT  
0.5V  
6362fa  
15  
LTC6362  
TYPICAL APPLICATIONS  
Single-Ended-to-Differential Conversion of a 5VP-P, 2.5V Referenced Input with Gain of AV = –1.6 to Drive an ADC  
4.5V  
V
+OUT  
1k  
0.5V  
5V  
2.5V  
3.9nF  
0Ω  
5V  
V
V
DD  
35.7Ω  
35.7Ω  
REF  
619Ω  
0.1µF  
+
5V  
A
A
+
IN  
V
OCM  
LTC2379-18  
SAR ADC  
V
IN  
3.9nF  
LTC6362  
SHDN  
0Ω  
0V  
+
IN  
3.9nF  
GND  
619Ω  
1k  
6362 TA03  
4.5V  
V
+
CM  
2.5V  
V
–OUT  
0.5V  
Differentially Driving an ADC with ∆VIN = 8VP-P and Gain of AV = 1  
4.5V  
V
+OUT  
1k  
0.5V  
5V  
2.5V  
3.9nF  
0Ω  
5V  
V
V
35.7Ω  
35.7Ω  
REF  
DD  
1k  
+
4.5V  
A
A
+
IN  
V
OCM  
LTC2379-18  
SAR ADC  
V
INM  
LTC6362  
3.9nF  
0.1µF  
SHDN  
0Ω  
0.5V  
+
IN  
3.9nF  
GND  
1k  
1k  
6362 TA04  
4.5V  
4.5V  
V
INP  
V
–OUT  
0.5V  
0.5V  
Single-Ended-to-Differential Conversion of a 4VP-P Input with Gain of AV = 2 to Drive an ADC for Applications Where  
the Importance of High Input Impedance Justifies Some Degradation in Distortion, Noise, and DC Accuracy. Input Is  
True High Impedance, However Common Mode Noise and Offset Are Present on the Output. Additionally, When the  
Input Signal Exceeds 2.8VP-P, a Step in Input Offset Will Occur That Will Degrade Distortion Performance  
4.5V  
V
+OUT  
0.5V  
5V  
2.5V  
3.9nF  
0Ω  
5V  
V
V
35.7Ω  
REF  
DD  
+
A
A
+
IN  
V
OCM  
LTC2379-18  
SAR ADC  
LTC6362  
3.9nF  
0.1µF  
SHDN  
4.5V  
0Ω  
35.7Ω  
+
IN  
3.9nF  
GND  
6362 TA05  
V
IN  
4.5V  
0.5V  
V
–OUT  
0.5V  
6362fa  
16  
LTC6362  
TYPICAL APPLICATIONS  
Differentially Driving a Pipeline ADC with AV = 1  
100Ω  
V
CM  
= 0.9V  
0.1µF  
V
+OUT  
1k  
1.8V  
1.5nF  
5Ω  
3.3V  
V
V
CM  
30Ω  
30Ω  
DD  
1k  
+
A
A
16 BIT  
+
IN  
V
OCM  
LTC2160  
PIPELINE ADC  
LTC6362  
1.5nF  
SHDN  
5Ω  
0.1µF  
INPUT BW = 1.2MHz  
+
25Msps  
IN  
FULL SCALE = 2V  
P-P  
1.5nF  
GND  
1k  
1k  
6362 TA08  
V
IN  
V
–OUT  
MEASURED PERFORMANCE FOR LTC6362 DRIVING LTC2160:  
INPUT: f = 2kHz, –1dBFS  
IN  
SNR: 77.0dB  
HD2: –98.9dBc  
HD3: –102.3dBc  
THD: –96.3dB  
Differential Line Driver Connected in Gain of AV = –1  
3V  
V
+OUT  
1V  
1k  
2V  
V
IN  
5V  
–1V  
49.9Ω  
49.9Ω  
1k  
+
V
OCM  
V
IN  
LTC6362  
100Ω  
0.1µF  
SHDN  
+
6362 TA06  
1k  
1k  
3V  
V
–OUT  
2V  
6362fa  
17  
LTC6362  
TYPICAL APPLICATIONS  
LTC6362 Used as Lowpass Filter/Driver with 10VP-P Singled-Ended Input, Driving a SAR ADC  
1.8nF  
2k  
1.8nF  
0.1µF  
4.5V  
4-POLE FILTER  
= 50kHz  
5V  
5V  
2.5V  
f
–3dB  
0.5V  
100Ω  
V
V
REF  
DD  
1.27k 1.27k 1.27k  
1.8nF  
5V  
–5V  
+
A
A
16 BIT  
2Msps  
V
V
+
LTC6362  
IN  
CM  
IN  
1.8nF  
1.8nF  
LTC2380-16  
SAR ADC  
1.8nF  
100Ω  
4.5V  
0.1µF  
+
IN  
1.8nF  
GND  
1.8nF  
1.27k 1.27k  
1.27k  
2k  
6362 TA09  
V
CM  
0.5V  
1.8nF  
Differential AV = 1 Configuration Using an LT®5400 Quad-Matched Resistor Network  
5V  
LT5400  
4.5V  
4.5V  
R1  
R2  
R3  
R4  
1
2
3
4
8
7
6
5
V
V
+
+OUT  
–OUT  
+
V
OCM  
0.5V V  
INM  
INP  
0.5V  
4.5V  
LTC6362  
0.1µF  
SHDN  
V
4.5V  
0.5V  
0.5V  
6362 TA10a  
CMRR Comparison Using the LT5400 and 1% 0402 Resistors  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V, 0V  
S
USING LT5400 MATCHED RESISTORS  
USING 1% 0402 RESISTORS  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
6362 TA10b  
6362fa  
18  
LTC6362  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-ꢀꢂꢂ0 Rev F)  
0.889 0.ꢀꢁ7  
(.035 .005)  
5.ꢁ3  
3.ꢁ0 – 3.45  
(.ꢁ0ꢂ)  
(.ꢀꢁꢂ – .ꢀ3ꢂ)  
MIN  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 3)  
0.5ꢁ  
(.0ꢁ05)  
REF  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
0.4ꢁ 0.038  
(.0ꢀꢂ5 .00ꢀ5)  
TYP  
8
7 ꢂ 5  
RECOMMENDED SOLDER PAD LAYOUT  
3.00 0.ꢀ0ꢁ  
(.ꢀꢀ8 .004)  
(NOTE 4)  
4.90 0.ꢀ5ꢁ  
(.ꢀ93 .00ꢂ)  
DETAIL “A”  
0.ꢁ54  
(.0ꢀ0)  
0° – ꢂ° TYP  
GAUGE PLANE  
3
4
0.53 0.ꢀ5ꢁ  
(.0ꢁꢀ .00ꢂ)  
ꢀ.ꢀ0  
(.043)  
MAX  
0.8ꢂ  
(.034)  
REF  
DETAIL “A”  
0.ꢀ8  
(.007)  
SEATING  
PLANE  
0.ꢁꢁ – 0.38  
0.ꢀ0ꢀꢂ 0.0508  
(.009 – .0ꢀ5)  
(.004 .00ꢁ)  
0.ꢂ5  
(.0ꢁ5ꢂ)  
BSC  
TYP  
MSOP (MS8) 0307 REV F  
NOTE:  
ꢀ. DIMENSIONS IN MILLIMETER/(INCH)  
ꢁ. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.ꢀ5ꢁmm (.00ꢂ") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.ꢀ0ꢁmm (.004") MAX  
6362fa  
19  
LTC6362  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698 Rev C)  
0.70 ±0.05  
3.5 ±0.05  
2.10 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.125  
0.40 ±0.10  
TYP  
5
8
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(NOTE 6)  
(DD8) DFN 0509 REV C  
4
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
2.38 ±0.10  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON TOP AND BOTTOM OF PACKAGE  
6362fa  
20  
LTC6362  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
1, 2, 9, 13, 20  
4
A
05/12 Added DFN package  
Added typical spec for 2V  
t
P-P  
S
6362fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
21  
LTC6362  
TYPICAL APPLICATION  
Single-Ended-to-Differential Conversion of a 10VP-P Ground-Referenced Input with Gain of AV = –0.8  
to Drive a 5V Reference SAR ADC  
4.5V  
V
+OUT  
5V  
1k  
0.5V  
5V  
2.5V  
V
IN  
3.9nF  
0Ω  
5V  
–5V  
V
V
35.7Ω  
35.7Ω  
REF  
DD  
1.24k  
0.1µF  
+
A
A
18 BIT  
+
IN  
V
OCM  
LTC2379-18  
SAR ADC  
V
LTC6362  
3.9nF  
IN  
SHDN  
0Ω  
+
1.6Msps  
IN  
3.9nF  
GND  
1.24k  
1k  
6362 TA07  
4.5V  
V
–OUT  
0.5V  
RELATED PARTS  
PART NUMBER  
Operational Amplifiers  
LT6350  
DESCRIPTION  
COMMENTS  
Low Noise, Single-Ended to Differential Converter/  
ADC Driver  
4.8mA, –97dBc Distortion at 100kHz, 4V  
Output  
P–P  
LTC6246/LTC6247/  
LTC6248  
Single/Dual/Quad 180MHz Rail-to-Rail Low Power  
Op Amps  
1mA/Amplifier, 4.2nV/√Hz  
LTC6360  
1GHz Very Low Noise Single-Ended SAR ADC Driver 13.6mA, HD2/HD3 = –103dBc/–109dBc at 40kHz, 4V Output  
P-P  
with True Zero Output  
LTC1992/LTC1992-X  
LT1994  
3MHz to 4MHz Fully Differential Input/Output  
Amplifiers  
Internal Feedback Resistors Available (G =1, 2, 5,10)  
70MHz Low Noise, Low Distortion Fully Differential 13mA, –94dBc Distortion at 1MHz, 2V Output  
Input/Output Amplifier/Driver  
P-P  
ADCs  
LTC2379-18/LTC2378-18 18-Bit, 1.6Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-18/LTC2376-18 Low Power ADC  
2.5V Supply, Differential Input, 101.2dB SNR, 5V Input Range, DGC,  
Pin Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2380-16/LTC2378-16 16-Bit, 2Msps/1Msps/500ksps/250ksps Serial,  
LTC2377-16/LTC2376-16 Low Power ADC  
2.5V Supply, Differential Input, 96.2dB SNR, 5V Input Range, DGC,  
Pin Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2383-16/LTC2382-16/ 16-Bit, 1Msps/500ksps/250ksps Serial, Low  
2.5V Supply, Differential Input, 92dB SNR, 2.5V Input Range, Pin  
Compatible Family in MSOP-16 and 4mm × 3mm DFN-16 Packages  
LTC2381-16  
Power ADC  
LTC2393-16/LTC2392-16/ 16-Bit, 1Msps/500ksps/250ksps Parallel/Serial ADC 5V Supply, Differential Input, 94dB SNR, 4.096V Input Range, Pin  
LTC2391-16  
Compatible Family in 7mm × 7mm LQFP-48 and QFN-48 Packages  
3.3V Supply, 1-Channel, Unipolar/Bipolar, 18mW, MSOP-10 Package  
2.35V to 3.6V Supply 6- and 8-Lead TSOT-23 Packages  
LTC2355-14/LTC2356-14 14-Bit, 3.5Msps Serial ADC  
LTC2366  
12-Bit, 3Msps Serial ADC  
LTC2162/LTC2161/  
LTC2160  
16-Bit, 65/40/25Msps Low Power ADC  
1.8V Supply, Differential Input, 77dB SNR, 2V Input Range, Pipeline  
P-P  
Converter in 7mm × 7mm QFN-48 Package  
6362fa  
LT 0612 REV A • PRINTED IN USA  
22 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
ꢀLINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2376-20

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2376CMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2376CMS-18#PBF

LTC2376-18 - 18-Bit, 250ksps, Low Power SAR ADC with 102dB SNR; Package: MSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2376HMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC2376IDE-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IDE-16#TRPBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IMS-16#PBF

LTC2376-16 - 16-Bit, 250ksps, Low Power SAR ADC with 97dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IMS-18#PBF

LTC2376-18 - 18-Bit, 250ksps, Low Power SAR ADC with 102dB SNR; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2376IMS-20#PBF

LTC2376-20 - 20-Bit, 250ksps, Low Power SAR ADC with 0.5ppm INL; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2377-16

Precision, Low Power Rail-to-Rail Input/Output
Linear

LTC2377-18

18-Bit, 1.6Msps, Pseudo-Differential Unipolar SAR
Linear

LTC2377-20

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear