LTC2512IDKD-24#PBF [Linear]

LTC2512-24 - 24-Bit Over-Sampling ADC with Configurable Flat Passband Digital Filter; Package: DFN; Pins: 24; Temperature Range: -40°C to 85°C;
LTC2512IDKD-24#PBF
型号: LTC2512IDKD-24#PBF
厂家: Linear    Linear
描述:

LTC2512-24 - 24-Bit Over-Sampling ADC with Configurable Flat Passband Digital Filter; Package: DFN; Pins: 24; Temperature Range: -40°C to 85°C

光电二极管 转换器
文件: 总38页 (文件大小:692K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2512-24  
24-Bit Over-Sampling ADC  
with Configurable Flat Passband Digital Filter  
FEATURES  
DESCRIPTION  
The LTC®2512-24 is a low noise, low power, high-perfor-  
n
±±11pm INmꢀ(y1)  
n
±±7dBmDynapicmRangemꢀ(y1)matm50ks1s  
±08dBmDynapicmRangemꢀ(y1)matm400ks1s  
Guaranteedm24-BitsmIomMissingmCodes  
ConfigurablemDigitalmFiltermwithmSynchronization  
mance 24-bit ADC with an integrated configurable digital  
filter. Operating from a single 2.5V supply, the LTC2512-  
n
n
n
24 features a fully differential input range up to VREF  
with V  
,
ranging from 2.5V to 5.1V. The LTC2512-24  
REF  
n
RelaxedmAnti-AliasingmFiltermRequirepents  
supports a wide common mode range from 0V to V  
REF  
n
DualmOut1utm24-BitmSARmADC  
simplifying analog signal conditioning requirements.  
n
24-BitmDigitallymFilteredmNowmIoisemOut1utm  
The LTC2512-24 simultaneously provides two output  
codes: (1) a 24-bit digitally filtered high precision low  
noise code, and (2) a 22-bit no latency composite code.  
The configurable digital filter reduces measurement noise  
by lowpass filtering and down-sampling the stream of  
data from the SAR ADC core, giving the 24-bit filtered  
output code. The 22-bit composite code consists of a  
14-bit code representing the differential voltage and an  
8-bit code representing the common mode voltage. The  
22-bit composite code is available each conversion cycle,  
with no cycle of latency.  
n
±4-BitmDifferentialm+m8-BitmCopponmModemm  
IomNatencymOut1ut  
n
n
n
n
n
Widem n1utmCoppon-ModemRange  
Guaranteed Operation to 85°C  
1.8V to 5V SPI-Compatible Serial I/O  
Low Power: 30mW at 1.6Msps  
24-Lead 7mm × 4mm DFN Package  
APPLICATIONS  
n
Seismology  
n
Energy Exploration  
The digital filter can be easily configured for 4 different  
down-sampling factors by pin strapping. The configura-  
tions provide a dynamic range of 108dB at 400ksps and  
117dB at 50ksps. The digital lowpass filter relaxes the  
requirements for analog anti-aliasing. Multiple LTC2512-  
24 devices can be easily synchronized using the SYNC pin.  
n
Automated Test Equipment (ATE)  
High-Accuracy Instrumentation  
n
All registered trademarks and trademarks are the property of their respective owners. Protected  
by U.S. Patents, including 7705765, 7961132, 8319673, 8576104, 8810443, 9054727,  
9231611, 9331709 and Patents pending.  
TYPICAL APPLICATION  
 ntegralmIonlinearitymm  
vsm n1utmVoltage  
2.5V  
1.8V TO 5V  
3
10µF  
0.1µF  
+
IN , IN  
2
V
OV  
DD  
LTC2512-24  
SAMPLE  
CLOCK  
MCLK  
BUSY  
DRL  
SDOA  
SCKA  
RDLA  
RDLB  
SDOB  
SCKB  
251224 TA01  
DD  
ARBITRARY  
DIFFERENTIAL  
V
V
REF  
REF  
+
1
0
PIN SELECTABLE  
LOW-PASS  
IN  
24-BIT  
SAR ADC  
CORE  
0V  
0V  
FLAT PASSBAND  
DIGITAL FILTER  
24-BIT  
14-BIT  
BIPOLAR  
UNIPOLAR  
V
REF  
V
REF  
IN  
–1  
–2  
–3  
0V  
0V  
REF  
GND  
+
DIFFERENTIAL INPUTS IN /IN WITH  
WIDE INPUT COMMON MODE RANGE  
2.5V TO 5.1V  
47µF  
(X7R, 1210 SIZE)  
–5  
–2.5  
0
2.5  
5
INPUT VOTLAGE (V)  
251224f TA01a  
251224fa  
1
For more information www.linear.com/LTC2512-24  
LTC2512-24  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
ꢀIotesm±,m2)  
TOP VIEW  
Supply Voltage (V )...............................................2.8V  
DD  
Supply Voltage (OV )................................................6V  
DD  
RDLA 1  
RDLB 2  
24 GND  
23 GND  
Reference Input (REF).................................................6V  
V
DD  
3
22 OV  
DD  
Analog Input Voltage (Note 3)  
GND 4  
21 BUSY  
20 SDOB  
19 SCKB  
18 SCKA  
17 SDOA  
16 GND  
15 DRL  
14 SYNC  
13 MCLK  
+
+
IN  
IN  
5
6
IN , IN .........................(GND – 0.3V) to (REF + 0.3V)  
Digital Input Voltage  
25  
GND  
GND 7  
REF 8  
REF 9  
REF 10  
SEL0 11  
SEL1 12  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
Digital Output Voltage  
(Note 3).......................... (GND – 0.3V) to (OV + 0.3V)  
DD  
Power Dissipation.............................................. 500mW  
Operating Temperature Range  
DKD PACKAGE  
24-LEAD (7mm 4mm) PLASTIC DFN  
LTC2512C-24 ........................................... 0°C to 70°C  
LTC2512I-24.........................................–40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
T
= 125°C, θ = 40°C/W  
JA  
EXPOSED PAD (PIN 25) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
htt1://www.linear.cop/1roduct/N(C25±2-24#orderinfo  
ORDER INFORMATION  
NEADmFREEmF I SH  
(APEmAIDmREEN  
LTC2512CDKD-24#TRPBF 251224  
LTC2512IDKD-24#TRPBF 251224  
PAR(mMARK IG*  
PACKAGEmDESCR P( OI  
24-Lead (7mm × 4mm) Plastic DFN  
24-Lead (7mm × 4mm) Plastic DFN  
(EMPERA(UREmRAIGE  
0°C to 70°C  
–40°C to 85°C  
LTC2512CDKD-24#PBF  
LTC2512IDKD-24#PBF  
Consult ADI Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
ELECTRICAL CHARACTERISTICS (hemlmdenotesmthems1ecificationsmwhichma11lymovermthemfullmo1eratingm  
tep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
0
(YP  
MAX  
UI (S  
+
+
l
l
l
l
V
V
V
V
Absolute Input Range (IN )  
(Note 5)  
V
V
V
V
V
V
IN  
IN  
IN  
REF  
REF  
REF  
REF  
+
Absolute Input Range (IN )  
(Note 5)  
0
+
– V  
Input Differential Voltage Range  
Common-Mode Input Range  
Analog Input Leakage Current  
Analog Input Capacitance  
V
IN  
= V – V  
–V  
REF  
V
IN  
IN  
IN  
0
V
CM  
I
10  
nA  
IN  
C
IN  
Sample Mode  
Hold Mode  
45  
5
pF  
pF  
CMRR  
Input Common Mode Rejection Ratio  
Filtered Output  
IN  
128  
dB  
+
V
= V = 4.5V , 2kHz Sine  
IN P-P  
251224fa  
2
For more information www.linear.com/LTC2512-24  
LTC2512-24  
CONVERTER CHARACTERISTICS FOR FILTERED OUTPUT (SDOA) (hemlmdenotesm  
thems1ecificationsmwhichma11lymovermthemfullmo1eratingmtep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
24  
24  
4
(YP  
MAX  
UI (S  
Bits  
l
l
l
Resolution  
No Missing Codes  
Down-sampling Factor  
Transition Noise  
Bits  
DF  
32  
DF = 4 (Note 6)  
DF = 8 (Note 6)  
DF = 16 (Note 6)  
DF = 32 (Note 6)  
21  
LSB  
RMS  
RMS  
RMS  
RMS  
14.9  
10.5  
7.5  
LSB  
LSB  
LSB  
l
l
INL  
Integral Linearity Error  
Zero-Scale Error  
(Note 7)  
(Note 9)  
–3.5  
–14  
1
0
3.5  
14  
ppm  
ppm  
ZSE  
Zero-Scale Error Drift  
Full-Scale Error  
7
ppb/°C  
ppm  
l
FSE  
(Note 9)  
–100  
10  
0.05  
100  
Full-Scale Error Drift  
ppm/°C  
DYNAMIC ACCURACY FOR FILTERED OUTPUT (SDOA) (hemlmdenotesmthems1ecificationsm  
whichma11lymovermthemfullmo1eratingmtep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°CmandmA m=m–±dBFS.mꢀIotesmm4,m±0)  
 I  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
(YP  
MAX  
UI (S  
DR  
Dynamic Range  
f
IN  
f
IN  
f
IN  
f
IN  
= 2kHz, V = 5V, DF = 4  
108  
111  
114  
117  
dB  
dB  
dB  
dB  
REF  
= 2kHz, V = 5V, DF = 8  
REF  
= 2kHz, V = 5V, DF = 16  
REF  
= 2kHz, V = 5V, DF = 32  
REF  
l
l
l
SINAD  
SNR  
Signal-to-(Noise + Distortion) Ratio  
Signal-to-Noise Ratio  
f
f
= 2kHz, V = 5V, DF = 4  
103  
103  
107  
107  
dB  
dB  
IN  
IN  
REF  
= 2kHz, V = 5V, DF = 4  
REF  
THD  
Total Harmonic Distortion  
f
f
= 2kHz, V = 5V, DF = 4  
–120  
–120  
–110  
dB  
dB  
IN  
IN  
REF  
= 2kHz, V = 2.5V, DF = 4  
REF  
l
SFDR  
Spurious Free Dynamic Range  
f
IN  
f
IN  
= 2kHz, V = 5V, DF = 4  
110  
120  
120  
dB  
dB  
REF  
= 2kHz, V = 2.5V, DF = 4  
REF  
Aperture Delay  
500  
4
ps  
Aperture Jitter  
ps  
RMS  
Transient Response  
Full-Scale Step  
152  
ns  
251224fa  
3
For more information www.linear.com/LTC2512-24  
LTC2512-24  
m
denotesmthems1ecificationsmwhichma11lymovermthemfullmo1eratingmtep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
(YP  
MAX  
UI (S  
Resolution:  
l
l
Differential  
14  
8
Bits  
Bits  
Common Mode  
No Missing Codes:  
Differential  
Common Mode  
l
l
14  
8
Bits  
Bits  
Transition Noise  
Differential  
(Note 6)  
(Note 7)  
1
1
LSB  
RMS  
RMS  
Common Mode  
LSB  
INL  
Integral Linearity Error  
Differential  
Common Mode  
0.2  
0.2  
LSB  
LSB  
DNL  
Differential Linearity Error  
Differential  
Common Mode  
0.2  
0.2  
LSB  
LSB  
–3dB Input Linear Bandwidth  
34  
MHz  
ZSE  
FSE  
Zero Scale Error  
Differential  
1
1
LSB  
LSB  
Common Mode  
Full Scale Error  
Differential  
Common Mode  
1
1
LSB  
LSB  
R
EFERENCE INPUT (hemlmdenotesmthems1ecificationsmwhichma11lymovermthemfullmo1eratingmtep1eraturemrange,motherwisem  
s1ecificationsmarematm(Am=m25°C.mꢀIotesm4,m9)  
SYMBON  
PARAME(ER  
COID ( OIS  
(Note 5)  
M I  
(YP  
MAX  
5.1  
UI (S  
V
l
l
V
Reference Voltage  
Reference Input Current  
2.5  
REF  
REF  
I
(Note 11)  
1.5  
1.8  
mA  
m
fullmo1eratingmtep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
(YP  
MAX  
UI (S  
V
l
l
l
V
IH  
V
IL  
High Level Input Voltage  
Low Level Input Voltage  
Digital Input Current  
0.8•OV  
DD  
0.2•OV  
10  
V
DD  
I
V
IN  
= 0V to OV  
DD  
–10  
μA  
pF  
IN  
C
V
V
Digital Input Capacitance  
High Level Output Voltage  
Low Level Output Voltage  
Hi-Z Output Leakage Current  
Output Source Current  
Output Sink Current  
5
IN  
l
l
l
I = –500µA  
O
OV –0.2  
DD  
V
OH  
OL  
I = 500µA  
O
0.2  
10  
V
I
I
I
V
OUT  
V
OUT  
V
OUT  
= 0V to OV  
DD  
–10  
µA  
mA  
mA  
OZ  
= 0V  
= OV  
–10  
10  
SOURCE  
SINK  
DD  
251224fa  
4
For more information www.linear.com/LTC2512-24  
LTC2512-24  
m
range,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
Supply Voltage  
Supply Voltage  
COID ( OIS  
M I  
2.375  
1.71  
(YP  
MAX  
2.625  
5.25  
16  
UI (S  
l
l
l
V
2.5  
V
V
DD  
OV  
DD  
I
I
I
Supply Current  
Supply Current  
Power Down Mode  
1.6Msps Sample Rate  
12  
0.4  
1
mA  
mA  
µA  
VDD  
OVDD  
PD  
1.6Msps Sample Rate (C = 20pF)  
L
l
Conversion Done (I  
+ I  
+ I  
)
)
350  
VDD  
OVDD  
REF  
P
Power Dissipation  
Power Down Mode  
1.6Msps Sample Rate (I  
Conversion Done (I  
)
30  
2.5  
40  
875  
mW  
µW  
D
VDD  
+ I  
+ I  
VDD  
OVDD  
REF  
m
tep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
(YP  
MAX  
1.6  
UI (S  
Msps  
ksps  
Msps  
ns  
l
l
l
l
l
l
l
l
l
l
l
l
l
l
f
f
f
t
t
t
t
t
t
t
t
t
t
t
t
Maximum Sampling Frequency  
Output Data Rate at SDOA  
Output Data Rate at SDOB  
Conversion Time  
(Note 12)  
SMPL  
DRA  
400  
1.6  
(Note 12)  
DRB  
405  
152  
625  
20  
460  
CONV  
ACQ  
Acquisition Time  
t
= t  
– t  
– t (Note 8)  
BUSYLH  
ns  
ACQ  
CYC  
CONV  
Time Between Conversions  
MCLK High Time  
ns  
CYC  
ns  
MCLKH  
MCLKL  
BUSYLH  
DRLLH  
QUIET  
SCKA  
Minimum Low Time for MCLK  
MCLKto BUSYDelay  
MCLKto DRLDelay  
SCKA, SCKB Quiet Time from MCLK↑  
SCKA Period  
(Note 13)  
C = 20pF  
20  
ns  
13  
18  
ns  
L
C = 20pF  
L
ns  
(Note 8)  
10  
10  
4
ns  
(Notes 13, 14)  
ns  
SCKA High Time  
ns  
SCKAH  
SCKAL  
DSDOA  
SCKA Low Time  
4
ns  
l
l
l
SDOA Data Valid Delay from SCKA↑  
C = 20pF, OV = 5.25V  
8.5  
8.5  
9.5  
ns  
ns  
ns  
L
DD  
DD  
DD  
C = 20pF, OV = 2.5V  
L
C = 20pF, OV = 1.71V  
L
l
l
l
l
l
l
l
t
t
t
t
t
t
t
t
SDOA Data Remains Valid Delay from SCKA↑  
SDOA Data Valid Delay from DRL↓  
Bus Enable Time After RDLA↓  
Bus Relinquish Time After RDLA↑  
SCKB Period  
C = 20pF (Note 8)  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
HSDOA  
DSDOADRLL  
ENAA  
L
C = 20pF (Note 8)  
L
5
(Note 13)  
16  
13  
(Note 13)  
DISA  
(Notes 13, 14)  
10  
4
SCKB  
SCKB High Time  
SCKBH  
SCKBL  
DSDOB  
SCKB Low Time  
4
l
l
l
SDOB Data Valid Delay from SCKB↑  
C = 20pF, OV = 5.25V  
8.5  
8.5  
9.5  
ns  
ns  
ns  
L
DD  
C = 20pF, OV = 2.5V  
L
DD  
C = 20pF, OV = 1.71V  
L
DD  
l
t
SDOB Data Remains Valid Delay from SCKB↑  
C = 20pF (Note 8)  
L
1
ns  
HSDOB  
251224fa  
5
For more information www.linear.com/LTC2512-24  
LTC2512-24  
m
tep1eraturemrange,motherwisems1ecificationsmarematm(Am=m25°C.mꢀIotem4)  
SYMBON  
PARAME(ER  
COID ( OIS  
M I  
(YP  
MAX  
5
UI (S  
ns  
l
l
t
t
t
SDOB Data Valid Delay from BUSY↓  
Bus Enable Time After RDLB↓  
Bus Relinquish Time After RDLB↑  
C = 20pF (Note 8)  
L
DSDOBBUSYL  
ENB  
(Note 13)  
(Note 13)  
16  
13  
ns  
ns  
DISB  
Iotem±: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Iotem2: All voltage values are with respect to ground.  
Iotem3: When these pin voltages are taken below ground or above REF or  
Iotem8: Guaranteed by design, not subject to test.  
Iotem9: Bipolar zero-scale error is the offset voltage measured from  
0.5LSB when the output code flickers between 0000 0000 0000 0000  
0000 0000 and 1111 1111 1111 1111 1111 1111. Full-scale bipolar error  
is the worst-case of –FS or +FS untrimmed deviation from ideal first and  
last code transitions and includes the effect of offset error.  
OV , they will be clamped by internal diodes. This product can handle  
Iotem±0: All specifications in dB are referred to a full-scale 5V input with  
a 5V reference voltage.  
DD  
input currents up to 100mA below ground or above REF or OV without  
DD  
latch-up.  
Iotem±±: f  
= 1.6MHz, I varies proportionally with sample rate.  
REF  
SMPL  
Iotem4: V = 2.5V, OV = 2.5V, REF = 5V, V = 2.5V, f = 1.6MHz,  
DF = 4.  
DD  
DD  
CM  
SMPL  
Iotem±2: f  
and f  
are specified with only shifting out the 14-bit  
SMPL  
DRB  
differential result. Shifting out the 8-bit common-mode result requires  
additional I/O time resulting in maximum sampling and output data rates  
of 1.42Msps.  
Iotem5: Recommended operating conditions.  
+
Iotem6: Transition noise is defined as the noise level of the ADC with IN  
and IN shorted.  
Iotem±3: Parameter tested and guaranteed at OV = 1.71V, OV = 2.5V  
DD DD  
and OV = 5.25V.  
DD  
Iotem7: Integral nonlinearity is defined as the deviation of a code from a  
straight line passing through the actual endpoints of the transfer curve.  
The deviation is measured from the center of the quantization band.  
Iotem±4: t  
, t  
of 10ns maximum allows a shift clock frequency up  
SCKA SCKB  
to 100MHz for rising edge capture.  
0.8•OV  
t
DD  
t
WIDTH  
0.2•OV  
DD  
50%  
50%  
t
DELAY  
DELAY  
251224 F01  
0.8•OV  
0.2•OV  
0.8•OV  
0.2•OV  
DD  
DD  
DD  
DD  
Figurem±.mVoltagemNevelsmformS1ecifications  
251224fa  
6
For more information www.linear.com/LTC2512-24  
LTC2512-24  
m
(Am=m25°C,mVDDm=m2.5V,mOVDDm=m2.5V,mVCMm=m2.5V,m  
TYPICAL PERFORMANCE CHARACTERISTICS  
REFm=m5V,mfSMPNm=m±.6Ms1s,mDFm=m4,mFilteredmOut1ut,munlessmotherwisemnoted.  
 ntegralmIonlinearitymm  
vsm n1utmVoltage  
DifferentialmIonlinearitymm  
vsm n1utmVoltage  
 ntegralmIonlinearitymm  
vsmOut1utmCode  
3.50  
3
2
1.0  
0.8  
0.6  
1.75  
0
0.4  
1
0.2  
0
0.0  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1  
–2  
–3  
–1.75  
ARBITRARY DRIVE  
+
IN /IN SWEPT 0V to 5V  
–3.50  
–5  
–2.5  
0
2.5  
5
–5  
–2.5  
0
2.5  
5
–5  
–2.5  
0
2.5  
5
INPUT VOLTAGE (V)  
INPUT VOTLAGE (V)  
INPUT VOLTAGE (V)  
251224 G03  
251224 G02  
251224 G01  
DCmHistograp,mDFm=m4  
DCmHistograp,mDFm=m8  
DCmHistograp,mDFm=m±6  
20000  
16000  
12000  
8000  
4000  
0
20000  
16000  
12000  
8000  
4000  
0
20000  
16000  
12000  
8000  
4000  
0
σ = 23.9  
σ = 16.9  
σ = 12.02  
–200  
–100  
0
100  
200  
–200  
–100  
0
100  
200  
–50  
–25  
0
25  
50  
CODE  
CODE  
CODE  
251224 G05  
251224 G04  
251224 G06  
±28kmPointmFF(mfSMPNm=m±.6Ms1s,mm  
f m=m2kHz,mDFm=m4  
±28kmPointmFF(mfSMPNm=m±.6Ms1s,mm  
f m=m2kHz,mDFm=m8  
DCmHistograp,mDFm=m32  
 I  
 I  
20000  
16000  
12000  
8000  
4000  
0
0
–20  
0
–20  
SNR = 111dB  
SNR = 108dB  
σ = 8.47  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
–50  
–25  
0
25  
50  
0
50  
100  
FREQUENCY (kHz)  
150  
200  
0
25  
50  
FREQUENCY (kHz)  
75  
100  
CODE  
251224 G09  
251224 G07  
251224 G08  
251224fa  
7
For more information www.linear.com/LTC2512-24  
LTC2512-24  
(Am=m25°C,mVDDm=m2.5V,mOVDDm=m2.5V,mVCMm=m2.5V,m  
TYPICAL PERFORMANCE CHARACTERISTICS  
REFm=m5V,mfSMPNm=m±.6Ms1s,mDFm=m4,mFilteredmOut1ut,munlessmotherwisemnoted.  
±28kmPointmFF(mfSMPNm=m±.6Ms1s,mm  
f m=m2kHz,mDFm=m±6  
±28kmPointmFF(mfSMPNm=m±.6Ms1s,mm  
f m=m2kHz,mDFm=m32  
DynapicmRange,m(ransitionmIoisem  
vsmDF  
 I  
 I  
0
–20  
0
–20  
125  
120  
115  
110  
105  
25  
SNR = 114dB  
SNR = 117dB  
–40  
–40  
18.75  
12.5  
6.25  
0
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
12.5  
25  
FREQUENCY (kHz)  
37.5  
50  
0
5
10  
15  
20  
25  
4
8
16  
32  
FREQUENCY (kHz)  
DOWN SAMPLING FACTOR (DF)  
251224 G10  
251224 G11  
251224 G12  
FrequencymRes1onse,mm  
DFm=m4,m8,m±6,m32  
SIR,mS IADmvsm n1utmNevel,mm  
f m=m2kHz  
SIR,mS IADmvsm n1utmFrequency  
 I  
110  
109  
108  
107  
106  
105  
10  
0
110  
109  
108  
107  
106  
105  
DF = 4  
DF = 8  
DF = 16  
DF = 32  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
SNR  
SNR  
SINAD  
SINAD  
0
F
/16  
F
/8  
F
/4 3F  
SMPL  
/16  
SMPL  
0
25  
50  
75  
100  
–40  
–30  
–20  
–10  
0
SMPL  
SMPL  
INPUT FREQUENCY (kHz)  
INPUT LEVEL (dB)  
FREQUENCY (Hz)  
251224 G14  
251224 G13  
251224 G15  
SIR,mS IADmvsmReferencem  
Voltage,mf m=m2kHz  
(HD,mHarponicsmvsmReferencem  
ReferencemCurrentmm  
vsmReferencemVoltage  
Voltage,mf m=m2kHz  
 I  
 I  
108  
107  
106  
105  
104  
103  
102  
–115  
–120  
–125  
–130  
–135  
–140  
–145  
2.0  
1.5  
1.0  
0.5  
SNR  
SINAD  
THD  
2ND  
3RD  
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
2.5  
3
3.5  
4
4.5  
5
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
REFERENCE VOLTAGE (V)  
251224 G16  
251224 G17  
251224 G18  
251224fa  
8
For more information www.linear.com/LTC2512-24  
LTC2512-24  
m
(Am=m25°C,mVDDm=m2.5V,mOVDDm=m2.5V,mVCMm=m2.5V,m  
TYPICAL PERFORMANCE CHARACTERISTICS  
REFm=m5V,mfSMPNm=m±.6Ms1s,mDFm=m4,mFilteredmOut1ut,munlessmotherwisemnoted.  
SIR,mS IADmvsm(ep1erature,mm  
f m=m2kHz  
(HD,mHarponicsmm  
vsm(ep1erature,mf m=m2kHz  
 INmvsm(ep1erature  
 I  
 I  
110  
109  
108  
107  
106  
105  
–120  
–122  
–124  
–126  
–128  
–130  
4
3
2
THD  
MAX INL  
SNR  
1
SINAD  
0
2ND  
3RD  
–1  
–2  
–3  
–4  
MIN INL  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
251224 G19  
251224 G20  
251224 G21  
Full-ScalemErrormvsm(ep1erature  
OffsetmErrormvsm(ep1erature  
Su11lymCurrentmvsm(ep1erature  
10  
5
5
4
15  
12  
9
3
I
I
I
2
VDD  
OVDD  
REF  
–FS  
+FS  
1
0
0
–1  
–2  
–3  
–4  
–5  
6
–5  
3
–10  
0
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
251224 G22  
251224 G23  
251224 G24  
CopponmModemRejectionmm  
vsm n1utmFrequency  
ShutdownmCurrentmvsm(ep1erature  
40  
30  
20  
10  
0
200  
175  
150  
125  
100  
75  
–40  
–15  
10  
35  
60  
85  
0.0001  
0.001  
0.01  
0.1  
1
4
FREQUENCY (MHz)  
TEMPERATURE (°C)  
251224 G25  
251224 G26  
251224fa  
9
For more information www.linear.com/LTC2512-24  
LTC2512-24  
m
(Am=m25°C,mVDDm=m2.5V,mOVDDm=m2.5V,mVCMm=m2.5V,m  
TYPICAL PERFORMANCE CHARACTERISTICS  
REFm=m5V,mfSMPNm=m±.6Ms1s,mIomNatencym±4-BitmOut1ut,munlessmotherwisemnoted.  
IomNatencymDifferentialmOut1utm  
±28kmPointmFF(,mf m=m2kHz  
IomNatencymDifferentialmOut1utm INm  
vsm n1utmVoltage  
IomNatencymDifferentialmOut1utmDINm  
vsm n1utmVoltage  
 I  
0
–20  
0.5  
0.4  
0.5  
0.4  
SNR = 86dB  
–40  
0.3  
0.3  
–60  
0.1  
0.1  
–80  
0
0
–100  
–120  
–140  
–160  
–0.1  
–0.3  
–0.4  
–0.5  
–0.1  
–0.3  
–0.4  
–0.5  
0
200  
400  
600  
800  
–5  
–2.5  
0
2.5  
5
FREQUENCY (kHz)  
INPUT VOTLAGE (V)  
–5  
–2.5  
0
2.5  
5
251224 G27  
251224 G28  
INPUT VOTLAGE (V)  
251224 G29  
IomNatencymCopponmModemOut1ut  
±28kmPointmFF(,mf I = 2kHz  
0
–20  
SNR = 48dB  
–40  
–60  
–80  
–100  
–120  
0
200  
400  
600  
800  
FREQUENCY (kHz)  
251224 G30  
251224fa  
10  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
PIN FUNCTIONS  
RDNAmꢀPinm±): Read Low Input A (Filtered Output).  
When RDLA is low, the serial data output A (SDOA) pin  
is enabled. When RDLA is high, SDOA pin is in a high-  
DRNmꢀPinm±5): Data Ready Low Output. A falling edge  
on this pin indicates that a new filtered output code is  
available in the output register of SDOA. Logic levels are  
impedance state. Logic levels are determined by OV .  
determined by OV .  
DD  
DD  
RDNBmꢀPinm2): Read Low Input B (No Latency Output).  
When RDLB is low, the serial data output B (SDOB) pin  
is enabled. When RDLB is high, SDOB pin is in a high-  
SDOAmꢀPinm±7) : Serial Data Output A (Filtered Output).  
The filtered output code appears on this pin (MSB first)  
on each rising edge of SCKA. The output data is in 2’s  
complement format. Logic levels are determined by OVDD.  
impedance state. Logic levels are determined by OV .  
DD  
VDDmꢀPinm3): 2.5V Power Supply. The range of VDD is  
2.375V to 2.625V. Bypass VDD to GND with a 10µF  
ceramic capacitor.  
SCKAmꢀPinm±8):Serial Data Clock Input A (Filtered Output).  
When SDOA is enabled, the filtered output code is shifted  
out (MSB first) on the rising edges of this clock. Logic  
levels are determined by OV .  
DD  
GIDmꢀPinsm4,m7,m±6,m23,m24): Ground.  
SCKBmꢀPinm±9): Serial Data Clock Input B (No Latency  
Output). When SDOB is enabled, the no latency output  
code is shifted out (MSB first) on the rising edges of this  
+
 I mꢀPinm5): Positive Analog Input.  
 I mꢀPinm6): Negative Analog Input.  
clock. Logic levels are determined by OV .  
DD  
REFmꢀPinsm8,m9,m±0): Reference Input. The range of REF  
is 2.5V to 5.1V. This pin is referred to the GND pin and  
should be decoupled closely to the pin with a 47µF ceramic  
capacitor (X7R, 1210 size, 10V rating).  
SDOBmꢀPinm20): Serial Data Output B (No Latency Output).  
The 22-bit no latency composite output code appears on  
this pin (MSB first) on each rising edge of SCKB. The  
output data is in 2’s complement format. Logic levels are  
SEN0,mSEN±mꢀPinsm±±,m±2): Down-Sampling Factor Select  
Input 0, Down-Sampling Factor Select Input 1. Selects the  
down-sampling factor for the digital filter. Down-sampling  
factors of 4, 8, 16 and 32 are selected for [SEL1 SEL0]  
combinations of 00, 01, 10 and 11 respectively. Logic  
determined by OV .  
DD  
BUSYmꢀPinm2±): BUSY Indicator. Goes high at the start of  
a new conversion and returns low when the conversion  
has finished. Logic levels are determined by OV .  
DD  
levels are determined by OV .  
DD  
OV mꢀPinm22): I/O Interface Digital Power. The range of  
DD  
MCNKmꢀPinm±3): Master Clock Input. A rising edge on this  
OV is 1.71V to 5.25V. This supply is nominally set to  
DD  
input powers up the part and initiates a new conversion.  
the same supply as the host interface (1.8V, 2.5V, 3.3V,  
or 5V). Bypass OVDD to GND (Pin 23) close to the pin with  
a 0.1µF capacitor.  
Logic levels are determined by OV .  
DD  
SYICmꢀPinm±4) : Synchronization Input. A pulse on this  
input is used to synchronize the phase of the digital filter.  
GIDmꢀEx1osedmPadmPinm25): Ground. Exposed pad must  
be soldered directly to the ground plane.  
Logic levels are determined by OV .  
DD  
251224fa  
11  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
FUNCTIONAL BLOCK DIAGRAM  
V
DD  
= 2.5V  
OV = 1.8V TO 5V  
DD  
REF = 5V  
LTC2512-24  
+
IN  
IN  
+
SCKA  
SDOA  
RDLA  
24  
24-BIT  
SAR ADC  
DIGITAL  
FILTER  
SPI  
PORT  
SCKB  
SDOB  
RDLB  
14  
MCLK  
BUSY  
DRL  
CONTROL LOGIC  
SYNC  
SEL0  
SEL1  
GND  
251224f FBD  
TIMING DIAGRAM  
Conversionm(ipingmUsingmthemSerialm nterface  
RDLA = RDLB = 0  
MCLK  
CONVERT  
DRL  
SCKA  
DA22 DA20 DA18 DA16 DA14 DA12 DA10  
DA8  
DA6  
DA4  
CB2  
DA2  
CB0  
DA0  
WA6  
WA4  
WA2  
WA0  
SDOA  
BUSY  
SCKB  
SDOB  
DA23 DA21 DA19 DA17 DA15 DA13 DA11  
DA9  
DA7  
DA5  
DA3  
CB1  
DA1  
WA7  
WA5  
WA3  
WA1  
CONVERT  
POWER DOWN AND ACQUIRE  
DB12 DB10  
DB8  
DB6  
DB4  
DB2  
DB0  
CB6  
CB4  
251224 TD  
DB13 DB11  
DB9  
DB7  
DB5  
DB3  
DB1  
CB7  
CB5  
CB3  
251224fa  
12  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
OVERV EW  
voltage are combined to form a 22-bit composite code.  
The 22-bit composite code is available each conversion  
cycle, without any cycle of latency.  
The LTC2512-24 is a low noise, low power, high-perfor-  
mance 24-bit ADC with an integrated configurable digital  
filter. Operating from a single 2.5V supply, the LTC2512-  
(RAISFERmFUIC( OI  
24 features a fully differential input range up to VREF  
with V  
,
ranging from 2.5V to 5.1V. The LTC2512-24  
REF  
The LTC2512-24 digitizes the full-scale differential voltage  
24  
supports a wide common mode range from 0V to V  
REF  
of 2× V into 2 levels, resulting in an LSB size of 596nV  
REF  
simplifying analog signal conditioning requirements.  
with a 5V reference. The ideal transfer function is shown  
in Figure 2. The output data is in 2’s complement format.  
The LTC2512-24 simultaneously provides two output  
codes: (1) a 24-bit digitally filtered high precision low  
noise code, and (2) a 22-bit no latency composite code.  
The configurable digital filter reduces measurement noise  
by lowpass filtering and down-sampling the stream of  
data from the SAR ADC core, giving the 24-bit filtered  
output code. The 22-bit composite code consists of a  
14-bit code representing the differential voltage and an  
8-bit code representing the common mode voltage. The  
22-bit composite code is available each conversion cycle,  
with no cycle of latency.  
011...111  
BIPOLAR  
ZERO  
011...110  
000...001  
000...000  
111...111  
111...110  
100...001  
100...000  
FSR = +FS – –FS  
1LSB = FSR/16777216  
–1 0V  
The digital filter can be easily configured for 4 different  
down-sampling factors by pin strapping. The configura-  
tions provide a dynamic range of 108dB at 400ksps and  
117dB at 50ksps. The digital lowpass filter relaxes the  
requirements for analog anti-aliasing. Multiple LTC2512-  
24 devices can be easily synchronized using the SYNC pin.  
1
LSB  
–FSR/2  
FSR/2 – 1LSB  
LSB  
INPUT VOLTAGE (V)  
251224 F02  
Figurem2.mN(C25±2-24m(ransfermFunction  
AIANOGm IPU(  
The LTC2512-24 samples the voltage difference (IN+  
– IN) between its analog input pins over a wide com-  
mon mode input range while attenuating unwanted sig-  
nals common to both input pins by the common-mode  
rejection ratio (CMRR) of the ADC. Wide common mode  
COIVER(ERmOPERA( OI  
The LTC2512-24 operates in two phases. During the  
acquisition phase, a 24-bit charge redistribution capacitor  
D/A converter (CDAC) is connected to the IN+ and INpins  
to sample the analog input voltages. A rising edge on the  
MCLK pin initiates a conversion. During the conversion  
phase, the 24-bit CDAC is sequenced through a succes-  
sive approximation algorithm, effectively comparing the  
sampled inputs with binary-weighted fractions of the ref-  
+
input range coupled with high CMRR allows the IN /IN  
analog inputs to swing with an arbitrary relationship to  
each other, provided each pin remains between GND and  
V . This unique feature of the LTC2512-24 enables it  
REF  
to accept a wide variety of signal swings, including tra-  
ditional classes of analog input signals such as pseudo-  
differential unipolar, pseudo-differential true bipolar, and  
fully differential, thereby simplifying signal chain design.  
erence voltage (e.g. V /2, V /4 … V /16777216). At  
the end of conversionR,EthFe CDAC outputRaEpFproximates the  
sampled analog input. The ADC control logic then passes  
the 24-bit digital output code to the digital filter for further  
processing. A 14-bit code representing the differential  
voltage and an 8-bit code representing the common mode  
REF  
In the acquisition phase, each input sees approximately  
45pF (C ) from the sampling circuit in series with 40Ω  
IN  
(RON) from the on-resistance of the sampling switch.  
The inputs draw a current spike while charging the C  
IN  
251224fa  
13  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
REF  
requires wider bandwidth than LPF1. This filter also helps  
minimize the noise contribution from the buffer. A buffer  
amplifier with a low noise density must be selected to  
minimize degradation of SNR.  
C
45pF  
IN  
R
40Ω  
ON  
+
IN  
BIAS  
VOLTAGE  
REF  
LPF2  
C
45pF  
IN  
R
40Ω  
ON  
6800pF  
SINGLE-ENDED-  
10Ω  
IN  
LPF1  
INPUT SIGNAL  
+
IN  
500Ω  
3300pF  
LTC2512-24  
251224 F03  
6600pF  
IN  
10Ω  
Figurem3.m(hemEquivalentmCircuitmformthemDifferentialm  
Analogm n1utmofmthemN(C25±2-24  
251224 F04  
SINGLE-ENDED- 6800pF  
TO-DIFFERENTIAL  
DRIVER  
BW = 48kHz  
BW = 1.2MHz  
capacitors during acquisition. During conversion, the ana-  
log inputs draw only a small leakage current.  
Figurem4.mFilteringm n1utmSignal  
High quality capacitors and resistors should be used in  
the RC filters since these components can add distor-  
tion. NPO and silver mica type dielectric capacitors have  
excellent linearity. Carbon surface mount resistors can  
generate distortion from self-heating and from damage  
that may occur during soldering. Metal film surface mount  
resistors are much less susceptible to both problems.  
 IPU(mDR VEmC RCU (S  
A low impedance source can directly drive the high imped-  
ance inputs of the LTC2512-24 without gain error. A high  
impedance source should be buffered to minimize settling  
time during acquisition and to optimize ADC linearity. For  
best performance, a buffer amplifier should be used to  
drive the analog inputs of the LTC2512-24. The ampli-  
fier provides low output impedance, which produces fast  
settling of the analog signal during the acquisition phase.  
It also provides isolation between the signal source and  
the ADC inputs.  
 n1utmCurrents  
An important consideration when coupling an amplifier to  
the LTC2512-24 is in dealing with current spikes drawn by  
the ADC inputs at the start of each acquisition phase. The  
ADC inputs may be modeled as a switched capacitor load  
of the drive circuit. A drive circuit may rely partially on  
attenuating switched-capacitor current spikes with small  
IoisemandmDistortion  
The noise and distortion of an input buffer amplifier and  
other supporting circuitry must be considered since they  
add to the ADC noise and distortion. Noisy input signals  
should be filtered prior to the buffer amplifier with a low  
bandwidth filter to minimize noise. The simple one-pole  
RC lowpass filter (LPF1) shown in Figure 4 is sufficient  
for many applications.  
filter capacitors C  
placed directly at the ADC inputs,  
FILT  
and partially on the driver amplifier having sufficient band-  
width to recover from the residual disturbance. Amplifiers  
optimized for DC performance may not have sufficient  
bandwidth to fully recover at the ADC’s maximum con-  
version rate, which can produce nonlinearity and other  
errors. Coupling filter circuits may be classified in three  
broad categories:  
A coupling filter network (LPF2) should be used between  
the buffer and ADC input to minimize disturbances  
reflected into the buffer from sampling transients. Long  
RC time constants at the analog inputs will slow down  
the settling of the analog inputs. Therefore, LPF2 typically  
251224fa  
14  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
Fully Settled – This case is characterized by filter time  
constants and an overall settling time that is consider-ably  
shorter than the sample period. When acquisition begins,  
the coupling filter is disturbed. For a typical first order RC  
filter, the disturbance will look like an initial step with an  
exponential decay. The amplifier will have its own response  
to the disturbance, which may include ringing. If the input  
settles completely (to within the accuracy of the LTC2512-  
24), the disturbance will not contribute any error.  
LTC2512-24  
+
IN  
14k  
C
C
>>45pF  
>>45pF  
FILT  
FILT  
(R  
)
)
EQ  
BIAS  
VOLTAGE  
14k  
(R  
EQ  
IN  
1
R
=
EQ  
f
• 45pF  
SMPL  
251224 F05  
Partially Settled – In this case, the beginning of acquisi-  
tion causes a disturbance of the coupling filter, which then  
begins to settle out towards the nominal input voltage.  
However, acquisition ends (and the conversion begins)  
before the input settles to its final value. This generally  
produces a gain error, but as long as the settling is linear,  
no distortion is produced. The coupling filter’s response  
is affected by the amplifier’s output impedance and other  
parameters. A linear settling response to fast switched-  
capacitor current spikes can NOT always be assumed for  
precision, low bandwidth amplifiers. The coupling filter  
serves to attenuate the current spikes’ high-frequency  
energy before it reaches the amplifier.  
Figurem5.mEquivalentmCircuitmformthemDifferentialm  
Analogm n1utmofmthemN(C25±2-24matm±.6Ms1s  
10  
V
= V  
REF  
IN  
7
4
DIFFERENTIAL  
COMMON  
1
–2  
–5  
–40  
–15  
10  
35  
60  
85  
TEMPERATURE (°C)  
Fully Averaged – If the coupling filter capacitors (C ) at  
251224 F06  
FILT  
the ADC inputs are much larger than the ADC’s sample  
capacitors (45pF), then the sampling glitch is greatly  
attenuated. The driving amplifier effectively only sees  
the average sampling current, which is quite small. At  
1.6Msps, the equivalent input resistance is approximately  
14k (as shown in Figure 5), a benign resistive load for  
most precision amplifiers. However, resistive voltage divi-  
sion will occur between the coupling filter’s DC resistance  
and the ADC’s equivalent (switched-capacitor) input resis-  
tance, thus producing a gain error.  
Figurem6.mCopponmModemandmDifferentialm n1utm  
NeakagemCurrentmOverm(ep1erature  
Let RS1 and RS2 be the source impedances of the dif-  
ferential input drive circuit shown in Figure 7, and let I  
L1  
and I be the leakage currents flowing out of the ADC’s  
L2  
analog inputs. The differential voltage error, VE, due to the  
leakage currents can be expressed as:  
RS1+R  
IL1+IL2  
VE =  
S2 • I –I + R –R  
)
S2  
(
)
(
L1 L2  
S1  
2
2
The input leakage currents of the LTC2512-24 should  
also be considered when designing the input drive circuit,  
because source impedances will convert input leakage  
currents to an added input voltage error. The input leak-  
age currents, both common mode and differential, are  
typically extremely small over the entire operating tem-  
perature range. Figure 6 shows the input leakage currents  
over temperature for a typical part.  
The common mode input leakage current, (I + I )/2, is  
L1  
L2  
typically extremely small (Figure 6) over the entire operat-  
ing temperature range and common mode input voltage  
range. Thus, any reasonable mismatch (below 5%) of the  
source impedances R and R will cause only a negligible  
error. The differentialSle1akage Sc2urrent is also typically very  
small, and its nonlinear component is even smaller. Only  
the nonlinear component will impact the ADC’s linearity.  
251224fa  
15  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
settling and good DC linearity with 1.9nV/RT(Hz) input-  
referred noise density, enabling it to achieve the full ADC  
data sheet SNR and THD specifications as shown in the  
FFT plot in Figure 8b.  
I
L1  
R
S1  
+
IN  
+
LTC2512-24  
V
E
IN  
R
S2  
I
L2  
0
251224 F07  
SNR = 107dB  
–20  
Figurem7.mSourcem p1edancesmofmamDrivermandm  
 n1utmNeakagemCurrentsmofmthemN(C25±2-24  
–40  
–60  
–80  
For optimal performance, it is recommended that the  
source impedances, RS1 and RS2, be between 5Ω and  
50Ω and with 1% tolerance. For source impedances in  
this range, the voltage and temperature coefficients of  
–100  
–120  
–140  
–160  
–180  
–200  
R
and R are usually not critical. The guaranteed AC  
S1  
S2  
and DC specifications are tested with 5Ω source imped-  
ances, and the specifications will gradually degrade with  
increased source impedances due to incomplete settling.  
0
50  
100  
150  
200  
FREQUENCY (kHz)  
251224 F08b  
Figurem8b.m±28kmPointmFF(mwithmf m=m2kHz,m  
 I  
BufferingmArbitrarymAnalogm n1utmSignals  
DFm=m4mformCircuitmShownminmFigurem8a  
The wide common mode input range and high CMRR  
BufferingmSingle-EndedmAnalogm n1utmSignals  
+
of the LTC2512-24 allow the analog input pins, IN and  
While the circuit shown in Figure 8a is capable of buffering  
single-ended input signals, the circuit shown in Figure 9  
is preferable when the single-ended signal reference level  
is inherently low impedance and doesn’t require buffer-  
ing. This circuit eliminates one driver and one lowpass  
filter, reducing the part count, power dissipation, and SNR  
degradation due to driver noise.  
IN , to swing with an arbitrary relationship to each other,  
provided that each pin remains between V  
and GND.  
REF  
This unique feature of the LTC2512-24 enables it to accept  
a wide variety of signal swings, simplifying signal chain  
design.  
It is recommended that the LTC2512-24 be driven using  
the LT6203 ADC driver configured as two unity gain buf-  
fers, as shown in Figure 8a. The LT6203 combines fast  
2.5V  
1.8V TO 5.1V  
10µF  
0.1µF  
+
+
V
IN  
10Ω  
1/2 LT6203  
V
DD  
OV  
DD  
1.2nF  
1.2nF  
+
IN  
LTC2512-24  
IN  
10Ω  
REF  
GND  
1/2 LT6203  
2.5V TO 5.1V  
47µF  
+
V
IN  
(X7R, 1210 SIZE)  
251224 F08a  
Figurem8a.mBufferingm(womSingle-EndedmAnalogm n1utmSignals  
251224fa  
16  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
2.5V 1.8V TO 5V  
10µF  
0.1µF  
V
OV  
DD  
DD  
+
V
+
IN  
10Ω  
+
IN  
IN  
LT6202  
LTC2512-24  
1.2nF  
REF  
GND  
2.5V TO 5.1V  
47µF  
(X7R, 1210 SIZE)  
251224 F09  
Figurem9.mBufferingmSingle-EndedmSignals  
8V  
LT5400-4  
1k  
6800pF  
0.1µF  
30.1Ω  
30.1Ω  
1k  
+
+
IN  
VOCM  
V
/2  
REF  
6800pF  
LTC6363  
1k  
1k  
5V  
0V  
IN  
+
V
IN  
6800pF  
–5V  
0.1µF  
–3V  
0.1µF  
251224 F10a  
Figurem±0a.mBufferingmandmConvertingmam±5Vm(ruemBi1olarm n1utmSignalmtomamFullymDifferentialm n1ut  
MaxipizingmthemSIRmUsingmFullymDifferentialm n1utm  
Though not shown here, the LTC6363 may also be con-  
figured to amplify or attenuate a signal to match the full  
scale input range of the LTC2512-24.  
Drive  
In order to maximize the SNR, the input signal swing must  
be maximized. A fully differential signal with a common-  
mode of VREF/2 maximizes the input signal swing. The  
circuit in Figure 8a is capable of buffering such a signal.  
DrivingmDCmSignals  
While the DC specifications of the LTC2512-24 are excel  
-
lent, the digital filter, having a wide passband and low  
passband ripple, is optimized for AC applications. The  
digital filter of the LTC2512-24 improves the dynamic  
range to 117dB with DF = 32. The LTC2508-32 has  
digital filters with much lower bandwidths, leading to  
greater noise suppression. Using the digital filter on the  
LTC2508-32 with DF = 16384 leads to a dynamic range  
of 146dB. This makes the LTC2508-32 a better choice  
for digitizing DC inputs.  
If the input signal does not have a common-mode of  
VREF/2 or is single-ended, the LTC6363 differential ampli-  
fier may be used in conjunction with the LT5400-4 preci-  
sion resistors to produce a fully differential signal with a  
common-mode of V /2. Figure 10a shows the LTC6363  
buffering, level-shiftRinEgF and performing a single-ended to  
differential conversion on a 5V single-ended true bipolar  
input signal. The FFT in Figure 10b shows that near data  
sheet performance is obtained with this driver solution.  
251224fa  
17  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
0
SNR = 107dB  
cycle. The reference replenishes this charge with an  
–20  
average current, I  
= Q  
/t . The current drawn  
REF  
CONV CYC  
–40  
–60  
from the REF pin, I , depends on the sampling rate and  
REF  
output code. If the LTC2512-24 continuously samples  
a signal at a constant rate, the LTC6655-5 will keep the  
deviation of the reference voltage over the entire code  
span to less than 0.5ppm.  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
When idling, the REF pin on the LTC2512-24 draws only  
a small leakage current (< 1μA). In applications where  
a burst of samples is taken after idling for long periods  
0
50  
100  
150  
200  
FREQUENCY (kHz)  
as shown in Figure 11, I  
quickly goes from approxi-  
REF  
251224 F10b  
mately 0μA to a maximum of 1mA at 1.6Msps. This step in  
average current drawn causes a transient response in the  
reference that must be considered, since any deviation in  
the reference output voltage will affect the accuracy of the  
output code. In applications where the transient response  
of the reference is important, the fast settling LTC6655-5  
reference is also recommended.  
Figurem±0b.m±28kmPointmFF(mwithmf m=m2kHz,m  
 I  
DFm=m4mformCircuitmShownminmFigurem±0a  
ADCmREFEREICE  
An external reference defines the input range of the  
LTC2512-24. A low noise, low temperature drift reference  
is critical to achieving the full data sheet performance  
of the ADC. Analog Devices offers a portfolio of high  
performance references designed to meet the needs of  
many applications. With its small size, low power and high  
accuracy, the LTC6655-5 is particularly well suited for  
use with the LTC2512-24. The LTC6655-5 offers 0.025%  
(max) initial accuracy and 2ppm/°C (max) temperature  
coefficient for high precision applications.  
ReferencemIoisem  
The dynamic range of the ADC will increase approximately  
3dB for every 2× increase in the down-sampling factor  
(DF). The SNR should also improve as a function of DF in  
the same manner. For large input signals near full-scale,  
however, any reference noise will limit the improvement  
of the SNR as DF increases, because any noise on the REF  
pin will modulate around the fundamental frequency of the  
input signal. Therefore, it is critical to use a low-noise ref-  
erence, especially if the input signal amplitude approaches  
full-scale. For small input signals, the dynamic range will  
improve as described earlier in this section.  
When choosing a bypass capacitor for the LTC6655-5, the  
capacitor’s voltage rating, temperature rating, and pack-  
age size should be carefully considered. Physically larger  
capacitors with higher voltage and temperature ratings  
tend to provide a larger effective capacitance, better filter-  
ing the noise of the LTC6655-5, and consequently facili-  
tating a higher SNR. Therefore, we recommend bypassing  
the LTC6655-5 with a 47μF ceramic capacitor (X7R, 1210  
size, 10V rating) close to the REF pin.  
DYIAM CmPERFORMAICE  
Fast Fourier Transform (FFT) techniques are used to test  
the ADC’s frequency response, distortion and noise at the  
rated throughput. By applying a low distortion sine wave  
and analyzing the digital output using an FFT algorithm,  
The REF pin of the LTC2512-24 draws charge (Q  
from the 47μF bypass capacitor during each conversion  
)
CONV  
MCLK  
IDLE  
PERIOD  
IDLE  
PERIOD  
251224 F11  
Figurem±±.mMCNKmWaveforpmShowingmBurstmSap1ling  
251224fa  
18  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
the ADC’s spectral content can be examined for frequen-  
cies outside the fundamental. The LTC2512-24 provides  
guaranteed tested limits for both AC distortion and noise  
measurements.  
(otalmHarponicmDistortionmꢀ(HD)  
Total Harmonic Distortion (THD) is the ratio of the RMS  
sum of all harmonics of the input signal to the funda-  
mental itself. The out-of-band harmonics alias into the  
frequency band between DC and half the sampling fre-  
DynapicmRange  
quency (f  
/2). THD is expressed as:  
SMPL  
The dynamic range is the ratio of the RMS value of a  
full scale input to the total RMS noise measured with  
V22 +V32 +V42 +!+VN2  
THD=20LOG  
the inputs shorted to V /2. The dynamic range of the  
REF  
V1  
LTC2512-24 with DF = 4 is 108dB which improves by 3dB  
for every 2× increase in the down-sampling factor.  
where V1 is the RMS amplitude of the fundamental fre-  
quency and V2 through VN are the amplitudes of the sec-  
ond through Nth harmonics.  
Signal-to-IoisemandmDistortionmRatiomꢀS IAD)  
The signal-to-noise and distortion ratio (SINAD) is the  
ratio between the RMS amplitude of the fundamental input  
frequency and the RMS amplitude of all other frequency  
components at the ADC output. The output is band-limited  
to frequencies from above DC and below half the sampling  
frequency. Figure 12 shows that the LTC2512-24 achieves  
a typical SINAD of 108dB at a 1.6MHz sampling rate with  
a 2kHz input, and DF = 4.  
POWERmCOIS DERA( OIS  
The LTC2512-24 has two power supply pins: the 2.5V  
power supply (V ), and the digital input/output interface  
DD  
power supply (OV ). The flexible OV supply allows the  
DD  
DD  
LTC2512-24 to communicate with any digital logic operat-  
ing between 1.8V and 5V, including 2.5V and 3.3V systems.  
0
PowermSu11lymSequencing  
SNR = 108dB  
–20  
–40  
The LTC2512-24 does not have any specific power supply  
sequencing requirements. Care should be taken to adhere  
to the maximum voltage relationships described in the  
Absolute Maximum Ratings section. The LTC2512-24 has  
a power-on-reset (POR) circuit that will reset the LTC2512-  
24 at initial power-up or whenever the power supply volt-  
age drops below 1V. Once the supply voltage re-enters  
the nominal supply voltage range, the POR will re initialize  
the ADC. No conversions should be initiated until 200μs  
after a POR event to ensure the re-initialization period has  
ended. Any conversions initiated before this time will pro-  
duce invalid results.  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
0
50  
100  
150  
200  
FREQUENCY (kHz)  
251224 F12  
Figurem±2.m±28kmPointmFF(mPlotmofmN(C25±2-24m  
withmDFm=m4,mf m=m2kHzmandmfSMPNm=m±.6MHz  
 I  
( M IGmAIDmCOI(RON  
MCNKm(iping  
Signal-to-IoisemRatiomꢀSIR)  
The signal-to-noise ratio (SNR) is the ratio between the RMS  
amplitude of the fundamental input frequency and the RMS  
amplitude of all other frequency components except the first  
five harmonics and DC. Figure 12 shows that the LTC2512-24  
achieves an SNR of 108dB when sampling a 2kHz input at a  
1.6MHz sampling rate with DF = 4.  
A rising edge on MCLK will power up the LTC2512-24 and  
start a conversion. Once a conversion has been started,  
further transitions on MCLK are ignored until the con-  
version is complete. For best results, the falling edge  
251224fa  
19  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
of MCLK should occur within 40ns from the start of the  
conversion, or after the conversion has been completed.  
For optimum performance, MCLK should be driven by a  
clean low jitter signal. Converter status is indicated by the  
BUSY output which remains high while the conversion  
is in progress. Once the conversion has completed, the  
LTC2512-24 powers down and begins acquiring the input  
signal for the next conversion.  
DigitalmFiltering  
The input to the LTC2512-24 is sampled at a rate f  
and digital words D (n) are transmitted to the digital  
,
SMPL  
ADC  
filter at that rate. Noise from the 24-bit SAR ADC core is  
distributed uniformly in frequency from DC to fSMPL/2.  
Figure 15 shows the frequency spectrum of D (n) at  
ADC  
the output of the SAR ADC core. In this example, the  
bandwidth of interest f is a small fraction of f  
/2.  
SMPL  
B
16  
 nternalmConversionmClockm  
I
I
I
VDD  
OVDD  
REF  
The LTC2512-24 has internal timing circuity that is  
trimmed to achieve a maximum conversion time of 460ns.  
With a maximum sample rate of 1.6Msps, a minimum  
acquisition time of 152ns is guaranteed without any exter-  
nal adjustments.  
12  
8
4
AutomPowermDownm  
The LTC2512-24 automatically powers down after a  
conversion has been completed and powers up once a  
new conversion is initiated on the rising edge of MCLK.  
During power-down, data from the last conversion can be  
clocked out. To minimize power dissipation during power-  
down, disable SDOA, SDOB and turn off SCKA, SCKB. The  
auto power-down feature will reduce the power dissipa-  
tion of the LTC2512-24 as the sampling rate is reduced.  
Since power is consumed only during a conversion, the  
LTC2512-24 remains powered down for a larger frac-  
0
0
0.4  
0.8  
1.2  
1.6  
SAMPLING RATE (Msps)  
251224 F13  
Figurem±3.mPowermSu11lymCurrentmofm  
themN(C25±2-24mvsmSap1lingmRate  
INTEGRATED DECIMATION FILTER  
24-BIT  
SAR ADC  
CORE  
D
ADC  
(n)  
D (n)  
1
DIGITAL  
FILTER  
DOWN  
SAMPLER  
V
IN  
D
OUT  
(k)  
tion of the conversion cycle (t ) at lower sample rates,  
CYC  
thereby reducing the average power dissipation which  
scales with the sampling rate as shown in Figure 13.  
251224 F14  
Figurem±4.mN(C25±2-24mDigitallymFilteredmOut1utmSignalmPath  
DEC MA( OImF N(ERS  
D
ADC  
Many ADC applications use digital filtering techniques  
to reduce noise. An FPGA or DSP is typically needed to  
implement a digital filter. The LTC2512-24 features an  
integrated decimation filter that provides 4 selectable digi-  
tal filtering functions without any external hardware, thus  
simplifying the application solution. Figure 14 shows the  
LTC2512-24 digitally filtered output signal path, wherein  
f
/2  
f
B
SMPL  
251224 F15  
the output D (n) of the 24-bit SAR ADC core is passed  
ADC  
Figurem±5.mFrequencymS1ectrupmofmSARmADCmCoremOut1ut  
on to the integrated decimation filter.  
251224fa  
20  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
D
DC to half the sampling frequency (a.k.a. the Nyquist fre-  
quency). An input signal whose bandwidth exceeds the  
Nyquist frequency, when sampled, will experience distor-  
tion due to an effect called “Aliasing”.  
1
DIGITAL FILTER CUTOFF FREQUENCY  
When aliasing, frequency components greater than the  
Nyquist frequency undergo a frequency shift and appear  
within the Nyquist bandwidth. Figure 17 illustrates alias-  
ing in the time domain. The solid line shows a sinusoi-  
dal input signal of a frequency greater than the Nyquist  
f
/2  
f
B
SMPL  
251224 F16  
Figurem±6.mFrequencymS1ectrupmofmDigitalmFiltermCoremOut1ut  
frequency (f /2). The circles show the signal sampled  
O
The digital filter integrated in the LTC2512-24 suppresses  
out-of-band noise power, thereby lowering overall noise  
and increasing the dynamic range (DR). The lower the fil-  
ter bandwidth, the lower the noise, and the higher the DR.  
Figure 16 shows the corresponding frequency spectrum of  
D (n) at the output of the digital filter, where noise beyond  
the cutoff frequency is suppressed by the digital filter.  
at f . Note that the sampled signal is identical to that of  
O
sampling another sinusoidal input signal of a lower fre-  
quency shown with the dashed line. To avoid aliasing, it  
is necessary to band limit an input signal to the Nyquist  
bandwidth before sampling. A filter that suppresses  
spectral components outside the Nyquist bandwidth is  
called an “Anti-Aliasing Filter”(AAF).  
1
SAMPLED SIGNAL  
Down-Sap1ling  
INPUT SIGNAL  
(ALIASED)  
The output data rate of the digital filter is reduced by a  
down-sampler without causing spectral interference in  
the bandwidth of interest.  
The down-sampler reduces the data rate by passing every  
DFth sample to the output, while discarding all other sam-  
ples. The sampling frequency fO at the output of the down  
251224 F17  
sampler is the ratio of f  
and DF, i.e., f = f  
/DF.  
SMPL  
O
SMPL  
Figurem±7.m(ipemDopainmViewmofmAliasing  
The LTC2512-24 enables the user to select DF accord-  
ing to a desired bandwidth of interest. The four available  
configurations can be selected by pin strapping pins SEL0  
and SEL1. Table 1 summarizes the different decimation  
filter configurations and properties.  
Anti-AliasingmFilters  
Figure 18 shows a typical signal chain including a low-  
pass AAF and an ADC sampling at a rate of f . The AAF  
rejects input signal components exceedingOfO/2, thus  
avoiding aliasing. If the bandwidth of interest is close  
Aliasing  
to f /2, then the AAF must have a very steep roll-off. The  
O
The maximum bandwidth that a signal being sampled can  
have and be accurately represented by its samples is the  
Nyquist bandwidth. The Nyquist bandwidth ranges from  
complexity of the analog AAF increases with the steep-  
ness of the roll-off, and it may be prohibitive if a very  
steep filter is required.  
(ablem±.mPro1ertiesmofmFiltersminmN(C25±2-24  
SEN±:SEN0  
DOWImSAMPN IGmFAC(ORm  
ꢀDF)  
–3dBmBAIDW D(HmWHEIm  
m=m±.6MHz  
OU(PU(mDA(AmRA(EmꢀODR)m  
WHEImf m=m±.6MHz  
DYIAM CmRAIGE  
f
SMPN  
SMPN  
00  
01  
10  
11  
4
8
16  
32  
133kHz  
66.7kHz  
33.3kHz  
16.7kHz  
400ksps  
200ksps  
100ksps  
50ksps  
108dB  
111dB  
114dB  
117dB  
251224fa  
21  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
Alternatively, a simple low-order analog filter in combi-  
nation with a digital filter can be used to create a mixed-  
mode equivalent AAF with a very steep roll-off. A mixed-  
mode filter implementation is shown in Figure 19 where  
an analog filter with a gradual roll-off is followed by the  
digital filter H (f), as shown in Figure 20. The digital filter  
2
provides a steep roll-off, allowing the analog filter to have  
a relatively gradual roll-off.  
The digital filter in the LTC2512-24 operates at the ADC  
sampling rate f  
and suppresses signals at frequen-  
SMPL  
LTC2512-24 sampling at a rate of f  
= DF • f . The  
SMPL  
O
cies exceeding f /2. The frequency response of the digi-  
O
LTC2512-24 has an integrated digital filter at the output  
tal filter H (f) repeats at multiples of f  
, resulting in  
. The ana-  
2
SMPL  
of the ADC core. The equivalent AAF, HEQ(f), is the product  
of the frequency responses of the analog filter H (f) and  
unwanted passbands at each multiple of f  
log filter should be designed to provide SaMdePqLuate sup-  
1
pression of the unwanted passbands, such that H (f)  
f
0
EQ  
ANTI-ALIASING FILTER  
has only one passband corresponding to the frequency  
range of interest. Larger DF settings correspond to less  
bandwidth of the digital filter, allowing for the analog filter  
to have a more gradual roll-off. A simple first- or second-  
order analog filter will provide adequate suppression for  
most systems.  
V
IN  
ADC  
D
(k)  
OUT  
AT f (sps)  
O
f /2  
0
f
0
251224 F18  
Figurem±8.mADCmSignalmChainmwithmAAF  
f =mDFmmf  
SMPNm O  
LTC2512-24  
ANALOG FILTER  
DIGITAL FILTER  
IMAGE  
DOWN-SAMPLER  
H
1
H
2
D
1
(n)  
f
– f /2  
0
SMPL  
ADC  
CORE  
D
(k)  
OUT  
0
DF  
f
– f /2  
V
IN  
SMPL  
0
AT f (sps)  
f /2  
0
f
SMPL  
f /2  
0
f
SMPL  
251224 F19  
Figurem±9.mMixed-ModemFiltermSignalmChain  
H
1
H
2
ANALOG FILTER  
DIGITAL FILTER  
f
– f /2  
0
SMPL  
f
– f /2  
0
SMPL  
f /2  
0
f
f /2  
0
f
SMPL  
SMPL  
H
EQ  
EQUIVALENT AAF  
V
IN  
TO ADC  
f /2  
0
f
SMPL  
251224 F20  
Figurem20.mMixed-ModemAnti-AliasingmFiltermꢀAAF)  
251224fa  
22  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
FrequencymRes1onsemofmDigitalmFilters  
response undergoes a sharp decrease. At f /2, the stop-  
O
band begins. There is a minimum of 65dB attenuation  
Figure 21a shows the magnitude of the frequency response  
of the digital filter when the LTC2512-24 is configured to  
over the entire stopband region for frequencies in the  
range of f /2 to f  
– f /2. The minimum attenuation in  
O
O
SMPL  
operate with DF = 4 at a sampling rate of f  
. In this  
SMPL  
the stopband improves to 80dB over the frequency range  
case, f is f  
/4. Note that a replica of the passband  
O
SMPL  
of 2f /3 to f – 2f /3.  
O
SMPL  
O
occurs at f  
and multiples thereof. In each configura-  
SMPL  
The FIR filter coefficients of the 4 digital filter configura-  
tions are available at http://www.linear.com/docs/55376.  
Table 2 lists the length and group delay of each digital  
filter’s response.  
tion, the digital filter provides a finite impulse response  
(FIR) filter with a lowpass amplitude response and linear  
phase response.  
Figure 21b shows the amplitude response in the fre-  
quency range from DC to f . Labels are shown for four  
O
(ablem2.mNengthmofmDigitalmFilter  
distinct regions: a low ripple passband, a 3dB passband,  
a transition band and a stopband. The low ripple passband  
ranges from DC to fO/4 and provides a constant amplitude  
( 0.001dB) as shown in Figure 21c. The 3dB passband  
DOWI-SAMPN IGm NEIG(HmOFmD G (ANmF N(ERm  
GROUPmDENAYmm  
ꢀ±7.5mOU(PU(m  
SAMPNES)  
FAC(ORmꢀDF)  
 MPUNSEmRESPOISEmm  
ꢀIUMBERmOFmMCNKmPER ODS)  
4
8
140  
280  
43.75µs  
87.5µs  
175µs  
ranges from DC to f /3 where the amplitude response  
O
16  
32  
560  
1120  
has dropped by 3dB. The transition band is defined from  
350µs  
f /3 to f /2 and is where the magnitude of the amplitude  
O
O
20  
10  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HIGHLIGHTED AREA  
SHOWN IN FIGURE 21B  
0
f
f
/2  
SMPL  
f
O
SMPL  
FREQUENCY (Hz)  
251224 F21a  
Figurem2±a.mMagnitudemofmFrequencymRes1onsemofmDigitalmFiltermwithmDFm=m4  
251224fa  
23  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
20  
TRANSITION BAND  
3dB PASSBAND  
STOPBAND  
10  
0
LOW RIPPLE  
PASSBAND  
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
HIGHLIGHTED AREA  
SHOWN IN FIGURE 21C  
65dB  
80dB  
0
f
/4  
f
/3  
f
/2  
2f /3  
f
O
O
O
O
O
FREQUENCY (Hz)  
251224 F21b  
Figurem2±b.mHighlightedmPortionmofmFrequencymRes1onsemfropmFigurem2±a  
0.002  
0.001  
0
0.001dB  
–0.001  
–0.002  
–0.001dB  
0
f /4  
O
FREQUENCY (Hz)  
251224 F21c  
Figurem2±c.mNowmRi11lemPassbandmPortionmofmFrequencymRes1onsemfropmFigurem2±b  
251224fa  
24  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
Settlingm(ipemandmGrou1mDelay  
D G (ANm I(ERFACE  
The length of each digital filter’s impulse response deter-  
mines its settling time. Linear phase filters exhibit con-  
stant delay time versus input frequency (that is, constant  
group delay). Group delay of the digital filter is defined to  
be the delay to the center of the impulse response.  
The LTC2512-24 features two digital serial interfaces.  
Serial interface A is used to read the filtered output data.  
Serial interface B is used to read the no latency output  
data. Both interfaces support a flexible OVDD supply,  
allowing the LTC2512-24 to communicate with any digi-  
tal logic operating between 1.8V and 5V, including 2.5V  
and 3.3V systems.  
LTC2512-24 is optimized for low latency, and it pro-  
vides fast settling. Figure 22 shows the output settling  
behavior after a step change on the analog inputs of the  
LTC2512-24. The X axis is given in units of output sample  
number. The step response is representative for all values  
of DF. Full settling is achieved in 35 output samples.  
1
Analog Step Input Signal  
Digital Filter Output D1(n)  
0
LTC2512−24 Output Samples Dout(k)  
21 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
Output Sample Number  
251224 F22  
Figurem22.mSte1mRes1onsemofmN(C25±2-24  
251224fa  
25  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
FilteredmOut1utmData  
DistributedmRead  
Figure 23 shows a typical operation for reading the fil-  
tered output data. The I/O register contains filtered output  
LTC2512-24 enables the user to read out the contents  
of the I/O register over multiple conversions. Figure 24  
codes D (k) provided by the decimation filter. D (k)  
shows a case where one bit of D (k) is read for each  
OUT  
OUT  
OUT  
is updated once in every DF number of conversion cycles.  
A timing signal DRL indicates when D (k) is updated.  
DRL goes high at the beginning of eOveUrTy DFth conver-  
sion, and it goes low when the conversion completes. The  
of 24 consecutive A/D conversions, enabling the use of  
a much slower serial clock (SCKA). Transitions on the  
digital interface should be avoided during A/D conversion  
operations (when BUSY is high).  
24-bits of D (k) can be read out before the beginning  
OUT  
of the next A/D conversion.  
1
2
DF  
DF+1  
DF+2  
2DF  
2DF+1  
2DF+2  
3DF  
CONVERSION  
NUMBER  
MCLK  
DRL  
DF NUMBER OF  
CONVERSIONS  
DF NUMBER OF  
CONVERSIONS  
DF NUMBER OF  
CONVERSIONS  
FILTERED OUTPUT  
REGISTER  
(REGISTER UPDATED ONCE  
EVERY DF CONVERSIONS)  
D
(0)  
OUT  
D (1)  
OUT  
D (2)  
OUT  
D
(3)  
OUT  
1
24  
1
24  
1
24  
SCKA  
251224 F23  
Figurem23.m(y1icalmFilteredmOut1utmDatamO1erationm(iping  
DF NUMBER OF CONVERSIONS  
CONVERSION  
0
1
2
3
23  
24  
25  
DF  
DF+1  
NUMBER  
MCLK  
DRL  
(REGISTER UPDATED ONCE FOR  
EVERY DF CONVERSIONS)  
FILTERED OUTPUT  
REGISTER  
D (0)  
OUT  
D
(1)  
OUT  
1
2
3
24  
1
SCKA  
1 SCKA  
1 SCKA  
1 SCKA  
24 SCKA  
1 SCKA/CNV  
1 SCKA  
0 SCKA  
251224 F24  
Figurem24.mReadingmOutmFilteredmOut1utmDatamwithmDistributedmRead  
251224fa  
26  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
Synchronization  
SYNC signal, to be synchronized with each other. This  
allows each LTC2512-24 device to update its output reg-  
ister at the same time. Note that all devices being syn-  
chronized must operate with the same DF.  
The output of the digital filter D1(n) is updated every  
conversion, whereas the down-sampler output D (k)  
OUT  
is updated only once every DF number of conversions.  
Synchronization is the process of selecting when the out-  
PeriodicmSynchronization  
put D (k) is updated.  
OUT  
SYNCpulsesthatreinforceanexistingsynchronizationdo  
not interfere with normal operation. Figure 26 shows a  
case where a SYNC pulse is applied for each DF num-  
ber of conversions to continually reinforce a synchro-  
nization. Figure 26 indicates synchronization windows  
when a SYNC pulse may be applied to reinforce the  
synchronized operation.  
This is done by applying a pulse on the SYNC pin of the  
LTC2512-24. The I/O register for D (k) is updated at  
OUT  
each multiple of DF number of conversions after a SYNC  
pulse is provided, as shown in Figure 25. A timing signal  
DRL indicates when D (k) is updated.  
OUT  
The SYNC function allows multiple LTC2512-24 devices,  
operated from the same master clock using a common  
1
2
DF  
DF+1  
DF+2  
2DF  
2DF+1  
2DF+2  
3DF  
CONVERSION  
NUMBER  
MCLK  
DRL  
DF NUMBER  
OF CONVERSIONS  
DF NUMBER  
OF CONVERSIONS  
DF NUMBER  
OF CONVERSIONS  
SYNC  
FILTERED OUTPUT  
REGISTER  
D (0)  
OUT  
D (1)  
OUT  
D (2)  
OUT  
D (3)  
OUT  
251224 F25  
Figurem25.mSynchronizationmUsingmamSinglemSYICmPulse  
1
2
DF  
DF+1  
DF+2  
2DF  
2DF+1  
2DF+2  
3DF  
3DF+1  
CONVERSION  
NUMBER  
MCLK  
SYNCHRONIZATION  
WINDOW  
SYNCHRONIZATION  
WINDOW  
SYNCHRONIZATION  
WINDOW  
DRL  
SYNC  
FILTERED OUTPUT  
REGISTER  
D (0)  
OUT  
D (1)  
OUT  
D (2)  
OUT  
D (3)  
OUT  
251224 F26  
Figurem26.mSynchronizationmUsingmamPeriodicmSYICmPulse  
251224fa  
27  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
Self-CorrectingmSynchronization  
IomNatencymOut1utmData  
Figure 27 shows a case where an unexpected glitch on  
MCLK causes an extra A/D conversion to occur. This extra  
conversion alters the update instants for D (k). The  
applied periodic SYNC pulse reestablishes OthUeT desired  
synchronization and self corrects within one conversion  
cycle. Note that the digital filter is reset when the synchro-  
nization is changed (reestablished).  
Figure 28 shows a typical operation for reading the no  
latency output data. The no latency I/O register holds a  
22-bit composite code R(n) from the most recent sample  
+
taken of inputs IN and IN at the rising edge of MCLK.  
The first 14 bits of R(n) represent the input voltage dif-  
+
ference (IN – IN ), MSB first. The last 8 bits represent  
+
the common-mode input voltage (IN + IN )/2, MSB first.  
1
2
DF–1  
DF  
DF+1  
2DF–1  
2DF  
2DF+1  
2DF+2  
USER CONVERSION  
NUMBER  
USER PROVIDED  
MCLK  
SYNCHRONIZATION  
WINDOW  
UNWANTED  
GLITCH  
CORRUPTED  
MCLK  
EXPECTED DRL  
DRL W/O  
PERIODIC SYNC  
DF NUMBER  
OF CONVERSIONS  
DF NUMBER  
OF CONVERSIONS  
PERIODIC SYNC  
EXPECTED DRL  
CORRECTED DRL  
DRL WITH  
PERIODIC SYNC  
251224 F27  
Figurem27.mRecoveringmSynchronizationmfropmUnex1ectedmGlitch  
0
1
2
3
4
5
6
CONVERSION  
NUMBER  
MCLK  
BUSY  
NO-LATENCY  
OUTPUT REGISTER  
R(0)  
22  
R(1)  
22  
R(2)  
22  
R(3)  
22  
R(4)  
22  
R(5)  
22  
R(6)  
1
1
1
1
1
1
1
22  
SCKB  
251224 F28  
Figurem28.m(y1icalmIyquistmOut1utmDatamO1erationm(iping  
251224fa  
28  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
ConfigurationmWord  
(ablem3.mConfigurationmWORDmformDifferentmDFmValues  
DF  
4
8
16  
32  
WA[7:0]  
00100110  
00110110  
01000110  
01010110  
An 8-bit configuration word, WA[7:0], is appended to the  
24-bit output code on SDOA to produce a total output  
word of 32 bits as shown in Figure 29. The configura-  
tion word designates which downsampling factor (DF)  
the digital filter is configured to operate with. Clocking  
out the configuration word is optional. Table 3 lists the  
configuration words for each DF value.  
MCLK  
CONVERT  
DRL  
SCKA  
DA22 DA20 DA18 DA16 DA14 DA12 DA10  
DA23 DA21 DA19 DA17 DA15 DA13 DA11 DA9  
DA8  
DA6  
DA4  
DA2  
DA0  
WA6  
WA4  
WA2  
WA0  
SDOA  
DA7  
DA5  
DA3  
DA1  
WA7  
WA5  
WA3  
WA1  
251224 F29  
Figurem29.mUsingmamSinglemN(C25±2-24mwithmDFm=m4mtomReadmFilteredmOut1ut  
251224fa  
29  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
FilteredmOut1utmData,mSinglemDevice,mDFm=m4  
Figure 30 shows an LTC2512-24 configured to operate  
with DF = 4. With RDLA grounded, SDOA is enabled and  
MSB (DA23) of the output result is available t  
after the falling edge of DRL.  
DSDOBUSYL  
MASTER CLK  
DIGITAL HOST  
IRQ  
MCLK  
LTC2512-24  
SCKA  
DRL  
RDLA  
SEL0  
SEL1  
DATA IN  
CLK  
SDOA  
RDLA = GND  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
t
MCLKH  
t
MCLKL  
MCLK  
DRL  
t
DRLLH  
BUSY  
t
CONV  
t
BUSYLH  
t
t
t
QUIET  
SCKA  
SCKAH  
SCKA  
SDOA  
1
2
3
30  
31  
32  
t
SCKAL  
t
HSDOA  
t
DSDOADRLL  
t
DSDOA  
DA31  
DA30  
DA29  
DA1  
DA0  
251224 F30  
Figurem30.mUsingmamSinglemN(C25±2-24mwithmDFm=m4mtomReadmFilteredmOut1ut  
251224fa  
30  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
FilteredmOut1utmData,mMulti1lemDevices,mDFm=m4  
of each ADC must be used to allow only one LTC2512-24  
to drive SDOA at a time in order to avoid bus conflicts.  
As shown in Figure 31, the RDLA inputs idle high and are  
individually brought low to read data out of each device  
between conversions. When RDLA is brought low, the  
MSB of the selected device is output on SDOA.  
Figure 31 shows two LTC2512-24 devices configured to  
operate with DF = 4, while sharing MCLK, SYNC, SCKA  
and SDOA. By sharing MCLK, SYNC, SCKA and SDOA, the  
number of required signals to operate multiple ADCs in  
parallel is reduced. Since SDOA is shared, the RDLA input  
SYNC  
RDLA  
RDLA  
X
Y
MASTER CLK  
DIGITAL HOST  
IRQ  
MCLK  
MCLK  
RDLA  
SYNC  
RDLA  
SYNC  
DRL  
LTC2512-24  
X
LTC2512-24  
Y
SEL0  
SEL1  
SEL0  
SEL1  
DATA IN  
SDOA  
SDOA  
SCKA  
SCKA  
CLK  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
t
MCLKL  
MCLK  
DRL  
t
DRLLH  
BUSY  
t
CONV  
t
BUSYLH  
RDLA  
RDLA  
X
Y
SYNC  
SCKA  
t
SCKA  
t
QUIET  
t
SCKAH  
1
2
3
30  
31  
32  
33  
34  
35  
62  
63  
64  
t
t
HSDOA  
SCKAL  
t
t
DISA  
t
ENA  
DSDOA  
Hi-Z  
Hi-Z  
Hi-Z  
SDOA  
251224 F31  
DA31X DA30X DA29X  
DA1X DA0X  
DA31Y DA30Y DA29Y  
DA1Y DA0Y  
Figurem3±.mReadingmFilteredmOut1utmwithmMulti1lemDevicesmSharingmMCNK,mSCKAmandmSDOA  
251224fa  
31  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
IomNatencymOut1utmData,mSinglemDevice  
Figure 32 shows a single LTC2512-24 configured to read  
the no latency data out. With RDLB grounded, SDOB is  
enabled and MSB (DB13) of the output result is available  
t
after the falling edge of BUSY.  
DSDOBBUSYL  
MASTER CLK  
DIGITAL HOST  
IRQ  
MCLK  
LTC2512-24  
SCKB  
BUSY  
SDOB  
RDLB  
DATA IN  
CLK  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
RDLB = GND  
MCLK  
t
CYC  
t
MCLKH  
t
MCLKL  
t
= t  
– t  
– t  
ACQ CYC CONV BUSYLH  
BUSY  
t
t
ACQ  
CONV  
t
BUSYLH  
t
t
t
QUIET  
SCKB  
SCKBH  
SCKB  
SDOB  
1
2
3
12  
13  
14  
t
SCKBL  
t
HSDOB  
t
t
DSDOBBUSYL  
DSDOB  
DB13  
DB12  
DB11  
DB1  
DB0  
CB7  
251224 F32  
Figurem32.mUsingmamSinglemN(C25±2-24mtomReadmIomNatencymOut1ut  
251224fa  
32  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
IomNatencymOut1utmData,mMulti1lemDevices  
ADC must be used to allow only one LTC2512-24 to drive  
SDOB at a time in order to avoid bus conflicts. As shown  
in Figure 33, the RDLB inputs idle high and are individu-  
ally brought low to read data out of each device between  
conversions. When RDLB is brought low, the MSB of the  
selected device is output on SDOB.  
Figure 33 shows multiple LTC2512-24 devices configured  
to read no latency data out, while sharing MCLK, SCKB  
and SDOB. By sharing MCLK, SCKB and SDOB, the num-  
ber of required signals to operate multiple ADCs in parallel  
is reduced. Since SDOB is shared, the RDLB input of each  
RDLB  
RDLB  
X
Y
MASTER CLK  
DIGITAL HOST  
IRQ  
MCLK  
MCLK  
BUSY  
SDOB  
RDLB  
RDLB  
LTC2512-24  
LTC2512-24  
Y
X
DATA IN  
SDOB  
SCKB  
SCKB  
CLK  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
t
MCLKL  
MCLK  
BUSY  
t
CONV  
t
BUSYLH  
RDLB  
RDLB  
X
Y
t
SCKB  
t
QUIET  
t
SCKBH  
SCKB  
SDOB  
1
2
3
20  
21  
22  
23  
24  
25  
42  
43  
44  
t
t
HSDOB  
SCKBL  
t
t
DISB  
t
ENB  
DSDOB  
Hi-Z  
Hi-Z  
Hi-Z  
251224 F33  
DB13X DB12X DB11X  
CB1X CB0X  
DB13Y DB12Y DB11Y  
CB1Y CB0Y  
Figurem33.mReadingmIomNatencymOut1utmwithmMulti1lemDevicesmSharingmMCNK,mSCKBmandmSDOB  
251224fa  
33  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
APPLICATIONS INFORMATION  
FilteredmOut1utmData,mIomNatencymData,mSinglemDevice  
shared SDO bus at a time in order to avoid bus conflicts.  
As shown in Figure 34, the RDLA and RDLB inputs idle  
high and are individually brought low to read data from  
each serial output when data is available. When RDLA  
is brought low, the MSB of the filtered output data from  
SDOA is output on the shared SDO bus. When RDLB is  
brought low, the MSB of the no latency data output from  
SDOB is output on the shared SDO bus.  
Figure 34 shows a single LTC2512-24 configured to read  
both filtered and no latency output data, while sharing  
SDOA with SDOB and SCKA with SCKB. Sharing signals  
reduces the total number of required signals to read both  
the filtered and no latency data from the ADC. Since SDOA  
and SDOB are shared, the RDLA and RDLB inputs of the  
ADC must be used to allow only one output to drive the  
RDLA  
RDLB  
MASTER CLK  
DIGITAL HOST  
MCLK  
RDLA  
DRL  
IRQ  
RDLB  
LTC2512-24  
DATA IN  
SDOA  
SEL0  
SDOB  
SEL1  
SCKA  
SCKB  
CLK  
CONVERT  
POWER-DOWN AND ACQUIRE  
CONVERT  
t
MCLKL  
MCLK  
DRL  
t
DRLLH  
BUSY  
RDLA  
t
CONV  
t
BUSYLH  
RDLB  
t
t
SCKB  
SCKA  
t
QUIET  
t
t
SCKAH  
SCKBH  
44  
SCKA/  
SCKB  
1
2
3
22  
23  
24  
25  
26  
27  
45  
46  
t
t
t
SCKAL  
SCKBL  
HSDOA  
t
t
ENB  
HSDOB  
t
t
DISA  
t
ENA  
t
DSDOA  
DSDOB  
SDOA/  
SDOB  
Hi-Z  
Hi-Z  
Hi-Z  
DA23 DA22 DA21  
DA1 DA0 CB7  
DB13 DB12 DB11  
CB1 CB0  
251224 F34  
Figurem34.mReadingmFilteredmOut1utmandmIomNatencymOut1utmbymSharingmSCK,mandmSDO  
251224fa  
34  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
BOARD LAYOUT  
To obtain the best performance from the LTC2512-24, a  
four-layer printed circuit board (PCB) is recommended.  
Layout for the PCB should ensure the digital and analog  
signal lines are separated as much as possible. In particu-  
lar, care should be taken not to run any digital clocks or  
signals alongside analog signals or underneath the ADC.  
low noise operation of the ADC. A single solid ground  
plane is recommended for this purpose. When possible,  
screen the analog input traces using ground.  
ReferencemDesign  
For a detailed look at the reference design for this con-  
verter, including schematics and PCB layout, please refer to  
http://www.linear.com/docs/55376, the evaluation kit for  
the LTC2512-24. DC2222A is designed to achieve the full  
data sheet performance of the LTC2512-24. Customer  
board layout should copy DC2222A grounding, and place-  
ment of bypass capacitor as closely as possible.  
Supply bypass capacitors should be placed as close as  
possible to the supply pins. Low impedance common  
returns for these bypass capacitors are essential to the  
251224fa  
35  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
PACKAGE DESCRIPTION  
Pleasemrefermtomhtt1://www.linear.cop/1roduct/N(C25±2-24#1ackagingmformthempostmrecentm1ackagemdrawings.  
DKDmPackage  
24-NeadmPlasticmDFImꢀ7pp × 4pp)  
(Reference LTC DWG # 05-08-1864 Rev Ø)  
0.70 ±0.05  
4.50 ±0.05  
6.43 ±0.05  
2.64 ±0.05  
3.10 ±0.05  
PACKAGE  
OUTLINE  
0.50 BSC  
0.25 ±0.05  
5.50 REF  
RECOMMENDED SOLDER PAD LAYOUT  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
TYP  
7.00 ±0.10  
13  
24  
R = 0.05  
TYP  
0.40 ±0.10  
6.43 ±0.10  
2.64 ±0.10  
4.00 ±0.10  
PIN 1 NOTCH  
R = 0.30 TYP OR  
0.35 × 45° CHAMFER  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
12  
1
0.25 ±0.05  
0.50 BSC  
0.75 ±0.05  
5.50 REF  
BOTTOM VIEW—EXPOSED PAD  
(DKD24) DFN 0210 REV Ø  
0.200 REF  
NOTE:  
0.00 – 0.05  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WXXX)  
IN JEDEC PACKAGE OUTLINE M0-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION  
ON THE TOP AND BOTTOM OF PACKAGE  
251224fa  
36  
For more information www.linear.com/LTC2512-24  
LTC2512-24  
REVISION HISTORY  
REV  
DA(E  
DESCR P( OI  
PAGEmIUMBER  
A
02/18 Corrected order of [SEL1 SEL0] bits  
11  
29  
Corrected configuration WORD bits WA[7:0] in Table 3  
251224fa  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog  
Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications  
37  
subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
LTC2512-24  
TYPICAL APPLICATION  
BufferingmandmConvertingmam±±0Vm(ruemBi1olarm n1utmSignalmtomamFullymDifferentialmADCm n1utm  
1k  
8V  
5V  
2.5V  
6800pF  
0.1µF  
REF  
V
2k  
2k  
30.1Ω  
30.1Ω  
DD  
+
+
IN  
IN  
VOCM  
V
/2  
REF  
6800pF  
LTC6363  
LTC2512-24  
GND  
10V  
0V  
+
V
IN  
6800pF  
–10V  
0.1µF  
0.1µF  
–3V  
1k  
251224 TA02  
RELATED PARTS  
PAR(mIUMBER  
DESCR P( OI  
COMMEI(S  
LTC2380-24  
24-Bit, 1.5/2Msps, 0.5ppm INL Serial, 2.5V Supply, 5V Fully Differential Input, 100dB SNR, MSOP-16 and 4mm × 3mm DFN-16  
Low Power ADC Packages  
LTC2368-24  
24-Bit, 1Msps, 0.5ppm INL Serial Low 2.5V Supply, 0V to 5V Unipolar Input, 98dB SNR, MSOP-16 and 4mm × 3mm DFN-16  
Power ADC with Unipolar Input Range  
Package  
LTC2378-20/  
LTC2377-20/  
LTC2376-20  
20-Bit, 1Msps/500ksps/250ksps,  
0.5ppm INL Serial, Low Power ADC  
2.5V Supply, 5V Fully Differential Input, 104dB SNR, MSOP-16 and 4mm × 3mm DFN-16  
Packages  
LTC2508-32  
32-Bit Oversampling ADC with  
Configurable Digital Filter  
145dB Dynamic Range at 61ksps 131dB Dynamic Range at 4ksps Pin Compatible with  
LTC2512-24  
DACs  
LTC2757  
18-Bit, Single Parallel I  
DAC  
SoftSpan™  
1LSB INL/DNL, Software-Selectable Ranges, 7mm × 7mm LQFP-48 Package  
1LSB INL/DNL, MSOP-8 Package, 0V to 5V Output  
OUT  
LTC2641  
16-Bit/14-Bit/12-Bit Single Serial V  
DAC  
OUT  
LTC2630  
12-Bit/10-Bit/8-Bit Single V  
DACs  
SC70 6-Pin Package, Internal Reference, 1LSB INL (12 Bits)  
OUT  
REFEREICES  
LTC6655  
Precision Low Drift Low Noise Buffered 5V/4.906V/3.3V/3V/2.5V/2.048V/1.25V, 2ppm/°C, 0.25ppm Peak-to-Peak Noise,  
Reference MSOP-8 Package  
LTC6652  
Precision Low Drift Low Noise Buffered 5V/4.906V/3.3V/3V/2.5V/2.048V/1.25V, 5ppm/°C, 2.1ppm Peak-to-Peak Noise,  
Reference  
MSOP-8 Package  
AMPN F ERS  
LTC2057  
Low Noise Zero-Drift Operational  
Amplifier  
4µV Offset Voltage, 0.015µV/°C Offset Voltage Drift  
LTC6363  
LTC6362  
Low Power, Fully Differential Output  
Amplifier/Driver  
Single 2.8V to 11V Supply, 1.9mA Supply Current, MSOP-8 and 2mm × 3mm  
DFN-8 Packages  
Low Power, Fully Differential Input/  
Output Amplifier/Driver  
Single 2.8V to 5.25V Supply, 1mA Supply Current, MSOP-8 and 3mm × 3mm  
DFN-8 Packages  
251224fa  
LT 0218 REV A • PRINTED IN USA  
www.linear.com/LTC2512-24  
ANALOG DEVICES, INC. 2016  
38  

相关型号:

LTC25501PAK

Optoelectronic
ETC

LTC25601PAK

Optoelectronic
ETC

LTC2600

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CGN

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CGN#TRPBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2600CGNPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CGNTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CUFD#TRPBF

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: QFN; Pins: 20; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2600CUFDPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600CUFDTRPBF

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IGN

Octal 16-/14-/12-Bit Rail-to-Rail DACs in 16-Lead SSOP
Linear

LTC2600IGN#TR

LTC2600 - Octal 16-Bit Rail-to-Rail DACs in 16-Lead SSOP; Package: SSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear