LTC3125EDCB-PBF [Linear]

1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit; 1.2A同步升压型DC / DC转换器的输入电流限制
LTC3125EDCB-PBF
型号: LTC3125EDCB-PBF
厂家: Linear    Linear
描述:

1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit
1.2A同步升压型DC / DC转换器的输入电流限制

转换器
文件: 总16页 (文件大小:292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3125  
1.2A Synchronous Step-Up  
DC/DC Converter with  
Input Current Limit  
FEATURES  
DESCRIPTION  
The LTC®3125 is a high efficiency, synchronous step-up  
DC/DC converter with an accurate programmable average  
inputcurrentlimit.The 5accurateaverageinputcurrent  
is resistor programmable and suitable for a wide variety of  
applications. In mobile computing, GSM and GPRS cards  
demand high current pulses well beyond the capability  
of the PC Card and CompactFlash slots. The LTC3125 in  
concert with a reservoir capacitor, keeps the slot power  
safely within its capabilities providing a high performance  
and simple solution.  
n
Programmable Average Input Current Limit  
n
5% Input Current Accuracy  
n
200mA to 1000mA Program Range  
n
V : 1.8V to 5.5V, V : 2V to 5.25V  
IN  
OUT  
n
n
n
n
n
n
n
n
n
n
Supports High Current GSM/GPRS Load Burst  
V > V  
Operation  
IN  
OUT  
1.6MHz Fixed Frequency Operation  
Internal Current Sense Resistor  
1.2A Peak Current Limit  
Up to 93ꢀ Efficiency  
Output Disconnect in Shutdown  
Soft-Start  
Synchronous rectification produces high efficiency while  
the 1.6MHz switching frequency minimizes the solution  
footprint.ThecurrentmodePWMdesignisinternallycom-  
pensated.Outputdisconnectallowstheloadtodischargein  
shutdown, while also providing inrush current limiting.  
Low Quiescent Current Burst Mode® Operation (15μA)  
Available in 2mm × 3mm × 0.75mm DFN Package  
APPLICATIONS  
Other features include a <1μA shutdown current, short-  
circuitandthermaloverloadprotection.TheLTC3125isof-  
fered in a low profile 0.75mm × 2mm × 3mm package.  
n
GSM/GPRS PCMCIA/CompactFlash PC Card Modems  
n
Wireless Emergency Locators  
n
Portable Radios  
Supercap Chargers  
L, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
n
TYPICAL APPLICATION  
PCMCIA/CompactFlash (3.3V/500mA Max),  
4V GSM Pulsed Load  
Efficiency vs Load Current  
100  
90  
1
2.2μH  
80  
CS  
SW  
V
V
IN  
OUT  
4V  
70  
0.1  
3.3V  
V
V
OUT  
IN  
500mA  
2A PULSED LOAD  
60  
50  
10μF  
CER  
LTC3125  
1.24M  
536k  
OFF ON  
SHDN  
2200μF  
s2  
40  
30  
20  
10  
0
TANT  
0.01  
0.001  
PROG  
FB  
GND  
44.2k  
3125 TA01a  
V
V
V
= 4V  
= 3.3V  
= 2.4V  
OUT  
IN  
IN  
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
3125 TA01b  
3125f  
1
LTC3125  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
TOP VIEW  
V , V  
IN OUT  
Voltage......................................... –0.3V to 6V  
SW Voltage .................................................. –0.3V to 6V  
SW Voltage < 100ns .................................... –0.3V to 7V  
All Other Pins............................................... –0.3V to 6V  
Operating Temperature Range  
8
7
6
5
GND  
FB  
1
2
3
4
SW  
V
OUT  
9
PROG  
SHDN  
V
IN  
CS  
(Notes 2, 5).............................................. –40°C to 85°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range................... –65°C to 125°C  
DCB PACKAGE  
8-LEAD (2mm s 3mm) PLASTIC DFN  
T
= 125°C, θ = 64°C/W (NOTE 6)  
JA  
EXPOSED PAD (PIN 9) IS GND, MUST BE SOLDERED TO PCB  
JMAX  
ORDER INFORMATION  
LEAD FREE FINISH  
TAPE AND REEL  
PART MARKING  
PACKAGE DESCRIPTION  
8-Lead (2mm × 3mm) Plastic DFN  
TEMPERATURE RANGE  
–40°C to 85°C  
LTC3125EDCB#PBF  
LTC3125EDCB#TRPBF  
LDGY  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 4.5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
5.5  
1.8  
5.25  
1.229  
50  
UNITS  
V
Input Voltage Range  
1.8  
l
l
l
Minimum Start-Up Voltage  
Output Voltage Adjust Range  
Feedback Voltage  
1.6  
V
2
V
1.176  
1.200  
1
V
Feedback Input Current  
nA  
μA  
μA  
μA  
μA  
μA  
Ω
Quiescent Current—Shutdown  
Quiescent Current—Active  
Quiescent Current—Burst  
V
SHDN  
= 0V, Not Including Switch Leakage, V  
= 0V  
0.01  
300  
15  
1
OUT  
Measured on V , Nonswitching  
500  
25  
OUT  
Measured on V , FB = 1.230V  
OUT  
N-Channel MOSFET Switch Leakage  
P-Channel MOSFET Switch Leakage  
N-Channel MOSFET Switch On-Resistance  
P-Channel MOSFET Switch On-Resistance  
N-Channel MOSFET Current Limit  
Current Limit Delay to Output  
Average Input Current Limit  
V
V
V
V
= 5V, V = 5V  
0.1  
10  
SW  
IN  
= 5V, V  
= 0V, V = 5V  
0.1  
20  
SW  
OUT  
IN  
= 3.3V  
= 3.3V  
0.125  
0.200  
1.8  
OUT  
OUT  
Ω
l
l
1.2  
A
(Note 3)  
60  
ns  
R
PROG  
R
PROG  
= 44.2k  
= 44.2k, –40°C to 85°C  
475  
465  
500  
500  
525  
535  
mA  
mA  
3125f  
2
LTC3125  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.3V, VOUT = 4.5V unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
22.1  
92  
MAX  
UNITS  
PROG Current Gain  
Maximum Duty Cycle  
Minimum Duty Cycle  
Frequency  
(Note 3)  
kΩ-A/A  
l
l
l
V
V
= 1.15V  
= 1.3V  
85  
FB  
FB  
0
1.3  
1
1.6  
1.9  
MHz  
V
SHDN Input High  
SHDN Input Low  
SHDN Input Current  
0.35  
1
V
V
= 1.2V  
0.3  
μA  
SHDN  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 2: The LTC3125 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls.  
Note 4: Current measurements are made when the output is not switching.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 6: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal resistance much higher than  
60°C/W.  
Note 3: Specification is guaranteed by design and not 100ꢀ tested in  
production.  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Efficiency vs Load Current,  
VOUT = 2.5V  
Efficiency vs Load Current,  
VOUT = 3.3V  
100  
90  
1
100  
90  
1
80  
80  
0.1  
70  
70  
0.1  
60  
50  
60  
50  
0.01  
0.001  
0.0001  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
0.01  
0.001  
V
V
V
= 2.8V  
= 2.4V  
= 2V  
IN  
IN  
IN  
V
= 2.1V  
= 1.8V  
IN  
IN  
V
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
LOAD CURRENT (A)  
LOAD CURRENT (A)  
3125 G01  
3125 G02  
3125f  
3
LTC3125  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Efficiency vs Load Current,  
VOUT = 5V  
No-Load Input Current vs VIN  
Average Input Current Limit vs VIN  
100  
90  
1
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
NORMALIZED TO 25°C  
80  
70  
0.1  
60  
50  
V
= 4V  
OUT  
2.0  
1.5  
0
V
= 3.8V  
OUT  
40  
30  
20  
10  
0
–0.5  
0.01  
0.001  
V
= 3.3V  
OUT  
1.0  
0.5  
0
–1.0  
–1.5  
–2.0  
V
V
= 4V  
= 3.3V  
IN  
IN  
V
= 2.5V  
OUT  
2
2.5  
3.5  
1.5  
4
3
2.0  
2.5  
3.5  
0.001  
0.01  
0.1  
1
1.5  
4.0  
4.5  
3.0  
(V)  
V
(V)  
LOAD CURRENT (A)  
V
IN  
IN  
3125 G03  
3125 G04  
3125 G05  
Average Input Current Limit vs  
Temperature  
Peak Current Limit vs VIN  
Average Input Current vs RPROG  
1.50  
1.00  
0.50  
0
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
1.25  
1.00  
0.75  
0.50  
0.25  
0
NORMALIZED TO 25°C  
V
= 3.8V  
PROG  
OUT  
R
= 0Ω  
–0.50  
–1.00  
–1.50  
–50  
0
25  
50  
75  
100  
–25  
1.5  
3
3.5  
(V)  
4
4.5  
5
5.5  
2
2.5  
10 20 30 40 50 60 70 80 90 100 110  
(kΩ)  
TEMPERATURE (°C)  
R
PROG  
V
IN  
3125 G07  
3125 G06  
3125 G08  
Burst Mode Threshold Current  
vs VIN  
Burst Mode Threshold Current  
vs VIN  
Oscillator Frequency vs VOUT  
2
1
50  
45  
50  
40  
30  
20  
10  
NORMALIZED TO V = 3.3V  
OUT  
V
C
= 3.3V  
= 1500μF  
V
C
= 2.5V  
= 1500μF  
OUT  
OUT  
OUT  
OUT  
L = 2.2μH  
L = 2.2μH  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
40  
35  
30  
25  
20  
1.8  
1.9  
2.0  
(V)  
2.1  
2.2  
3.5  
(V)  
5.0  
1.8  
2.0  
2.2  
V
2.4  
(V)  
2.6  
2.8  
2.0  
2.5  
3.0  
4.0  
4.5  
V
V
IN  
OUT  
IN  
3125 G10  
3125 G09  
3125 G11  
3125f  
4
LTC3125  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
Oscillator Frequency  
vs Temperature  
RDS(ON) vs VOUT  
RDS(ON) vs Temperature  
240  
220  
0.450  
10  
8
NORMALIZED TO 25°C  
V
OUT  
= 4V  
0.400  
0.350  
6
PMOS  
200  
180  
160  
140  
120  
4
0.300  
0.250  
0.200  
0.150  
0.100  
2
PMOS  
0
–2  
–4  
–6  
–8  
–10  
NMOS  
NMOS  
100  
0.050  
30  
TEMPERATURE (°C)  
70  
90  
–50 –30 –10 10  
50  
–50  
–25  
25  
50  
75  
100  
2
2.5  
3.5  
(V)  
4
4.5  
5
0
1.5  
3
TEMPERATURE (°C)  
V
OUT  
3125 G13  
3125 G14  
3125 G12  
Current Sense Voltage (VRPROG  
)
Feedback vs Temperature  
vs Temperature  
Burst Mode Current vs VOUT  
16.0  
15.5  
15.0  
14.5  
0.50  
0.25  
0
0.50  
0.25  
0
NORMALIZED TO 25°C  
NORMALIZED TO 25°C  
–0.25  
–0.25  
14.0  
13.5  
13.0  
–0.50  
–0.75  
–1.00  
–0.50  
–0.75  
–1.00  
3.5  
(V)  
4.5  
5
30  
TEMPERATURE (°C)  
70  
90  
1.5  
2
2.5  
3
4
–50 –30 –10 10  
50  
30  
TEMPERATURE (°C)  
70  
90  
–50 –30 –10 10  
50  
V
OUT  
3125 G17  
3125 G15  
3125 G15  
VOUT and IIN During Soft-Start  
V
OUT and IIN During Soft-Start  
V
V
OUT  
2V/DIV  
OUT  
2V/DIV  
SHDN  
5V/DIV  
SHDN  
5V/DIV  
INPUT  
CURRENT  
200mA/DIV  
INPUT  
BURST  
CURRENT  
CURRENT  
200mA/DIV  
3125 G18  
3125 G19  
V
V
C
= 3.3V  
20ms/DIV  
V
V
C
= 3.3V  
IN  
1s/DIV  
IN  
= 4.5V  
= 4.5V  
OUT  
OUT  
OUT  
OUT  
= 4.4mF  
= 0.47F  
L = 2.7μH  
L = 2.7μH  
3125f  
5
LTC3125  
TYPICAL PERFORMANCE CHARACTERISTICS (TA = 25°C unless otherwise noted)  
VOUT and IIN During Soft-Start  
Efficiency vs VIN  
100  
95  
I
= 200mA  
= 3.8V  
OUT  
LOAD  
V
V
OUT  
2V/DIV  
90  
85  
80  
SHDN  
5V/DIV  
75  
70  
INPUT  
CURRENT  
200mA/DIV  
65  
60  
55  
50  
3125 G20  
V
V
C
= 3.3V  
2s/DIV  
IN  
= 4.5V  
= 1F  
OUT  
OUT  
L = 2.7μH  
2
4
5
3
V
IN  
(V)  
3125 G21  
PIN FUNCTIONS  
GND (Pin 1): Signal Ground.  
CS (Pin 5): Current Sense Resistor Connection Point.  
Connect the inductor directly to CS. An internal 60mΩ  
FB (Pin 2): Feedback Input to the Error Amplifier. Connect  
the resistor divider tap to this pin. The top of the divider  
sense resistor is connected between CS and V .  
IN  
connects to V  
and the bottom of the divider connects  
SHDN (Pin 6): Logic Controlled Shutdown Input. Bringing  
this pin above 1V enables the part, forcing this pin below  
0.35V disables the part.  
OUT  
to GND. The output voltage can be adjusted from 1.8V  
to 5.25V.  
PROG (Pin 3): Programming Input for Average Input  
V
(Pin 7): Output Voltage Sense and the Output of the  
OUT  
Current. This pin should be connected to ground through  
Synchronous Rectifier. Connect the output filter capaci-  
tor from V to GND, close to the IC. A minimum value  
an external resistor (R  
) to set input average current  
PROG  
OUT  
limit threshold. PROG pin gain = 22.1kꢁ-A/A. The average  
of 10μF ceramic is recommended. Due to the output  
disconnect feature, V  
SHDN is low.  
input current limit threshold is set by R  
to the following:  
according  
is disconnected from V when  
OUT IN  
PROG  
SW (Pin 8): Switch Pin. Connect an inductor from this  
pin to CS. An internal anti-ringing resistor is connected  
across SW and CS after the inductor current has dropped  
near zero.  
22.1kΩ-A  
Desired IAVG (A)  
RPROG  
=
V (Pin 4): Input Voltage. The device is powered from V  
IN  
IN  
until V  
exceeds V . Once V  
is greater than (V +  
OUT  
IN  
OUT IN  
Exposed Pad (Pin 9): Power Ground. This pin must be  
soldered to the PCB ground plane.  
0.25V), the device is powered from V . Place a ceramic  
OUT  
bypass capacitor from V to GND. A minimum value of  
IN  
1μF is recommended. Also connects to CS through 60mΩ  
internal sense resistor.  
3125f  
6
LTC3125  
BLOCK DIAGRAM  
L1  
V
IN  
C
IN  
4
5
8
V
CS  
SW  
IN  
R
SENSE  
V
SEL  
V
BEST  
+
g
m
V
B
PROG  
SHDN  
3
6
WELL-SWITCH  
ANTI-RING  
R
PROG  
INPUT CURRENT  
SENSE AMP  
V
OUT  
V
7
OUT  
V
SEL  
+
I
ZERO  
COMP  
GATE DRIVE  
AND  
SD  
SHUTDOWN  
R2  
ANTI-CROSS  
CONDUCTION  
4M  
C
OUT  
SLOPE COMP  
I
PK  
COMP  
V
V
REF  
I
+
PK  
V
+
REF  
V
BG  
FB  
GOOD  
REF  
I
CLMP  
COMP  
2
+
I
I
CLMP  
ZERO  
R1  
LOGIC  
CLK  
TSD  
OSC  
CLK  
MODE  
CONTROL  
WAKE  
THERMAL  
SHUTDOWN  
SOFT START  
+
g
m
AVERAGING  
CIRCUIT  
V
REF  
I
AVG  
V
CLAMP  
ERROR  
AMP  
EXPOSED  
PAD  
GND  
1
9
3125 BD  
3125f  
7
LTC3125  
OPERATION  
The LTC3125 provides high efficiency, low noise power  
for applications in portable instrumentation and those  
with pulsed-load, power-limited requirements such as  
GSM modems.  
with the internal slope compensation. The summed signal  
is compared to the error amplifier output to provide a peak  
current control command for the PWM.  
A second current limit comparator shuts off the N-chan-  
nel MOSFET switch once the peak current signal clamp  
threshold is reached. The current limit comparator delay  
to output is typically 60ns. Peak switch current is limited  
to approximately 1.8A, independent of input or output  
The LTC3125 directly and accurately controls the average  
input current. The high efficiency of the LTC3125 provides  
the maximum possible output current to the load without  
impacting the host. Together with an external bulk capaci-  
tor the LTC3125 with average input current limit allows a  
GSM/GPRS modem to be interfaced directly to a PCMCIA  
or CompactFlash power bus without overloading it.  
voltage, unless V  
falls below 0.8V, in which case the  
OUT  
current limit is cut in half.  
AVERAGE INPUT CURRENT LIMIT  
The current mode architecture with adaptive slope com-  
pensation provides excellent transient load response,  
requiring minimal output filtering. Internal soft-start and  
loop compensation simplifies the design process while  
minimizing the number of external components.  
Input current is sensed with an internal 60mꢁ resistor  
and converted to a voltage. A transconductance amplifier  
creates a proportional current which is then forced into an  
externalresistor.Thevoltageacrosstheresistorisaveraged  
and compared to a temperature stable internal reference.  
The result of this comparison is used to actively control  
the current limit comparator’s clamp threshold. The high  
gain of this loop forces the average input current to the  
With its low R  
and low gate charge internal N-chan-  
DS(ON)  
nel MOSFET switch and P-channel MOSFET synchronous  
rectifier, the LTC3125 achieves high efficiency over a wide  
range of load currents. Automatic Burst Mode operation  
maintains high efficiency at very light loads, reducing the  
quiescent current to just 15μA.  
limit set by the external resistor, R  
.
PROG  
22.1kΩ-A  
Desired IAVG (A)  
RPROG  
=
ERROR AMPLIFIER  
NotethattheLTC3125’sinputcurrentaveragingcircuitmay  
introduce a slightly higher inductor ripple than expected.  
This is normal and has no affect on the average input  
current seen by the power source.  
The noninverting input of the transconductance error  
amplifier is internally connected to the 1.2V reference  
and the inverting input is connected to FB. Clamps limit  
the minimum and maximum error amp output voltage for  
improvedlarge-signaltransientresponse.Powerconverter  
controlloopcompensationisprovidedinternally.Anexter-  
ZERO CURRENT COMPARATOR  
nalresistivevoltagedividerfromV togroundprograms  
OUT  
The zero current comparator monitors the inductor cur-  
rent to the output and shuts off the synchronous rectifier  
when this current reduces to approximately 30mA. This  
prevents the inductor current from reversing in polarity,  
improving efficiency at light loads.  
the output voltage via FB from 2V to 5.25V.  
R2  
R1  
VOUT = 1.2V 1+  
INTERNAL CURRENT LIMIT  
OSCILLATOR  
Losslesscurrentsensingconvertsthepeakcurrentsignalof  
theN-channelMOSFETswitchintoavoltagethatissummed  
An internal oscillator sets the switching frequency to  
1.6MHz.  
3125f  
8
LTC3125  
OPERATION  
SHUTDOWN  
SOFT-START  
Shutdown of the boost converter is accomplished by  
The LTC3125 contains internal circuitry to provide soft-  
start operation. The soft-start circuitry slowly ramps the  
peak inductor current from zero to its peak value of 1.8A  
(typical) in approximately 0.5ms, allowing start-up into  
heavy loads. The soft-start circuitry is reset in the event  
of a shutdown command or a thermal shutdown.  
pulling SHDN below 0.35V and enabled by pulling SHDN  
above 1V. Note that SHDN can be driven above V or  
IN  
V
, as long as it is limited to less than the absolute  
OUT  
maximum rating.  
OUTPUT DISCONNECT  
Burst Mode OPERATION  
The LTC3125 is designed to allow true output disconnect  
by eliminating body diode conduction of the internal  
P-channel MOSFET rectifier. This allows for V  
The LTC3125 will automatically enter Burst Mode opera-  
tion at light load and return to fixed frequency PWM mode  
when the load increases. Refer to the Typical Performance  
Characteristics to see the output load Burst Mode thresh-  
to go  
OUT  
to zero volts during shutdown, drawing no current from  
the input source. It also limits inrush current at turn-on,  
minimizingsurgecurrentsseenbytheinputsupply. Note  
that to obtain the advantages of output disconnect, there  
cannotbeanexternalSchottkydiodeconnectedbetween  
old current vs V . The load current at which Burst Mode  
IN  
operation is entered can be changed by adjusting the  
inductor value. Raising the inductor value will lower the  
load current at which Burst Mode operation is entered.  
the SW pin and V . The output disconnect feature also  
OUT  
allowsV tobepulledhigh,withoutanyreversecurrent  
OUT  
In Burst Mode operation, the LTC3125 still switches at a  
fixed frequency of 1.6MHz, using the same error amplifier  
and loop compensation for peak current mode control.  
This control method eliminates any output transient  
when switching between modes. In Burst Mode opera-  
tion, energy is delivered to the output until it reaches the  
nominal regulation value, then the LTC3125 transitions to  
sleep mode where the outputs are off and the LTC3125  
into the power source connected to V .  
IN  
THERMAL SHUTDOWN  
If the die temperature exceeds 160°C typical, the LTC3125  
will go into thermal shutdown. All switches will be off and  
the soft-start capacitor will be discharged. The device  
will be enabled again when the die temperature drops by  
approximately 15°C.  
consumesonly1AofquiescentcurrentfromV .When  
OUT  
the output voltage droops slightly, switching resumes.  
Thismaximizesefficiencyatverylightloadsbyminimizing  
switching and quiescent losses.  
SYNCHRONOUS RECTIFIER  
To control inrush current and to prevent the inductor  
As the load current increases, the LTC3125 will automati-  
callyleaveBurstModeoperation.OncetheLTC3125hasleft  
Burst Mode operation and returned to normal operation,  
it will remain there until the output load is reduced below  
the burst threshold.  
current from running away when V  
is close to V , the  
OUT  
IN  
P-channel MOSFET synchronous rectifier is only enabled  
when V > (V + 0.38V).  
OUT  
IN  
ANTI-RINGING CONTROL  
BurstModeoperationisinhibitedduringstart-upandsoft-  
The anti-ringing control connects a resistor across the  
inductor to prevent high frequency ringing on the SW pin  
during discontinuous current mode operation. Although  
start and until V  
is at least 0.38V greater than V .  
OUT  
IN  
the ringing of the resonant circuit formed by L and C  
SW  
(capacitance on SW pin) is low energy, it can cause EMI  
radiation.  
3125f  
9
LTC3125  
APPLICATIONS INFORMATION  
GSM and GPRS modems have become a popular wireless  
data transfer solution for use in notebook PCs and other  
mobile systems. GSM transmission requires large bursts  
ofcurrentthatexceedthemaximumpeakcurrentspecifica-  
tions for CompactFlash and PCMCIA bus power.  
SCHOTTKY DIODE  
Althoughitisnotnecessary, addingaSchottkydiodefrom  
SW to V  
will improve efficiency by about 4ꢀ. Note that  
OUT  
thisdefeatstheoutputdisconnect,short-circuitprotection  
and average input limiting during start-up.  
The GSM standard specifies a 577μs, 2A (typical) trans-  
mission burst within a 4.6ms period (12.5ꢀ duty cycle).  
During the receive and standby periods the current con-  
sumption drops to 70mA (typical), yielding an average  
current requirement of 320mA.  
PCB LAYOUT GUIDELINES  
The high speed operation of the LTC3125 demands care-  
ful attention to board layout. A careless layout will result  
in reduced performance. A large ground pin copper area  
will help to lower the die temperature. A multilayer board  
with a separate ground plane is ideal, but not absolutely  
necessary.  
Other standards (such as GPRS, Class 10) define a higher  
datarate.Onepopularrequirementtransmitstwo2Abursts  
(3Aworstcase)withina4.6msframeperiod(70mAstandby  
current) demanding an 800mA average input current. The  
LTC3125 external current limit programming resistor can  
be easily adjusted for this requirement.  
COMPONENT SELECTION  
Inductor Selection  
Further, the GSM module is typically specified to operate  
over an input power range that is outside that allowed in  
the PCMCIA or CompactFlash bus power specification.  
The LTC3125 can utilize small surface mount chip induc-  
tors due to its fast 1.6MHz switching frequency. Inductor  
values between 2.2μH and 4.7μH are suitable for most  
applications.Largervaluesofinductancewillallowslightly  
greateroutputcurrentcapability(andlowertheBurstMode  
threshold)byreducingtheinductorripplecurrent.Increas-  
ing the inductance above 10μH will increase size while  
providing little improvement in output current capability.  
The minimum inductance value is given by:  
The LTC3125 is a high efficiency boost converter with  
programmable input average current limit that provides  
the needed flexibility when designing a GSM/GPRS power  
supply solution. The high efficiency of the converter maxi-  
mizes the average output power without overloading the  
bus. A bulk output capacitor is used to supply the energy  
and maintain the output voltage during the high current  
pulses.  
V
VOUT(MAX) – V  
(
)
IN(MIN)  
IN(MIN)  
L >  
Ripple • VOUT(MAX) • fSW  
V > V  
OPERATION  
IN  
OUT  
The LTC3125 will maintain voltage regulation even when  
the input voltage is above the desired output voltage.  
Note that the efficiency and the maximum output current  
capability are reduced. Refer to the Typical Performance  
Characteristics for details.  
where:  
Ripple = Allowable inductor current ripple  
(amps peak-peak)  
V
V
= Minimum input voltage  
IN(MIN)  
= Maximum output voltage  
OUT(MAX)  
SHORT-CIRCUIT PROTECTION  
The inductor current ripple is typically set for 20ꢀ to  
40ꢀ of the maximum inductor current. High frequency  
ferritecoreinductormaterialsreducefrequencydependent  
power losses compared to cheaper powdered iron types,  
improving efficiency. The inductor should have low DCR  
The LTC3125 output disconnect feature enables output  
shortcircuitprotection.Toreducepowerdissipationunder  
short-circuit conditions; the peak switch current limit is  
reduced to 800mA (typical).  
3125f  
10  
LTC3125  
APPLICATIONS INFORMATION  
2
(DC resistance of the windings) to reduce the I R power  
standby mode. The above is a worst-case approximation  
assuming all the pulsing energy comes from the output  
capacitor.  
losses, and must be able to support the peak inductor  
current without saturating. Molded chokes and some chip  
inductorsusuallydonothaveenoughcoreareatosupport  
the peak inductor currents of 1.8A seen on the LTC3125.  
To minimize radiated noise, use a shielded inductor. See  
Table 1 for suggested components and suppliers.  
The ripple due to the capacitor ESR is:  
V
= (I  
– I  
) • ESR  
RIPPLE_ESR  
PULSE  
STANDBY  
Low ESR and high capacitance are critical to maintain low  
output voltage ripple. Typically, two low profile 2200μF  
parallel Vishay TANTAMOUNT® tantalum, low ESR capaci-  
tors are used. The capacitor has less than 40mΩ ESR.  
These capacitors can be used in parallel for even larger  
capacitance values. For applications requiring very high  
capacitance, the GS, GS2 and GW series from Cap-XX,  
the BestCapTM series from AVX and PowerStor® Aerogel  
CapacitorsfromCooperallofferveryhighcapacitanceand  
low ESR in various package options. Table 2 shows a list  
of several reservoir capacitor manufacturers.  
Table 1. Recommended Inductors  
VENDOR  
PART/STYLE  
Coilcraft  
(847) 639-6400  
www.coilcraft.com  
LPO2506  
LPS4012, LPS4018  
MSS6122  
MSS4020  
MOS6020  
DS1605, DO1608  
Coiltronics  
SD52, SD53, SD3114, SD3118  
LQH55D  
www.cooperet.com  
Murata  
(714) 852-2001  
www.murata.com  
High capacitance values and low ESR can lead to instabil-  
ity in some internally compensated boost converters. The  
internalloopcompensationoftheLTC3125isoptimizedto  
be stable with output capacitor values greater than 500μF  
with very low ESR.  
Sumida  
(847) 956-0666  
www.sumida  
CDH40D11  
Taiyo-Yuden  
www.t-yuden.com  
NP04SB  
NR3015  
NR4018  
Multilayer ceramic capacitors are an excellent choice for  
input decoupling of the step-up converter as they have  
extremely low ESR and are available in small footprints.  
Input capacitors should be located as close as possible  
to the device. While a 10μF input capacitor is sufficient  
for most applications, larger values may be used to re-  
duce input current ripple without limitations. Consult the  
manufacturers directly for detailed information on their  
selection of ceramic capacitors. Although ceramic capaci-  
tors are recommended, low ESR tantalum capacitors may  
be used as well.  
TDK  
VLP, LTF  
(847) 803-6100  
www.component.tdk.com  
VLF, VLCF  
Wurth  
(201) 785-8800  
www.we-online.com  
WE-TPC Type S, M, MH, MS  
Output and Input Capacitor Selection  
When selecting output capacitors for large pulsed loads,  
themagnitudeanddurationofthepulsingcurrent,together  
with the ripple voltage specification, determine the choice  
of the output capacitor. Both the ESR of the capacitor and  
the charge stored in the capacitor each cycle contribute  
to the output voltage ripple. The ripple due to the charge  
is approximately:  
Table 2. Capacitor Vendor Information  
SUPPLIER  
Vishay  
PHONE  
WEBSITE  
(402) 563-6866  
(803) 448-9411  
(516) 998-4100  
(843) 267-0720  
(800) 394-2112  
www.vishay.com  
www.avxcorp.com  
www.cooperbussman.com  
www.cap-xx-com  
www.panasonic.com  
AVX  
I
PULSE ISTANDBY • t  
(
)
ON  
VRIPPLE (mV) =  
Cooper Bussman  
Cap-XX  
COUT  
Panasonic  
where I  
and t are the peak current and on time  
PULSE  
ON  
during transmission burst and I  
is the current in  
STANDBY  
3125f  
11  
LTC3125  
TYPICAL APPLICATIONS  
PC Card or CompactFlash (3.3V/500mA Maximum) 4.5V Output, GSM Pulsed Load  
2.2μH*  
V
CC  
IN  
CS  
SW  
V
OUT  
PC CARD V  
4.5V, 2A PULSED LOAD  
V
IN  
V
OUT  
3.3V 10ꢀ  
(577μs PW, 4.6ms PERIOD)  
10μF  
CER  
500mA MAX  
LTC3125  
2200μF**  
s2  
55mΩ  
TANT  
2.74M  
1M  
OFF ON  
SHDN  
PROG  
FB  
GND  
44.2k  
3125 TA02a  
*COILTRONICS SD3118-2R2-R  
**VISHAY 592D228X6R3X220H  
Waveforms of Input Current, VOUT for Pulsed Load Current  
V
OUT  
100mV/DIV  
INPUT CURRENT  
200mA/DIV  
LOAD CURRENT  
2A/DIV  
3125 TA02b  
V
V
C
= 3.3V  
1ms/DIV  
IN  
= 4.5V  
OUT  
OUT  
= 4.4mF  
L = 2.2μH  
R
= 44.2k  
PROG  
PC Card (3.3V/1000mA Maximum) 4.5V Output, GSM Pulsed Load  
2.7μH*  
V
CC  
IN  
CS  
SW  
V
OUT  
PC CARD V  
4.5V, 2A PULSED LOAD  
V
IN  
V
OUT  
3.3V 10ꢀ  
(577μs PW, 4.6ms PERIOD)  
10μF  
CER  
1000mA MAX  
LTC3125  
2200μF**  
s2  
55mΩ  
TANT  
2.74M  
1M  
OFF ON  
SHDN  
PROG  
FB  
GND  
22.6k  
3125 TA03a  
*WURTH 7440420027  
**VISHAY 592D228X6R3X220H  
Waveforms of Input Current, VOUT for Pulsed Load Current  
V
OUT  
100mV/DIV  
INPUT CURRENT  
500mA/DIV  
LOAD CURRENT  
2A/DIV  
3125 TA03b  
V
V
C
= 3.3V  
1ms/DIV  
IN  
= 4.5V  
OUT  
OUT  
= 4.4mF  
L = 2.7μH  
R
= 22.6k  
PROG  
3125f  
12  
LTC3125  
TYPICAL APPLICATIONS  
PC Card (3.3V/1000mA Maximum) 4.5V Output, GPRS, Class 10 Pulsed Load  
2.7μH*  
V
CC  
IN  
CS  
SW  
V
OUT  
PC CARD V  
4.5V, 2A PULSED LOAD  
V
IN  
V
OUT  
3.3V 10ꢀ  
(1154μs PW, 4.6ms PERIOD)  
10μF  
CER  
1000mA MAX  
LTC3125  
2200μF**  
s3  
55mΩ  
TANT  
2.74M  
1M  
OFF ON  
SHDN  
PROG  
FB  
GND  
22.6k  
3125 TA04a  
*WURTH 7440420027  
**VISHAY 592D228X6R3X220H  
Waveforms of Input Current, VOUT for Pulsed Load Current  
V
OUT  
100mV/DIV  
INPUT CURRENT  
500mA/DIV  
LOAD CURRENT  
2A/DIV  
3125 TA04b  
V
V
C
= 3.3V  
1ms/DIV  
IN  
= 4.5V  
OUT  
OUT  
= 6.6mF  
L = 2.7μH  
R
= 22.6k  
PROG  
Single Supercap Charger  
2.2μH*  
CS  
SW  
V
IN  
V
OUT  
2.5V  
V
IN  
V
OUT  
3.3V 10ꢀ  
1000mA MAX  
10μF  
CER  
LTC3125  
SC**  
1.07M  
OFF ON  
SHDN  
10F  
60mΩ  
PROG  
FB  
GND  
1M  
22.6k  
3125 TA05a  
*COILTRONICS SD3118-2R2-R  
**COOPER B1325-2R5106-R  
Waveforms of Input Current, VOUT for Pulsed Load Current  
V
OUT  
500mV/DIV  
INPUT CURRENT  
500mA/DIV  
LOAD CURRENT  
1A/DIV  
3125 TA05b  
V
V
C
= 3.3V  
200ms/DIV  
IN  
= 2.5V  
= 10F  
OUT  
OUT  
L = 2.2μH  
R
= 22.6k  
PROG  
3125f  
13  
LTC3125  
TYPICAL APPLICATIONS  
Stacked Supercap Charger  
2.2μH*  
CS  
SW  
V
IN  
V
OUT  
V
V
2.5V TO 5V  
IN  
OUT  
4.5V  
500mA MAX  
10μF  
CER  
LTC3125  
+
+
30F**  
2.3V  
2.74M  
1M  
100k  
100k  
OFF ON  
SHDN  
30F**  
2.3V  
PROG  
FB  
GND  
44.2k  
3125 TA06a  
*TDK VLF4014ST-2R2M1R9  
**PANASONIC EECHWOD306  
Waveforms of Input Current, VOUT During Charging  
V
OUT  
2V/DIV  
SHDN  
5V/DIV  
LOAD CURRENT  
200mA/DIV  
3125 TA06b  
V
V
C
= 4.5V  
20s/DIV  
IN  
OUT  
OUT_SERIES  
= 4.5V  
= 15F  
L = 2.2μH  
= 44.2k  
R
PROG  
3.3V to 5V with Selectable Input Current Limit  
2.2μH*  
CS  
SW  
V
V
IN  
OUT  
5V  
V
IN  
V
OUT  
3.3V 10ꢀ  
10μF  
CER  
LTC3125  
C
OUT  
3.2M  
1M  
OFF ON  
SHDN  
PROG  
FB  
GND  
44.2k  
300mA 500mA  
28.7k  
M1  
3125 TA07a  
*TDK VLF4014ST-2R2M1R9  
Waveforms of Input Current, VOUT for Pulsed Input Current Limit  
INPUT CURRENT  
200mA/DIV  
M1 GATE DRIVE  
5V/DIV  
3125 TA07b  
V
V
C
= 3.3V  
2ms/DIV  
IN  
= 5V  
OUT  
OUT  
= 4.4mF  
L = 2.2μH  
I
= 500mA  
LOAD  
3125f  
14  
LTC3125  
PACKAGE DESCRIPTION  
DCB Package  
8-Lead Plastic DFN (2mm × 3mm)  
(Reference LTC DWG # 05-08-1718 Rev A)  
0.70 0.05  
1.35 0.05  
1.65 0.05  
3.50 0.05  
2.10 0.05  
PACKAGE  
OUTLINE  
0.25 0.05  
0.45 BSC  
1.35 REF  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED  
R = 0.115  
2.00 0.10  
(2 SIDES)  
0.40 0.10  
TYP  
5
R = 0.05  
TYP  
8
1.35 0.10  
1.65 0.10  
3.00 0.10  
(2 SIDES)  
PIN 1 NOTCH  
PIN 1 BAR  
TOP MARK  
(SEE NOTE 6)  
R = 0.20 OR 0.25  
s 45° CHAMFER  
(DCB8) DFN 0106 REV A  
4
1
0.23 0.05  
0.45 BSC  
0.75 0.05  
0.200 REF  
1.35 REF  
BOTTOM VIEW—EXPOSED PAD  
0.00 – 0.05  
NOTE:  
1. DRAWING IS NOT A JEDEC PACKAGE OUTLINE  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3125f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
15  
LTC3125  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
92ꢀ Efficiency, V : 0.85V to 5V, V = 5V,  
OUT(MAX)  
LTC3400/LTC3400B 600mA (I ), 1.2MHz, Synchronous Step-Up DC/DC  
SW  
Converters  
IN  
I = 19ꢂA/300ꢂA, I < 1ꢂA, ThinSOT Package  
Q SD  
LTC3421  
LTC3422  
LTC3426  
LTC3427  
3A (I ), 3MHz, Synchronous Step-Up DC/DC Converter with  
94ꢀ Efficiency, V : 0.85V to 4.5V, V  
= 5.25V,  
SW  
IN  
OUT(MAX)  
Output Disconnect  
I = 12ꢂA, I < 1ꢂA, 4mm × 4mm QFN24 Package  
Q SD  
1.5A (I ), 3MHz Synchronous Step-Up DC/DC Converter with 94ꢀ Efficiency, V : 0.85V to 4.5V, V = 5.25V,  
OUT(MAX)  
SW  
IN  
Output Disconnect  
I = 25ꢂA, I < 1ꢂA, 3mm × 3mm DFN10 Package  
Q SD  
2A (I ), 1.5MHz Step-Up DC/DC Converter  
92ꢀ Efficiency, V : 1.6V to 5.5V, V  
SD  
= 5V, I = 600ꢂA,  
SW  
IN  
OUT(MAX) Q  
I
< 1ꢂA, ThinSOT Package  
500mA (I ), 1.25MHz Synchronous Step-Up DC/DC Converter 94ꢀ Efficiency, V : 1.8V to 5V, V  
= 5.25V, I = 350ꢂA,  
Q
SW  
IN  
OUT(MAX)  
with Output Disconnect  
I
< 1ꢂA, 2mm × 2mm DFN6 Package  
SD  
LTC3429/LTC3429B 600mA (I ), 500kHz, Synchronous Step-Up DC/DC Converter 96ꢀ Efficiency, V : 0.85V to 4.3V, V  
= 5V, I = 20ꢂA,  
Q
SW  
IN  
OUT(MAX)  
with Output Disconnect and Soft-Start  
I
< 1ꢂA, ThinSOT Package  
SD  
LTC3458/LTC3458L 1.4A/1.7A (I ), 1.5MHz Synchronous Step-Up DC/DC  
94ꢀ Efficiency V : 0.85V to 6V, V  
= 7.5V/6V, I = 15μA,  
OUT(MAX) Q  
SW  
IN  
Converter  
I
< 1μA, 3mm × 4mm DFN12 Package  
SD  
LTC3459  
80mA (I ), Synchronous Step-Up DC/DC Converter  
92ꢀ Efficiency, V : 1.5V to 5.5V, V  
SD  
= 10V, I = 10ꢂA,  
Q
SW  
IN  
OUT(MAX)  
I
< 1ꢂA, ThinSOT Package  
LT3494/LT3494A  
180mA/350mA (I ), High Efficiency Step-Up DC/DC  
85ꢀ Efficiency, V : 2.3V to 16V, V  
SD  
= 38V, I = 65ꢂA,  
Q
SW  
IN  
OUT(MAX)  
Converters with Output Disconnect  
I
< 1ꢂA, 2mm × 3mm DFN6, ThinSOT Packages  
LTC3523/LTC3523-2 600mA (I ), Step-Up and 400MHz Synchronous Step-Down  
94ꢀ Efficiency V : 1.8V to 5.5V, V  
SD  
= 5.25V, I = 45μA,  
Q
SW  
IN  
OUT(MAX)  
1.2MHz/2.4MHz DC/DC Converter with Output Disconnect  
I
< 1μA, 3mm × 3mm QFN16 Package  
LTC3525-3/  
LTC3525-3.3/  
LTC3525-5  
400mA (I ), Micropower Synchronous Step-Up DC/DC  
94ꢀ Efficiency, V : 0.85V to 4V, V  
SD  
= 5V, I = 7μA,  
Q
SW  
IN  
OUT(MAX)  
Converter with Output Disconnect  
I
< 1μA, SC-70 Package  
LTC3526/LTC3526L 500mA (I ), 1MHz Synchronous Step-Up DC/DC Converter  
94ꢀ Efficiency V : 0.85V to 5V, V  
= 5.25V, I = 9μA,  
OUT(MAX) Q  
SW  
IN  
LTC3526B  
with Output Disconnect  
I
< 1μA, 2mm × 2mm DFN6 Package  
SD  
LTC3527/LTC3527-1 Dual 800mA/400mA (I ), 2.2MHz Synchronous Step-Up  
94ꢀ Efficiency V : 0.7V to 5V, V  
= 5.25V, I = 12μA,  
OUT(MAX) Q  
SW  
IN  
DC/DC Converter with Output Disconnect  
I
< 1μA, 3mm × 3mm QFN16 Package  
SD  
LTC3528/LTC3528B 1A (I ), 1MHz Synchronous Step-Up DC/DC Converter with  
94ꢀ Efficiency V : 0.7V to 5.5V, V  
SD  
= 5.25V, I = 12μA,  
OUT(MAX) Q  
SW  
IN  
Output Disconnect  
I
< 1μA, 2mm × 3mm DFN8 Package  
LTC3537  
600mA (I ), 2.2MHz Synchronous Step-Up DC/DC Converter  
94ꢀ Efficiency V : 0.7V to 5V, V  
= 5.25V, I = 30μA,  
OUT(MAX) Q  
SW  
IN  
with Output Disconnect and 100mA LDO  
I
< 1μA, 3mm × 3mm QFN16 Package  
SD  
LTC3539/LTC3539-2 2A (I ), 1MHz, 2.2MHz Synchronous Step-Up DC/DC  
94ꢀ Efficiency, VIN: 0.7V to 5V, VOUT(MAX) = 5.25V,  
IQ = 10μA, ISD < 1μA, 2mm 3mm DFN Package  
SW  
Converter with Output Disconnect  
×
3125f  
LT 1108 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
16  
© LINEAR TECHNOLOGY CORPORATION 2008  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3125EDCB-TRPBF

1.2A Synchronous Step-Up DC/DC Converter with Input Current Limit
Linear

LTC3126EUFD#PBF

LTC3126 - 42V, 2.5A Synchronous Step-Down Regulator with No-Loss Input PowerPath; Package: QFN; Pins: 28; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127

40V, 2A Synchronous Buck-Boost DC/DC Converter
Linear System

LTC3127EDD

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EDD#PBF

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127EDD#TRPBF

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127EDDPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EDDTRPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EMSE

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EMSE#PBF

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127EMSEPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear