LTC2383IMS-16PBF [Linear]

16-Bit, 1Msps, Low Power SAR ADC with Serial Interface; 16位, 1Msps的,低功耗SAR ADC ,具有串行接口
LTC2383IMS-16PBF
型号: LTC2383IMS-16PBF
厂家: Linear    Linear
描述:

16-Bit, 1Msps, Low Power SAR ADC with Serial Interface
16位, 1Msps的,低功耗SAR ADC ,具有串行接口

文件: 总24页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2383-16  
16-Bit, 1Msps, Low Power  
SAR ADC with Serial Interface  
FEATURES  
DESCRIPTION  
The LTC®2383-16 is a low noise, low power, high speed  
16-bit successive approximation register (SAR) ADC.  
Operating from a 2.5V supply, the LTC2383-16 has a  
2.5V fully differential input range. The LTC2383-16  
consumes only 13mW and achieves 2LSꢀ ꢁIL max, no  
missing codes at 16-bits and 92dꢀ SIR.  
n
1Msps Throughput Rate  
n
2ꢀSꢁ INꢀ ꢂMaꢃx  
n
Guaranteed 16-ꢁit No Missing Codes  
n
ꢀow Power: 13mW at 1Msps, 13μW at 1ksps  
n
92dꢁ SNR ꢂtypx at f = 20kHz  
IN  
n
Guaranteed Operation to 125°C  
n
2.5V Supply  
The LTC2383-16 has a high speed SPꢁ-compatible serial  
interface that supports 1.8V, 2.5V, 3.3V and 5V logic  
while also featuring a daisychain mode. The fast 1Msps  
throughput with no cycle latency makes the LTC2383-16  
ideally suited for a wide variety of high speed applica-  
tions. An internal oscillator sets the conversion time,  
easing external timing considerations. The LTC2383-16  
automatically powers down between conversions, lead-  
ing to reduced power dissipation that scales with the  
sampling rate.  
n
Fully Differential ꢁnput Range 2.5V  
n
External 2.5V Reference ꢁnput  
n
Io Pipeline Delay, Io Cycle Latency  
n
1.8V to 5V ꢁ/O Voltages  
n
SPꢁ-Compatible Serial ꢁ/O with Daisy-Chain Mode  
n
ꢁnternal Conversion Clock  
n
16-pin MSOP and 4mm × 3mm DFI Packages  
APPLICATIONS  
n
Medical ꢁmaging  
TC238X-16 SAR ADC Family  
n
High Speed Data Acquisition  
PART NUMꢁER  
LTC2383-16  
LTC2382-16  
LTC2381-16  
RESOꢀUTION  
SPEED  
1Msps  
POWER  
13mW  
n
Portable or Compact ꢁnstrumentation  
ꢁndustrial Process Control  
Low Power ꢀattery-Operated ꢁnstrumentation  
ATE  
16  
16  
16  
n
500ksps  
250ksps  
6.5mW  
3.25mW  
n
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
TYPICAL APPLICATION  
32k Point FFT fS = 1Msps, fIN = 20kHz  
0
2.5V 1.8V TO 5V  
SIR = 92.2dꢀ  
–20  
–40  
THD = –106.2dꢀ  
SꢁIAD = 92dꢀ  
SFDR = 110.4dꢀ  
10μF  
0.1μF  
AIALOG ꢁIPUT  
0V TO 2.5V  
–60  
V
OV  
DD  
50Ω  
50Ω  
100Ω  
3300pF  
100Ω  
CHAꢁI  
RDL/SDꢁ  
SDO  
DD  
+
ꢁI  
–80  
LT6350  
LTC2383-16  
–100  
–120  
–140  
–160  
–180  
SCK  
ꢀUSY  
CIV  
ꢁI  
SAMPLE CLOCK  
REF  
GID  
23816 TA01  
2.5V  
SꢁIGLE-EIDED-  
TO-DꢁFFEREITꢁAL  
DRꢁVER  
47μF  
(X5R, 0805 SꢁZE)  
0
100  
200  
300  
400  
500  
FREQUEICY (kHz)  
238316 TA02  
238316f  
1
LTC2383-16  
ABSOLUTE MAXIMUM RATINGS  
ꢂNotes 1, 2x  
Digital Output Voltage  
Supply Voltage (V )...............................................2.8V  
DD  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
Supply Voltage (OV )................................................6V  
DD  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
LTC2383C................................................ 0°C to 70°C  
LTC2383ꢁ .............................................–40°C to 85°C  
LTC2383H.......................................... –40°C to 125°C  
Storage Temperature Range .................. –65°C to 150°C  
Reference ꢁnput (REF)..............................................2.8V  
Analog ꢁnput Voltage (Iote 3)  
+
ꢁI , ꢁI ......................... (GID –0.3V) to (REF + 0.3V)  
Digital ꢁnput Voltage  
(Iote 3)........................... (GID –0.3V) to (OV + 0.3V)  
DD  
PIN CONFIGURATION  
TOP VꢁEW  
CHAꢁI  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
GID  
OV  
TOP VꢁEW  
V
DD  
DD  
CHAꢁI 1  
16 GID  
GID  
SDO  
V
2
15 OV  
DD  
DD  
+
GID 3  
14 SDO  
13 SCK  
17  
GID  
ꢁI  
SCK  
+
ꢁI  
ꢁI  
4
5
ꢁI  
RDL/SDꢁ  
ꢀUSY  
GID  
12 RDL/SDꢁ  
11 ꢀUSY  
10 GID  
GID  
REF  
REF  
GID 6  
REF 7  
REF 8  
9
CIV  
CIV  
MS PACKAGE  
16-LEAD (4mm s 5mm) PLASTꢁC MSOP  
DE PACKAGE  
16-LEAD (4mm s 3mm) PLASTꢁC DFI  
T
= 150°C, θ = 110°C/W  
JA  
JMAX  
T
= 150°C, θ = 43°C/W  
JA  
JMAX  
EXPOSED PAD (PꢁI 17) ꢁS GID, MUST ꢀE SOLDERED TO PCꢀ  
ORDER INFORMATION  
ꢀEAD FREE FINISH  
LTC2383CMS-16#PꢀF  
LTC2383ꢁMS-16#PꢀF  
LTC2383HMS-16#PꢀF  
LTC2383CDE-16#PꢀF  
LTC2383ꢁDE-16#PꢀF  
TAPE AND REEꢀ  
PART MARKING  
PACKAGE DESCRIPTION  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
16-Lead Plastic MSOP  
TEMPERATURE RANGE  
0°C to 70°C  
LTC2383CMS-16#TRPꢀF 238316  
LTC2383ꢁMS-16#TRPꢀF 238316  
LTC2383HMS-16#TRPꢀF 238316  
LTC2383CDE-16#TRPꢀF 23836  
–40°C to 85°C  
–40°C to 125°C  
0°C to 70°C  
16-Lead (4mm × 3mm) Plastic DFI  
16-Lead (4mm × 3mm) Plastic DFI  
LTC2383ꢁDE-16#TRPꢀF  
23836  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
238316f  
2
LTC2383-16  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
V +  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
–0.05  
–0.05  
TYP  
MAX  
UNITS  
+
l
l
l
l
Absolute ꢁnput Range (ꢁI )  
V
V
V
V
V
V
ꢁI  
REF  
REF  
V
ꢁI  
Absolute ꢁnput Range (ꢁI )  
(Iote 5)  
V + – V – ꢁnput Differential Voltage range  
V
= V + – V –  
–V  
+V  
REF  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
ꢁI  
REF  
V
CM  
Common-Mode ꢁnput Range  
V
/2–  
V /2  
REF  
V
/2+  
REF  
0.05  
REF  
0.05  
l
Analog ꢁnput Leakage Current  
Analog ꢁnput Capacitance  
1
μA  
ꢁI  
C
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
ꢁI  
CMRR  
ꢁnput Common Mode Rejection Ratio  
70  
dꢀ  
CONVERTER CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ PARAMETER  
CONDITIONS  
MIN  
16  
TYP  
MAX  
UNITS  
ꢀits  
l
l
Resolution  
Io Missing Codes  
16  
ꢀits  
Transition Ioise  
0.6  
0.8  
0.4  
0.25  
3
LSꢀ  
RMS  
l
l
l
ꢁIL  
ꢁntegral Linearity Error  
Differential Linearity Error  
ꢀipolar Zero-Scale Error  
ꢀipolar Zero-Scale Error Drift  
ꢀipolar Full-Scale Error  
ꢀipolar Full-Scale Error Drift  
(Iote 6)  
(Iote 7)  
(Iote 7)  
–2  
–1  
–6  
2
1
6
LSꢀ  
DIL  
ꢀZE  
LSꢀ  
LSꢀ  
mLSꢀ/°C  
LSꢀ  
l
FSE  
–14  
3
14  
0.1  
ppm/°C  
DYNAMIC ACCURACY The l denotes the specifications which apply over the full operating temperature range,  
otherwise specifications are at TA = 25°C and AIN = –1dꢁFS. ꢂNotes 4, 8x  
SYMꢁOꢀ PARAMETER  
CONDITIONS  
MIN  
88.5  
89  
TYP  
92  
MAX  
UNITS  
dꢀ  
l
l
l
SꢁIAD  
SIR  
Signal-to-(Ioise + Distortion) Ratio  
f
ꢁI  
f
ꢁI  
f
ꢁI  
f
ꢁI  
= 20kHz  
Signal-to-Ioise Ratio  
Total Harmonic Distortion  
Spurious Free Dynamic Range  
–3dꢀ ꢁnput ꢀandwidth  
Aperture Delay  
= 20kHz  
92  
dꢀ  
THD  
= 20kHz, First 5 Harmonics  
= 20kHz  
–106  
108  
30  
–99  
dꢀ  
SFDR  
dꢀ  
MHz  
ns  
2
Aperture Jitter  
30  
ps  
Transient Response  
Full-Scale Step  
250  
ns  
238316f  
3
LTC2383-16  
REFERENCE INPUT The l denotes the specifications which apply over the full operating temperature range, otherwise  
specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
CONDITIONS  
(Iote 5)  
MIN  
TYP  
MAX  
2.6  
UNITS  
V
l
l
V
Reference Voltage  
Load Current  
2.4  
REF  
REF  
(Iote 9)  
910  
μA  
DIGITAL INPUTS AND DIGITAL OUTPUTS The l denotes the specifications which apply over the  
full operating temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
l
l
l
V
V
High Level ꢁnput Voltage  
Low Level ꢁnput Voltage  
Digital ꢁnput Current  
0.8 • OV  
ꢁH  
ꢁL  
DD  
0.2 • OV  
10  
V
DD  
V
ꢁI  
= 0V to OV  
DD  
–10  
μA  
pF  
ꢁI  
C
V
V
Digital ꢁnput Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
ꢁI  
l
l
l
ꢁ = –500 μA  
O
OV – 0.2  
DD  
V
OH  
OL  
ꢁ = 500 μA  
O
0.2  
10  
V
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
μA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SꢁIK  
DD  
POWER REQUIREMENTS The l denotes the specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
Supply Voltage  
Supply Voltage  
CONDITIONS  
MIN  
2.375  
1.71  
TYP  
MAX  
2.625  
5.25  
UNITS  
l
V
2.5  
V
V
DD  
OV  
DD  
l
l
l
Supply Current  
Power Down Mode  
Power Down Mode  
1Msps Sample Rate  
Conversion Done  
Conversion Done (H-Grade)  
5.2  
0.5  
0.5  
6.5  
40  
110  
mA  
μA  
μA  
DD  
P
Power Dissipation  
Power Down Mode  
Power Down Mode  
1Msps Sample Rate  
Conversion Done  
Conversion Done (H-Grade)  
13  
1.25  
1.25  
16.25  
100  
275  
mW  
μW  
μW  
D
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
1
UNITS  
Msps  
ns  
l
l
l
l
l
l
l
l
l
f
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Conversion Time  
SMPL  
COIV  
ACQ  
610  
250  
1
730  
Acquisition Time  
t
= t  
–t  
– t (Iote 10)  
ꢀUSYLH  
ns  
ACQ  
CYC COIV  
Time ꢀetween Conversions  
CIV High Time  
us  
CYC  
20  
ns  
CIVH  
ꢀUSYLH  
CIVL  
SCK  
C = 20pF (Iote 11)  
L
20  
ns  
CIV to ꢀUSY Delay  
Minimum Low Time for CIV  
SCK Period  
(Iote 11)  
200  
10  
4
ns  
(Iotes 11, 12)  
ns  
SCK High Time  
ns  
SCKH  
238316f  
4
LTC2383-16  
ADC TIMING CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. ꢂNote 4x  
SYMꢁOꢀ  
PARAMETER  
CONDITIONS  
MIN  
4
TYP  
MAX  
UNITS  
ns  
l
l
l
l
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
t
t
t
SCK Low Time  
SCKL  
(Iote 11)  
(Iote 11)  
4
ns  
SDꢁ Setup Time From SCK ↑  
SDꢁ Hold Time From SCK ↑  
SCK Period in Chain Mode  
SSDꢁSCK  
HSDꢁSCK  
SCKCH  
DSDO  
1
ns  
t
= t  
+ t (Iote 11)  
DSDO  
13.5  
ns  
SCKCH  
SSDꢁSCK  
C = 20pF (Iote 11)  
L
9.5  
ns  
SDO Data Valid Delay from SCK ↑  
SDO Data Remains Valid Delay from SCK ↑  
SDO Data Valid Delay from ꢀUSY ↓  
ꢀus Enable Time After RDL ↓  
ꢀus Relinquish Time After RDL ↑  
SCK Setup Time from RDL/SDꢁ ↓  
SCK Hold Time from RDL/SDꢁ ↓  
C = 20pF (Iote 10)  
L
1
ns  
HSDO  
C = 20pF (Iote 10)  
L
5
ns  
DSDOꢀUSYL  
EI  
(Iote 11)  
(Iote 11)  
(Iote 10)  
(Iote 10)  
16  
13  
ns  
ns  
DꢁS  
1
ns  
SSCKRDL  
HSCKRDL  
16  
ns  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may effect device  
reliability and lifetime.  
Note 7: ꢀipolar zero-scale error is the offset voltage measured from  
–0.5LSꢀ when the output code flickers between 0000 0000 0000 0000  
and 1111 1111 1111 1111. Full-scale bipolar error is the worst-case of  
–FS or +FS untrimmed deviation from ideal first and last code transitions  
and includes the effect of offset error.  
Note 2: All voltage values are with respect to ground.  
Note 8: All specifications in dꢀ are referred to a full-scale 2.5V input with  
a 2.5V reference voltage.  
Note 3: When these pin voltages are taken below ground or above REFor  
OV , they will be clamped by internal diodes. This product can handle  
DD  
input currents up to 100mA below ground or above REFor OV without  
Note 9: f  
= 1MHz, ꢁ varies proportionately with sample rate.  
SMPL REF  
DD  
latch-up.  
Note 10: Guaranteed by design, not subject to test.  
Note 11: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
Note 4: V = 2.5V, OV = 2.5V, REF = 2.5V, f = 1MHz.  
SMPL  
DD  
DD  
DD  
DD  
Note 5: Recommended operating conditions.  
and OV = 5.25V.  
DD  
Note 6: ꢁntegral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Note 12: t  
100MHz for rising capture.  
of 10ns maximum allows a shift clock frequency up to  
SCK  
0.8*OV  
DD  
t
WꢁDTH  
0.2*OV  
DD  
50%  
50%  
t
t
DELAY  
DELAY  
238316F01  
0.8*OV  
0.8*OV  
0.2*OV  
DD  
DD  
0.2*OV  
DD  
DD  
Figure 1. Voltage ꢀevels for Timing Specifications  
238316f  
5
LTC2383-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 2.5V,  
fSMPꢀ = 1Msps, unless otherwise noted.  
Integral Nonlinearity  
vs Output Code  
Differential Nonlinearity  
vs Output Code  
DC Histogram  
2.0  
1.5  
1.0  
0.5  
0.0  
1600000  
1400000  
1200000  
1000000  
1.0  
0.5  
0.0  
800000  
600000  
400000  
200000  
0
–0.5  
–1.0  
–1.5  
–2.0  
–0.5  
–1.0  
0
16384  
32768  
49152  
65536  
0
16384  
32768  
49152  
65536  
32766  
32767  
32768  
CODE  
32769  
32770  
OUTPUT CODE  
OUTPUT CODE  
238316 G01  
238316 G02  
238316 G03  
32k Point FFT fS = 1Msps,  
fIN = 20kHz  
THD, Harmonics  
SNR, SINAD vs Input Frequency  
vs Input Frequency  
0
–20  
93  
92  
91  
90  
89  
88  
87  
86  
85  
–80  
–85  
SIR = 92.2dꢀ  
THD = –106.2dꢀ  
SꢁIAD = 92dꢀ  
–90  
–40  
SFDR = 110.4dꢀ  
SIR  
–95  
–60  
–100  
–105  
–110  
–115  
SꢁIAD  
THD  
–80  
–100  
–120  
–140  
–160  
–180  
2ID  
–120 3RD  
–125  
–130  
0
100  
200  
300  
400  
500  
0
25 50 75 100 125 150 175 200  
0
25 50 75 100 125 150 175 200  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
238316 G05  
238316 G06  
238316 G04  
SNR, SINAD vs Input level,  
fIN = 20kHz  
SNR, SINAD vs Temperature  
THD, Harmonics vs Temperature  
94.00  
93.50  
93.00  
92.50  
92.00  
91.50  
91.00  
93.0  
92.5  
92.0  
91.5  
91.0  
–100.00  
–105.00  
–110.00  
–115.00  
–120.00  
SIR  
THD  
2ID  
SꢁIAD  
SIR  
SꢁIAD  
3RD  
–55 –35 –15  
5
25 45 65 85 105 125  
–40  
–30  
–20  
–10  
0
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (ºC)  
ꢁIPUT LEVEL (dꢀ)  
TEMPERATURE (ºC)  
238316 G08  
238316 G07  
3653 G03  
238316f  
6
LTC2383-16  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, VDD = 2.5V, OVDD = 2.5V, REF = 2.5V,  
fSMPꢀ = 1Msps, unless otherwise noted.  
INꢀ/DNꢀ vs Temperature  
Full-Scale Error vs Temperature  
Offset Error vs Temperature  
0.3  
0.2  
0.1  
0
1
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
0
MAX ꢁIL  
MAX DIL  
–FS  
+FS  
MꢁI DIL  
MꢁI ꢁIL  
–0.5  
–0.1  
–1  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
238316 G12  
238316 G10  
238316 G11  
Supply Current vs Temperature  
Shutdown Current vs Temperature  
Supply Current vs Sampling Rate  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
6
5
4
3
2
1
0
+ ꢁ  
+ ꢁ  
VDD OVDD REF  
VDD  
REF  
OVDD  
0
0
200  
400  
600  
800  
1000  
–55 –35 –15  
5
25 45 65 85 105 125  
–55 –35 –15  
5
25 45 65 85 105 125  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
SAMPLꢁIG RATE (kHz)  
238316 G13  
238316 G14  
238316 G15  
238316f  
7
LTC2383-16  
PIN FUNCTIONS  
CHAIN ꢂPin 1x: Chain Mode Selector Pin. When low, the  
LTC2383-16 operates in Iormal Mode and the RDL/SDꢁ  
input pin functions to enable or disable SDO. When high,  
the LTC2383-16 operates in Chain Mode and the RDL/SDꢁ  
pin functions as SDꢁ, the daisychain serial data input.  
RDꢀ/SDIPin12x:WhenCHAꢁIislow,thepartisinIormal  
Mode and the pin is treated as a bus enabling input. When  
CHAꢁI is high, the part is in chain mode and the pin is  
treated as a serial data input pin where data from another  
ADC in the daisychain is input.  
V
ꢂPin 2x: 2.5V Digital Power Supply. The range of  
SCKPin13x:SerialDataClocknput.WhenSDOisenabled,  
theconversionresultordaisychaindatafromanotherADC  
is shifted out on the rising edges of this clock MSꢀ first.  
DD  
DD  
V
is 2.375V to 2.625V. ypass V to GID with a 10μF  
DD  
ceramic capacitor.  
GND ꢂPins 3, 6, 10 and 16x: Ground.  
SDOPin14x:SerialDataOutput. Theconversionresultor  
daisychain data is output on this pin on each rising edge  
of SCK MSꢀ first. The output data is in 2’s complement  
format.  
+
IN , IN ꢂPins 4, 5x: Positive and Iegative Differential  
Analog ꢁnputs.  
REF ꢂPins 7, 8x: Reference ꢁnput. The range of REF is 2.4V  
to 2.6V. This pin is referred to the GID pin and should be  
decoupledcloselytothepinwitha4Fceramiccapacitor  
(X5R, 0805 size).  
OV ꢂPin 15x: ꢁ/O ꢁnterface Digital Power. The range of  
DD  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). ꢀypass OV to GID with a 0.1μF capacitor.  
DD  
CNV ꢂPin 9x: Convert ꢁnput. A rising edge on this input  
initiates a new conversion. When the conversion is done,  
the part powers down as long as CIV is held high. When  
CIV is returned low, the part powers up in preparation  
for the next conversion.  
GND ꢂEꢃposed Pad Pin 17 – DFN Package Onlyx: Ground.  
Exposed pad must be soldered directly to the ground  
plane.  
ꢁUSY ꢂPin 11x: ꢀUSY indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished.  
FUNCTIONAL BLOCK DIAGRAM  
V
= 2.5V  
DD  
OV = 1.8V to 5V  
DD  
REF = 2.5V  
LTC2383-16  
+
CHAꢁI  
SDO  
RDL/SDꢁ  
SCK  
+
ꢁI  
SPꢁ  
PORT  
16-ꢀꢁT SAMPLꢁIG ADC  
ꢁI  
CIV  
COITROL LOGꢁC  
ꢀUSY  
GID  
238316 ꢀD01  
238316f  
8
LTC2383-16  
TIMING DIAGRAM  
Conversion Timing Using the Serial Interface  
CHAꢁI, RDL/SDꢁ = 0  
CIV  
POWER-UP  
POWER-DOWI  
ACQUꢁRE  
COIVERT  
ꢀUSY  
SCK  
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
238316 TD02  
238316f  
9
LTC2383-16  
APPLICATIONS INFORMATION  
OVERVIEW  
011...111  
011...110  
BIPOLAR  
ZERO  
TheLTC2383-16isalownoise,lowpower,highspeed16-bit  
successive approximation register (SAR) ADC. Operating  
from a single 2.5V supply, the LTC2383-16 supports a  
large 2.5V fully differential input range, making it ideal  
for high performance applications which require a wide  
dynamicrange.TheLTC2383-16achieves 2LSILmax,  
no missing codes at 16-bits and 92dꢀ SIR.  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/65536  
Fast 1Msps throughput with no cycle latency makes the  
LTC2383-16 ideally suited for a wide variety of high speed  
applications.Aninternaloscillatorsetstheconversiontime,  
easing external timing considerations. The LTC2383-16  
dissipatesonly13mWat1Msps,whileanautopower-down  
feature is provided to further reduce power dissipation  
during inactive periods.  
–1 0V  
LSB  
INPUT VOLTAGE (V)  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
238316 F02  
Figure 2. TC2383-16 Transfer Function  
circuit shown in Figure 3. The diodes at the input provide  
ESD protection. ꢁn the acquisition phase, each input sees  
approximately45pF(C )fromthesamplingCDACinseries  
with 40ꢂ (R ) from the on-resistance of the sampling  
switch. Any unwanted signal that is common to both  
inputs will be reduced by the common mode rejection of  
the ADC. The inputs draw a current spike while charging  
the C capacitors during acquisition. During conversion,  
the analog inputs draw only a small leakage current.  
ꢁI  
CONVERTER OPERATION  
OI  
The LTC2383-16 operates in two phases. During the  
acquisition phase, the charge redistribution capacitor D/A  
+
converter (CDAC) is connected to the ꢁI and ꢁI pins  
to sample the differential analog input voltage. A rising  
edge on the CIV pin initiates a conversion. During the  
conversionphase,the16-bitCDACissequencedthrougha  
successiveapproximationalgorithm,effectivelycomparing  
the sampled input with binary-weighted fractions of the  
referencevoltage(e.g.V /2,V /4…V /65536)using  
ꢁI  
REF  
C
C
ꢁI  
ꢁI  
R
R
OI  
+
REF  
REF  
REF  
ꢁI  
ꢁI  
the differential comparator. At the end of conversion, the  
CDAC output approximates the sampled analog input. The  
ADC control logic then prepares the 16-bit digital output  
code for serial transfer.  
ꢀꢁAS  
VOLTAGE  
REF  
OI  
TRANSFER FUNCTION  
238316 F03  
The LTC2383-16 digitizes the full-scale voltage of 2 × REF  
Figure 3. The Equivalent Circuit for the  
16  
into 2 levels, resulting in an LSꢀ size of 76μV with  
Differential Analog Input of the TC2383-16  
REF=2.5V.TheidealtransferfunctionisshowninFigure2.  
The output data is in 2’s complement format.  
INPUT DRIVE CIRCUITS  
A low impedance source can directly drive the high  
impedance inputs of the LTC2383-16 without gain error.  
A high impedance source should be buffered to minimize  
settling time during acquisition and to optimize the  
distortion performance of the ADC. Minimizing settling  
238316f  
ANAꢀOG INPUT  
The analog inputs of the LTC2383-16 are fully differential  
in order to maximize the signal swing that can be digitized.  
The analog inputs can be modeled by the equivalent  
10  
LTC2383-16  
APPLICATIONS INFORMATION  
time is important even for DC inputs, because the ADC  
inputs draw a current spike when entering acquisition.  
Single-Ended-to-Differential Conversion  
Forsingle-endedinputsignals,asingle-endedtodifferential  
conversion circuit must be used to produce a differential  
signal at the inputs of the LTC2383-16. The LT6350 ADC  
driver is recommended for performing single-ended-to-  
differential conversions.The LT6350 is flexible and may  
be configured to convert single-ended signals of various  
amplitudes to the 2.5V differential input range of the  
LTC2383-16. The LT6350 is also available in H-grade to  
complement the extended temperature operation of the  
LTC2383-16 up to 125°C.  
For best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2383-16. The amplifier  
provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
ꢁt also provides isolation between the signal source and  
the current spike the ADC inputs draw.  
Input Filtering  
The noise and distortion of the buffer amplifier and signal  
sourcemustbeconsideredsincetheyaddtotheADCnoise  
and distortion. Ioisy input signals should be filtered prior  
to the buffer amplifier input with an appropriate filter to  
minimizenoise.Thesimple1-poleRClowpassfilter(LPF1)  
shown in Figure 4 is sufficient for many applications.  
Figure 5 shows the LT6350 being used to convert a 0V  
to 2.5V single-ended input signal. ꢁn this case, the first  
amplifierisconfiguredasaunitygainbufferandthesingle-  
ended input signal directly drives the high-impedance  
input of the amplifier. As shown in the FFT of Figure 5a,  
the LT6350 drives the LTC2383-16 to full datasheet  
performance without degrading the SIR or THD .  
AnotherfilternetworkconsistingofLPF2andthe100Ωseries  
input resistors should be used between the buffer and ADC  
inputs to both minimize the noise contribution of the buffer  
and to help minimize disturbances reflected into the buffer  
from sampling transients. Long RC time constants at the  
analoginputswillslowdownthesettlingoftheanaloginputs.  
Therefore, LPF2 requires a wider bandwidth than LPF1. A  
bufferamplifierwithalownoisedensitymustbeselectedto  
minimizedegradationoftheSIR. Withthe482kHzlowpass  
filter shown in Figure 4, the LT6350 provides the full data  
sheet performance of the LTC2383-16.  
LT6350  
OUT1  
0V to  
2.5V  
4
R
R
ꢁIT  
8
1
+
ꢁIT  
0V to 2.5V  
OUT2  
2.5V to  
0V  
5
2
+
+
V
CM  
= V /2  
REF  
238316 F05  
Figure 5. T6350 Converting a 0V-2.5V Single-Ended Signal  
to a 2.5V Differential Input Signal  
Highqualitycapacitorsandresistorsshouldbeusedinthe  
RCfilterssincethesecomponentscanadddistortion.IPO  
and silver mica type dielectric capacitors have excellent  
linearity. Carbon surface mount resistors can generate  
distortion from self heating and from damage that may  
occurduringsoldering.Metalfilmsurfacemountresistors  
are much less susceptible to both problems.  
0
SIR = 92.2dꢀ  
–20  
–40  
THD = –106.2dꢀ  
SꢁIAD = 92dꢀ  
SFDR = 110.4dꢀ  
–60  
–80  
LPF2  
50Ω  
–100  
–120  
–140  
–160  
–180  
SꢁIGLE-EIDED-  
ꢁIPUT SꢁGIAL  
100Ω  
LPF1  
+
ꢁI  
ꢁI  
500Ω  
3300pF  
LTC2383-16  
LT6350  
6600pF  
50Ω  
ꢀW = 482kHz  
100Ω  
238316 F04  
SꢁIGLE-EIDED-  
TO-DꢁFFEREITꢁAL  
DRꢁVER  
0
100  
200  
300  
400  
500  
ꢀW = 48kHz  
FREQUEICY (kHz)  
238316 F05a  
Figure 4. Input Signal Chain  
Figure 5a. 32k Point FFT Plot for Circuit Shown in Figure 5  
238316f  
11  
LTC2383-16  
APPLICATIONS INFORMATION  
The LT6350 can also be used to buffer and convert single-  
endedsignalslargerthantheinputrangeoftheLTC2383-16  
in order to maximize the signal swing that can be digitized.  
Figure6showstheLT6350convertinga0V-5Vsingle-ended  
input signal to the 2.5V differential input range of the  
LTC2383-16. ꢁn this case, the first amplifier in the LT6350  
is configured as an inverting amplifier stage, which acts to  
attenuate the input signal down to the 0V-2.5V input range  
of the LTC2383-16. ꢁn the inverting amplifier configuration,  
the single-ended input signal source no longer directly  
drives a high impedance input of the first amplifier. The  
resulting SIR and THD for several values of R , R1, R2  
ꢁI  
and R3 in this configuration. Figure 6a shows the resulting  
FFT when using the LT6350 as shown in Figure 6.  
The LT6350 can also be used to buffer and convert large,  
truebipolarsignalswhichswingbelowgroundtothe 2.5V  
differential input range of the LTC2383-16. Figure 7 shows  
theLT6350beingusedtoconverta 10Vtruebipolarsignal  
for use by the LTC2383-16. The input impedance is again  
set by resistor R . Table 2 shows the resulting SIR and  
ꢁI  
THDforseveralvaluesofR .Figure7ashowstheresulting  
ꢁI  
FFT when using the LT6350 as shown in Figure 7.  
input impedance is instead set by resistor R . R must  
ꢁI ꢁI  
Table 1. SNR, THD vs RIN for 0-5V Single-Ended Input Signal.  
be chosen carefully based on the source impedance of the  
R
R1  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
signal source. Higher values of R tend to degrade both  
IN  
ꢁI  
ꢂΩx  
the noise and distortion of the LT6350 and LTC2383-16 as a  
2k  
1k  
5k  
1k  
5k  
2k  
665  
3.3k  
16k  
92  
91  
91  
–101  
–100  
–94  
system. R1, R2andR3mustbeselectedinrelationtoR to  
ꢁI  
10k  
100k  
10k  
achieve the desired attenuation and to maintain a balanced  
50k  
50k  
100k  
input impedance in the first amplifier. Table 1 shows the  
V
V
REF  
CM  
R2 = 1.24k  
200pF  
R2 = 1k  
150pF  
LT6350  
LT6350  
OUT1  
2.5V to  
0V  
4
5
OUT1  
OUT2  
2.5V to  
0V  
4
5
R
R
V
8
+
ꢁIT  
ꢁIT  
R
R
8
+
ꢁIT  
ꢁIT  
10μF  
R4 = 1.1k  
R3 = 10k  
10  
μF R4 = 665Ω  
R3 = 2k  
+
+
0V to  
2.5V  
OUT2  
0V to  
2.5V  
1
1
2
2
R
= 2k  
R
= 10k  
R1 = 1k  
R1 = 1.24k  
ꢁI  
ꢁI  
+
+
V
= V /2  
REF  
= V /2  
REF  
CM  
CM  
0V to 5V  
10V  
75pF  
220pF  
238316 F06  
238316 F07  
Figure 6. T6350 Converting a 0V-5V Single-Ended Signal to  
a 2.5V Differential Input Signal  
Figure 7. T6350 Converting a 10V Single-Ended Signal to  
a 2.5V Differential Input Signal  
0
0
SIR = 92dꢀ  
SIR = 92dꢀ  
–20  
–40  
THD = –101dꢀ  
SꢁIAD = 91.4dꢀ  
SFDR = 103dꢀ  
–20  
–40  
THD = –97dꢀ  
SꢁIAD = 91.2dꢀ  
SFDR = 99.7dꢀ  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
0
100  
200  
300  
400  
500  
FREQUEICY (kHz)  
FREQUEICY (kHz)  
238316 F06a  
238316 F07a  
Figure 6a. 32k Point FFT Plot for Circuit Shown in Figure 6  
Figure 7a. 32k Point FFT Plot for Circuit Shown in Figure 7  
238316f  
12  
LTC2383-16  
APPLICATIONS INFORMATION  
Table 2. SNR, THD vs RIN for 10V Single-Ended Input Signal.  
When idling, the REF pin on the LTC2383-16 draws only a  
smallleakagecurrent(<1μA).napplicationswhereaburst  
of samples is taken after idling for long periods as shown  
R
R1  
ꢂΩx  
R2  
ꢂΩx  
R3  
ꢂΩx  
R4  
ꢂΩx  
SNR  
ꢂdꢁx  
THD  
ꢂdꢁx  
IN  
ꢂΩx  
10k  
1.24k  
6.19k  
12.4k  
1.24k  
6.19k  
12.4k  
10k  
50k  
1.1k  
5.49k  
11k  
92  
91  
91  
–96  
–96  
–96  
in Figure 8, ꢁ quickly goes from approximately 0μA to  
REF  
a maximum of 910μA at 1Msps. This step in DC current  
draw triggers a transient response in the reference that  
must be considered since any deviation in the reference  
outputvoltagewillaffecttheaccuracyoftheoutputcode.n  
applications where the transient response of the reference  
is important, the fast settling LTC6655-2.5 reference  
is recommended. ꢁnserting a 1Ω resistor between the  
47μF bypass capacitor and reference output as shown in  
Figure 9 helps to improve the transient settling time and  
minimize the reference voltage deviation.  
50k  
100k  
100k  
ADC REFERENCE  
TheLTC2383-16requiresanexternalreferencetodefineits  
input range. A low noise, low temperature drift reference  
is critical to achieving the full datasheet performance  
of the ADC. Linear Technology offers a portfolio of high  
performance references designed to meet the needs of  
manyapplications. Withitssmallsize, lowpowerandhigh  
accuracy, the LTC6652-2.5 is particularly well suited for  
use with the LTC2383-16. The LTC6652-2.5 offers 0.05%  
(max) initial accuracy and 5ppm/°C (max) temperature  
coefficientforhighprecisionapplications.TheLTC6652-2.5  
is fully specified over the H-grade temperature range and  
complements the extended temperature operation of the  
LTC2383-16 up to 125°C. We recommend bypassing the  
LTC6652-2.5 with a 47μF ceramic capacitor (X5R, 0805  
size) close to the REF pin. All performance curves shown  
in this datasheet were obtained using the LTC6652-2.5.  
V
OUT_S  
LTC6655-2.5  
V
OUT_F  
1Ω  
47μF  
LTC2383-16  
238316 F09  
Figure 9. TC6655-2.5 Driving REF of TC2381-16  
The REF pin of the LTC2383-16 draws charge (Q  
from the 47μF bypass capacitor during each conversion  
cycle. The reference replenishes this charge with a DC  
)
COIV  
DYNAMIC PERFORMANCE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. ꢀy applying a low distortion sine wave  
andanalyzingthedigitaloutputusinganFFTalgorithm,the  
ADC’s spectral content can be examined for frequencies  
outside the fundamental. The LTC2383-16 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
current, ꢁ  
= Q  
/t . The DC current draw of the  
REF  
COIV CYC  
REF pin, ꢁ , depends on the sampling rate and output  
REF  
code. ꢁf the LTC2383-16 is used to continuously sample  
a signal at a constant rate, the LTC6652-2.5 will keep the  
deviation of the reference voltage over the entire code  
span to less than 0.5LSꢀs.  
CIV  
ꢁDLE  
PERꢁOD  
ꢁDLE  
PERꢁOD  
238316 F08  
Figure 8. CNV Waveform Showing ꢁurst Sampling  
238316f  
13  
LTC2383-16  
APPLICATIONS INFORMATION  
Signal-to-Noise and Distortion Ratio ꢂSINADx  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through V are the amplitudes of the  
I
The signal-to-noise and distortion ratio (SꢁIAD) is the  
ratiobetweentheRMSamplitudeofthefundamentalinput  
frequency and the RMS amplitude of all other frequency  
components at the A/D output. The output is band-limited  
tofrequenciesfromaboveDCandbelowhalfthesampling  
frequency. Figure 10 shows that the LTC2383-16 achieves  
a typical SꢁIAD of 92dꢀ at a 1MHz sampling rate with a  
20kHz input.  
second through Ith harmonics.  
POWER CONSIDERATIONS  
The LTC2383-16 provides two power supply pins: the  
2.5V power supply (V ), and the digital input/output  
DD  
interface power supply (OV ). The flexible OV supply  
DD  
DD  
allows the LTC2383-16 to communicate with any digital  
logic operating between 1.8V and 5V, including 2.5V and  
3.3V systems.  
0
SIR = 92.2dꢀ  
–20  
–40  
THD = –106.2dꢀ  
SꢁIAD = 92dꢀ  
SFDR = 110.4dꢀ  
Power Supply Sequencing  
–60  
The LTC2383-16 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2383-16  
has a power-on-reset (POR) circuit that will reset the  
LTC2383-16 at initial power-up or whenever the power  
supply voltage drops below 1V. Once the supply voltage  
reenters the nominal supply voltage range, the POR will  
reinitialize the ADC. Io conversions should be initiated  
until 20μs after a POR event to ensure the reinitialization  
period has ended. Any conversions initiated before this  
time will produce invalid results.  
–80  
–100  
–120  
–140  
–160  
–180  
0
100  
200  
300  
400  
500  
FREQUEICY (kHz)  
238316 F10  
Figure 10. 32k Point FFT of the TC2383-16  
Signal-to-Noise Ratio ꢂSNRx  
The signal-to-noise ratio (SIR) is the ratio between the  
RMS amplitude of the fundamental input frequency and  
the RMS amplitude of all other frequency components  
except the first five harmonics and DC. Figure 10 shows  
that the LTC2383-16 achieves a typical SIR of 92dꢀ at a  
1MHz sampling rate with a 20kHz input.  
TIMING AND CONTROꢀ  
CNV Timing  
The LTC2383-16 conversion is controlled by CIV. A rising  
edgeonCIVwillstartaconversion.Onceaconversionhas  
been initiated, it cannot be restarted until the conversion  
is complete. For optimum performance, CIV should be  
driven by a clean low jitter signal. Converter status is  
indicated by the ꢀUSY output which remains high while  
the conversion is in progress. To ensure that no errors  
occur in the digitized results, any additional transitions  
on CIV should occur within 40ns from the start of the  
conversion or after the conversion has been completed.  
Once the conversion has completed, the LTC2383-16  
begins acquiring the input signal.  
Total Harmonic Distortion ꢂTHDx  
TotalHarmonicDistortion(THD)istheratiooftheRMSsum  
ofallharmonicsoftheinputsignaltothefundamentalitself.  
The out-of-band harmonics alias into the frequency band  
between DC and half the sampling frequency (f  
THD is expressed as:  
/2).  
SMPL  
2
V22 + V32 + V42 +…+ VI  
THD=20log  
V1  
238316f  
14  
LTC2383-16  
APPLICATIONS INFORMATION  
Internal Conversion Clock  
DIGITAꢀ INTERFACE  
The LTC2383-16 has an internal clock that is trimmed to  
achieveamaximumconversiontimeof730ns.Withamin-  
imum acquisition time of 250ns, throughput performance  
of 1Msps is guaranteed without any external  
adjustments.  
The LTC2383-16 has a serial digital interface. The flexible  
OV supply allows the LTC2383-16 to communicate with  
DD  
any digital logic operating between 1.8V and 5V, including  
2.5V and 3.3V systems.  
The serial output data is clocked out on the SDO pin  
when an external clock is applied to the SCK pin if SDO  
is enabled. Clocking out the data after the conversion will  
yield the best performance. With a shift clock frequency  
of at least 60MHz, a 1Msps throughput is still achieved.  
The serial output data changes state on the rising edge  
of SCK and can be captured on the falling edge or next  
rising edge of SCK. D15 remains valid till the first rising  
edge of SCK.  
Auto Power-Down  
The LTC2383-16 automatically powers down after a  
conversion has been completed as long as CIV remains  
high.Duringpowerdown,thedatafromthelastconversion  
can be clocked out. To minimize power dissipation during  
power down, disable SDO and turn off SCK. To power up  
the part, bring CIV low at least 200ns (t  
) before the  
COIVL  
initiation of the next conversion. The auto power-down  
feature will reduce the power dissipation of the LTC2383-  
16 as the sampling frequency is reduced. Since the time  
required to power up the part does not change at lower  
sample rates, the LTC2383-16 can remain powered-down  
The serial interface on the LTC2383-16 is simple and  
straightforwardtouse.Thefollowingsectionsdescribethe  
operation of the LTC2383-16. Several modes are provided  
depending on whether a single or multiple ADCs share the  
SPꢁ bus or are daisy-chained.  
for a larger fraction of the conversion cycle (t ), thereby  
CYC  
reducing the average power dissipation which scales  
linearly with sampling rate as shown in Figure 11.  
6
5
4
3
2
1
0
0
200  
400  
600  
800  
1000  
SAMPLꢁIG RATE (kHz)  
238316 F11  
Figure 11. Power Supply Current of the TC2383-16  
Versus Sampling Rate  
238316f  
15  
LTC2383-16  
TIMING DIAGRAM  
Normal Mode, Single Device  
Figure 12 shows a single LTC2383-16 operated in Iormal  
Mode with CHAꢁI and RDL/SDꢁ tied to ground. With RDL/  
SDꢁ grounded, SDO is enabled and the MSꢀ(D15) of the  
newconversiondataisavailableatthefallingedgeofUSY.  
This is the simplest way to operate the LTC2383-16.  
When CHAꢁI = 0, the LTC2383-16 operates in Iormal  
mode. ꢁn Iormal mode, RDL/SDꢁ enables or disables the  
serial data output pin SDO. ꢁf RDL/SDꢁ is high, SDO is in  
high-impedance. ꢁf RDL/SDꢁ is low, SDO is driven.  
COIVERT  
DꢁGꢁTAL HOST  
ꢁRQ  
CIV  
CHAꢁI  
ꢀUSY  
LTC2383-16  
SCK  
RDL/SDꢁ  
SDO  
DATA ꢁI  
CLK  
238316 F12a  
ACQUꢁRE  
COIVERT  
ACQUꢁRE  
COIVERT  
POWER-DOWI  
POWER-UP  
CHAꢁI = 0  
t
CYC  
t
CIVH  
t
CIV  
CIVL  
t
= t  
– t  
– t  
ACQ CYC COIV ꢀUSYLH  
t
t
COIV  
ACQ  
ꢀUSY  
SCK  
t
SCK  
t
ꢀUSYLH  
t
SCKH  
1
2
3
14  
15  
16  
t
t
SCKL  
HSDO  
t
t
DSDO  
DSDOꢀUSYL  
D15  
D14  
D13  
D1  
D0  
SDO  
238316 F12  
(RDL/SDꢁ = 0)  
Figure 12. Using a Single TC2383-16 in Normal Mode  
238316f  
16  
LTC2383-16  
TIMING DIAGRAM  
Normal Mode, Multiple Devices  
timeinordertoavoidbusconflicts. AsshowninFigure13,  
the RDL/SDꢁ inputs idle high and are individually brought  
low to read data out of each device between conversions.  
When RDL/SDꢁ is brought low, the MSꢀ of the selected  
device is output onto SDO. To ensure the MSꢀ is properly  
output and captured, SCK must be held low at least 1ns  
before and 16ns after bringing RDL/SDꢁ low.  
Figure 13 shows multiple LTC2383-16 devices operating  
in Iormal Mode(CHAꢁI = 0) sharing CIV, SCK and SDO.  
ꢀy sharing CIV, SCK and SDO, the number of required  
signals to operate multiple ADCs in parallel is reduced.  
Since SDO is shared, the RDL/SDꢁ input of each ADC must  
be used to allow only one LTC2383-16 to drive SDO at a  
RDL2  
RDL1  
COIVERT  
CIV  
CIV  
CHAꢁI  
ꢀUSY  
SDO  
ꢁRQ  
CHAꢁI  
LTC2383-16  
LTC2383-16  
A
DꢁGꢁTAL HOST  
SDO  
RDL/SDꢁ  
RDL/SDꢁ  
SCK  
SCK  
DATA ꢁI  
CLK  
238316 F13  
ACQUꢁRE  
COIVERT  
ACQUꢁRE  
COIVERT  
POWER-DOWI  
POWER-UP  
CHAꢁI = 0  
CIV  
t
CIVL  
t
COIV  
ꢀUSY  
t
ꢀUSYLH  
RDL/SDꢁ  
A
RDL/SDꢁ  
t
SCK  
t
t
SCKH  
HSCKRDL  
SCK  
SDO  
1
2
3
14  
15  
16  
17  
18  
19  
30  
31  
32  
t
SSCKRDL  
Hi-Z  
t
t
SCKL  
HSDO  
t
t
DꢁS  
DSDO  
t
EI  
Hi-Z  
Hi-Z  
D15  
D14  
D13  
D1  
D0  
D15  
D14  
D13  
D1  
D0  
A
A
A
A
A
238316 F13  
Figure 13. Normal Mode With Multiple Devices Sharing CNV, SCK and SDO  
238316f  
17  
LTC2383-16  
TIMING DIAGRAM  
When CHAꢁI = OV , the LTC2383-16 operates in Chain  
This is useful for applications where hardware constraints  
maylimitthenumberoflinesneededtointerfacetoalarge  
number of converters. Figure 14 shows an example with  
two daisy chained devices. The MSꢀ of converter A will  
appear at SDO of converter ꢀ after 16 SCK cycles. The  
MSꢀ of converter A is clocked in at the SDꢁ/RDL pin of  
converter ꢀ on the rising edge of the first SCK.  
DD  
Mode. ꢁnChainMode,SDOisalwaysenabledandRDL/SDꢁ  
serves as the serial data input pin (SDꢁ) where daisychain  
data output from another ADC can be input.  
COIVERT  
OV  
OV  
DD  
DD  
CIV  
CIV  
CHAꢁI  
CHAꢁI  
DꢁGꢁTAL HOST  
LTC2383-16  
LTC2383-16  
RDL/SDꢁ  
SDO  
RDL/SDꢁ  
ꢀUSY  
SDO  
ꢁRQ  
A
DATA ꢁI  
SCK  
SCK  
CLK  
238316 F14a  
COIVERT  
POWER-DOWI  
POWER-UP  
COIVERT  
ACQUꢁRE  
CHAꢁI = OV  
ACQUꢁRE  
DD  
RDL/SDꢁ = 0  
A
t
CYC  
t
CIVL  
CIV  
ꢀUSY  
t
COIV  
t
ꢀUSYLH  
SCK  
t
SCKCH  
t
SCKH  
1
2
3
14  
15  
16  
17  
18  
30  
31  
32  
t
SCKL  
t
t
HSDO  
SSDꢁSCK  
t
t
DSDO  
HSDꢁSCK  
SDO = RDL/SDꢁ  
A
D15  
D14  
D14  
D13  
D1  
D0  
D0  
A
A
A
A
A
t
DSDOꢀUSYL  
D15  
D13  
D1  
D15  
D14  
D1  
A
D0  
A
SDO  
A
A
238316 F14  
Figure 14. Chain Mode Timing Diagram  
238316f  
18  
LTC2383-16  
BOARD LAYOUT  
To obtain the best performance from the LTC2383-16  
a printed circuit board is recommended. Layout for the  
printed circuit board (PCꢀ) should ensure the digital and  
analog signal lines are separated as much as possible.  
ꢁn particular, care should be taken not to run any digital  
clocks or signals alongside analog signals or underneath  
the ADC.  
Recommended ꢀayout  
ThefollowingisanexampleofarecommendedPClayout.  
A single solid ground plane is used. ꢀypass capacitors to  
the supplies are placed as close as possible to the supply  
pins. Low impedance common returns for these bypass  
capacitors are essential to the low noise operation of the  
ADC. The analog input traces are screened by ground.  
For more details and information refer to DC1571A, the  
evaluation kit for the LTC2383-16.  
Partial Top Silkscreen  
238316 ꢀL01  
238316f  
19  
LTC2383-16  
BOARD LAYOUT  
Partial ꢀayer 1 Component Side  
238316 ꢀL02  
Partial ꢀayer 2 Ground Plane  
238316 ꢀL03  
238316f  
20  
LTC2383-16  
BOARD LAYOUT  
Partial ꢀayer 3 PWR Plane  
238316 ꢀL04  
Partial ꢀayer 4 ꢁottom ꢀayer  
238316 ꢀL05  
238316f  
21  
LTC2383-16  
BOARD LAYOUT  
Partial Schematic of Demoboard  
R E F 1  
8
R E F  
1
G I D  
7
D D  
G I D 1 6  
O V  
1 5  
G I D  
1 0  
D D  
V
2
G I D  
6
3
3
2
1
3
2
1
238316f  
22  
LTC2383-16  
PACKAGE DESCRIPTION  
DE Package  
16-ꢀead Plastic DFN ꢂ4mm × 3mmx  
(Reference LTC DWG # 05-08-1732 Rev Ø)  
R = 0.115  
0.40 0.10  
4.00 0.10  
(2 SꢁDES)  
TYP  
16  
9
0.70 0.05  
R = 0.05  
TYP  
3.30 0.05  
1.70 0.05  
3.30 0.10  
3.60 0.05  
2.20 0.05  
3.00 0.10  
(2 SꢁDES)  
PACKAGE  
OUTLꢁIE  
1.70 0.10  
PꢁI 1 IOTCH  
R = 0.20 OR  
0.35 s 45°  
PꢁI 1  
TOP MARK  
(SEE IOTE 6)  
CHAMFER  
(DE16) DFI 0806 REV Ø  
8
1
0.23 0.05  
0.45 ꢀSC  
0.75 0.05  
0.200 REF  
0.25 0.05  
0.45 ꢀSC  
3.15 REF  
ꢀOTTOM VꢁEW—EXPOSED PAD  
3.15 REF  
0.00 – 0.05  
RECOMMEIDED SOLDER PAD PꢁTCH AID DꢁMEISꢁOIS  
APPLY SOLDER MASK TO AREAS THAT ARE IOT SOLDERED  
IOTE:  
1. DRAWꢁIG PROPOSED TO ꢀE MADE VARꢁATꢁOI OF VERSꢁOI (WGED-3) ꢁI JEDEC  
PACKAGE OUTLꢁIE MO-229  
2. DRAWꢁIG IOT TO SCALE  
3. ALL DꢁMEISꢁOIS ARE ꢁI MꢁLLꢁMETERS  
4. DꢁMEISꢁOIS OF EXPOSED PAD OI ꢀOTTOM OF PACKAGE DO IOT ꢁICLUDE  
MOLD FLASH. MOLD FLASH, ꢁF PRESEIT, SHALL IOT EXCEED 0.15mm OI AIY SꢁDE  
5. EXPOSED PAD SHALL ꢀE SOLDER PLATED  
6. SHADED AREA ꢁS OILY A REFEREICE FOR PꢁI 1 LOCATꢁOI OI THE  
TOP AID ꢀOTTOM OF PACKAGE  
MS Package  
16-ꢀead Plastic MSOP  
(Reference LTC DWG # 05-08-1669 Rev Ø)  
4.039 p 0.102  
(.159 p .004)  
(IOTE 3)  
0.889 p 0.127  
(.035 p .005)  
0.280 p 0.076  
(.011 p .003)  
REF  
16151413121110  
9
3.00 p 0.102  
(.118 p .004)  
(IOTE 4)  
DETAꢁL “A”  
0o – 6o TYP  
5.23  
4.90 p 0.152  
(.193 p .006)  
3.20 – 3.45  
(.206)  
0.254  
(.010)  
(.126 – .136)  
MꢁI  
GAUGE PLAIE  
0.53 p 0.152  
(.021 p .006)  
1 2 3 4 5 6 7 8  
0.50  
(.0197)  
ꢀSC  
0.305 p 0.038  
(.0120 p .0015)  
TYP  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
DETAꢁL “A”  
0.18  
(.007)  
RECOMMEIDED SOLDER PAD LAYOUT  
SEATꢁIG  
PLAIE  
IOTE:  
0.17 – 0.27  
(.007 – .011)  
TYP  
1. DꢁMEISꢁOIS ꢁI MꢁLLꢁMETER/(ꢁICH)  
2. DRAWꢁIG IOT TO SCALE  
0.1016 p 0.0508  
(.004 p .002)  
MSOP (MS16) 1107 REV Ø  
0.50  
(.0197)  
ꢀSC  
3. DꢁMEISꢁOI DOES IOT ꢁICLUDE MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS.  
MOLD FLASH, PROTRUSꢁOIS OR GATE ꢀURRS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
4. DꢁMEISꢁOI DOES IOT ꢁICLUDE ꢁITERLEAD FLASH OR PROTRUSꢁOIS.  
ꢁITERLEAD FLASH OR PROTRUSꢁOIS SHALL IOT EXCEED 0.152mm (.006") PER SꢁDE  
5. LEAD COPLAIARꢁTY (ꢀOTTOM OF LEADS AFTER FORMꢁIG) SHALL ꢀE 0.102mm (.004") MAX  
238316f  
ꢁnformation furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
23  
LTC2383-16  
TYPICAL APPLICATION  
ADC Driver: Single-Ended Input to Differential Output with Filter  
0
–20  
SIR = 92.2dꢀ  
THD = –106.2dꢀ  
SꢁIAD = 92dꢀ  
SFDR = 110.4dꢀ  
LPF2  
50Ω  
SꢁIGLE-EIDED  
ꢁIPUT SꢁGIAL  
–40  
LT6350  
LPF1  
500Ω  
100Ω  
100Ω  
+
4
5
ꢁI  
–60  
R
R
ꢁIT  
3300pF  
8
1
+
ꢁIT  
LTC2383-16  
–80  
6600pF  
ꢁI  
–100  
–120  
–140  
–160  
–180  
50Ω  
ꢀW = 482kHz  
+
238316 TA03  
2
ꢀW = 48kHz  
+
V
= V /2  
REF  
CM  
0
100  
200  
300  
400  
500  
FREQUEICY (kHz)  
238316 TA04  
RELATED PARTS  
PART NUMꢁER  
ADCs  
DESCRIPTION  
COMMENTS  
LTC2393-16  
16-ꢀit, 1Msps Parallel/Serial ADC  
16-ꢀit, 500Ksps Parallel/Serial ADC  
16-ꢀit, 250Ksps Parallel/Serial ADC  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2392-16, LTC2391-16  
LTC2392-16  
LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2393-16, LTC2391-16  
5V Supply, Differential ꢁnput, 94dꢀ SIR, 4.096V ꢁnput Range, 48-Pin LQFP  
Package, Pin Compatible with the LTC2393-16, LTC2392-16  
LTC1864/LTC1864L  
LTC1865/LTC1865L  
LTC2302/LTC2306  
16-bit, 250ksps/150ksps 1-Channel μPower ADC 5V/3V Supply, 1-Channel, 4.3mW/1.3mW, MSOP-8 Package  
16-bit, 250ksps/150ksps 2-Channel μPower ADC 5V/3V Supply, 2-Channel, 4.3mW/1.3mW, MSOP-8 Package  
12-ꢀit, 500ksps, 1-/2-Channel, Low Ioise, ADC  
5V Supply, 14mW at 500ksps, 10-Pin DFI Package  
LTC2355-14/LTC2356-14 14-ꢀit, 3.5Msps Serial ADC  
3.3V Supply, 1-Channel, Unipolar/ꢀipolar, 18mW, MSOP-10 Package  
DACs  
LTC2641  
16-ꢀit Single Serial V  
DACs  
DACs  
1LSꢀ ꢁIL, 1LSꢀ DIL, MSOP-8 Package, 0V to 5V Output  
SC70 6-Pin Package, ꢁnternal Reference, 1LSꢀ ꢁIL (12ꢀits)  
OUT  
LTC2630  
12-/10-/8-ꢀit Single V  
OUT  
REFERENCES  
LTC6652  
Precision Low Drift Low Ioise ꢀuffered Reference 2.5V, 5ppm/°C Max Tempco, 2.1ppm Peak-to-Peak Ioise, MSOP-8 Package  
Precision Low Drift Low Ioise ꢀuffered Reference 2.5V, 5ppm/°C Max Tempco, 0.25ppm Peak-to-Peak Ioise, MSOP-8 Package  
LTC6655  
AMPꢀIFIERS  
LT6350  
Low Ioise Single-Ended-To-Differential ADC Driver Rail-to-Rail ꢁnput and Outputs, 240ns 0.01% Settling Time, DFI-8 or  
MSOP-8 Packages  
LT6200/LT6200-5/  
LT6200-10  
165MHz/800MHz/1.6GHz Op Amp with Unity  
Gain/AV = 5/AV = 10  
Low Ioise Voltage: 0.95nV/√Hz (100kHz), Low Distortion: –80dꢀ at 1MHz,  
TSOT23-6 Package  
LT6202/LT6203  
Single/Dual 100MHz Rail-to-Rail ꢁnput/Output  
Ioise Low Power Amplifiers  
1.9nV√Hz, 3mA Maximum, 100MHz Gain ꢀandwidth  
LTC1992  
Low Power, Fully Differential ꢁnput/Output  
Amplifier/Driver Family  
1mA Supply Current  
238316f  
LT 0810 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy ꢀlvd., Milpitas, CA 95035-7417  
24  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2385-18

18-Bit, 5Msps SAR ADC
Linear

LTC2385CUH-18#PBF

LTC2385-18 - 18-Bit, 5Msps SAR ADC; Package: QFN; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2386-16

16-Bit, 10Msps SAR ADC
Linear

LTC2386-18

18-Bit, 10Msps SAR ADC
Linear

LTC2386CUH-18#PBF

LTC2386-18 - 18-Bit, 10Msps SAR ADC; Package: QFN; Pins: 32; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2387-16

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2387-18

Buffered Octal, 16-Bit, 200ksps/Ch Differential ±10.24V ADC with 30VP-P Common Mode Range
Linear

LTC2387IUH-16#PBF

LTC2387-16 - 16-Bit, 15Msps SAR ADC; Package: QFN; Pins: 32; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2389-16

16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog
Linear

LTC2389-18

16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog
Linear

LTC2389CLX-16#PBF

LTC2389-16 - 16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog Input Range and 96dB SNR; Package: LQFP; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2389CUK-16#PBF

LTC2389-16 - 16-Bit, 2.5Msps SAR ADC with Pin-Configurable Analog Input Range and 96dB SNR; Package: QFN; Pins: 48; Temperature Range: 0&deg;C to 70&deg;C
Linear