LTC2626 [Linear]

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface; 16位/ 14位/ 12位轨至轨DAC,带有I2C接口
LTC2626
型号: LTC2626
厂家: Linear    Linear
描述:

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
16位/ 14位/ 12位轨至轨DAC,带有I2C接口

文件: 总20页 (文件大小:311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC2606/LTC2616/LTC2626  
16-/14-/12-Bit Rail-to-Rail DACs  
with I2C Interface  
U
DESCRIPTIO  
FEATURES  
The LTC®2606/LTC2616/LTC2626 are single 16-, 14-  
and 12-bit, 2.7V-to-5.5V rail-to-rail voltage output DACs  
in a 10-lead DFN package. They have built-in high perfor-  
mance output buffers and are guaranteed monotonic.  
Smallest Pin-Compatible Single DACs:  
LTC2606: 16 Bits  
LTC2616: 14 Bits  
LTC2626: 12 Bits  
Guaranteed 16-Bit Monotonic Over Temperature  
These parts establish new board-density benchmarks for  
16- and 14-bit DACs and advance performance standards  
for output drive and load regulation in single-supply,  
voltage-output DACs.  
Thepartsusea2-wire, I2Ccompatibleserialinterface. The  
LTC2606/LTC2616/LTC2626 operate in both the standard  
mode (clock rate of 100kHz) and the fast mode (clock rate  
of 400kHz). An asynchronous DAC update pin (LDAC) is  
also included.  
27 Selectable Addresses  
400kHz I2CTM Interface  
Wide 2.7V to 5.5V Supply Range  
Low Power Operation: 270µA at 3V  
Power Down to 1µA, Max  
High Rail-to-Rail Output Drive (±15mA, Min)  
Double-Buffered Data Latches  
Asynchronous DAC Update Pin  
LTC2606/LTC2616/LTC2626: Power-On Reset to  
Zero Scale  
The LTC2606/LTC2616/LTC2626 incorporate a power-on  
resetcircuit.Duringpower-up,thevoltageoutputsriseless  
than10mVabovezeroscale;andafterpower-up, theystay  
at zero scale until a valid write and update take place. The  
power-on reset circuit resets the LTC2606-1/LTC2616-1/  
LTC2626-1 to midscale. The voltage outputs stay at  
midscale until a valid write and update take place.  
LTC2606-1/LTC2616-1/LTC2626-1: Power-On Reset  
to Midscale  
Tiny (3mm × 3mUm) 10-Lead DFN Package  
APPLICATIO S  
Mobile Communications  
Process Control and Industrial Automation  
Instrumentation  
Automatic Test Equipment  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
W
BLOCK DIAGRA  
9
6
Differential Nonlinearity  
(LTC2606)  
V
REF  
CC  
SCL  
1.0  
V
V
V
= 5V  
REF  
3
2
OUT  
CC  
INPUT  
REGISTER  
DAC  
REGISTER  
16-BIT DAC  
7
0.8  
0.6  
= 4.096V  
2
I C  
INTERFACE  
0.4  
SDA  
0.2  
CONTROL  
LOGIC  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
CA0  
CA1  
CA2  
4
5
1
2
I C  
ADDRESS  
DECODE  
0
16384  
32768  
CODE  
49152  
65535  
LDAC  
10  
GND  
8
2606 G02  
2606 BD  
26061626f  
1
LTC2606/LTC2616/LTC2626  
W W W  
U
(Note 1)  
ABSOLUTE AXI U RATI GS  
Any Pin to GND........................................... 0.3V to 6V  
Any Pin to VCC .............................................6V to 0.3V  
Maximum Junction Temperature ......................... 125°C  
Storage Temperature Range ................ 65°C to 125°C  
Lead Temperature (Soldering, 10 sec)................ 300°C  
Operating Temperature Range:  
LTC2606C/LTC2616C/LTC2626C  
LTC2606-1C/LTC2616-1C/LTC2626-1C ... 0°C to 70°C  
LTC2606I/LTC2616I/LTC2626I  
LTC2606-1I/LTC2616-1I/LTC2626-1I.. 40°C to 85°C  
W U  
/O  
PACKAGE RDER I FOR ATIO  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
ORDER PART  
NUMBER  
TOP VIEW  
CA2  
SDA  
SCL  
CA0  
CA1  
1
2
3
4
5
10 LDAC  
LTC2616CDD  
LTC2616IDD  
LTC2606CDD  
LTC2606IDD  
LTC2626CDD  
LTC2626IDD  
9
8
7
6
V
CC  
11  
GND  
V
OUT  
LTC2606CDD-1  
LTC2606IDD-1  
LTC2616CDD-1  
LTC2616IDD-1  
LTC2626CDD-1  
LTC2626IDD-1  
REF  
DD PACKAGE  
DD PART MARKING  
LAJX  
DD PART MARKING  
LBPQ  
DD PART MARKING  
LBPS  
10-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 125°C, θJA = 43°C/W  
EXPOSED PAD (PIN 11) IS GND  
MUST BE SOLDERED TO PCB  
LAJW  
LBPR  
LBPT  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS The denotes specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
unless otherwise noted.  
LTC2626/LTC2626-1 LTC2616/LTC2616-1 LTC2606/LTC2606-1  
SYMBOL PARAMETER  
DC Performance  
Resolution  
CONDITIONS  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
UNITS  
12  
12  
14  
14  
16  
16  
Bits  
Bits  
LSB  
LSB  
Monotonicity  
(Note 2)  
(Note 2)  
DNL  
INL  
Differential Nonlinearity (Note 2)  
±0.5  
±4  
±1  
±1  
Integral Nonlinearity  
Load Regulation  
±1  
±4 ±16  
±14 ±64  
V
= V = 5V, Midscale  
CC  
OUT  
OUT  
REF  
I
I
= 0mA to 15mA Sourcing  
= 0mA to 15mA Sinking  
0.025 0.125  
0.05 0.125  
0.1  
0.2  
0.5  
0.5  
0.5  
0.7  
2
2
LSB/mA  
LSB/mA  
V
= V = 2.7V, Midscale  
OUT  
OUT  
REF  
I
I
CC  
= 0mA to 7.5mA Sourcing  
= 0mA to 7.5mA Sinking  
0.05 0.25  
0.1 0.25  
0.2  
0.4  
1
1
0.9  
1.5  
4
4
LSB/mA  
LSB/mA  
ZSE  
Zero-Scale Error  
Offset Error  
Code = 0  
(Note 5)  
1
9
1
9
1
9
mV  
mV  
V
±1  
±5  
±9  
±1  
±5  
±9  
±1  
±5  
±9  
OS  
V
Temperature  
µV/°C  
OS  
Coefficient  
GE  
Gain Error  
±0.1 ±0.7  
±8.5  
±0.1 ±0.7  
±8.5  
±0.1 ±0.7  
±8.5  
%FSR  
Gain Temperature  
Coefficient  
ppm/°C  
26061626f  
2
LTC2606/LTC2616/LTC2626  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted. (Note 11)  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
SYMBOL PARAMETER  
PSR Power Supply Rejection  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
= ±10%  
–81  
dB  
CC  
R
OUT  
DC Output Impedance  
V
V
= V = 5V, Midscale; –15mA I 15mA  
OUT  
0.05  
0.06  
0.15  
0.15  
REF  
REF  
CC  
= V = 2.7V, Midscale; –7.5mA I  
7.5mA  
CC  
OUT  
I
Short-Circuit Output Current  
V
= 5.5V, V = 5.5V  
CC REF  
SC  
Code: Zero Scale; Forcing Output to V  
15  
15  
34  
36  
60  
60  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
V
= 2.7V, V = 2.7V  
CC  
REF  
Code: Zero Scale; Forcing Output to V  
7.5  
7.5  
22  
29  
50  
50  
mA  
mA  
CC  
Code: Full Scale; Forcing Output to GND  
Reference Input  
Input Voltage Range  
0
V
V
kΩ  
pF  
CC  
Resistance  
Normal Mode  
88  
124  
15  
160  
Capacitance  
I
Reference Current, Power Down Mode DAC Powered Down  
0.001  
1
µA  
REF  
Power Supply  
V
Positive Supply Voltage  
Supply Current  
For Specified Performance  
2.7  
5.5  
V
CC  
I
V
V
= 5V (Note 3)  
= 3V (Note 3)  
0.340  
0.27  
0.35  
0.10  
0.5  
0.4  
1
mA  
mA  
µA  
CC  
CC  
CC  
DAC Powered Down (Note 3) V = 5V  
CC  
CC  
DAC Powered Down (Note 3) V = 3V  
1
µA  
Digital I/O (Note 11)  
V
V
V
V
V
V
Low Level Input Voltage  
(SDA and SCL)  
–0.5  
0.3V  
V
V
IL  
CC  
High Level Input Voltage  
(SDA and SCL)  
(Note 8)  
0.7V  
CC  
IH  
Low Level Input Voltage (LDAC)  
V
V
= 4.5V to 5.5V  
= 2.7V to 5.5V  
0.8  
0.6  
V
V
IL(LDAC)  
IH(LDAC)  
IL(CAn)  
IH(CAn)  
CC  
CC  
High Level Input Voltage (LDAC)  
V
V
= 2.7V to 5.5V  
= 2.7V to 3.6V  
2.4  
2.0  
V
V
CC  
CC  
Low Level Input Voltage on CAn  
(n = 0, 1, 2)  
See Test Circuit 1  
See Test Circuit 1  
See Test Circuit 2  
See Test Circuit 2  
See Test Circuit 2  
Sink Current = 3mA  
0.15V  
V
CC  
High Level Input Voltage on CAn  
(n = 0, 1, 2)  
0.85V  
V
CC  
R
R
R
Resistance from CAn (n = 0, 1, 2)  
10  
10  
kΩ  
kΩ  
MΩ  
INH  
INL  
INF  
OL  
to V to Set CAn = V  
CC  
CC  
Resistance from CAn (n = 0, 1, 2)  
to GND to Set CAn = GND  
Resistance from CAn (n = 0, 1, 2)  
2
0
to V or GND to Set CAn = Float  
CC  
V
Low Level Output Voltage  
Output Fall Time  
0.4  
V
t
t
I
V = V  
to V = V  
,
20 + 0.1C  
250  
ns  
OF  
O
IH(MIN)  
O
IL(MAX)  
B
C = 10pF to 400pF (Note 9)  
B
Pulse Width of Spikes Suppressed  
by Input Filter  
0
50  
ns  
SP  
Input Leakage  
0.1V V 0.9V  
CC  
1
µA  
pF  
pF  
pF  
IN  
CC  
IN  
C
C
C
I/O Pin Capacitance  
10  
IN  
Capacitive Load for Each Bus Line  
400  
10  
B
External Capacitive Load on Address  
Pins CAn (n = 0, 1, 2)  
CAX  
26061626f  
3
LTC2606/LTC2616/LTC2626  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
unless otherwise noted.  
temperature range, otherwise specifications are at TA = 25°C. REF = 4.096V (VCC = 5V), REF = 2.048V (VCC = 2.7V), VOUT unloaded,  
LTC2626/LTC2626-1 LTC2616/LTC2616-1 LTC2606/LTC2606-1  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
SYMBOL PARAMETER  
AC Performance  
CONDITIONS  
UNITS  
t
Settling Time (Note 6)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
7
7
9
7
9
10  
µs  
µs  
µs  
S
Settling Time for 1LSB Step  
(Note 7)  
±0.024% (±1LSB at 12 Bits)  
±0.006% (±1LSB at 14 Bits)  
±0.0015% (±1LSB at 16 Bits)  
2.7  
2.7  
4.8  
2.7  
4.8  
5.2  
µs  
µs  
µs  
Voltage Output Slew Rate  
Capacitive Load Driving  
Glitch Impulse  
0.75  
1000  
12  
0.75  
1000  
12  
0.75  
1000  
12  
V/µs  
pF  
At Midscale Transition  
nV • s  
kHz  
Multiplying Bandwidth  
180  
180  
180  
e
Output Voltage Noise Density At f = 1kHz  
At f = 10kHz  
120  
100  
120  
100  
120  
100  
nV/Hz  
nV/Hz  
n
Output Voltage Noise  
0.1Hz to 10Hz  
15  
15  
15  
µV  
P-P  
W U  
TI I G CHARACTERISTICS  
The denotes specifications which apply over the full operating temperature  
range, otherwise specifications are at TA = 25°C. (See Figure 1) (Notes 10, 11)  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
V
CC  
= 2.7V to 5.5V  
f
t
t
t
t
t
t
t
t
t
t
t
SCL Clock Frequency  
0
0.6  
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
SCL  
Hold Time (Repeated) Start Condition  
Low Period of the SCL Clock Pin  
High Period of the SCL Clock Pin  
Set-Up Time for a Repeated Start Condition  
Data Hold Time  
HD(STA)  
LOW  
HIGH  
SU(STA)  
HD(DAT)  
SU(DAT)  
r
1.3  
0.6  
0.6  
0
0.9  
Data Set-Up Time  
100  
Rise Time of Both SDA and SCL Signals  
Fall Time of Both SDA and SCL Signals  
Set-Up Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
(Note 9)  
(Note 9)  
20 + 0.1C  
20 + 0.1C  
0.6  
300  
300  
B
B
f
SU(STO)  
BUF  
1.3  
Falling Edge of 9th Clock of the 3rd Input Byte  
to LDAC High or Low Transition  
400  
1
t
LDAC Low Pulse Width  
20  
ns  
2
Note 6: V = 5V, V = 4.096V. DAC is stepped 1/4 scale to 3/4 scale  
Note 1: Absolute maximum ratings are those values beyond which the life  
CC  
REF  
and 3/4 scale to 1/4 scale. Load is 2k in parallel with 200pF to GND.  
of a device may be impaired.  
Note 7: V = 5V, V = 4.096V. DAC is stepped ±1LSB between half  
scale and half scale – 1. Load is 2k in parallel with 200pF to GND.  
Note 2: Linearity and monotonicity are defined from code k to code  
CC  
REF  
L
N
N
2 – 1, where N is the resolution and k is given by k = 0.016(2 /V ),  
L
L
REF  
rounded to the nearest whole code. For V = 4.096V and N = 16, k =  
256 and linearity is defined from code 256 to code 65,535.  
REF  
L
Note 8: Maximum V = V + 0.5V  
IH  
CC(MAX)  
Note 9: C = capacitance of one bus line in pF.  
B
Note 3: Digital inputs at 0V or V  
.
CC  
Note 10: All values refer to V  
and V  
levels.  
IH(MIN)  
IL(MAX)  
Note 4: Guaranteed by design and not production tested.  
Note 11: These specifications apply to LTC2606/LTC2606-1,  
LTC2616/LTC2616-1, LTC2626/LTC2626-1.  
Note 5: Inferred from measurement at code 256 (LTC2606/LTC2606-1),  
code 64 (LTC2616/LTC2616-1) or code 16 (LTC2626/LTC2626-1) and at  
full scale.  
26061626f  
4
LTC2606/LTC2616/LTC2626  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2606  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
INL vs Temperature  
1.0  
0.8  
32  
24  
32  
24  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
CC  
= 4.096V  
= 4.096V  
= 4.096V  
0.6  
16  
16  
0.4  
INL (POS)  
INL (NEG)  
8
8
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–8  
–16  
–24  
–32  
0
16384  
32768  
CODE  
49152  
65535  
0
16384  
32768  
CODE  
49152  
65535  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
2606 G02  
2606 G01  
2606 G03  
DNL vs Temperature  
INL vs VREF  
DNL vs VREF  
1.0  
0.8  
32  
24  
1.5  
1.0  
V
V
= 5V  
REF  
V
CC  
= 5.5V  
V
= 5.5V  
CC  
CC  
= 4.096V  
0.6  
16  
0.4  
0.5  
INL (POS)  
INL (NEG)  
DNL (POS)  
DNL (NEG)  
8
DNL (POS)  
DNL (NEG)  
0.2  
0
0
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–8  
–16  
–24  
–32  
–0.5  
–1.0  
–1.5  
–50 –30 –10 10  
30  
50  
70  
90  
0
1
2
3
4
5
0
1
2
3
4
5
TEMPERATURE (°C)  
V
REF  
(V)  
V
(V)  
REF  
2606 G04  
2606 G05  
2606 G06  
Settling to ±1LSB  
Settling of Full-Scale Step  
V
V
OUT  
100µV/DIV  
OUT  
100µV/DIV  
12.3µs  
9.7µs  
9TH CLOCK  
OF 3RD DATA  
BYTE  
9TH CLOCK OF  
3RD DATA BYTE  
SCL  
2V/DIV  
SCR  
2V/DIV  
2606 G07  
2606 G08  
2µs/DIV  
5µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
SETTLING TO ±1LSB  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
V
= 5V, V  
= 4.096V  
CC  
REF  
R
CODE 512 TO 65535 STEP  
AVERAGE OF 2048 EVENTS  
L
L
AVERAGE OF 2048 EVENTS  
26061626f  
5
LTC2606/LTC2616/LTC2626  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2616  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
8
6
1.0  
0.8  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
= 4.096V  
0.6  
4
0.4  
V
OUT  
2
100µV/DIV  
0.2  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–2  
–4  
–6  
–8  
8.9µs  
2606 G11  
2µs/DIV  
V
= 5V, V  
= 4.096V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
R
= 2k, C = 200pF  
L
L
0
4096  
8192  
CODE  
12288  
16383  
0
4096  
8192  
CODE  
12288  
16383  
AVERAGE OF 2048 EVENTS  
2606 G09  
2606 G10  
LTC2626  
Integral Nonlinearity (INL)  
Differential Nonlinearity (DNL)  
Settling to ±1LSB  
2.0  
1.5  
1.0  
V
V
= 5V  
REF  
V
V
= 5V  
REF  
CC  
CC  
= 4.096V  
0.8  
0.6  
= 4.096V  
1.0  
6.8µs  
0.4  
V
OUT  
0.5  
1mV/DIV  
0.2  
0
0
9TH CLOCK  
OF 3RD DATA  
BYTE  
SCL  
2V/DIV  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.5  
–1.0  
–1.5  
–2.0  
2606 G14  
2µs/DIV  
= 4.096V  
V
= 5V, V  
REF  
CC  
1/4-SCALE TO 3/4-SCALE STEP  
= 2k, C = 200pF  
R
L
L
0
1024  
2048  
CODE  
3072  
4095  
0
1024  
2048  
CODE  
3072  
4095  
AVERAGE OF 2048 EVENTS  
2606 G12  
2606 G13  
26061626f  
6
LTC2606/LTC2616/LTC2626  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2606/LTC2616/LTC2626  
Current Limiting  
Load Regulation  
Offset Error vs Temperature  
1.0  
0.8  
0.10  
0.08  
3
2
CODE = MIDSCALE  
CODE = MIDSCALE  
V
V
= V = 5V  
CC  
REF  
REF  
0.6  
0.06  
= V = 3V  
CC  
0.4  
0.04  
1
0.2  
0.02  
0
0
0
V
REF  
= V = 5V  
CC  
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–0.02  
–0.04  
–0.06  
–0.08  
–0.10  
V
= V = 3V  
CC  
REF  
REF  
–1  
–2  
–3  
V = V = 3V  
REF CC  
V
= V = 5V  
CC  
–35 –25 –15 –5  
5
15  
25  
35  
–40 –30 –20 –10  
0
10 20 30 40  
–50 –30 –10 10  
30  
50  
70  
90  
I
(mA)  
I
(mA)  
OUT  
TEMPERATURE (°C)  
OUT  
2606 G18  
2606 G17  
2606 G19  
Zero-Scale Error vs Temperature  
Gain Error vs Temperature  
Offset Error vs VCC  
0.4  
0.3  
3
2
3
2.5  
2.0  
1.5  
1.0  
0.5  
0
0.2  
1
0.1  
0
0
–0.1  
–0.2  
–0.3  
–0.4  
–1  
–2  
–3  
–50 –30 –10 10  
30  
50  
70  
90  
2.5  
3
3.5  
4
4.5  
5
5.5  
–50 –30 –10 10  
30  
50  
70  
90  
TEMPERATURE (°C)  
V
(V)  
TEMPERATURE (°C)  
CC  
2606 G21  
2606 G22  
2606 G20  
Gain Error vs VCC  
ICC Shutdown vs VCC  
0.4  
0.3  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0.2  
0.1  
0
–0.1  
–0.2  
–0.3  
–0.4  
0
2.5  
3
3.5  
4
4.5  
5
5.5  
2.5  
3
3.5  
4
4.5  
5
5.5  
V
(V)  
V
(V)  
CC  
CC  
2606 G23  
2606 G24  
26061626f  
7
LTC2606/LTC2616/LTC2626  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2606/LTC2616/LTC2626  
Large-Signal Response  
Midscale Glitch Impulse  
Power-On Reset Glitch  
V
OUT  
V
CC  
1V/DIV  
10mV/DIV  
V
OUT  
0.5V/DIV  
9TH CLOCK  
OF 3RD DATA  
BYTE  
4mV PEAK  
SCL  
2V/DIV  
V
= V = 5V  
CC  
REF  
V
OUT  
10mV/DIV  
1/4-SCALE TO 3/4-SCALE  
2606 G26  
2606 G27  
2.5µs/DIV  
2606 G25  
2.5µs/DIV  
250µs/DIV  
Headroom at Rails  
vs Output Current  
Power-On Reset to Midscale  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
V
= V  
CC  
REF  
5V SOURCING  
3V SOURCING  
1V/DIV  
V
CC  
5V SINKING  
3V SINKING  
V
OUT  
2606 G29  
500µs/DIV  
0
1
2
3
4
5
6
7
8
9
10  
I
(mA)  
OUT  
2606 G28  
Supply Current vs Logic Voltage  
Supply Current vs Logic Voltage  
650  
600  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
V
= 5V  
V
= 5V  
CC  
CC  
SWEEP LDAC  
SWEEP SCL AND  
SDA 0V TO V  
0V TO V  
CC  
CC  
AND V TO 0V  
CC  
550  
HYSTERESIS  
370mV  
500  
450  
400  
350  
300  
– 250  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
LOGIC VOLTAGE (V)  
LOGIC VOLTAGE (V)  
2606 G30  
2606 G31  
26061626f  
8
LTC2606/LTC2616/LTC2626  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
LTC2606/LTC2616/LTC2626  
Output Voltage Noise,  
0.1Hz to 10Hz  
Multiplying Bandwidth  
0
–3  
–6  
–9  
–12  
–15  
–18  
–21  
–24  
–27  
–30  
–33  
–36  
V
OUT  
10µV/DIV  
V
V
V
= 5V  
CC  
(DC) = 2V  
REF  
REF  
0
1
2
3
4
5
6
7
8
9
10  
(AC) = 0.2V  
P-P  
SECONDS  
CODE = FULL SCALE  
2606 G33  
1k  
10k  
100k  
1M  
FREQUENCY (Hz)  
2606 G32  
Short-Circuit Output Current vs  
VOUT (Sourcing)  
Short-Circuit Output Current vs  
VOUT (Sinking)  
0mA  
0mA  
V
V
= 5.5V  
= 5.6V  
V
V
= 5.5V  
= 5.6V  
CC  
REF  
CC  
REF  
CODE = 0  
SWEPT 0V TO V  
CODE = FULL SCALE  
V
V
OUT  
SWEPT V TO 0V  
OUT  
CC  
CC  
1V/DIV  
2606 G18  
1V/DIV  
2606 G19  
26061626f  
9
LTC2606/LTC2616/LTC2626  
U
U
U
PIN FUNCTIONS  
CA2 (Pin 1): Chip Address Bit 2. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 1).  
REF (Pin 6): Reference Voltage Input. 0V VREF VCC.  
VOUT (Pin 7): DAC Analog Voltage Output. The output  
range is 0V to VREF  
.
SDA (Pin 2): Serial Data Bidirectional Pin. Data is shifted  
into the SDA pin and acknowledged by the SDA pin. This  
pin is high impedance while data is shifted in. Open drain  
N-channel output during acknowledgment. SDA requires  
a pull-up resistor or current source to VCC.  
GND (Pin 8): Analog Ground.  
VCC (Pin 9): Supply Voltage Input. 2.7V VCC 5.5V.  
LDAC (Pin 10): Asynchronous DAC Update. A falling edge  
onthisinputafterfourbyteshavebeenwrittenintothepart  
immediately updates the DAC register with the contents of  
the input register. A low on this input without a complete  
32-bit (four bytes including the slave address) data write  
transfer to the part does not update the DAC output.  
Software power-down is disabled when LDAC is low.  
SCL (Pin 3): Serial Clock Input Pin. Data is shifted into the  
SDA pin at the rising edges of the clock. This high  
impedancepinrequiresapull-upresistororcurrentsource  
to VCC.  
CA0 (Pin 4): Chip Address Bit 0. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 1).  
Exposed Pad (Pin 11): Ground. Must be soldered to PCB  
ground.  
CA1 (Pin 5): Chip Address Bit 1. Tie this pin to VCC, GND  
orleaveitfloatingtoselectanI2Cslaveaddressforthepart  
(Table 1).  
26061626f  
10  
LTC2606/LTC2616/LTC2626  
W
BLOCK DIAGRA  
9
6
V
CC  
REF  
SCL  
3
V
OUT  
INPUT  
REGISTER  
DAC  
REGISTER  
16-BIT DAC  
7
2
I C  
INTERFACE  
SDA  
2
CONTROL  
LOGIC  
CA0  
4
2
I C  
CA1  
5
ADDRESS  
DECODE  
CA2  
1
LDAC  
10  
GND  
8
2606 BD  
TEST CIRCUITS  
Test Circuit 1  
Test Circuit 2  
V
DD  
R /R /R  
INH INL INF  
100  
CAn  
CAn  
V
/V  
IH(CAn) IL(CAn)  
GND  
2606 TC  
26061626f  
11  
LTC2606/LTC2616/LTC2626  
W U  
W
TI I G DIAGRA S  
26061626f  
12  
LTC2606/LTC2616/LTC2626  
U
OPERATIO  
Power-On Reset  
power supply and can be obtained from the I2C specifica-  
tions. For an I2C bus operating in the fast mode, an active  
pull-up will be necessary if the bus capacitance is greater  
than 200pF.  
The LTC2606/LTC2616/LTC2626 clear the outputs to  
zero scale when power is first applied, making system  
initialization consistent and repeatable. The LTC2606-1/  
LTC2616-1/LTC2626-1setthevoltageoutputstomidscale  
when power is first applied.  
The LTC2606/LTC2616/LTC2626 are receive-only (slave)  
devices. The master can write to the LTC2606/LTC2616/  
LTC2626. The LTC2606/LTC2616/LTC2626 do not re-  
spond to a read from the master.  
For some applications, downstream circuits are active  
during DAC power-up, and may be sensitive to nonzero  
outputs from the DAC during this time. The LTC2606/  
LTC2616/LTC2626 contain circuitry to reduce the power-  
on glitch; furthermore, the glitch amplitude can be made  
arbitrarily small by reducing the ramp rate of the power  
supply. For example, if the power supply is ramped to 5V  
in 1ms, the analog outputs rise less than 10mV above  
ground(typ)duringpower-on.SeePower-OnResetGlitch  
in the Typical Performance Characteristics section.  
The START (S) and STOP (P) Conditions  
When the bus is not in use, both SCL and SDA must be  
high. A bus master signals the beginning of a communica-  
tion to a slave device by transmitting a START condition.  
ASTARTconditionisgeneratedbytransitioningSDAfrom  
high to low while SCL is high.  
When the master has finished communicating with the  
slave, it issues a STOP condition. A STOP condition is  
generatedbytransitioningSDAfromlowtohighwhileSCL  
is high. The bus is then free for communication with  
another I2C device.  
Power Supply Sequencing  
The voltage at REF (Pin 6) should be kept within the range  
0.3V VREF VCC + 0.3V (see Absolute Maximum  
Ratings). Particular care should be taken to observe these  
limitsduringpowersupplyturn-onandturn-offsequences,  
when the voltage at VCC (Pin 9) is in transition.  
Acknowledge  
TheAcknowledgesignalisusedforhandshakingbetween  
the master and the slave. An Acknowledge (active LOW)  
generated by the slave lets the master know that the latest  
byte of information was received. The Acknowledge re-  
lated clock pulse is generated by the master. The master  
releases the SDA line (HIGH) during the Acknowledge  
clock pulse. The slave-receiver must pull down the SDA  
bus line during the Acknowledge clock pulse so that it  
remainsastableLOWduringtheHIGHperiodofthisclock  
pulse. The LTC2606/LTC2616/LTC2626 respond to a  
write by a master in this manner. The LTC2606/LTC2616/  
LTC2626 do not acknowledge a read (retains SDA HIGH  
during the period of the Acknowledge clock pulse).  
Transfer Function  
The digital-to-analog transfer function is:  
k
2
VOUT(IDEAL)  
=
V
REF  
N
where k is the decimal equivalent of the binary DAC input  
code, N is the resolution and VREF is the voltage at REF  
(Pin 6).  
Serial Digital Interface  
TheLTC2606/LTC2616/LTC2626communicatewithahost  
using the standard 2-wire I2C interface. The Timing Dia-  
grams (Figures 1 and 2) show the timing relationship of  
the signals on the bus. The two bus lines, SDA and SCL,  
must be high when the bus is not in use. External pull-up  
resistors or current sources are required on these lines.  
The value of these pull-up resistors is dependent on the  
Chip Address  
The state of CA0, CA1 and CA2 decides the slave address  
of the part. The pins CA0, CA1 and CA2 can be each set to  
any one of three states: VCC, GND or float. This results in  
27 selectable addresses for the part. The slave address  
assignments are shown in Table 1.  
26061626f  
13  
LTC2606/LTC2616/LTC2626  
U
OPERATIO  
Table 1. Slave Address Map  
Write Word Protocol  
CA2  
GND  
CA1  
GND  
CA0  
GND  
A6 A5 A4 A3 A2 A1 A0  
The master initiates communication with the LTC2606/  
LTC2616/LTC2626withaSTARTconditionanda7-bitslave  
address followed by the Write bit (W) = 0. The LTC2606/  
LTC2616/LTC2626 acknowledges by pulling the SDA pin  
low at the 9th clock if the 7-bit slave address matches the  
addressoftheparts(setbyCA0,CA1andCA2)ortheglobal  
address.Themasterthentransmitsthreebytesofdata.The  
LTC2606/LTC2616/LTC2626 acknowledges each byte of  
databypullingtheSDAlinelowatthe9thclockofeachdata  
byte transmission. After receiving three complete bytes of  
data, the LTC2606/LTC2616/LTC2626 executes the com-  
mand specified in the 24-bit input word.  
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
GND  
GND  
FLOAT  
GND  
GND  
V
CC  
GND  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
FLOAT  
GND  
V
CC  
GND  
V
V
V
GND  
CC  
CC  
CC  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
FLOAT  
GND  
GND  
GND  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
If more than three data bytes are transmitted after a valid  
7-bit slave address, the LTC2606/LTC2616/LTC2626 do  
not acknowledge the extra bytes of data (SDA is high  
during the 9th clock).  
FLOAT  
V
CC  
V
GND  
CC  
V
V
FLOAT  
CC  
CC  
TheformatofthethreedatabytesisshowninFigure3.The  
first byte of the input word consists of the 4-bit command  
and four don’t care bits. The next two bytes consist of the  
16-bit data word. The 16-bit data word consists of the  
16-, 14- or 12-bit input code, MSB to LSB, followed by 0,  
2 or 4 don’t care bits (LTC2606, LTC2616 and LTC2626  
respectively). AtypicalLTC2606writetransactionisshown  
in Figure 4.  
V
CC  
V
V
V
V
V
V
V
V
V
GND  
GND  
GND  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
FLOAT  
GND  
V
CC  
FLOAT  
FLOAT  
FLOAT  
GND  
FLOAT  
V
CC  
V
V
V
GND  
CC  
CC  
CC  
Thecommandassignments(C3-C0)areshowninTable2.  
The first four commands in the table consist of write and  
update operations. A write operation loads a 16-bit data  
word from the 32-bit shift register into the input register.  
In an update operation, the data word is copied from the  
input register to the DAC register and converted to an ana-  
log voltage at the DAC output. The update operation also  
powersuptheDACifithadbeeninpower-downmode.The  
data path and registers are shown in the Block Diagram.  
FLOAT  
V
CC  
GLOBAL ADDRESS  
Inadditiontotheaddressselectedbytheaddresspins, the  
parts also respond to a global address. This address  
allows a common write to all LTC2606, LTC2616 and  
LTC2626 parts to be accomplished with one 3-byte write  
transaction on the I2C bus. The global address is a 7-bit  
on-chip hardwired address and is not selectable by CA0,  
CA1 and CA2.  
Power-Down Mode  
The addresses corresponding to the states of CA0, CA1  
and CA2 and the global address are shown in Table 1. The  
maximum capacitive load allowed on the address pins  
(CA0, CA1 and CA2) is 10pF, as these pins are driven  
during address detection to determine if they are floating.  
For power-constrained applications, power-down mode  
canbeusedtoreducethesupplycurrentwhenevertheDAC  
output is not needed. When in power-down, the buffer  
amplifier, bias circuit and reference input is disabled and  
draws essentially zero current. The DAC output is put into  
26061626f  
14  
LTC2606/LTC2616/LTC2626  
U
OPERATIO  
Write Word Protocol for LTC2606/LTC2616/LTC1626  
W
A
1ST DATA BYTE  
A
2ND DATA BYTE  
A
3RD DATA BYTE  
A
P
S
SLAVE ADDRESS  
INPUT WORD  
Input Word (LTC2606)  
C3  
C1  
X
X
X
D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE 3RD DATA BYTE  
C2  
C0  
X
X
X
1ST DATA BYTE  
Input Word (LTC2616)  
C3  
C1  
X
X
X
X
D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
2ND DATA BYTE 3RD DATA BYTE  
X
X
X
C2  
C0  
1ST DATA BYTE  
Input Word (LTC2626)  
C3  
C1  
X
X
D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
X
X
X
C2  
C0  
2606 F03  
1ST DATA BYTE  
2ND DATA BYTE  
3RD DATA BYTE  
Figure 3  
Table 2  
COMMAND*  
C3 C2 C1 C0  
automatically shut down in addition to the DAC amplifier  
and reference input and so the power up delay time is  
12µs (for VCC = 5V) or 30µs (for VCC = 3V)  
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
1
1
0
1
Write to Input Register  
Update (Power Up) DAC Register  
Write to and Update (Power Up)  
Power Down  
Asynchronous DAC Update Using LDAC  
In addition to the update commands shown in Table 2, the  
LDAC pin asynchronously updates the DAC register with  
the contents of the input register. Asynchronous update is  
disabledwhentheinputwordisbeingclockedintothepart.  
No Operation  
*Command codes not shown are reserved and should not be used.  
a high impedance state, and the output pin is passively  
pulled to ground through 90k resistors. Input- and DAC-  
register contents are not disturbed during power-down.  
If a complete input word has been written to the part, a low  
on the LDAC pin causes the DAC register to be updated  
with the contents of the input register.  
The DAC channel can be put into power-down mode by  
using command 0100b. The 16-bit data word is ignored.  
The supply and reference currents are reduced to almost  
zero when the DAC is powered down; the effective  
resistance at REF becomes a high impedance input  
(typically > 1G).  
If the input word is being written to the part, a low going  
pulseontheLDACpinbeforethecompletionofthreebytes  
of data powers up the DAC but does not cause the output  
to be updated. If LDAC remains low after a complete input  
word has been written to the part, then LDAC is recog-  
nized, the command specified in the 24-bit word just  
transferred is executed and the DAC output is updated.  
Normal operation can be resumed by executing any com-  
mand which includes a DAC update, as shown in Table 2  
or performing an asychronous update (LDAC) as de-  
scribed in the next section. The DAC is powered up as its  
voltage output is updated. When the DAC in powered-  
down state is powered up and updated, normal settling is  
delayed. The main bias generation circuit block has been  
The DAC is powered up when LDAC is taken low, indepen-  
dent of any activity on the I2C bus.  
If LDAC is low at the falling edge of the 9th clock of the 3rd  
byte of data, it inhibits any software power-down com-  
mand that was specified in the input word.  
26061626f  
15  
LTC2606/LTC2616/LTC2626  
U
OPERATIO  
Voltage Output  
from sensitive analog signals and facilitates the use of  
separate digital and analog ground planes which have  
minimalcapacitiveandresistiveinteractionwitheachother.  
The rail-to-rail amplifier has guaranteed load regulation  
when sourcing or sinking up to 15mA at 5V (7.5mA at 3V).  
Digital and analog ground planes should be joined at only  
one point, establishing a system star ground as close to  
the device’s ground pin as possible. Ideally, the analog  
ground plane should be located on the component side of  
the board, and should be allowed to run under the part to  
shield it from noise. Analog ground should be a continu-  
ous and uninterrupted plane, except for necessary lead  
pads and vias, with signal traces on another layer.  
Load regulation is a measure of the amplifier’s ability to  
maintain the rated voltage accuracy over a wide range of  
load conditions. The measured change in output voltage  
per milliampere of forced load current change is ex-  
pressed in LSB/mA.  
DC output impedance is equivalent to load regulation, and  
may be derived from it by simply calculating a change in  
units from LSB/mA to Ohms. The amplifiers’ DC output  
impedance is 0.050when driving a load well away from  
the rails.  
The GND pin of the part should be connected to analog  
ground.ResistancefromtheGNDpintosystemstarground  
should be as low as possible. Resistance here will add  
directly to the effective DC output impedance of the device  
(typically 0.050). Note that the LTC2606/LTC2616/  
LTC2626arenomoresusceptibletotheseeffectsthanother  
partsoftheirtype;onthecontrary,theyallowlayout-based  
performance improvements to shine rather than limiting  
attainableperformancewithexcessiveinternalresistance.  
When drawing a load current from either rail, the output  
voltageheadroomwithrespecttothatrailislimitedbythe  
25typical channel resistance of the output devices;  
e.g., when sinking 1mA, the minimum output voltage =  
25• 1mA = 25mV. See the graph Headroom at Rails vs  
Output Current in the Typical Performance Characteris-  
tics section.  
Rail-to-Rail Output Considerations  
The amplifier is stable driving capacitive loads of up to  
1000pF.  
In any rail-to-rail voltage output device, the output is  
limited to voltages within the supply range.  
Board Layout  
Since the analog output of the device cannot go below  
ground, it may limit for the lowest codes as shown in  
Figure 5b. Similarly, limiting can occur near full scale  
when the REF pin is tied to VCC. If VREF = VCC and the DAC  
full-scale error (FSE) is positive, the output for the highest  
codes limits at VCC as shown in Figure 5c. No full-scale  
limiting can occur if VREF is less than VCC – FSE.  
The excellent load regulation performance is achieved in  
part by keeping “signal” and “power” grounds separated  
internally and by reducing shared internal resistance.  
The GND pin functions both as the node to which the  
reference and output voltages are referred and as a return  
path for power currents in the device. Because of this,  
careful thought should be given to the grounding scheme  
and board layout in order to ensure rated performance.  
Offset and linearity are defined and tested over the region  
of the DAC transfer function where no output limiting can  
occur.  
ThePCboardshouldhaveseparateareasfortheanalogand  
digitalsectionsofthecircuit.Thiskeepsdigitalsignalsaway  
26061626f  
16  
LTC2606/LTC2616/LTC2626  
U
OPERATIO  
26061626f  
17  
LTC2606/LTC2616/LTC2626  
U
OPERATIO  
26061626f  
18  
LTC2606/LTC2616/LTC2626  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
0.38 ± 0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 5)  
(DD10) DFN 0403  
5
1
0.25 ± 0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
5. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
26061626f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
19  
LTC2606/LTC2616/LTC2626  
U
TYPICAL APPLICATIO  
Demo Circuit Schematic. Onboard 20-Bit ADC Measures Key Performance Parameters  
5V  
5V  
V
REF  
1V TO 5V  
0.1µF  
0.1µF  
9
6
2
1
V
CC  
10  
4
2
3
5
LDAC  
CA0  
SDA  
SCL  
CA1  
CA2  
V
V
FS  
CC  
REF  
SET  
9
8
7
10  
CA0  
I C BUS  
CA1  
SCK  
SDO  
CS  
100Ω  
7.5k  
100pF  
7
3
SPI BUS  
2
LTC2606  
V
IN  
LTC2421  
V
OUT  
F
O
1
ZS  
GND  
6
GND  
8
CA2  
SET  
DAC  
OUTPUT  
5
2606 TA01  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1458: V = 4.5V to 5.5V, V  
LTC1458/LTC1458L  
Quad 12-Bit Rail-to-Rail Output DACs with Added Functionality  
= 0V to 4.096V  
OUT  
OUT  
CC  
LTC1458L: V = 2.7V to 5.5V, V  
= 0V to 2.5V  
CC  
LTC1654  
Dual 14-Bit Rail-to-Rail V DAC  
Programmable Speed/Power, 3.5µs/750µA, 8µs/450µA  
= 5V(3V), Low Power, Deglitched  
OUT  
LTC1655/LTC1655L  
LTC1657/LTC1657L  
LTC1660/LTC1665  
LTC1821  
Single 16-Bit V  
DACs with Serial Interface in SO-8  
V
CC  
OUT  
Parallel 5V/3V 16-Bit V  
DACs  
Low Power, Deglitched, Rail-to-Rail V  
OUT  
OUT  
Octal 10/8-Bit V  
DACs in 16-Pin Narrow SSOP  
V
CC  
= 2.7V to 5.5V, Micropower, Rail-to-Rail Output  
OUT  
Parallel 16-Bit Voltage Output DAC  
Octal 16-/14-/12-Bit V DACs in 16-Lead SSOP  
Precision 16-Bit Settling in 2µs for 10V Step  
LTC2600/LTC2610  
LTC2620  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2601/LTC2611  
LTC2621  
Single 16-/14-/12-Bit V  
DACs in 10-Lead DFN  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
LTC2602/LTC2612  
LTC2622  
Dual 16-/14-/12-Bit V  
DACs in 8-Lead MSOP  
DACs in 16-Lead SSOP  
300µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
OUT  
Output, SPI Serial Interface  
LTC2604/LTC2614  
LTC2624  
Quad 16-/14-/12-Bit V  
250µA per DAC, 2.5V to 5.5V Supply Range, Rail-to-Rail  
Output, SPI Serial Interface  
OUT  
26061626f  
LT/TP 1204 1K • PRINTED IN THE USA  
20 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
©LINEAR TECHNOLOGY CORPORATION 2004  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC2626CDD

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2626CDD#PBF

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2626CDD#TR

暂无描述
Linear

LTC2626CDD#TRPBF

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2626CDD-1

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2626CDD-1#PBF

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2626CDD-1#TR

暂无描述
Linear

LTC2626CDD-1#TRPBF

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: 0&deg;C to 70&deg;C
Linear

LTC2626IDD

16-/14-/12-Bit Rail-to-Rail DACs with I2C Interface
Linear

LTC2626IDD#PBF

暂无描述
Linear

LTC2626IDD#TR

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC2626IDD#TRPBF

LTC2626 - 12-Bit Rail-to-Rail DACs with I<sup>2</sup>C Interface; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear