LTC3124EDHC#PBF [Linear]

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 16; Temperature Range: -40°C to 85°C;
LTC3124EDHC#PBF
型号: LTC3124EDHC#PBF
厂家: Linear    Linear
描述:

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 16; Temperature Range: -40°C to 85°C

文件: 总28页 (文件大小:642K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3124  
15V, 5A 2-Phase Synchronous  
Step-Up DC/DC Converter with  
Output Disconnect  
FEATURES  
DESCRIPTION  
The LTC®3124 is a dual-phase, synchronous step-up DC/  
DC converter with true output disconnect and inrush  
current limiting capable of providing output voltages up  
to 15V. Dual-phase operation significantly reduces peak  
inductor and capacitor ripple currents, minimizing induc-  
tor and capacitor size. The 2.5A per phase current limit,  
alongwiththeabilitytoprogramoutputvoltagesupto15V  
make the LTC3124 well suited for a variety of demanding  
applications. Once started, operation will continue with  
inputs down to 500mV.  
n
V Range: 1.8V to 5.5V, 500mV After Start-Up  
IN  
n
Adjustable Output Voltage: 2.5V to 15V  
n
1.5A Output Current for V = 5V and V  
= 12V  
IN  
OUT  
n
n
n
n
n
Dual-Phase Control Reduces Output Voltage Ripple  
Output Disconnects from Input When Shut Down  
Synchronous Rectification: Up to 95% Efficiency  
Inrush Current Limit  
Up to 3MHz Programmable Switching Frequency  
Synchronizable to External Clock  
Selectable Burst Mode® Operation: 25µA I  
n
n
n
n
n
Q
Output Overvoltage Protection  
Internal Soft-Start  
The LTC3124 switching frequency can be programmed  
from 100kHz to 3MHz to optimize applications for highest  
efficiencyorsmallestsolutionfootprint. Theoscillatorcan  
be synchronized to an external clock for noise sensitive  
applications. Selectable Burst Mode operation reduces  
quiescentcurrentto25µA,ensuringhighefficiencyacross  
the entire load range. An internal soft-start limits inrush  
current during start-up.  
<1µA I in Shutdown  
Q
16-Lead, Thermally- Enhanced 3mm × 5mm ×  
0.75mm DFN and TSSOP Packages  
APPLICATIONS  
n
RF, Microwave Power Amplifiers  
n
Piezo Actuators  
Otherfeaturesincludea<Ashutdowncurrentandrobust  
protectionundershort-circuit,thermaloverload,andoutput  
overvoltage conditions. The LTC3124 is offered in both  
16-lead DFN and thermally-enhanced TSSOP packages.  
n
Small DC Motors, Thermal Printers  
12V Analog Rail from Battery, 5V, or Backup Capacitor  
n
L, LT, LTC, LTM, Burst Mode, Linear Technology and the Linear logo are registered trademarks  
and ThinSOT is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners.  
TYPICAL APPLICATION  
5V to 12V Synchronous Boost Converter  
Efficiency Curve  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
4.7µH  
V
IN  
Burst Mode  
OPERATION  
SWB  
CAP  
5V  
V
100nF  
OUT  
12V  
1
PGNDB  
V
OUTB  
22µF  
×2  
1.5A  
4.7µH  
PWM  
SWA  
LTC3124  
PGNDA  
V
OUTA  
0.1  
Burst Mode  
OPERATION  
V
IN  
SGND  
0.01  
0.001  
0.0001  
PWM/SYNC SD  
1.02M  
BURST PWM  
10µF  
OFF ON  
PWM  
10  
V
FB  
V
C
CC  
f
= 1MHz  
SW  
RT  
113k  
EFFICIENCY  
POWER LOSS  
84.5k  
680pF  
4.7µF  
56pF  
28k  
0.01  
0.1  
1
100  
1000  
LOAD CURRENT (mA)  
3124 TA01b  
3124 TA01a  
3124f  
1
For more information www.linear.com/LTC3124  
LTC3124  
ABSOLUTE MAXIMUM RATINGS (Note 1)  
V Voltage................................................... –0.3V to 6V  
OUTA OUTB  
SWA, SWB Voltages (Note 2)..................... –0.3V to 18V  
SWA, SWB (Pulsed < 100ns) (Note 2) ....... –0.3V to 19V  
All Other Pins............................................... –0.3V to 6V  
Operating Junction Temperature Range (Notes 3, 4)  
LTC3124E/LTC3124I........................... –40°C to 125°C  
LTC3124H .......................................... –40°C to 150°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec)  
IN  
V
, V  
Voltages............................... –0.3V to 18V  
VC Voltage ..................................................–0.3V to V  
RT Voltage ..................................................–0.3V to V  
CAP Voltage  
CC  
CC  
FE Package Only ...............................................300°C  
V
< 5.7V ............................–0.3V to (V  
+ 0.3V)  
+ 0.3V)  
OUT  
5.7V ≤ V  
V
OUT  
≤ 11.7V......(V  
– 6V) to (V  
OUT  
OUT  
OUT  
> 11.7V.................................(V  
– 6V) to 12V  
OUT  
OUT  
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
SWB  
PGNDB  
SWA  
1
2
3
4
5
6
7
8
16 CAP  
15  
14 NC  
13  
SWB  
PGNDB  
SWA  
1
2
3
4
5
6
7
8
16 CAP  
15  
14 NC  
V
V
OUTB  
OUTB  
PGNDA  
V
OUTA  
PGNDA  
13  
12  
11  
10  
9
V
OUTA  
17  
PGND  
17  
PGND  
V
IN  
12 SGND  
11 SD  
V
SGND  
SD  
IN  
PWM/SYNC  
PWM/SYNC  
V
CC  
10 FB  
V
CC  
FB  
RT  
9
VC  
RT  
VC  
FE PACKAGE  
DHC PACKAGE  
16-LEAD PLASTIC TSSOP  
16-LEAD (5mm × 3mm) PLASTIC DFN  
T
JMAX  
= 150°C, θ = 40°C/W (NOTE 5), θ = 10°C/W  
JA JC  
EXPOSED PAD (PIN 17) IS PGND AND MUST BE SOLDERED TO PCB  
FOR RATED THERMAL PERFORMANCE  
T
= 125°C, θ = 43°C/W (NOTE 5), θ = 5°C/W  
JA JC  
EXPOSED PAD (PIN 17) IS PGND AND MUST BE SOLDERED TO PCB  
FOR RATED THERMAL PERFORMANCE  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3124EDHC#PBF  
LTC3124IDHC#PBF  
LTC3124EFE#PBF  
LTC3124IFE#PBF  
LTC3124HFE#PBF  
TAPE AND REEL  
PART MARKING*  
3124  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LTC3124EDHC#TRPBF  
LTC3124IDHC#TRPBF  
LTC3124EFE#TRPBF  
LTC3124IFE#TRPBF  
LTC3124HFE#TRPBF  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
16-Lead (5mm × 3mm) Plastic DFN  
16-Lead (5mm × 3mm) Plastic DFN  
16-Lead Plastic TSSOP  
3124  
3124FE  
3124FE  
16-Lead Plastic TSSOP  
3124FE  
16-Lead Plastic TSSOP  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping  
container.Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3124f  
2
For more information www.linear.com/LTC3124  
LTC3124  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
junction temperature range, otherwise specifications are at TA = 25°C (Note 3). VIN = 3.6V, VOUTA = VOUTB = 12V, RT = 28k unless  
otherwise noted.  
PARAMETER  
Minimum Start-Up Voltage  
Input Voltage Range  
Output Voltage Adjust Range  
Feedback Voltage  
Feedback Input Current  
Quiescent Current, Shutdown  
Quiescent Current, Active  
Quiescent Current, Burst  
CONDITIONS  
MIN  
TYP  
1.6  
MAX  
1.8  
5.5  
15  
1.224  
50  
1
840  
40  
20  
UNITS  
V
l
l
l
l
V
V
= 0V  
≥ 2.5V  
OUT  
OUT  
0.5  
2.5  
1.176  
V
V
V
nA  
µA  
µA  
µA  
µA  
1.200  
1
0.2  
600  
25  
10  
FB = 1.4V  
SD = 0V, V  
= 0V, Not Including Switch Leakage  
OUT  
FB = 1.4V, Measured on V , Non-Switching  
Measured on V , FB = 1.4V  
Measured on V , FB = 1.4V  
IN  
IN  
OUT  
l
l
N-Channel MOSFET Switch Leakage Current SW = 15V, V  
= 15V, Per Phase  
= 15V, SD = 0V, Per Phase  
0.1  
0.1  
0.130  
0.200  
3.5  
40  
70  
µA  
µA  
Ω
Ω
A
%
%
MHz  
MHz  
V
OUT  
P-Channel MOSFET Switch Leakage Current SW = 0V, V  
OUT  
N-Channel MOSFET Switch On-Resistance  
P-Channel MOSFET Switch On-Resistance  
N-Channel MOSFET Peak Current Limit  
Maximum Duty Cycle  
Minimum Duty Cycle  
Switching Frequency  
Per Phase  
Per Phase  
Per Phase  
FB = 1.0V  
FB = 1.4V  
Per Phase  
l
l
l
l
l
l
l
2.5  
90  
4.5  
94  
0
1.17  
6.0  
0.83  
0.2  
0.9 • V  
1
SYNC Frequency Range  
PWM/SYNC Input High Voltage  
PWM/SYNC Input Low Voltage  
PWM/SYNC Input Current  
CC  
0.1 • V  
1
–5.8  
4.6  
V
µA  
V
CC  
V
V
V
= 5.5V  
> 6.2V, Referenced to V  
0.01  
–5.4  
4.25  
100  
25  
PWM/SYNC  
CAP Clamp Voltage  
–5.0  
3.9  
60  
OUT  
OUT  
V
Regulation Voltage  
< 2.8V, V > 5V  
OUT  
V
CC  
IN  
l
Error Amplifier Transconductance  
Error Amplifier Sink Current  
Error Amplifier Source Current  
Soft-Start Time  
130  
µS  
µA  
µA  
ms  
V
FB = 1.6V, VC = 1.15V  
FB = 800mV, VC = 1.15V  
–25  
10  
l
l
SD Input High Voltage  
SD Input Low Voltage  
1.6  
0.25  
2
V
µA  
SD Input Current  
SD = 5.5V  
1
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: Voltage transients on the SW pin beyond the DC limit specified in  
the Absolute Maximum Ratings are non-disruptive to normal operations  
when using good layout practices, as shown on the demo board or  
described in the data sheet or application notes.  
Note that the maximum ambient temperature consistent with these  
specifications is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal impedance  
and other environmental factors. The junction temperature (T in °C) is  
J
calculated from the ambient temperature (T in °C) and power dissipation  
A
(P in Watts) according to the formula:  
D
T = T + (P • θ )  
JA  
J
A
D
where θ is the thermal impedance of the package.  
JA  
Note 3: The LTC3124 is tested under pulsed load conditions such that  
Note 4: The LTC3124 includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 150°C when overtemperature shutdown is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 5: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal impedance much higher than  
the rated package specifications.  
T ≈ T . The LTC3124E is guaranteed to meet performance specifications  
A
J
from 0°C to 85°C junction temperature. Specifications over the –40°C  
to 125°C operating junction temperature range are assured by design,  
characterization and correlation with statistical process controls. The  
LTC3124I is guaranteed to meet specifications over the –40°C to 125°C  
operating junction temperature range. The LTC3124H is guaranteed to  
meet specifications over the full –40°C to 150°C operating junction range.  
High junction temperatures degrade operating lifetimes; operating lifetime  
is derated for junction temperatures greater than 125°C.  
3124f  
3
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL PERFORMANCE CHARACTERISTICS  
Configured as front page application at TA = 25°C, unless otherwise specified.  
Efficiency vs Load Current,  
VOUT = 5V  
Efficiency vs Load Current,  
VOUT = 7.5V  
Efficiency vs Load Current,  
VOUT = 12V  
100  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
Burst Mode  
90 OPERATION  
Burst Mode  
90 OPERATION  
Burst Mode  
OPERATION  
80  
70  
60  
50  
40  
30  
20  
10  
0
80  
70  
60  
50  
40  
30  
20  
10  
0
PWM  
PWM  
PWM  
f
= 1MHz  
f
= 1MHz  
f
= 1MHz  
SW  
SW  
SW  
V
V
V
= 4.2V  
= 3.3V  
= 0.6V  
V
V
V
= 5.4V  
= 3.8V  
= 2.3V  
V
V
V
= 5.4V  
= 4.2V  
= 2.6V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3124 G01  
3124 G02  
3124 G03  
PWM Mode Operation  
Load Transient Response  
Inrush Current Control  
V
SD  
5V/DIV  
OUT  
V
OUT  
20mV/DIV  
500mV/DIV  
AC-COUPLED  
AC-COUPLED  
PHASE A  
INDUCTOR  
CURRENT  
500mA/DIV  
V
1500mA  
OUT  
5V/DIV  
OUTPUT  
CURRENT  
500mA/DIV  
INDUCTOR A  
CURRENT  
1A/DIV  
INDUCTOR B  
CURRENT  
1A/DIV  
PHASE B  
INDUCTOR  
CURRENT  
500mA/DIV  
150mA  
150mA  
3124 G04  
3124 G06  
3124 G05  
I
= 500mA  
2µs/DIV  
I
= 100mA  
2ms/DIV  
R
= 169k  
= 330pF  
500µs/DIV  
LOAD  
LOAD  
C
C
C
NO C  
F
R
DS(ON) vs Temperature,  
Switching Frequency  
vs Temperature  
Feedback vs Temperature  
Both NMOS and PMOS  
80  
60  
0.5  
0
0.05  
0
–0.05  
–0.10  
40  
–0.5  
–1.0  
–1.5  
–2.0  
–0.15  
–0.20  
20  
0
–0.25  
–0.30  
–0.35  
–20  
–40  
0
40  
TEMPERATURE (°C)  
120  
–40  
160  
–50  
–10  
30  
70  
110  
150  
80  
70  
TEMPERATURE (°C)  
160  
–50 –20 10  
40  
100 130  
TEMPERATURE (°C)  
3124 G08  
3124 G07  
3124 G09  
3124f  
4
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL PERFORMANCE CHARACTERISTICS  
Configured as front page application at TA = 25°C, unless otherwise specified.  
PWM Mode Maximum Output  
Current vs VIN  
Peak Current Limit Change  
vs Temperature  
PWM Operation No-Load Input  
Current vs VIN  
4.0  
3.6  
3.2  
2.8  
2.4  
2.0  
1.6  
1.2  
0.8  
0.4  
0
2
1
200  
180  
160  
140  
120  
100  
80  
V
V
V
V
= 5V  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
= 15V  
= 12V  
= 7.5V  
= 5V  
OUT  
OUT  
OUT  
OUT  
= 7.5V  
= 12V  
= 15V  
= 2.5V  
0
–1  
–2  
–3  
–4  
60  
40  
20  
0
0.5  
1
1.5  
2
2.5  
V
3
3.5  
4
4.5  
5
5.5  
–50  
–10  
30  
70  
110  
150  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
TEMPERATURE (°C)  
(V)  
V
IN  
(V)  
IN  
3124 G11  
3124 G10  
3124 G12  
Burst Mode No-Load Input  
Current vs VIN  
Burst Mode Quiescent Current  
Change vs Temperature  
Burst Mode Output Current vs VIN  
400  
350  
300  
250  
200  
150  
100  
50  
10000  
1000  
100  
75  
60  
45  
30  
15  
0
V
V
V
V
V
= 15V  
OUT  
OUT  
OUT  
OUT  
OUT  
= 12V  
= 7.5V  
= 5V  
= 2.5V  
10  
0.5  
0
–15  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
–50  
–10  
30  
70  
110  
150  
V , FALLING (V)  
IN  
TEMPERATURE (°C)  
V
, FALLING (V)  
IN  
3124 G13  
3124 G15  
3124 G14  
V
V
V
= 2.5V  
= 5V  
= 7.5V  
V
= 12V  
= 15V  
OUT  
OUT  
OUT  
OUT  
OUT  
V
SD Pin Threshold  
RT vs Frequency  
V
OUT  
100  
10  
5V/DIV  
900mV  
400mV  
V
SD  
500mV/DIV  
3124 G16  
1s/DIV  
10  
100  
1000  
3000  
FREQUENCY (kHz)  
3124 G17  
3124f  
5
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL PERFORMANCE CHARACTERISTICS  
Configured as front page application at TA = 25°C, unless otherwise specified.  
Frequency Accuracy  
Efficiency vs Frequency  
CAP Pin Voltage vs VOUT  
100  
90  
2
1
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
80  
70  
60  
50  
0
40  
30  
20  
10  
0
–1  
V
V
V
= 15V  
= 3.6V  
= 2.5V  
100kHz EFFICIENCY  
1MHz EFFICIENCY  
3MHz EFFICIENCY  
OUT  
OUT  
OUT  
–2  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
10  
100  
OUTPUT CURRENT (mA)  
1000  
0
2
4
6
8
10  
12  
14  
V
OUT  
(V)  
V , FALLING (V)  
IN  
3124 G21  
3124 G20  
3124 G19  
Burst Mode Operation to  
PWM Mode  
VCC vs VIN  
Burst Mode Operation  
4.5  
4.0  
3.5  
3.0  
2.5  
V
OUT  
V
OUT  
100mV/DIV  
50mV/DIV  
AC-COUPLED  
AC-COUPLED  
V
SWA  
10V/DIV  
V
PWM/SYNC  
2V/DIV  
PHASE A  
INDUCTOR  
CURRENT  
500mA/DIV  
V
IN  
V
IN  
FALLING  
RISING  
3124 G23  
3124 G24  
5µs/DIV  
OUTPUT CURRENT = 50mA  
50µs/DIV  
OUTPUT CURRENT = 100mA  
TYPE III COMPENSATION—SEE FIGURE 10 FOR  
COMPONENT VALUES  
0
1
2
3
4
5
6
V
(V)  
IN  
3124 G22  
PWM Mode to Burst Mode  
Operation  
Burst Mode Transient  
Synchronized Operation  
V
V
OUT  
OUT  
V
100mV/DIV  
50mV/DIV  
SWB  
10V/DIV  
AC-COUPLED  
AC-COUPLED  
SYNCHRONIZED TO 1.3MHz  
V
SWA  
10V/DIV  
V
PWM/SYNC  
2V/DIV  
SYNCHRONIZATION SIGNAL SET TO 2.6MHz  
100mA  
OUTPUT  
CURRENT  
100mA/DIV  
V
PWM/SYNC  
5V/DIV  
10mA  
10mA  
3124 G26  
3124 G27  
3124 G25  
200µs/DIV  
1µs/DIV  
50µs/DIV  
OUTPUT CURRENT = 1A  
OUTPUT CURRENT = 100mA  
TYPE III COMPENSATION—SEE FIGURE 10 FOR  
COMPONENT VALUES  
3124f  
6
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL PERFORMANCE CHARACTERISTICS  
Configured as front page application at TA = 25°C, unless otherwise specified.  
SWA and SWB at 1MHz/Phase  
Short-Circuit Response  
SHORT-CIRCUIT  
APPLIED  
V
SWB  
5V/DIV  
V
OUT  
5V/DIV  
SHORT-CIRCUIT  
REMOVED  
INDUCTOR B  
CURRENT  
2A/DIV  
V
SWA  
5V/DIV  
INDUCTOR A  
CURRENT  
2A/DIV  
3124 G29  
3124 G28  
I
= 1500mA 500ns/DIV  
I
= 500mA 100µs/DIV  
LOAD  
LOAD  
Output Voltage Ripple at 1.5A  
Load with Two 10µF Ceramic  
Capacitors  
SW Pins while Synchronizing  
to 1.2MHz  
V
OUT  
V
SWB  
20mV/DIV  
5V/DIV  
AC-COUPLED  
INDUCTOR B  
CURRENT  
500mA/DIV  
INDUCTOR A  
CURRENT  
500mA/DIV  
V
SWA  
5V/DIV  
3124 G30  
3124 G31  
I
= 1500mA 500ns/DIV  
500ns/DIV  
LOAD  
PIN FUNCTIONS  
SWB, SWA (Pin 1, Pin 3): Phase B and Phase A Switch  
Pins. Connect inductors from these pins to the input sup-  
ply. Keep PCB trace lengths as short and wide as possible  
PGNDB, PGNDA, PGND (Pin 2, Pin 4, Exposed Pad  
Pin17):PowerGround.WhenlayingoutyourPCB,provide  
a short, direct path between PGND and the output capaci-  
tors and tie directly to the ground plane. The exposed pad  
is ground and must be soldered to the PCB ground plane  
for rated thermal and electrical performance.  
to reduce EMI and voltage overshoot. When V  
≥ V +  
OUT  
IN  
2V, internal anti-ringing resistors are connected between  
V and both SWA and SWB after their respective induc-  
IN  
tor currents have dropped to near zero, to minimize EMI.  
Theseanti-ringingresistorsarealsoactivatedinshutdown  
and during the sleep periods of Burst Mode operation.  
V (Pin 5): Input Supply Pin. The device is powered from  
IN  
V if V is initially greater than approximately 3.5V, with  
IN  
IN  
V continuingtosupplythedevicedowntoapproximately  
IN  
3V; otherwise the greater of V and V  
supplies the  
IN  
OUT  
3124f  
7
For more information www.linear.com/LTC3124  
LTC3124  
PIN FUNCTIONS  
device. Place a low ESR ceramic bypass capacitor of at  
VC (Pin 9): Error Amplifier Output. A frequency com-  
pensation network is connected from this pin to SGND  
to compensate the control loop. See Compensating the  
Feedback Loop section for guidelines.  
least 10µF from V to PGND. X5R and X7R dielectrics  
IN  
are preferred for their superior voltage and temperature  
characteristics.  
PWM/SYNC (Pin 6): Burst Mode Operation Select and  
OscillatorSynchronization. Donotleavethispinfloating.  
FB (Pin 10): Feedback Input to the Error Amplifier. Con-  
nect the resistor divider tap to this pin. Connect the top  
of the divider to V  
and the bottom of the divider to  
OUT  
• PWM/SYNC = High. Disable Burst Mode operation and  
maintain low noise, constant frequency operation.  
SGND. The output voltage can be adjusted from 2.5V to  
15V according to the formula:  
• PWM/SYNC = Low. The converter operates in Burst  
Mode, independent of load current.  
R1  
R2  
VOUT =1.2V • 1+  
• PWM/SYNC = External CLK. The internal oscillator is  
synchronized to the external CLK signal. Burst Mode  
operation is disabled. A clock pulse width of 100ns  
minimum is required to synchronize the oscillator.  
SD(Pin11):LogicControlledShutdownInput.Pullingthis  
pin above 1.6V enables normal, free-running operation.  
Forcing this pin below 0.25V shuts the LTC3124 off, with  
quiescentcurrentbelow1µA.Donotleavethispinfloating.  
An external resistor MUST BE connected between R  
T
and SGND to program the oscillator slightly below the  
SGND (Pin 12): Signal Ground. When laying out your PC  
board, provide a short, direct path between SGND and the  
groundreferencedsidesofalltheappropriatecomponents  
connecting to pins RT, VC, and FB.  
desired synchronization frequency.  
In non-synchronized applications, repeated clocking of  
the PWM/SYNC pin to affect an operating mode change  
is supported with these restrictions:  
V
, V  
(Pin13, Pin15):OutputVoltageSensesand  
OUTA OUTB  
• Boost Mode (V  
> V ): I  
< 3mA: f  
OUT  
≥ 3mA: f  
IN  
OUT  
PWM/SYNC  
theSourceoftheInternalSynchronousRectifierMOSFETs.  
Driver bias is derived from V . Connect the output filter  
10Hz, I  
≤ 5kHz.  
< V ): I < 5mA: f  
OUT  
OUT  
PWM/SYNC  
OUT  
capacitor from V  
to PGND, close to the IC. A minimum  
value of 10µF ceramic per phase is recommended. V  
disconnected from V when SD is low. V  
OUT  
• Buck Mode (V  
OUT  
IN  
PWM/SYNC  
PWM/SYNC  
is  
OUTB  
OUT  
and V  
2.5Hz, I  
≥ 5mA: f  
≤ 5kHz.  
OUT  
IN  
OUTA  
V
(Pin 7): V Regulator Output. Connect a low ESR  
CC  
CC  
must be tied together.  
filter capacitor of at least 4.7µF from this pin to SGND to  
NC(Pin14):NoConnect.Notconnectedinternally.Connect  
this pin to V /V to provide a wider V copper  
providearegulatedrailapproximatelyequaltothelowerof  
OUTA OUTB  
OUT  
V and 4.25V. When V  
is higher than V , and V falls  
IN IN  
IN  
OUT  
plane on the printed circuit board.  
below 3V, V will regulate to the lower of approximately  
CC  
V
and 4.25V. A UVLO event occurs if V drops below  
CAP (Pin 16): Serves as the Low Reference for the Syn-  
chronous Rectifiers Gate Drives. Connect a low ESR filter  
OUT  
CC  
1.5V, typical. Switching is inhibited, and a soft-start is  
initiated when V returns above 1.6V, typical.  
capacitor(typically100nF)fromthispintoV  
an elevated ground rail, approximately 5.4V below V  
used to drive the synchronous rectifiers.  
toprovide  
CC  
OUT  
,
OUT  
RT (Pin 8): Frequency Adjust Pin. Connect to SGND  
through an external resistor (R ) to program the oscillator  
T
frequency according to the formula:  
56  
RT  
fOSC  
fOSC 28  
fSWITCH  
=
2
RT  
where f  
is in MHz and R is in kΩ.  
OSC  
T
3124f  
8
For more information www.linear.com/LTC3124  
LTC3124  
BLOCK DIAGRAM  
BULK  
CONTROL  
SIGNALS  
V
IN  
V
SWB  
1
OUTB  
V
OUT  
15  
11  
2.5V TO 15V  
SD  
SHUT  
C
OUT  
PWM  
LOGIC  
AND  
DOWN  
C
CAP  
100nF  
ANTI-  
RING  
EN  
DRIVERS  
+
CAP  
NC  
V
– 5.4V RAIL  
16  
14  
OUT  
CURRENT  
SENSE  
I
ZERO  
COMP  
PWM  
COMP  
+
– –  
OVLO  
+
+
16.5V  
STOP SWITCHING  
+
+
3.5A  
I
LB  
PEAK  
BULK  
COMP  
CONTROL  
V
IN  
SIGNALS  
ADAPTIVE SLOPE COMP  
V
OUTA  
SWA  
3
13  
PWM  
LOGIC  
AND  
TSD  
ANTI-  
RING  
LA  
DRIVERS  
+
CURRENT  
SENSE  
IZERO  
COMP  
THERMAL SD  
PWM  
COMP  
+
– –  
REFERENCE  
1.2V  
BURST  
SLEEP  
Burst  
+
Mode  
V
IN  
V
IN  
1.8V TO 5.5V  
CONTROL  
5
+
V
+
REFUP  
+
C
IN  
V
IN  
3.5A  
I
PEAK  
COMP  
4.25V  
LDO  
SOFT-  
START  
ADAPTIVE SLOPE COMP  
OSCILLATOR  
SYNC  
g
ERROR  
m
AMPLIFIER  
+
R1  
R2  
VC  
+
9
FB  
10  
V
CC  
C
R
C
F
EXPOSED  
PAD  
RT  
PWM/SYNC  
V
CC  
PGNDB  
2
SGND  
12  
PGNDA  
C
C
8
6
7
4
17  
3124 BD  
C
VCC  
R
T
3124f  
9
For more information www.linear.com/LTC3124  
LTC3124  
OPERATION  
TheLTC3124isadual-phase,adjustablefrequency(100kHz  
to 3MHz) synchronous boost converter housed in either a  
16-lead5mm×3mmDFNorathermally-enhancedTSSOP  
package. The LTC3124 offers the unique ability to start up  
from inputs as low as 1.8V and continue to operate from  
inputs as low as 0.5V, for output voltages greater than  
2.5V. The device also features fixed frequency, current  
mode PWM control for exceptional line and load regula-  
tion. The current mode architecture with adaptive slope  
compensation provides excellent load transient response  
and requires minimal output filtering. An internal 10ms  
soft-start limits inrush current during start-up and simpli-  
fies the design process while minimizing the number of  
external components.  
The peak inductor current, reduced nearly by a factor of  
2 when compared to a single phase step-up converter,  
is given by:  
1
IO  
IL  
2
ILPEAK •  
2 (1D)  
+
where I is the average load current, D is the PWM duty  
O
cycle, and I is the inductor ripple current. This relation-  
L
ship is shown graphically in Figure 1.  
With 2-phase operation, one of the phases is always de-  
livering current to the load whenever V is greater than  
IN  
one-half V  
(duty cycles less than 50%). As the duty  
OUT  
cycle decreases further, load current delivery between the  
two phases begins to overlap, occurring simultaneously  
for a growing portion of each phase as the duty cycle ap-  
proaches zero. This significantly reduces both the output  
ripple current and the peak current in each inductor, when  
comparedwithasingle-phaseconverter.Thisisillustrated  
in the waveforms of Figures 2 and 3.  
WithitslowR  
andlowgatechargeinternalN-channel  
DS(ON)  
MOSFET switches and P-channel MOSFET synchronous  
rectifiers, the LTC3124 achieves high efficiency over a  
wide range of load current. High efficiency is achieved at  
light loads by utilizing Burst Mode operation. Operation  
can be best understood by referring to the Block Diagram.  
3.5  
SINGLE PHASE  
3.0  
MULTIPHASE OPERATION  
2.5  
The LTC3124 uses a dual-phase architecture, rather than  
the conventional single phase of other boost converters.  
By having two phases equally spaced 180° apart, not only  
is the output ripple frequency increased by a factor of  
two, but the output capacitor ripple current is significantly  
reduced. Although this architecture requires two induc-  
tors, rather than a single inductor, there are a number of  
important advantages.  
2.0  
1.5  
1.0  
0.5  
0
DUAL  
PHASE  
0
0.5  
1.0  
1.5  
TIME (µs)  
3124 F01  
• Substantially lower peak inductor current allows the  
use of smaller, lower cost inductors.  
Figure 1. Comparison of Output Ripple Current with Single Phase  
and Dual Phase Boost Converter in a 1.5A Load Application  
Operating at 50% Duty Cycle  
• Significantly reduced output ripple current minimizes  
output capacitance requirement.  
• Higher frequency output ripple is easier to filter for low  
noise applications.  
• Input ripple current is also reduced for lower noise on  
V .  
IN  
3124f  
10  
For more information www.linear.com/LTC3124  
LTC3124  
OPERATION  
LOW VOLTAGE OPERATION  
The LTC3124 is designed to allow start-up from input  
voltages as low as 1.8V. When V exceeds 2.5V, the  
SWITCH A  
VOLTAGE  
OUT  
SWITCH B  
VOLTAGE  
LTC3124 continues to regulate its output, even when V  
IN  
falls as low as 0.5V. This feature extends operating times  
by maximizing the amount of energy that can be extracted  
from the input source. The limiting factors for the applica-  
tion become the availability of the power source to supply  
sufficient power to the output at the low input voltage,  
and the maximum duty cycle, which is clamped at 94%.  
Note that at low input voltages, small voltage drops due  
to series resistance become critical and greatly limit the  
power delivery capability of the converter.  
INDUCTOR A  
CURRENT  
INDUCTOR B  
CURRENT  
INPUT  
CURRENT  
RECTIFIER A  
CURRENT  
RECTIFIER B  
CURRENT  
LOW NOISE FIXED FREQUENCY OPERATION  
Soft-Start  
OUTPUT  
RIPPLE  
CURRENT  
3124 F02  
The LTC3124 contains internal circuitry to provide soft-  
startoperation.Thesoft-startutilizesalinearlyincreasing  
ramp of the error amplifier reference voltage from zero  
to its nominal value of 1.2V in approximately 10ms, with  
Figure 2. Simplified Voltage and Current Waveforms  
for 2-Phase Operation at 50% Duty Cycle  
the internal control loop driving V  
from zero to its  
SWITCH A  
VOLTAGE  
OUT  
final programmed value. This limits the inrush current  
drawn from the input source. As a result, the duration  
of the soft-start is largely unaffected by the size of the  
output capacitor or the output regulation voltage. The  
closed-loop nature of the soft-start allows the converter  
to respond to load transients that might occur during  
the soft-start interval. The soft-start period is reset by a  
SWITCH B  
VOLTAGE  
INDUCTOR A  
CURRENT  
INDUCTOR B  
CURRENT  
shutdown command on SD, a UVLO event on V (V  
<
CC CC  
INPUT  
CURRENT  
1.5V), an overvoltage event on V  
(V  
≥ 16.5V), or  
OUT OUT  
an overtemperature event (TSD is invoked when the die  
temperatureexceeds170°C).Uponremovalofthesefault  
conditions,theLTC3124willsoft-starttheoutputvoltage.  
RECTIFIER A  
CURRENT  
RECTIFIER B  
CURRENT  
Error Amplifier  
The noninverting input of the transconductance error  
amplifier is internally connected to the 1.2V reference and  
theinvertinginputisconnectedtoFB. Anexternalresistive  
OUTPUT  
RIPPLE  
CURRENT  
3124 F03  
voltage divider from V  
to SGND programs the output  
OUT  
Figure 3. Simplified Voltage and Current Waveforms  
for 2-Phase Operation at 25% Duty Cycle  
voltage from 2.5V to 15V via FB as shown in Figure 4.  
R1  
R2  
VOUT =1.2V 1+  
3124f  
11  
For more information www.linear.com/LTC3124  
LTC3124  
OPERATION  
Selecting an R2 value of 113k to have approximately  
10µA of bias current in the V  
the formula:  
ThusR ()28/f(MHz). SeeTable1forvariousswitch-  
T
resistor divider yields  
ing frequencies and their corresponding R values.  
OUT  
T
Table 1. Switching Frequency and Their Respective RT  
SWITCHING  
R1 = 94 • (V  
– 1.2V); V  
in Volts and R1 in kΩ.  
OUT  
OUT  
FREQUENCY (kHz)  
RT (kΩ)  
316  
Power converter control loop compensation is set with  
a simple RC network connected between VC and SGND.  
100  
200  
154  
V
OUT  
300  
100  
500  
57.6  
34.8  
28  
LTC3124  
R1  
800  
+
FB  
1000  
1200  
2000  
2200  
3000  
1.2V  
R2  
22.6  
13  
3124 F04  
11.5  
8.06  
Figure 4. Programming the Output Voltage  
Internal Current Limit  
For desired switching frequencies not included in Table 1,  
please refer to the Resistance vs Frequency curve in the  
Typical Performance Characteristics section.  
Current limit comparators shut off the N-channel MOSFET  
switches once their respective peak current is reached.  
Peak switch current per phase is limited to 3.5A, inde-  
pendent of input or output voltage, unless V  
approximately 1.5V, resulting in the current limit being  
approximately half of the nominal peak values.  
Theoscillatorcanbesynchronizedtoanexternalfrequency  
by applying a pulse train of twice the desired switching  
frequency to the PWM/SYNC pin. An external resistor  
must be connected between RT and SGND to program the  
oscillator to a frequency approximately 25% below that of  
theexternallyappliedpulsetrainusedforsynchronization.  
is below  
OUT  
Lossless current sensing converts the peak current signals  
of the N-channel MOSFET switches into voltages that are  
summedwiththeirrespectiveinternalslopecompensation.The  
summed signals are compared to the error amplifier outputs  
to provide a peak current control command for the PWMs.  
R is selected in this case according to this formula:  
T
R
(kΩ) ≥ 1.25 • R  
(kΩ)  
T(SYNC)  
T(SWITCH)  
whereR  
isthevalueofR atthedesiredswitching  
T
T(SWITCH)  
Zero Current Comparator  
frequency, which is half of the synchronization frequency.  
Thezerocurrentcomparatorsmonitortheinductorcurrents  
beingdeliveredtotheoutputandshutoffthesynchronous  
rectifiers when the current is approximately 50mA. This  
prevents the inductor currents from reversing in polarity,  
improving efficiency at light loads.  
Shutdown  
The boost converter is disabled by pulling SD below 0.25V  
and enabled by pulling SD above 1.6V. Note that SD can  
be driven above V or V , as long as it is limited to less  
than its absolute maximum rating.  
IN  
OUT  
Oscillator  
Thermal Shutdown  
The internal oscillator is programmed to twice the desired  
switching frequency with an external resistor from the RT  
pin to SGND according to the following formula:  
Ifthedietemperatureexceeds170°Ctypical, theLTC3124  
will go into thermal shutdown (TSD). All switches will be  
shut off until the die temperature drops by approximately  
7°C, whenthedevicere-initiatesasoft-startandswitching  
is re-enabled.  
56  
fOSC (MHz)≅  
= 2•f (MHz)  
R (k)  
T
where f = switching frequency of one phase.  
3124f  
12  
For more information www.linear.com/LTC3124  
LTC3124  
OPERATION  
Boost Anti-Ringing Control  
Output Disconnect  
WhenV  
≥V +2V,theanti-ringingcircuitryconnectsa The LTC3124’s output disconnect feature eliminates body  
IN  
OUT  
resistoracrosseachinductortoV todamphighfrequency diode conduction of the internal P-channel MOSFET recti-  
IN  
ringingontheSWpinsduringdiscontinuouscurrentmode fiers.ThisfeatureallowsforV todischargeto0Vduring  
OUT  
operation. Although the ringing of the resonant circuits shutdown, and draw no current from the input source.  
formed by the inductors and C  
(capacitance on Inrush current will also be limited at turn-on, minimizing  
SW(A/B)  
the respective SW pins) is low energy, it can cause EMI surgecurrentsseenbytheinputsupply.Notethattoobtain  
radiation if not damped.  
the advantages of output disconnect, there must not be  
anexternalSchottkydiodeconnectedbetweenSWA, SWB  
and V . The output disconnect feature also allows V  
V
CC  
Regulator  
OUT  
OUT  
to be pulled high, without backfeeding the power source  
An internal low dropout regulator generates the 4.25V  
(nominal) V rail from V or V , depending upon  
operating conditions. V is supplied from V if V is  
initiallygreaterthanapproximately3.5V,withV continuing  
connected to V .  
IN  
CC  
IN  
OUT  
CC  
IN  
IN  
IN  
V > V  
Operation  
IN  
OUT  
to supply V down to approximately 3V; otherwise the The LTC3124 step-up converter will maintain voltage  
CC  
IN  
greater of V and V  
supplies V . The V rail powers regulationevenwhentheinputvoltageisabovethedesired  
OUT  
CC CC  
theinternalcontrolcircuitryandpowerMOSFETgatedrivers outputvoltage.Notethatoperatinginthismodewillexhibit  
of the LTC3124. The V regulator is disabled in shutdown lower efficiency and a reduced output current capability.  
CC  
to reduce quiescent current and is enabled by forcing the RefertotheTypicalPerformanceCharacteristicsfordetails.  
SD pin above its input high threshold. A 4.7µF or larger  
capacitor must be connected between V and SGND.  
CC  
Burst Mode OPERATION  
When the PWM/SYNC pin is held low, the boost converter  
operates in Burst Mode, independent of load current. This  
mode of operation is typically commanded to improve  
efficiency at light loads and reduce standby current at no  
Overvoltage Lockout  
An overvoltage condition occurs when V  
approximately 16.5V. Switching is disabled and the in-  
ternal soft-start ramp is reset. Once V drops below  
exceeds  
OUT  
OUT  
load. The output current (I ) capability in Burst Mode  
OUT  
approximately 16V a soft-start is initiated and switching  
is allowed to resume. If the boost converter output is  
lightly loaded such that the time constant of the output  
operation is significantly less than in PWM mode and  
varies with V and V , as shown in Figure 5. The logic  
IN  
OUT  
input thresholds for this pin are determined relative to V  
CC  
capacitance, C , and the output load resistance, R  
OUT  
OUT  
with a low being less than 10% of V and a high being  
CC  
isnearorgreaterthanthesoft-starttimeofapproximately  
10ms, the soft-start ramp may end before or soon after  
switchingresumes,defeatingtheinrushcurrentlimitingof  
theclosed-loopsoft-startfollowinganovervoltageevent.  
greater than 90% of V . The LTC3124 will operate in  
CC  
fixed frequency PWM mode even if Burst Mode operation  
is commanded during soft-start.  
In Burst Mode operation, only Phase A of the LTC3124  
is operational, while Phase B is disabled. The Phase A  
inductor current is initially charged to approximately  
700mA by turning on the N-channel MOSFET switch, at  
which point the N-channel switch is turned off and the  
P-channel synchronous switch is turned on, delivering  
currenttotheoutput.Whentheinductorcurrentdischarges  
to approximately zero, the cycle repeats. In Burst Mode  
operation,energyisdeliveredtotheoutputuntilthenominal  
Short-Circuit Protection  
The LTC3124 output disconnect feature allows output  
short-circuit protection while maintaining a maximum set  
current limit. To reduce power dissipation under overload  
andshort-circuitconditions,thepeakswitchcurrentlimits  
are reduced to approximately 2A. Once V  
exceeds  
OUT  
approximately 1.5V, the current limits are reset to their  
nominal values of 3.5A per phase.  
3124f  
13  
For more information www.linear.com/LTC3124  
LTC3124  
OPERATION  
400  
350  
300  
250  
200  
150  
100  
50  
regulation value is reached, then the LTC3124 transitions  
into a very low quiescent current sleep state. In sleep, the  
outputswitchesareturnedoffandtheLTC3124consumes  
only 25μA of quiescent current. When the output volt-  
age droops approximately 1%, switching resumes. This  
maximizes efficiency at very light loads by minimizing  
switching and quiescent losses. Output voltage ripple in  
Burst Mode operation is typically 1% to 2% peak-to-peak.  
Additional output capacitance (22μF or greater), or the  
addition of a small feedforward capacitor (10pF to 50pF)  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
connected between V  
the output ripple.  
and FB can help further reduce  
OUT  
V
, FALLING (V)  
IN  
3124 F05  
V
V
V
= 2.5V  
= 5V  
= 7.5V  
V
V
= 12V  
OUT  
OUT  
OUT  
OUT  
OUT  
= 15V  
Figure 5. Burst Mode Output Current vs VIN  
APPLICATIONS INFORMATION  
PCB LAYOUT CONSIDERATIONS  
3. PGNDA pin, PGNDB pin, and the exposed pad are the  
power ground connections for the LTC3124. Multiple  
viasshouldconnectthebackpaddirectlytotheground  
plane. In addition, maximization of the metallization  
connected to the back pad will improve the thermal  
environmentandimprovethepowerhandlingcapabili-  
ties of the IC.  
The LTC3124 switches currents as high as 4.5A at high  
frequencies. Special attention should be paid to the PCB  
layouttoensureastable,noise-freeandefficientapplication  
circuit.Figure6presentstheLTC3124’s4-layerPCBdemo  
board layout (the schematic of which may be obtained  
from the Quick Start Guide) to outline some of the primary  
considerations. A few key guidelines are outlined below:  
4. The high current components and their connections  
should all be placed over a complete ground plane to  
minimize loop cross-sectional areas. This minimizes  
EMI and reduces inductive drops.  
1. A4-layerboardishighlyrecommendedfortheLTC3124  
to ensure stable performance over the full operating  
voltage and current range. A dedicated/solid ground  
5. Connections to all of the high current components  
should be made as wide as possible to reduce the  
series resistance. This will improve efficiency and  
maximize the output current capability of the boost  
converter.  
plane should be placed directly under the V , V  
,
IN OUTA  
V
OUTB  
, SWA, andSWBtracestoprovideamirrorplane  
to minimize noise loops from high dI/dt and dV/dt  
edges (see Figure 6, 2nd layer).  
2. All circulating high current paths should be kept as  
short as possible. Capacitor ground connections  
should via down to the ground plane in the shortest  
6. To prevent large circulating currents from disrupting  
theconvertersoutputvoltagesensing,compensation,  
and programmed switching frequency, the ground for  
the resistor divider, compensation components, and  
RT should be returned to the ground plane using a  
via placed close to the IC and away from the power  
connections.  
routepossible.ThebypasscapacitorsonV shouldbe  
IN  
placed as close to the IC as possible and should have  
the shortest possible paths to ground (see Figure 6,  
top layer).  
3124f  
14  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
7. Keep the connections from the resistor divider to the  
FB pin and from the compensation components to the  
VC pin as short as possible and away from the switch  
pin connections.  
8. Crossover connections should be made on inner cop-  
per layers if available. If it is necessary to place these  
on the ground plane, make the trace on the ground  
plane as short as possible to minimize the disruption  
to the ground plane (see Figure 6, 3rd layer).  
Top Layer  
2nd Layer  
3rd Layer  
Bottom Layer (Top View)  
Figure 6. Example PCB Layout  
3124f  
15  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
SCHOTTKY DIODE  
2
windings) to reduce the I R power losses, and must be  
able to support the peak inductor current without saturat-  
ing. Molded chokes and most chip inductors usually do  
not have enough core area to support the peak inductor  
currents of 3A to 4A seen on the LTC3124. To minimize  
radiated noise, use a shielded inductor.  
Although it is not required, adding a Schottky diode from  
bothSWpinstoV  
canimprovetheconverterefficiency  
OUT  
by up to 4%. Note that this defeats the output disconnect  
and short-circuit protection features of the LTC3124.  
See Table 2 for suggested components and suppliers.  
COMPONENT SELECTION  
Inductor Selection  
Table2. RecommendedInductors  
VALUE DCR  
I
SIZE(mm)  
W × L× H  
SAT  
The LTC3124 can utilize small inductors due to its capa-  
bility of setting a fast (up to 3MHz) switching frequency.  
Larger values of inductance will allow slightly greater  
output current capability by reducing the inductor ripple  
current. To design a stable converter the range of induc-  
tance values is bounded by the targeted magnitude of the  
internal slope compensation and is inversely proportional  
to the switching frequency. The Inductor selection for the  
LTC3124 has the following bounds:  
PART NUMBER  
(µH) (mΩ) (A)  
CoilcraftXFL4020-102ME  
CoilcraftMSS7341T-332NL  
CoilcraftXAL5030-332ME  
CoilcraftXAL5030-472ME  
CoilcraftXAL5050-562ME  
CoilcraftXAL6060-223ME  
CoilcraftMSS1260T-333ML  
1
12  
18  
23  
36  
26  
61  
5.4  
3.7  
8.7  
6.7  
6.3  
5.6  
4.3× 4.3× 2.1  
7.3× 7.3× 4.1  
5.3× 5.3× 3.1  
5.3× 5.3× 3.1  
5.3× 5.3× 5.1  
6.3× 6.3× 6.1  
12.3× 12.3 × 6.2  
3.3  
3.3  
4.7  
5.6  
22  
33  
57 4.34  
CoiltronicsSD53-1R1-R  
CoiltronicsDR74-4R7-R  
CoiltronicsDR125-330-R  
CoiltronicsDR127-470-R  
1.1  
4.7  
33  
20 4.8  
5.2× 5.2× 3  
7.6× 7.6× 4.35  
12.5× 12.5 × 6  
12.5× 12.5 × 8  
25 4.37  
51 3.84  
72 5.28  
47  
10  
f
3
f
Sumida CDR7D28MNNP-1R2NC 1.2  
21  
31  
5.9  
5
7.6× 7.6× 3  
7.25× 6.7× 3  
µH>L > µH  
Sumida CDMC6D28NP-3R3MC  
3.3  
Taiyo-Yuden NR5040T3R3N  
3.3  
35  
3.8  
5× 5 × 4  
The inductor peak-to-peak ripple current is given by the  
following equation:  
TDKLTF5022T-1R2N4R2-LC  
TDKSPM6530T-3R3M  
TDKVLP8040T-4R7M  
1.2  
3.3  
4.7  
25  
30  
25  
4.3  
6.8  
4.4  
5× 5.2× 2.2  
7.1× 6.5× 3  
8× 7.7× 4  
V • V  
– V  
IN  
(
)
Würth WE-LHMI74437324010  
Würth WE-PD7447789002  
Würth WE-PD7447779002  
Würth WE-PD 7447789003  
Würth WE-PD7447789004  
Würth WE-HCI 7443251000  
WürthWE-PD744770122  
Würth WE-PD744770133  
Würth WE-PD7447709470  
1
27  
20  
20  
30  
35  
16  
43  
64  
60  
9
4.8  
6
4.2  
3.9  
8.5  
5
3.6  
4.5  
4.45× 4.06 × 1.8  
7.3× 7.3× 3.2  
7.3× 7.3 × 4.5  
7.3× 7.3× 3.2  
7.3× 7.3× 3.2  
10× 10× 5  
IN  
OUT  
Ripple A =  
( )  
2.2  
2.2  
3.3  
4.7  
10  
22  
33  
47  
f•L•VOUT  
where:  
L = Inductor Value in μH  
12× 12× 8  
12× 12× 8  
12× 12× 10  
f = Switching Frequency in MHz of One Phase  
The inductor ripple current is a maximum at the minimum  
inductor value. Substituting 3/f for the inductor value in  
the above equation yields the following:  
Output and Input Capacitor Selection  
Low ESR (equivalent series resistance) capacitors should  
be used to minimize the output voltage ripple. Multilayer  
ceramic capacitors are an excellent choice as they have  
extremely low ESR and are available in small footprints.  
X5R and X7R dielectric materials are preferred for their  
ability to maintain capacitance over wide voltage and tem-  
perature ranges. Y5V types should not be used. Although  
ceramic capacitors are recommended, low ESR tantalum  
capacitors may be used as well.  
V • V  
– V  
IN  
(
)
IN  
OUT  
RippleMAX A =  
( )  
3•VOUT  
A reasonable operating range for the inductor ripple cur-  
rent is typically 10% to 40% of the maximum inductor  
current. High frequency ferrite core inductor materials  
reduce frequency dependent power losses compared to  
cheaper powdered iron types, improving efficiency. The  
inductor should have low DCR (series resistance of the  
3124f  
16  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
When selecting output capacitors, the magnitude of the  
peak inductor current, together with the ripple voltage  
specification, determine the choice of the capacitor. Both  
theESR(equivalentseriesresistance)ofthecapacitorand  
the charge stored in the capacitor each cycle contribute  
to the output voltage ripple.  
Table 3: Representative Output Capacitors  
Manufacturer,  
Part Number  
Value  
(µF)  
Voltage SIZE L × W × H (mm)  
(V)  
Type, ESR (mΩ)  
AVX,  
22  
22  
22  
22  
22  
47  
22  
22  
22  
22  
47  
100  
100  
22  
47  
100  
47  
1F  
16  
3.2 × 1.6 × 1.78,  
X5R Ceramic  
1206YD226KAT2A  
AVX,  
1210YC226KAT2A  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
6.3  
16  
25  
16  
16  
25  
5.5  
3.2 × 2.5 × 2.79,  
X7R Ceramic  
Murata,  
GRM31CR61C226ME15L  
3.2 × 1.6 × 1.8,  
X5R Ceramic  
Thepeak-to-peakrippleduetothechargeisapproximately:  
IP V  
COUT VOUT f•2  
Murata,  
GRM32ER71C226KE18K  
3.2 × 2.5 × 2.7,  
X7R Ceramic  
IN  
VRIPPLE(CHARGE)(V)≈  
Murata,  
GRM43ER61C226KE01L  
4.5 × 3.2 × 2.7,  
X5R Ceramic  
where:  
Murata,  
GRM32EB31C476ME15K  
3.2 × 2.5 × 2.5,  
X5R Ceramic  
I = Peak inductor current  
P
Panasonic,  
ECJ-4YB1C226M  
3.2 × 2.5 × 2.7,  
X5R Ceramic  
f = Switching frequency of one phase  
The ESR of C  
is usually the most dominant factor for  
OUT  
Taiyo Yuden,  
EMK316BJ226ML-T  
3.2 × 1.6 × 1.8,  
X5R Ceramic  
ripple in most power converters. The peak-to-peak ripple  
Taiyo Yuden,  
EMK325B7226MM-TR  
3.2 × 2.5 × 2.7,  
X7R Ceramic  
due to the capacitor ESR is:  
VOUT  
Taiyo Yuden,  
EMK432BJ226KM-T  
4.5 × 3.2 × 2.7,  
X5R Ceramic  
VRIPPLE(ESR)(V)=ILOAD • RESR  
where R  
V
IN  
TDK,  
C5750X7R1C476M  
5.7 × 5 × 2.5,  
X7R Ceramic  
= capacitor equivalent series resistance.  
ESR  
TDK,  
C4532X5R0J107M  
4.5 × 3.2 × 2.8,  
X5R Ceramic  
The input filter capacitor reduces peak currents drawn  
from the input source and reduces input switching noise.  
AlowESRbypasscapacitorwithaminimumvalueof10µF  
Nichicon,  
UBC1C101MNS1GS  
8.3 × 8.3 × 11.5,  
Aluminum Polymer  
Sanyo,  
25TQC22MV  
7.3 x 4.3 x 1.9,  
POSCAP, 45mΩ  
should be located as close to V as possible.  
IN  
Low ESR and high capacitance are critical to maintain low  
output ripple. Capacitors can be used in parallel for even  
largercapacitancevaluesandlowereffectiveESR.Ceramic  
capacitors are often utilized in switching converter appli-  
cations due to their small size, low ESR and low leakage  
currents. However, many ceramic capacitors experience  
significant loss in capacitance from their rated value with  
increased DC bias voltage. It is not uncommon for a small  
surfacemountcapacitortolosemorethan50%ofitsrated  
capacitance when operated near its rated voltage. As a  
result it is sometimes necessary to use a larger capaci-  
tor value or a capacitor with a larger value and case size,  
such as 1812 rather than 1206, in order to actually realize  
the intended capacitance at the full operating voltage. Be  
sure to consult the vendor’s curve of capacitance versus  
DC bias voltage. Table 3 shows a sampling of capacitors  
suited for the LTC3124 applications.  
Sanyo,  
16TQC47MW  
7.3 × 4.3 × 3.1,  
POSCAP, 40mΩ  
Sanyo,  
16TQC100M  
7.3 × 4.3 × 3.1,  
POSCAP, 50mΩ  
Sanyo,  
25SVPF47M  
6.6 × 6.6 × 5.9,  
OS-CON, 30mΩ  
AVX, BestCap Series  
BZ125A105ZLB  
48 × 30 × 6.1,  
35mΩ, 4 Lead  
Cap-XX GS230F  
1.2F  
4.5  
2.7  
39 × 17 × 3.8, 28mΩ  
Tecate Powerburst  
TPL-100/22X45  
100F  
D = 22, H = 45  
15mΩ  
Cooper KR-5R5C155-R  
1.5F  
110F  
50F  
5.5  
2.5  
2.5  
D = 21.5, H = 7.5  
30mΩ  
Cooper  
HB1860-2R5117-R  
D = 18.5, H = 60  
20mΩ  
Maxwell  
BCAP0050-P270  
D = 18, H = 40  
20 mΩ  
3124f  
17  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
Thermal Considerations  
For applications requiring a very low profile and very large  
capacitance, the GS, GS2 and GW series from Cap-XX,  
the BestCap series from AVX and PowerStor KR series  
capacitors from Cooper all offer very high capacitance  
and low ESR in various low profile packages.  
For the LTC3124 to deliver its full power, it is imperative  
that a good thermal path be provided to dissipate the  
heat generated within the package. This can be accom-  
plished by taking advantage of the large thermal pad on  
the underside of the IC. It is recommended that multiple  
vias in the printed circuit board be used to conduct heat  
away from the IC and into a copper plane with as much  
area as possible. If the junction temperature rises above  
~170°C, the part will trip an internal thermal shutdown,  
and all switching will stop until the junction temperature  
drops ~7°C.  
OPERATING FREQUENCY SELECTION  
Thereareseveralconsiderationsinselectingtheoperating  
frequencyoftheconverter.Typically,thefirstconsideration  
is to stay clear of sensitive frequency bands, which can-  
not tolerate any spectral noise. For example, in products  
incorporatingRFcommunications,the455kHzIFfrequency  
can be sensitive to any noise, therefore switching above  
600kHzisdesired.Somecommunicationshavesensitivity  
to 1.1MHz and in that case a 1.5MHz switching converter  
frequencymaybeemployed.Asecondconsiderationisthe  
physical size of the converter. As the operating frequency  
is increased, the inductor and filter capacitors typically  
can be reduced in value, leading to smaller sized external  
components. The smaller solution size is typically traded  
forefficiency,sincetheswitchinglossesduetogatecharge  
increase with frequency.  
Compensating the Feedback Loop  
The LTC3124 uses current mode control, with internal  
adaptiveslopecompensation.Currentmodecontrolelimi-  
natesthesecondorderfilterduetotheinductorandoutput  
capacitorexhibitedinvoltagemodecontrol,andsimplifies  
the power loop to a single pole filter response. Because  
of this fast current control loop, the power stage of the IC  
combined with the external inductor can be modeled by a  
transconductance amplifier g and a current controlled  
mp  
current source. Figure 7 shows the key equivalent small  
Anotherconsiderationiswhethertheapplicationcanallow  
pulse-skipping.Whentheboostconverterpulse-skips,the  
minimum on-time of the converter is unable to support  
the duty cycle. This results in a low frequency component  
to the output ripple. In many applications where physical  
size is the main criterion, running the converter in this  
mode is acceptable. In applications where it is preferred  
nottoenterthismode, themaximumoperatingfrequency  
is given by:  
signal elements of a boost converter.  
The DC small-signal loop gain of the system shown in  
Figure 7 is given by the following equation:  
R2  
R1+R2  
GBOOST =GEA GMP GPOWER  
where G is the DC gain of the error amplifier, G is  
EA  
MP  
the modulator gain, and G  
is the inductor current  
POWER  
to V  
gain.  
OUT  
VOUT – V  
VOUT tON(MIN)  
IN  
fMAX _NOSKIP <≅  
Hz  
G
= g • R ≈ 1000V/V  
ma O  
EA  
(Not Adjustable; g ≈ 100µS, R ≈ 10MΩ)  
ma  
O
where t  
= minimum on-time, which is typically  
ON(MIN)  
around 100ns.  
IL  
GMP = 2gmp; gmp  
=
3.4S NotAdjustable  
(
)
VC  
VOUT ηV  
ηV •RL  
2•VOUT  
IN  
IN  
GPOWER  
=
=
=
IL  
2•IOUT  
3124f  
18  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
+
MODULATOR  
1
V
OUT  
g
mp  
Phase Lead Zero: Z4 =  
Phase Lead Pole: P4 =  
Hz  
η • V  
IN  
I
L
2π • R1+R •C  
• I  
(
)
L
R
PL  
PL  
ESR  
C
2 • V  
OUT  
R
L
1
OUT  
Hz  
1.2V  
REFERENCE  
ERROR  
AMPLIFIER  
R
PL  
R1•R2  
R1+R2  
2π •  
+R  
•C  
PL  
PL   
C
PL  
R1  
+
VC  
R
g
ma  
FB  
R
C
Error Amplifier Filter Pole:  
1
C
F
O
R2  
C : COMPENSATION CAPACITOR  
C
C
C
3124 F07  
R : COMPENSATION RESISTOR  
CC  
C
C : HIGH FREQUENCY FILTER CAPACITOR  
P5=  
Hz, CF <  
F
PL  
PL  
ma  
CC CF  
CC +CF  
C
: PHASE LEAD CAPACITOR  
10  
2π •RC •  
R
g
: PHASE LEAD RESISTOR  
: TRANSCONDUCTANCE AMPLIFIER INSIDE IC  
R : OUTPUT RESISTANCE OF g  
O
mp  
OUT  
ESR  
ma  
g
: POWER STAGE TRANSCONDUCTANCE AMPLIFIER  
1
C
: OUTPUT CAPACITOR  
Hz  
R
: OUTPUT CAPACITOR ESR  
2π •RC CF  
R : OUTPUT RESISTANCE DEFINED AS V /I  
L
OUT LOAD(MAX)  
R1, R2: FEEDBACK RESISTOR DIVIDER NETWORK  
η: CONVERSION EFFICIENCY (~90% AT HIGHER CURRENTS)  
The current mode zero (Z3) is a right-half plane zero  
which can be an issue in feedback control design, but is  
manageable with proper external component selection.  
Also note that the RHP zero is a minimum at minimum  
input voltage and maximum output current for a given  
output voltage. As a general rule, the frequency at which  
the open-loop gain of the converter is reduced to unity,  
Figure 7. Boost Converter Equivalent Model  
Combining the two equations above yields:  
3.4ηV •RL  
IN  
GDC =GMP GPOWER  
V/V  
VOUT  
known as the crossover frequency f , should be set to  
C
Converter efficiency η will vary with I  
SWITCH  
characteristics curves.  
and switching  
OUT  
less than one-sixth of the right-half plane zero (Z3), and  
frequency f  
as shown in the typical performance  
underone-eighthoftheswitchingfrequencyf  
C
.Once  
SWITCH  
f is selected, the compensation component values can  
2
be calculated using a Bode plot of the power stage or two  
Output Pole: P1 =  
Hz  
generally valid assumptions: P1 dominates the gain of the  
2π •RL COUT  
power stage for frequencies lower than f and f is much  
C
C
Error Amplifier Pole:  
higher than P2. First calculate the power stage gain at f ,  
C
fC  
1
CC  
10  
G in V/V. Assuming the output pole P1 dominates G  
fC  
P2 =  
Hz;CF <  
2π •R • C +C  
for this range, it is expressed by:  
(
)
F
O
C
1
GDC  
Hz; ExtremelyClosetoDC  
G fC ≈  
V/V  
2π •RO CC  
f
P1  
C 2  
1+  
1
Error Amplifier Zero: Z1 =  
Hz  
2π •RC CC  
1
ESR Zero: Z2 =  
Hz  
2π •RESR COUT  
2 2RL  
2π VOUT •L  
V
IN  
RHP Zero: Z3 =  
Hz  
2
f
High Frequency Pole: P3 > OSC Hz  
3
3124f  
19  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
Decide how much phase margin (Φ ) is desired. Greater  
the transfer function of the converter. The values of these  
phase lead components are given by the expressions:  
m
phasemargincanoffermorestabilitywhilelowerphasemar-  
gincanyieldfastertransientresponse.Typically,Φ 60°  
m
R1R2  
R1+R2  
is optimal for minimizing transient response time while  
R1a •  
2
allowing sufficient margin to account for component  
RPL  
CPL  
=
kand  
a2 1  
variability. Φ is the phase boost of Z1, P2, and P5 while  
1
106 a 1 R1+R2  
Φ is the phase boost of Z4 and P4. Select Φ and Φ  
2
1
2
(
)
)
pF  
(
2
=
such that:  
2π • ƒC R12 a2  
ƒ
Z3  
1C   
Φ1 + Φ2 = Φm + tan−  
and  
where R1, R2, and R are in kΩ and ƒ is in kHz.  
PL  
C
Note that selecting Φ = 0° forces a = 1, and so the  
2
2
VOUT  
1.2V  
Φ1 74°; Φ2 2 • tan1  
90°  
converter will have Type II compensation and therefore  
no feedforward: R is open (infinite impedance) and C  
PL  
PL  
= 0pF. If a = 0.833 • V  
(its maximum), feedforward is  
where V  
is in V and ƒ and Z3 are in kHz.  
C
2
OUT  
OUT  
maximized; R = 0 and C is maximized for this com-  
PL  
PL  
Setting Z1, P5, Z4, and P4 such that  
ƒC ƒC  
pensation method.  
Once the compensation values have been calculated, ob-  
taining a converter bode plot is strongly recommended to  
verify calculations and adjust values as required.  
Z1=  
, P5 = ƒC a1, Z4 =  
, P4 = ƒC a2  
a1  
a2  
allows a and a to be determined using Φ and Φ  
1
2
1
2
Using the circuit in Figure 8 as an example, Table 4 shows  
the parameters used to generate the Bode plot shown in  
Figure 9.  
Φ + 90°  
Φ +90°  
a1 = tan2  
, a = tan2  
2
1
2
2
2
The compensation will force the converter gain G  
BOOST  
Table 4. Bode Plot Parameters  
to unity at ƒ by using the following expression for C :  
C
C
PARAMETER  
VALUE  
UNITS  
V
V
COMMENT  
App Specific  
App Specific  
App Specific  
V
V
5
12  
8
103 • gma R2 G a 1 a  
IN  
(
)
1
2
ƒC  
OUT  
CC =  
pF  
2π • ƒ • R1+R2 a  
(
)
R
C
Ω
1
L
C
at No Bias  
at 12V Bias  
µF  
µF  
App Specific  
App Specific  
22 × 2  
14 × 2  
OUT  
OUT  
(gma in µS, ƒC in kHz, GƒC in V/V)  
C
R
2.5  
4.7  
1
1020  
113  
100  
10  
mΩ  
µH  
MHz  
kΩ  
kΩ  
µS  
MΩ  
S
App Specific  
App Specific  
Adjustable  
Adjustable  
Adjustable  
Fixed  
ESR  
Once C is calculated, R and C are determined by:  
C
C
F
LA, LB  
106 • a1  
2π • ƒC CC  
SWITCH  
f
RC =  
kC in kHz, CC in pF)  
R1  
R2  
CC  
a1 1  
g
ma  
CF =  
R
Fixed  
Fixed  
O
g
mp  
3.4  
90  
Amethodforimprovingtheconverter’stransientresponse  
usesasmallfeedforwardseriesnetworkofacapacitorand  
a resistor across the top resistor of the feedback divider  
%
App Specific  
Adjustable  
Adjustable  
Adjustable  
Optional  
η
R
84.5  
680  
56  
Open  
0
kΩ  
pF  
pF  
kΩ  
pF  
C
C
F
C
C
(from V  
to FB). This adds a phase-lead zero and pole to  
OUT  
R
PL  
C
PL  
Optional  
3124f  
20  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
Switching Waveforms with 1.5A Load  
LB  
V
OUT  
4.7µH  
20mV/DIV  
V
IN  
5V  
SWB  
CAP  
C1  
100nF  
INDUCTOR B  
CURRENT  
1A/DIV  
AC-COUPLED  
V
OUT  
LA  
4.7µH  
12V  
PGNDB  
V
OUTB  
C
1.5A  
OUT  
V
SWB  
22µF  
SWA  
V
OUTA  
LTC3124  
10V/DIV  
×2  
INDUCTOR A  
CURRENT  
1A/DIV  
PGNDA  
V
SWA  
V
IN  
SGND  
10V/DIV  
R1  
PWM/SYNC SD  
FB  
BURST PWM  
OFF ON  
1.02M  
3124 F08b  
200ns/DIV  
V
CC  
RT  
C
IN  
R2  
113k  
10µF  
V
C
R
C
Transient Response with 700mA to 1.5A Load Step  
84.5k  
C
R
VCC  
T
28k  
C
C
F
C
4.7µF  
V
56pF  
680pF  
OUT  
500mV/DIV  
C1: 100nF, 16V, X5R, 0805  
AC-COUPLED  
3124 F08  
C
C
C
: 10µF, 10V, X5R, 1206  
IN  
OUT  
VCC  
: 22µF ×2, 16V, X5R, 1210  
: 4.7µF, 10V, X5R, 1206  
LA, LB: COILCRAFT XAL5030-472ME  
1500mA  
OUTPUT  
CURRENT  
500mA/DIV  
Figure 8. 1MHz, 5V to 12V, 1.5A Boost Converter  
700mA  
700mA  
3124 F08c  
100µs/DIV  
45  
30  
90  
45  
PHASE  
15  
0
GAIN  
0
–45  
–90  
–135  
–180  
–15  
–30  
–45  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
3124 F09  
Figure 9. Bode Plot for Example Converter  
3124f  
21  
For more information www.linear.com/LTC3124  
LTC3124  
APPLICATIONS INFORMATION  
LB  
From Figure 9, the phase is ~60° when the gain reaches  
0dB, so the phase margin of the converter is ~60°. The  
crossover frequency is ~10kHz, which is more than six  
times lower than the 94kHz frequency of the RHP zero to  
achieve adequate phase margin.  
4.7µH  
V
IN  
5V  
SWB  
CAP  
C1  
100nF  
V
OUT  
LA  
4.7µH  
12V  
PGNDB  
V
OUTB  
C
1.5A  
OUT  
22µF  
V
SWA  
OUTA  
LTC3124  
×2  
PGNDA  
R
The circuit in Figure 10 shows the same application as  
that in Figure 8 with Type III compensation. This is ac-  
PL  
V
SGND  
IN  
787k  
C
R1  
PL  
PWM/SYNC SD  
BURST PWM  
OFF ON  
12pF 1.02M  
complished by adding C and R and adjusting C , C ,  
PL  
PL  
C
F
V
CC  
RT  
FB  
V
C
C
IN  
R2  
113k  
10µF  
and R accordingly. Table 5 shows the parameters used  
C
R
C
to generate the bode plot shown in Figure 11.  
71.5k  
C
R
VCC  
T
28k  
C
F
C
C
4.7µF  
120pF  
470pF  
From Figure 11, the phase margin is still optimized at ~60°  
andthecrossoverfrequencyremains~10kHz.AddingCPL  
and RPL provides some feedforward signal in Burst Mode  
operation, leading to lower output voltage ripple.  
3124 F10  
C1: 100nF, 16V, X5R, 0805  
C
C
C
: 10µF, 10V, X5R, 1206  
IN  
OUT  
VCC  
: 22µF ×2, 16V, X5R, 1210  
: 4.7µF, 10V, X5R, 1206  
LA, LB: COILCRAFT XAL5030-472ME  
Figure 10. Boost Converter with Phase Lead  
Table 5. Bode Plot Parameters  
PARAMETER  
VALUE  
UNITS  
COMMENT  
App Specific  
App Specific  
App Specific  
45  
30  
90  
V
V
5
12  
8
V
V
IN  
OUT  
45  
R
C
Ω
L
PHASE  
at No Bias  
at 12V Bias  
µF  
µF  
App Specific  
App Specific  
22 × 2  
14 × 2  
OUT  
OUT  
15  
0
C
GAIN  
R
2.5  
4.7  
1
mΩ  
µH  
MHz  
kΩ  
kΩ  
µS  
MΩ  
S
App Specific  
App Specific  
Adjustable  
Adjustable  
Adjustable  
Fixed  
0
–45  
–90  
–135  
–180  
ESR  
LA, LB  
–15  
–30  
–45  
f
SWITCH  
R1  
R2  
113  
1020  
100  
10  
g
ma  
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
R
Fixed  
O
3124 F11  
g
3.4  
90  
Fixed  
mp  
%
App Specific  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
Adjustable  
η
Figure 11. Bode Plot Showing Phase Lead  
R
71.5  
470  
120  
787  
12  
kΩ  
pF  
C
C
F
C
C
pF  
R
kΩ  
pF  
PL  
PL  
C
3124f  
22  
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL APPLICATIONS  
Single Li Cell to 6V, 9W, 2.2MHz Synchronous Boost Converter  
for RF Transmitter  
Load Step  
V
OUT  
LB  
500mV/DIV  
2.2µH  
AC-COUPLED  
V
IN  
SWB  
CAP  
C1  
1.5A  
2.7V TO 4.2V  
V
OUT  
100nF  
6V  
LA  
2.2µH  
PGNDB  
V
OUTB  
OUTPUT  
CURRENT  
500mA/DIV  
C
1.5A  
OUT  
47µF  
V
SWA  
OUTA  
150mA  
150mA  
×2  
LTC3124  
PGNDA  
3124 TA02b  
V = 3.6V  
IN  
100µs/DIV  
V
SGND  
IN  
R1  
PWM/SYNC SD  
FB  
OFF ON  
1.13M  
V
CC  
C
IN  
Bode Plot  
R2  
280k  
10µF  
RT  
V
C
C
R
C
VCC  
50  
40  
30  
20  
10  
0
120  
90  
C
F
68pF  
4.7µF  
60.4k  
R
T
C
C
11.5k  
1.2nF  
60  
PHASE  
C1: 100nF, 16V, X5R, 0805  
: 10µF, 10V, X5R, 1206  
3124 TA02a  
30  
C
C
C
IN  
: 47µF × 2, 16V, X5R, 1210  
: 4.7µF, 10V, X5R, 1206  
0
OUT  
VCC  
GAIN  
–30  
–60  
–90  
–120  
–150  
LA, LB: WÜRTH WE-PD 7447779002  
–10  
–20  
–30  
–40  
–50  
–180  
100k  
100  
1k  
10k  
FREQUENCY (Hz)  
3124 TA02c  
2-Port USB-Powered 1MHz Synchronous Boost Converter to 5V, 500mA  
LB  
3.3µH  
V
IN  
SWB  
CAP  
C1  
4.3V TO 5.5V  
V
OUT  
100nF  
2-Port USB 2.0 Hot Plugged  
5V  
LA  
3.3µH  
PGNDB  
V
OUTB  
C
500mA  
OUT  
100µF  
V
SWA  
OUTA  
V
×2  
IN  
LTC3124  
2V/DIV  
PGNDA  
V
SGND  
IN  
V
OUT  
2V/DIV  
R1  
PWM/SYNC SD  
FB  
OFF ON  
1.47M  
INPUT  
CURRENT  
500mA/DIV  
V
CC  
C2  
10µF  
C
IN  
10µF  
R2  
464k  
RT  
V
C
C
R
C
VCC  
C
4.7µF  
35.7k  
F
R
3124 TA03b  
T
28k  
R
V
= 10Ω  
2ms/DIV  
C
C
270pF  
LOAD  
IN  
= USB 2.0  
2.7nF  
2-PORT HOT PLUGGED  
C1: 100nF, 16V, X5R, 0805  
3124 TA03a  
C2: KEMET T491C106K025AS  
C
C
C
: 10µF, 10V, X5R, 1206  
IN  
: 100µF × 2, 6.3V, X5R, 1812  
OUT  
VCC  
: 4.7µF, 10V, X5R, 1206  
LA, LB: COILCRAFT XAL5030-332ME  
3124f  
23  
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL APPLICATIONS  
3.3V to 12V, 300kHz Synchronous Boost Converter  
with Output Disconnect, 1A  
LB  
22µH  
Efficiency  
V
IN  
SWB  
CAP  
100  
90  
C1  
3.3V  
V
12V  
1A  
OUT  
Burst Mode  
OPERATION  
100nF  
LA  
22µH  
PGNDB  
V
OUTB  
C
OUT  
80  
47µF  
V
SWA  
OUTA  
×3  
70  
LTC3124  
PGNDA  
60  
50  
PWM  
V
SGND  
IN  
R1  
40  
30  
20  
10  
0
PWM/SYNC SD  
BURST PWM  
OFF ON  
1.02M  
V
FB  
CC  
C
IN  
V
DERIVED  
CC  
R2  
113k  
10µF  
RT  
V
C
FROM V  
IN  
R
C
76.8k  
C
VCC  
V
CC  
DERIVED  
C
F
4.7µF  
R
FROM V  
T
OUT  
270pF  
C
C
100k  
3.9nF  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
C1: 100nF, 16V, X5R, 0805  
3124 TA04a  
C
C
C
: 10µF, 10V, X5R, 1206  
3124 TA04b  
IN  
OUT  
VCC  
: 47µF × 3, 16V, X5R, 1210  
: 4.7µF, 10V, X5R, 1206  
LA, LB: WÜRTH WE-PDF 7447998221  
Single Li Cell to 5V, 1.8A Synchronized 1.2MHz Switching Boost  
Converter for RFPA Power Supply  
Efficiency  
LB  
3.3µH  
V
IN  
100  
90  
SWB  
CAP  
C1  
2.7V TO 4.2V  
V
OUT  
100nF  
Burst Mode  
OPERATION  
5V  
LA  
3.3µH  
PGNDB  
V
OUTB  
C
1.8A  
OUT  
80  
22µF  
V
SWA  
OUTA  
×2  
70  
LTC3124  
PGNDA  
60  
50  
PWM  
V
SGND  
IN  
2.4MHz SYNC PULSE  
R1  
40  
30  
20  
10  
0
PWM/SYNC SD  
FB  
OFF ON  
1.47M  
V
CC  
C
IN  
R2  
464k  
10µF  
RT  
V
C
4.2V  
3.3V  
2.7V  
IN  
IN  
IN  
R
C
C
VCC  
31.6k  
4.7µF  
R
28.7k  
T
C
C
1.5nF  
F
C
150pF  
0.01  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
C1: 100nF, 16V, X7R, 0805  
3124 TA05a  
3124 TA05b  
C
C
C
: 10µF, 10V, X7R, 1206  
IN  
OUT  
VCC  
: 22µF × 2, 16V, X7R, 1210  
: 4.7µF, 10V, X7R, 1206  
LA, LB: COILCRAFT MSS7341T-332NL  
3124f  
24  
For more information www.linear.com/LTC3124  
LTC3124  
TYPICAL APPLICATIONS  
1.8V to 5.5V Input to 15V Output, 500kHz Synchronous Boost  
Converter with Output Disconnect, 300mA  
Efficiency  
LB  
10µH  
V
IN  
100  
95  
90  
85  
80  
75  
SWB  
CAP  
C1  
OUTPUT CURRENT = 300mA  
1.8V TO 5.5V  
V
OUT  
100nF  
15V  
LA  
10µH  
PGNDB  
V
OUTB  
C
300mA  
OUT  
22µF  
SWA  
V
OUTA  
×2  
LTC3124  
PGNDA  
V
SGND  
IN  
R1  
PWM/SYNC SD  
FB  
OFF ON  
1.3M  
V
CC  
C
IN  
R2  
113k  
10µF  
RT  
V
C
R
C
49.9k  
C
VCC  
C
F
4.7µF  
R
T
100pF  
C
C
57.6k  
3.3nF  
3.5  
(V)  
1.5  
2
2.5  
3
4
4.5  
5
5.5  
V
IN  
C1: 100nF, 16V, X7R, 0805  
3124 TA06a  
3124 TA06b  
C
C
C
: 10µF, 10V, X7R, 1206  
IN  
OUT  
VCC  
: 22µF × 2, 16V, X7R, 1210  
: 4.7µF, 10V, X7R, 1206  
LA, LB: WÜRTH WE-HCI 7443251000  
Single Li Cell to 12V, 1MHz Synchronous Boost Converter  
with Output Disconnect, 800mA  
LB  
5.6µH  
V
IN  
SWB  
CAP  
C1  
2.7V TO 4.2V  
V
OUT  
100nF  
12V  
800mA  
LA  
5.6µH  
PGNDB  
V
OUTB  
C
OUT  
22µF  
SWA  
V
OUTA  
×2  
LTC3124  
PGNDA  
V
SGND  
IN  
R1  
PWM/SYNC SD  
FB  
OFF ON  
1.02M  
V
CC  
C
IN  
R2  
113k  
10µF  
RT  
V
C
R
C
88.7k  
C
VCC  
C
F
4.7µF  
R
T
28k  
47pF  
C
C
680pF  
C1: 100nF, 16V, X7R, 0805  
3124 TA08  
C
C
C
: 10µF, 10V, X7R, 1206  
IN  
OUT  
VCC  
: 22µF × 2, 16V, X7R, 1210  
: 4.7µF, 10V, X7R, 1206  
LA, LB: COILCRAFT XAL5050-562ME  
3124f  
25  
For more information www.linear.com/LTC3124  
LTC3124  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
DHC Package  
16-Lead Plastic DFN (5mm × 3mm)  
(Reference LTC DWG # 05-08-1706 Rev Ø)  
0.65 ±0.05  
3.50 ±0.05  
1.65 ±0.05  
2.20 ±0.05 (2 SIDES)  
PACKAGE  
OUTLINE  
0.25 ± 0.05  
0.50 BSC  
4.40 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.115  
TYP  
0.40 ±0.10  
5.00 ±0.10  
(2 SIDES)  
9
16  
R = 0.20  
TYP  
3.00 ±0.10  
(2 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
PIN 1  
NOTCH  
(DHC16) DFN 1103  
8
1
0.25 ±0.05  
0.75 ±0.05  
0.200 REF  
0.50 BSC  
4.40 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING PROPOSED TO BE MADE VARIATION OF VERSION (WJED-1) IN JEDEC  
PACKAGE OUTLINE MO-229  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3124f  
26  
For more information www.linear.com/LTC3124  
LTC3124  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
16-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev J)  
Exposed Pad Variation BC  
4.90 – 5.10*  
(.193 – .201)  
3.58  
(.141)  
0.48  
(.019)  
REF  
3.58  
(.141)  
16 1514 13 12 11 109  
6.60 ±0.10  
4.50 ±0.10  
0.51  
(.020)  
REF  
2.94  
DETAIL B  
(.116)  
6.40  
(.252)  
BSC  
SEE NOTE 4  
2.94  
(.116)  
DETAIL B IS THE PART OF  
0.45 ±0.05  
THE LEAD FRAME FEATURE  
FOR REFERENCE ONLY  
1.05 ±0.10  
NO MEASUREMENT PURPOSE  
0.65 BSC  
5
7
8
1
2
3
4
6
RECOMMENDED SOLDER PAD LAYOUT  
1.10  
(.0433)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
0.195 – 0.30  
FE16 (BC) TSSOP REV J 1012  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
FOR EXPOSED PAD ATTACHMENT  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
MILLIMETERS  
(INCHES)  
2. DIMENSIONS ARE IN  
3. DRAWING NOT TO SCALE  
3124f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTC3124  
TYPICAL APPLICATION  
PWM Rundown Curve  
Dual Supercapacitor Backup Power Supply, 0.5V to 5.4V  
V
IN  
2V/DIV  
LB  
3.3µH  
V
SD  
2V/DIV  
IN  
SWB  
CAP  
SUPPLY REMOVED  
FROM SUPERCAP  
C1  
0.5V TO 5.4V  
100nF  
V
OUT  
LA  
3.3µH  
PGNDB  
V
OUTB  
5V  
C
OUT  
100µF  
V
SWA  
V
OUTA  
OUT  
5V/DIV  
×2  
LTC3124  
PGNDA  
OUTPUT  
CURRENT  
100mA/DIV  
V
IN  
V
SGND  
R3  
1M  
IN  
C
3124 TA07b  
IN  
200s/DIV  
10µF  
SD  
PWM/SYNC  
R1  
+
+
1.47M  
SC1  
100F  
SC2  
Burst Mode Rundown Curve  
OFF ON  
V
FB  
CC  
V
IN  
R2  
464k  
V
C
2V/DIV  
RT  
100F  
R
C
C
F
59k  
C
C
VCC  
4.7µF  
R
T
28k  
SD  
2V/DIV  
47pF  
C
SUPPLY REMOVED  
FROM SUPERCAP  
1.5nF  
C1: 100nF, 16V, X5R, 0805  
3124 TA07a  
C
C
C
: 10µF, 10V, X5R, 1206  
V
OUT  
IN  
OUT  
VCC  
: 100µF × 2, 6.3V, X5R, 1812  
5V/DIV  
: 4.7µF, 10V, X5R, 1206  
OUTPUT  
CURRENT  
20mA/DIV  
LA, LB: COILCRAFT XAL5030-332ME  
SC1, SC2: TECATE POWERBURST TPL-100/22X45  
3124 TA07c  
500s/DIV  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3459  
70mA I , 10V Micropower Synchronous Boost Converter  
V : 1.5V to 5.5V, V  
= 10V, I = 10μA, I < 1μA,  
OUT(MAX) Q SD  
SW  
IN  
with Output Disconnect, Burst Mode Operation  
ThinSOT Package  
LTC3528  
LTC3539  
LTC3421  
LTC3428  
LTC3425  
LTC3122  
1A I , 1MHz, Synchronous Step-Up DC/DC Converter with  
94% Efficiency V : 700mV to 5.25V, V  
SD  
= 5.25V, I = 12µA,  
Q
SW  
IN  
OUT(MAX)  
Output Disconnect, Burst Mode Operation  
I
< 1µA, 2mm × 3mm DFN Package  
2A I , 1MHz/2MHz, Synchronous Step-Up DC/DC Converters 94% Efficiency V : 700mV to 5.25V, V  
= 5.25V, I = 10uA,  
Q
SW  
IN  
OUT(MAX)  
with Output Disconnect, Burst Mode Operation  
I
SD  
< 1µA, 2mm × 3mm DFN Package  
3A I , 3MHz, Synchronous Step-Up DC/DC Converter with  
95% Efficiency V : 0.5V to 4.5V, V  
SD  
= 5.25V, I = 12μA,  
Q
SW  
IN  
OUT(MAX)  
OUT(MAX)  
OUT(MAX)  
Output Disconnect  
I
< 1μA, QFN24 Package  
4A I , 2MHz (1MHz Switching), Dual Phase Step-Up  
92% Efficiency V : 1.6V to 4.5V, V  
= 5.25V, I < 1µA,  
SD  
SW  
IN  
DC/DC Converter  
3mm × 3mm DFN Package  
5A I , 8MHz, Low Ripple, 4-Phase Synchronous Step-Up  
95% Efficiency V : 0.5V to 4.5V, V  
= 5.25V, I = 12μA,  
Q
SW  
IN  
DC/DC Converter with Output Disconnect  
I
SD  
< 1μA, QFN32  
2.5A I , 3MHz, Synchronous Step-Up DC/DC Converter with 95% Efficiency V : 1.8V to 5.5V [500mV After Start-Up],  
SW  
IN  
Output Disconnect, Burst Mode Operation  
V
= 15V, I = 25μA, I < 1μA, 3mm × 4mm DFN  
OUT(MAX) Q SD  
and MSOP Packages  
LTC3112  
15V, 2.5A, 750kHz, Synchronous Buck-Boost DC/DC Converter 95% Efficiency V : 2.7V to 15V, V  
= 14V, I = 50μA,  
IN  
OUT(MAX) Q  
with Output Disconnect, Burst Mode Operation  
I
< 1μA, 4mm × 5mm DFN and TSSOP Packages  
SD  
LTC3114-1  
40V, 1A, 2MHz, Synchronous Buck-Boost DC/DC Converter  
with Output Disconnect, Output Current Limit, Burst Mode  
Operation  
95% Efficiency V : 2.2V to 40V, V  
SD  
= 40V, I = 30μA,  
Q
IN  
OUT(MAX)  
I
= 3μA, 3mm × 5mm DFN and TSSOP Packages  
LTC3115-1  
40V, 2A, 2MHz, Synchronous Buck-Boost DC/DC Converter  
with Output Disconnect, Burst Mode Operation  
95% Efficiency V : 2.7V to 40V, V  
SD  
= 40V, I = 30μA,  
Q
IN  
OUT(MAX)  
I
= 3μA, 4mm × 5mm DFN and TSSOP Packages  
3124f  
LT 0614 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3124  
ꢀLINEAR TECHNOLOGY CORPORATION 2014  

相关型号:

LTC3124EDHC#TRPBF

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3124EFE#PBF

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3124HFE#PBF

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC3124IDHC#PBF

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: DFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3124IFE#PBF

LTC3124 - 15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect; Package: TSSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3124_15

15V, 5A 2-Phase Synchronous Step-Up DC/DC Converter with Output Disconnect
Linear

LTC3125

1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit
Linear

LTC3125EDCB#TRMPBF

LTC3125 - 1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit; Package: DFN; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3125EDCB-PBF

1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit
Linear

LTC3125EDCB-TRPBF

1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit
Linear

LTC3126EUFD#PBF

LTC3126 - 42V, 2.5A Synchronous Step-Down Regulator with No-Loss Input PowerPath; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear