LTC3127EDD#PBF [Linear]

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C;
LTC3127EDD#PBF
型号: LTC3127EDD#PBF
厂家: Linear    Linear
描述:

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: DFN; Pins: 10; Temperature Range: -40°C to 85°C

开关 光电二极管
文件: 总20页 (文件大小:343K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3127  
1A Buck-Boost DC/DC  
Converter with Programmable  
Input Current Limit  
FEATURES  
DESCRIPTION  
TheLTC®3127isawideV range,highlyefficient,1.35MHz  
n
Programmable (0.2A to 1A) ±±4 Accꢀrate Average  
IN  
Inpꢀt Cꢀrrent Limit  
Regꢀlated Oꢀtpꢀt with Inpꢀt Voltages Above,  
Below or Eqꢀal to the Oꢀtpꢀt  
1.8V to 5.5V (Inpꢀt) and 1.8V to 5.25V (Oꢀtpꢀt)  
Voltage Range  
0.6A Continꢀoꢀs Oꢀtpꢀt Cꢀrrent: V > 1.8V  
1A Continꢀoꢀs Oꢀtpꢀt Cꢀrrent: V > 3V  
fixedfrequencybuck-boostDC/DCconverterthatoperates  
from input voltages above, below or equal to the output  
voltage. The LTC3127 features programmable average  
input current limit, making it ideal for power-limited input  
sources. The input current limit is programmed with a  
single resistor and is accurate from 0.2A to 1A of average  
input current.  
n
n
n
n
n
n
n
n
n
n
IN  
IN  
Single Indꢀctor  
The topology incorporated provides a continuous  
transfer function through all operating modes. Other  
features include <1μA shutdown current, pin-selectable  
Burst Mode operation and thermal overload protection.  
The LTC3127 is housed in thermally enhanced 10-lead  
(3mm × 3mm × 0.75mm) DFN packages and 12-lead  
MSOP packages.  
Synchronous Rectification: Up to 96% Efficiency  
Burst Mode® Operation: I = 35μA (Pin Selectable)  
Q
Output Disconnect in Shutdown  
<1μA Shutdown Current  
Small, Thermally Enhanced 10-Lead (3mm × 3mm ×  
0.75mm) DFN and 12-Lead MSOP Packages  
L, LT, LTC, LTM, Linear Technology, Burst Mode and the Linear logo are registered trademarks  
and PowerPath and ThinSOT are trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners.  
APPLICATIONS  
n
USB Powered GSM Modems  
n
Supercap Charger  
n
Handheld Test Instruments  
PC Card Modems  
n
n
Wireless Terminals  
TYPICAL APPLICATION  
USB or Li-Ion (500mA Maximꢀm Inpꢀt Cꢀrrent) to 3.3V  
Efficiency vs VIN  
L1  
4.7µH  
100  
300mA LOAD  
90  
SW2  
SW1  
USB OR Li-Ion  
2.9V to 5.5V  
V
3.3V  
OUT  
V
V
OUT  
IN  
MODE  
320k  
182k  
80  
70  
60  
50  
SHDN  
PROG  
FB  
2.2mF  
OFF ON  
V
C
10µF  
SGND PGND  
499k  
32.4k  
100pF  
V
= 3.3V  
OUT  
L = 4.7µH  
3127 TA01  
F = 1.35MHz  
3
3.5  
4
V
4.5  
5
5.5  
L1: COILCRAFT XPL4020-472ML  
(V)  
IN  
3127 TA01a  
3127fa  
1
For more information www.linear.com/LTC3127  
LTC3127  
(Note 1)  
ABSOLUTE MAXIMUM RATINGS  
V , V  
Voltage .......................................... 0.3 to 6V  
PROG Voltage ................................................ 0.3 to 6V  
Operating Junction Temperature Range  
(Note 2)....................................................40°C to 85°C  
Maximum Junction Temperature (Note 5) ........... 125°C  
Storage Temperature Range ..................65°C to 125°C  
IN OUT  
SW1, SW2 DC Voltage ................................... 0.3 to 6V  
SW1, SW2 Pulsed (<100ns) Voltage .............. 0.3 to 7V  
MODE, FB, V Voltage.................................... 0.3 to 6V  
SHDN Voltage ............................................... 0.3 to 6V  
C
PIN CONFIGURATION  
TOP VIEW  
TOP VIEW  
1
2
3
4
5
6
SW1  
1
2
3
4
5
10 SW2  
PGND  
SW1  
12 PGND  
11 SW2  
V
IN  
9
8
7
6
V
V
OUT  
C
13  
PGND  
V
10  
9
V
V
11  
PGND  
IN  
OUT  
C
SHDN  
MODE  
PROG  
SHDN  
MODE  
PROG  
FB  
8
FB  
SGND  
7
SGND  
MSE PACKAGE  
DD PACKAGE  
12-LEAD PLASTIC MSOP  
10-LEAD (3mm × 3mm) PLASTIC DFN  
T
JMAX  
= 125°C, θ = 40°C/W (NOTE 6)  
JA  
T
JMAX  
= 125°C, θ = 43°C/W (NOTE 6)  
JA  
EXPOSED PAD (PIN 11) IS PGND, MUST BE SOLDERED TO PCB  
EXPOSED PAD (PIN 11) IS PGND, MUST BE SOLDERED TO PCB  
http://www.linear.com/prodꢀct/LTC3127#orderinfo  
ORDER INFORMATION  
LEAD FREE FINISH  
LTC3127EDD#PBF  
LTC3127EMSE#PBF  
TAPE AND REEL  
PART MARKING  
LDYD  
PACKAGE DESCRIPTION  
10-Lead (3mm × 3mm) Plastic DFN  
12-Lead Plastic MSOP  
TEMPERATURE RANGE  
40°C to 85°C  
40°C to 85°C  
LTC3127EDD#TRPBF  
LTC3127EMSE#TRPBF  
3127  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/. Some packages are available in 500 unit reels through  
designated sales channels with #TRMPBF suffix.  
3127fa  
2
For more information www.linear.com/LTC3127  
LTC3127  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the specified operating  
jꢀnction temperatꢀre range, otherwise specifications are at TJ = 25°C. VIN = 3.6V, VOUT = 3.3V, ꢀnless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
1.8  
TYP  
MAX  
5.5  
UNITS  
V
l
l
l
Input Operating Range  
Output Voltage Range  
1.8  
5.25  
1.225  
50  
V
Feedback Voltage  
1.165  
1.195  
1
V
Feedback Input Current  
V
V
V
V
V
= 1.25V  
nA  
µA  
µA  
µA  
µA  
mA  
mA  
mA  
mA  
mA  
A
FB  
Input Quiescent Current – Burst Mode Operation  
Input Quiescent Current – Shutdown  
Output Quiescent Current – Shutdown  
Input Quiescent Current – Active  
Input Current Limit  
> 1.225, V  
= V (Note 4)  
35  
FB  
MODE  
IN  
= 0V, Including SW Leakage  
0.1  
0.1  
400  
500  
500  
500  
796  
796  
2.5  
0.3  
0.1  
4
4
SHDN  
= 0V, V  
= 0V, Including SW Leakage  
SHDN  
IN  
> 1.225V, V  
= 0V (Note 4)  
FB  
MODE  
R
= 32.4k (Note 3)  
480  
465  
430  
745  
728  
2
520  
540  
540  
884  
914  
PROG  
l
l
0°C to 85°C (Note 3)  
–40°C to 85°C (Note 3)  
R
= 48.1k (Note 3)  
PROG  
PROG  
l
l
R
= 48.1k , –40°C to 85°C (Note 3)  
Peak Current Limit  
Reverse-Current Limit  
0.15  
0.45  
4
A
P-Channel MOSFET Leakage  
N-Channel MOSFET On-Resistance  
Switches A and D  
µA  
Switch B  
Switch C  
140  
170  
mΩ  
mΩ  
P-Channel MOSFET On-Resistance  
Maximum Duty Cycle  
Switch A  
Switch D  
160  
190  
mΩ  
mΩ  
l
l
Boost( % Switch C On)  
Buck (% Switch A On)  
80  
100  
90  
%
%
l
l
l
l
Minimum Duty Cycle  
Frequency Accuracy  
0
%
MHz  
V
1
1.35  
1.7  
SHDN Input High Voltage  
SHDN Input Low Voltage  
SHDN Input Current  
1.2  
0.3  
1
V
V
V
= 5.5V  
= 5.5V  
0.01  
0.01  
µA  
V
SHDN  
l
l
MODE Input High Voltage  
MODE Input Low Voltage  
MODE Input Current  
1.2  
0.3  
1
V
µA  
MODE  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 3: Specification is guaranteed when the inductor current is in  
continuous conduction.  
Note ±: Current measurements are made when the output is not  
switching.  
Note 2: The LTC3127 is guaranteed to meet performance specifications  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
junction temperature range are assured by design, characterization and  
correlation with statistical process controls. Note that the maximum  
ambient temperature is determined by specific operating conditions in  
conjunction with board layout, the rated package thermal resistance and  
other environmental factors.  
Note 5: This IC includes overtemperature protection that is intended  
to protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may result in device degradation or failure.  
Note 6: Failure to solder the exposed backside of the package to the PC  
board ground plane will result in a thermal resistance much higher than  
43°C/W.  
3127fa  
3
For more information www.linear.com/LTC3127  
LTC3127  
(TJ = 25°C, ꢀnless otherwise noted )  
TYPICAL PERFORMANCE CHARACTERISTICS  
Efficiency vs Load Cꢀrrent  
Efficiency vs Load Cꢀrrent  
Efficiency vs Load Cꢀrrent  
100  
100  
90  
100  
90  
PWM  
V
= 5V  
OUT  
V
= 1.8V  
V
= 3.3V  
OUT  
OUT  
90  
80  
70  
BURST  
80  
80  
BURST  
BURST  
70  
70  
60  
50  
60  
50  
60  
50  
PWM  
PWM  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
40  
30  
20  
10  
0
V
V
V
= 4.5V  
= 5V  
V
V
V
= 1.8V  
= 3.6V  
= 5V  
V
V
V
= 2.9V  
= 3.6V  
= 4.3V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
= 5.5V  
0.1  
1
10  
100  
1000 10000  
0.1  
1
10  
100  
1000  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
3127 G03  
3127 G01  
3127 G02  
Average Inpꢀt Cꢀrrent Limit  
vs VIN (Normalized)  
Average Inpꢀt Cꢀrrent Limit  
vs Temperatꢀre (Normalized)  
Maximꢀm Programmable Inpꢀt  
Cꢀrrent vs VIN  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
2
1
2
1
V
R
= 3.3V  
PROG  
V
R
= 3.3V  
PROG  
OUT  
OUT  
= 32.4k  
= 32.4k  
0
0
–1  
–2  
–3  
–4  
–5  
–1  
–2  
–3  
–4  
–5  
–45  
–15  
0
15 30 45 60 75 90  
2.6  
3
3.4 3.8 4.2  
5.4  
–30  
1.8 2.2  
4.6  
5
1.8  
2.6  
3
3.4 3.8 4.2 4.6  
(V)  
5
5.4  
2.2  
TEMPERATURE (°C)  
V
V
(V)  
3127 G21  
IN  
IN  
3127 G05  
3127 G04  
Qꢀiescent Cꢀrrent vs VIN (Fixed  
Freqꢀency Mode–Not Switching)  
Bꢀrst Mode Qꢀiescent Cꢀrrent  
vs VIN  
No Load Inpꢀt Cꢀrrent vs VIN in  
Bꢀrst Mode Operation  
38  
37  
36  
35  
34  
33  
32  
430  
410  
390  
370  
350  
330  
310  
290  
270  
52.5  
52.0  
51.5  
51.0  
50.5  
50.0  
49.5  
49.0  
48.5  
V
= 3.3V  
OUT  
2.6  
3
3.4 3.8 4.2  
5.4  
1.8  
2.6  
3
3.4 3.8 4.2 4.6  
(V)  
5
5.4  
1.8 2.2  
2.6  
3
3.4 3.8 4.2  
4.6  
5
5.4  
1.8 2.2  
4.6  
5
2.2  
V
V
(V)  
V
(V)  
IN  
IN  
IN  
3127 G07  
3127 G06  
3127 G08  
3127fa  
4
For more information www.linear.com/LTC3127  
LTC3127  
(TJ = 25°C, ꢀnless otherwise noted )  
TYPICAL PERFORMANCE CHARACTERISTICS  
Feedback Voltage vs Temperatꢀre  
(Normalized)  
VOUT Regꢀlation vs Load Cꢀrrent  
(Normalized)  
NMOS RDS(ON) vs VIN  
0.20  
0.00  
300  
250  
200  
150  
100  
0.40  
0.30  
L = 4.7µH  
V
OUT  
= 3.3V  
V
V
= 3.3V  
OUT  
IN  
= 3.6V  
0.20  
0.10  
–0.20  
–0.40  
–0.60  
–0.80  
0
–0.10  
–0.20  
–0.30  
–0.40  
–0.50  
–0.60  
SWC  
SWB  
50  
70  
90  
–50 –30 –10 10  
30  
1.8  
2.4  
3
3.6  
(V)  
4.2  
4.8  
5.4  
0
200  
600  
LOAD CURRENT (mA)  
800  
1000  
400  
TEMPERATURE (°C)  
V
IN  
3127 G09  
3127 G10  
3127 G11  
Load Transient Response in Fixed  
Freqꢀency Mode, No Load to 1A,  
Not in Inpꢀt Cꢀrrent Limit  
Maximꢀm Load Cꢀrrent vs VIN  
PMOS RDS(ON) vs VIN  
2250  
2000  
1750  
1500  
1250  
1000  
750  
325  
275  
225  
175  
125  
R
PROG  
= 90k  
I
LOAD  
1A/DIV  
I
IN  
V
= 2.4V  
OUT  
V
= 3.3V  
OUT  
1A/DIV  
V
OUT  
50mV/DIV  
V
= 5V  
OUT  
I
SWD  
L
1A/DIV  
500  
3127 G14  
SWA  
200µs/DIV  
250  
V
= 3.6V  
PROG  
V
C
= 3.3V  
IN  
OUT  
OUT  
0
R
= 90k  
= 4.4mF  
2.6  
3
3.4 3.8 4.2  
5.4  
1.8 2.2  
4.6  
5
1.8  
2.4  
3
3.6  
(V)  
4.2  
4.8  
5.4  
R3 = 499k  
C1 = 100pF  
V
V
(V)  
IN  
IN  
3127 G13  
3127 G12  
Load Transient Response in Fixed  
Freqꢀency Mode, No Load to 1A,  
in Inpꢀt Cꢀrrent Limit  
Bꢀrst Mode Operation  
MODE = 0V  
I
LOAD  
1A/DIV  
I
L
500mA/DIV  
I
IN  
500mA/DIV  
V
OUT  
V
OUT  
100mV/DIV  
20mV/DIV  
3127 G15  
3127 G16  
200µs/DIV  
5µs/DIV  
V
= 3.6V  
PROG  
V
C
= 3.3V  
V
= 3.6V  
V
C
= 3.3V  
IN  
OUT  
OUT  
IN  
OUT  
OUT  
R
= 32.4k  
= 4.4mF  
R
= 32.4k  
PROG  
= 4.4mF  
R3 = 499k  
C1 = 100pF  
R3 = 499k  
C1 = 100pF  
3127fa  
5
For more information www.linear.com/LTC3127  
LTC3127  
(TJ = 25°C, ꢀnless otherwise noted )  
Operation to Fixed Freqꢀency Mode  
TYPICAL PERFORMANCE CHARACTERISTICS  
Load Transient Response in  
Transition from Bꢀrst Mode  
Bꢀrst Mode Operation, No Load  
to 1A, Not in Inpꢀt Cꢀrrent Limit  
I
LOAD  
1A/DIV  
I
IN  
200mA/DIV  
I
IN  
1A/DIV  
V
V
OUT  
20mV/DIV  
OUT  
50mV/DIV  
MODE  
5V/DIV  
MODE  
5V/DIV  
3127 G17  
3127 G18  
200µs/DIV  
100µs/DIV  
V
= 3.6V  
PROG  
V
C
= 3.3V  
IN  
OUT  
OUT  
V
= 3.6V  
PROG  
V
C
= 3.3V  
IN  
OUT  
OUT  
R
= 90k  
= 4.4mF  
R
= 32.4k  
= 4.4mF  
R3 = 499k  
C1 = 100pF  
R3 = 499k  
C1 = 100pF  
Load Transient Response in  
Bꢀrst Mode Operation, No Load  
to 1A, in Inpꢀt Cꢀrrent Limit  
Start-Up Waveform  
I
LOAD  
1A/DIV  
I
V
IN  
OUT  
500mA/DIV  
1V/DIV  
V
OUT  
100mV/DIV  
I
IN  
500mA/DIV  
MODE  
5V/DIV  
SHDN  
5V/DIV  
3127 G20  
3127 G19  
5ms/DIV  
200µs/DIV  
V
= 3.6V  
PROG  
V
C
= 3.3V  
V
= 3.6V  
PROG  
V
C
= 3.3V  
OUT  
IN  
OUT  
OUT  
IN  
R
= 32.4k  
= 4.4mF  
R
= 32.4k  
= 4.4mF  
OUT  
R3 = 499k  
C1 = 100pF  
R3 = 499k  
C1 = 100pF  
3127fa  
6
For more information www.linear.com/LTC3127  
LTC3127  
(DD Package)  
PIN FUNCTIONS  
SW1 (Pin 1): Switch Pin Where Internal Switches A and  
B Are Connected. Connect inductor from SW1 to SW2.  
Minimize trace length to reduce EMI.  
SGND (Pin 6): Signal Ground for the IC. Terminate the  
PROG resistor, compensation components and the output  
voltage divider to SGND.  
V
(Pin 2): Input Supply Pin. Internal V for the IC. A  
FB(Pin7):FeedbackPin.Connectresistordividertaphere.  
The output voltage can be adjusted from 1.8V to 5.25V.  
The feedback reference voltage is 1.195V.  
IN  
CC  
10μF or greater ceramic capacitor should be placed as  
close to V and PGND as possible.  
IN  
R2  
R1  
SHDN (Pin 3): Logic-Controlled Shutdown Input.  
SHDN = High: Normal Operation  
SHDN = Low: Shutdown  
VOUT = 1.195 1+  
V
V (Pin 8): Error Amplifier Output. Place compensation  
components from this pin to SGND.  
C
MODE (Pin ±): Pulse Width Modulation/Burst Mode  
Selection Input.  
V
(Pin9):OutputoftheSynchronousRectifier.Connect  
OUT  
theoutputfiltercapacitorfromthispintoGND.Aminimum  
value of 22µF is recommended. Output capacitors must  
be low ESR.  
MODE = High: Burst Mode Operation  
MODE = Low: PWM Operation Only. Forced continuous  
conduction mode.  
SW2 (Pin 10): Switch Pin Where Internal Switches C and  
D Are Connected. Minimize trace length to reduce EMI.  
PROG (Pin 5): Sets the Average Input Current Limit  
Threshold. Connect a resistor from PROG to ground. See  
below for component value selection.  
PGND(ExposedPadPin11):PowerGround.Theexposed  
pad mꢀst be soldered to the PCB groꢀnd plane.  
R
PROG  
= 54.92 • I  
(A) + 4.94 (kΩ)  
LIMIT  
3127fa  
7
For more information www.linear.com/LTC3127  
LTC3127  
BLOCK DIAGRAM  
L
SW1  
SW2  
V
V
IN  
OUT  
C
IN  
+
V
C
I
I
ZERO  
AMP  
PEAK  
AMP  
R2  
R1  
R3  
C
OUT  
PWM  
COMPARATOR  
AND LOGIC  
+
FB  
1.195V  
SHDN  
+
MODE  
SAMPLE/HOLD  
AND RESET  
PROG  
+
V
CLAMP  
R
PROG  
SGND  
3127 BD  
3127fa  
8
For more information www.linear.com/LTC3127  
LTC3127  
OPERATION  
The LTC3127 is an average input current controlled buck-  
boostDC/DCconverterofferedinbothathermallyenhanced  
3mm × 3mm DFN package and a thermally enhanced  
12-leadMSOP package. Thebuck-boostconverterutilizes  
a proprietary switching algorithm which allows its output  
voltage to be regulated above, below or equal to the input  
the AC switch pair remains on for longer durations and  
the duration of the BD phase decreases proportionally.  
As the input voltage drops below the output voltage, the  
AC phase will eventually increase to the point that there  
is no longer any BD switching. At this point, switch A  
remains on continuously while switch pair CD is pulse  
width modulated to obtain the desired output voltage. At  
this point, the converter is operating solely in boost mode.  
voltage. The low R  
, low gate charge synchronous  
DS(ON)  
switches efficiently provide high frequency PWM control.  
High efficiency is achieved at light loads when Burst Mode  
operation is commanded.  
This switching algorithm provides a seamless transition  
between operating modes and eliminates discontinuities  
in average inductor current, inductor current ripple, and  
loop transfer function throughout all three operational  
modes. These advantages result in increased efficiency  
and stability in comparison to the traditional 4-switch  
buck-boost converter. In forced PWM mode operation,  
the inductor is forced to have continuous conduction.  
This allows for a constant switching frequency and better  
noise performance.  
PWM Mode Operation  
The LTC3127 uses fixed frequency, average input current  
PWM control. The MODE pin can be used to select auto-  
matic Burst Mode operation (MODE connected to V ) or  
to disable Burst Mode operation and select forced con-  
tinuous conduction operation for low noise applications  
(MODE grounded).  
IN  
A proprietary switching algorithm allows the converter  
to switch between buck, buck-boost and boost modes  
without discontinuity in inductor current or loop charac-  
teristics.Theswitchtopologyforthebuck-boostconverter  
is shown in Figure 1.  
Error Amplifier and Compensation  
The buck-boost converter utilizes two control loops. The  
outer voltage loop determines the amount of current re-  
quired to regulate the output voltage. The voltage loop is  
externally compensated and can be configured with either  
integral compensation or proportional control. The inner  
currentloopisinternallycompensatedandforcestheinput  
current to equal the commanded current.  
When the input voltage is significantly greater than the  
output voltage, the buck-boost converter operates in  
buck mode. Switch D turns on continuously and switch C  
remains off. Switches A and B are pulse width modulated  
to produce the required duty cycle to support the output  
regulation voltage. As the input voltage decreases, switch  
A remains on for a larger portion of the switching cycle.  
When the duty cycle reaches approximately 85%, the  
switch pair AC begins turning on for a small fraction of the  
switching period. As the input voltage decreases further,  
When V is compensated via proportional control, the  
C
dominant pole of the output capacitor is used to ensure  
stability with a minimum of 1000µF of capacitance on the  
outputwhena499kresistorisused. Thereisnomaximum  
capacitance limitation with proportional compensation.  
L
V
SW1  
SW2  
V
OUT  
IN  
A
D
B
C
LTC3127  
PGND  
PGND  
3127 F01  
Figꢀre 1. Bꢀck-Boost Switch Topology  
3127fa  
9
For more information www.linear.com/LTC3127  
LTC3127  
OPERATION  
Integral compensation is required if an output capacitor  
less than 1000µF but greater than 44µF is used, otherwise  
using proportional compensation is recommended.  
This causes poles and zeros to occur at the following  
locations:  
f
@ DC  
POLE2  
Whencompensatingtheconverterwithintegralcompensa-  
tion it is important to consider that the total bandwidth of  
the network must be below 15kHz. The inner current loop  
of the LTC3127 eliminates one of the double poles caused  
by the inductor. The output capacitor causes a dominant  
pole and also a zero, and the resistor divider sets the gain.  
1
fPOLE3  
fZERO2  
=
2 • π • RA C2  
1
2 • π • RA C1  
=
The poles and zeros of the compensation should be deter-  
mined by looking at where f lands at the minimum  
R2  
GDC = 1+  
R1  
POLE1  
load where the LTC3127 will be continuously conducting,  
which places the dominant pole at its lowest frequency.  
Aftersettingthepolesandzerosforthecompensation, the  
phase margin of the system should be greater than 45°  
andthegainmarginshouldbegreaterthan3dB. Following  
these two criteria will help to ensure stability.  
1
fPOLE1  
=
2 • π • RLOAD COUT  
1
fZERO1  
=
2 • π • RESR COUT  
Using the compensation network show in Figure 2, the  
voltage loop compensation can be approximated with the  
following transfer function:  
Cꢀrrent Limit Operation  
The buck-boost converter has two current limit circuits.  
The primary current limit is an average input current  
limit circuit that clamps the output of the outer voltage  
loop. This limits the amount of input current that can be  
commanded, and the inner current loop regulates to that  
clamped value.  
gm (C1RA s + 1)  
HCOMP(s) =  
s (C1C2 RA s + C1+ C2)  
–6  
where g = 150 • 10  
m
V
OUT  
V
LTC3127  
PWM  
OUT  
1.195V  
MEASURED  
R2  
+
+ INPUT CURRENT  
FB  
C
OUT  
V
C
R1  
R
A
C2  
SGND  
C1  
3127 F02  
Figꢀre 2. Bꢀck-Boost External Compensation  
3127fa  
10  
For more information www.linear.com/LTC3127  
LTC3127  
OPERATION  
The input current limit is set by the R  
resistor placed  
Anti-Ringing Control  
PROG  
on the PROG pin to SGND. The resistor value can be cal-  
culated using the following formula:  
Theanti-ringingcontrolconnectsaresistorfromSW1and  
SW2 to PGND to prevent high frequency ringing during  
discontinuous current mode operation in Burst Mode.  
Although the ringing of the resonant circuit formed by L  
and CSW (capacitance on SW pin) is low energy, it can  
cause EMI radiation.  
R
PROG  
= 54.92 • I  
(A) + 4.94 (kΩ)  
LIMIT  
Where I  
is the average input current limit in amps.  
LIMIT  
A secondary 2.5A (typical) current limit forces switches  
B and D on and A and C off if tripped. This current limit  
is not affected by the value of R  
.
Shꢀtdown  
PROG  
Shutdown of the converter is accomplished by pulling  
Reverse Cꢀrrent Limit  
SHDNbelow0.3VandenabledbypullingSHDNabove1.2V.  
The reverse current comparator on switch D monitors  
the inductor current supplied from the output. When this  
current exceeds 300mA (typical) switch D will be turned  
off for the remainder of the switching cycle.  
Note that SHDN can be driven above V or V , as long  
IN  
OUT  
as it is limited to less than the absolute maximum rating.  
Thermal Shꢀtdown  
Bꢀrst Mode Operation  
Ifthedietemperatureexceeds150°C(typical)theLTC3127  
will be disabled. All power devices will be turned off and  
both switch nodes will be high impedance. The LTC3127  
will restart (if enabled) when the die temperature drops  
to approximately 140°C.  
When the MODE pin is held high the LTC3127 will func-  
tion in Burst Mode operation as long as the load current  
is typically less than 35mA. In Burst Mode operation, the  
LTC3127 still switches at a fixed frequency of 1.35MHz,  
usingthesameerroramplifiersandloopcompensationfor  
average input current mode control. This control method  
eliminates any output transient when switching between  
modes. In Burst Mode operation, energy is delivered to  
the output until the output voltage reaches the nominal  
regulation value. At this point, the LTC3127 transitions to  
sleep mode where the output switches are shut off and the  
LTC3127 consumes only 35μA of quiescent current from  
Thermal Regꢀlator  
To help prevent the part from going into thermal shutdown  
when charging very large capacitive loads, the LTC3127 is  
equipped with a thermal regulator. If the die temperature  
exceeds 130°C (typical) the average current limit is lowered  
to help reduce the amount of power being dissipated in the  
package. The current limit will be approximately 0A just  
before thermal shutdown. The current limit will return to its  
fullvaluewhenthedietemperaturedropsbackbelow130°C.  
V . When the output voltage droops slightly, switching  
IN  
resumes. This maximizes efficiency at very light loads by  
minimizing switching and quiescent losses.  
Undervoltage Lockoꢀt  
Zero Cꢀrrent Comparator  
If the input supply voltage drops below 1.7V (typical),  
the LTC3127 will be disabled and all power devices will  
be turned off.  
Thezerocurrentcomparatormonitorstheinductorcurrent  
to the output and shuts off the synchronous rectifier when  
thiscurrentreducestoapproximately30mA.Thisprevents  
the inductor current from reversing in polarity, improving  
efficiency at light loads. This comparator is only active in  
Burst Mode operation.  
3127fa  
11  
For more information www.linear.com/LTC3127  
LTC3127  
APPLICATIONS INFORMATION  
The LTC3127 can utilize small surface mount inductors  
due to its fast 1.35MHz switching frequency. Inductor  
values between 2.2μH and 4.7μH are suitable for most  
applications.Largervaluesofinductancewillallowslightly  
greater output current capability by reducing the inductor  
ripple current. Increasing the inductance above 10μH will  
increase size while providing little improvement in output  
current capability.  
A typicalLTC3127application circuitis shown on the front  
page of this data sheet. The external component selection  
is determined by the desired output voltage, input current  
and ripple voltage requirements for each particular appli-  
cation. However, basic guidelines and considerations for  
the design process are provided in this section.  
Bꢀck-Boost Oꢀtpꢀt Voltage Programming  
The buck-boost output voltage is set by a resistive divider  
according to the following formula:  
The inductor current ripple is typically set for 20% to  
40% of the maximum inductor current. High frequency  
ferrite core inductor materials reduce frequency depen-  
dent power losses compared to cheaper powdered iron  
types, improving efficiency. The inductor should have  
low ESR (series resistance of the windings) to reduce the  
I2R power losses, and must be able to support the peak  
inductor current without saturating. Molded chokes and  
somechipinductorsusuallydonothaveenoughcorearea  
to support the peak inductor currents of 2.5A seen on  
the LTC3127. To minimize radiated noise, use a shielded  
inductor. See Table 1 and the reference schematics for  
suggested components and suppliers.  
R2  
R1  
VOUT =1.195V 1+  
V
The external divider is connected to the output as shown  
inFigure3.Thebuck-boostconverterutilizesinputcurrent  
mode control, and the output divider resistance does not  
play a role in the stability.  
1.8V V  
5.25V  
OUT  
R2  
FB  
LTC3127  
GND  
Table 1. Recommended Indꢀctors  
R1  
VENDOR  
Coilcraft  
847-639-6400  
www.coilcraft.com  
PART/STYLE  
LPO2506  
LPS4012, LPS4018  
MSS6122  
MSS4020  
MOS6020  
DS1605, DO1608  
XPL4020  
3127 F03  
Figꢀre 3. Setting the Bꢀck-Boost Oꢀtpꢀt Voltage  
Bꢀck-Boost Indꢀctor Selection  
Coiltronics  
SD52, SD53  
To achieve high efficiency, a low ESR inductor should  
be utilized for the buck-boost converter. The inductor  
must have a saturation rating greater than the worst case  
average inductor current plus half the ripple current.  
The peak-to-peak inductor current ripple will be larger  
in buck and boost mode than in the buck-boost region.  
The peak-to-peak inductor current ripple for each mode  
can be calculated from the following formulas, where L  
is the inductance in μH:  
www.cooperet.com  
SD3114, SD3118  
Murata  
714-852-2001  
www.murata.com  
LQH55D  
Sumida  
847-956-0666  
www.sumida.com  
CDH40D11  
Taiyo-Yuden  
www.t-yuden.com  
NP04SB  
NR3015  
NR4018  
TDK  
VLP, LTF  
VLF, VLCF  
VOUT (V VOUT  
)
IN  
847-803-6100  
www.component.tdk.com  
∆IL,PP,BUCK  
=
(A)  
V L (1.35MHz)  
IN  
Würth Elektronik  
201-785-8800  
www.we-online.com  
WE-TPC Type S, M, MH  
V (VOUT V )  
VOUT L (1.35MHz)  
IN  
IN  
∆IL,PP,BOOST  
=
(A)  
3127fa  
12  
For more information www.linear.com/LTC3127  
LTC3127  
APPLICATIONS INFORMATION  
Oꢀtpꢀt and Inpꢀt Capacitor Selection  
The total output voltage droop is given by:  
= V + V (V)  
When selecting output capacitors for large pulsed loads,  
the magnitude and duration of the pulse current, together  
with the droop voltage specification, determine the choice  
of the output capacitor. Both the ESR of the capacitor and  
the charge stored in the capacitor each cycle contribute  
to the output voltage droop. The droop due to the charge  
is approximately:  
V
DROOP  
DROOP_LOAD  
DROOP_ESR  
HighcapacitancevaluesandlowESRcanleadtoinstability  
in typical internally compensated buck-boost converters.  
Using proportional compensation, the LTC3127 is stable  
withlowESRoutputcapacitorvaluesgreaterthan1000µF.  
Multilayer ceramic capacitors are an excellent choice for  
input decoupling of the step-up converter as they have  
extremely low ESR and are available in small footprints.  
Input capacitors should be located as close as possible to  
the device. While a 10µF input capacitor is sufficient for  
most applications, larger values may be used to improve  
input decoupling without limitation. Consult the manufac-  
turers directly for detailed information on their selection  
of ceramic capacitors. Although ceramic capacitors are  
recommended, low ESR tantalum capacitors may be used  
as well.  
VDROOP_LOAD  
=
V •IIN(MAX) η  
IN  
I
I  
D T  
STANDBY   
PULSE  
VOUT  
(V)  
COUT  
where  
I
= pulsed load current  
PULSE  
I
= static load current in standby mode  
When using a large capacitance to help with pulsed load  
applications,themaximumloadforagivendutycycle,and  
the minimum capacitance can be calculated by:  
STANDBY  
I
= programmed input current limit in amps  
IN(MAX)  
T = period of the load pulse  
D = load pulse’s duty cycle  
V IIN(MAX) • η  
IN  
ILOAD(MAX)  
=
(A)  
D VOUT  
V
= amount the output falls out of regulation in volts  
DROOP  
COUT(MIN)  
=
h = the efficiency of the converter at the input current  
limit point  
V IIN(MAX) • η  
IN  
The preceding equation is a worst-case approximation  
assuming all the pulsing energy comes from the output  
capacitor.  
I
I  
PULSE  
STANDBY   
VOUT  
D•T  
VDROOP  
(F)  
Thedroopduetothecapacitorequivalentseriesresistance  
(ESR) is:  
VDROOP_ESR  
Table 2. Capacitor Vendor Information  
V •IIN(MAX) η  
IN  
SUPPLIER  
Vishay  
PHONE  
WEB SITE  
www.vishay.com  
= I  
I  
• ESR (V)  
PULSE  
STANDBY   
VOUT  
402-563-6866  
803-448-9411  
516-998-4100  
843-267-0720  
800-394-2112  
AVX  
www.avxcorp.com  
www.cooperbussmann.com  
www.cap-xx.com  
Cooper Bussmann  
CAP-XX  
Low ESR and high capacitance are critical to maintaining  
low output droop. Table 2 and the Typical Applications  
schematics show a list of several reservoir capacitor  
manufacturers.  
Panasonic  
www.panasonic.com  
3127fa  
13  
For more information www.linear.com/LTC3127  
LTC3127  
APPLICATIONS INFORMATION  
Capacitor Selection Example  
Step 3: For this application a 2.2mF Vishay Tantamount  
tantalum,lowESRcapacitorisselected.Thiscapacitorhas  
a maximum ESR of 0.04Ω. With the selected capacitor,  
the amount of droop must be calculated:  
In this example, a pulsed load application requires that  
V
droops less than 300mV. The application is a Li-Ion  
OUT  
battery input to a 3.6V output. The pulsed load is a no-load  
to a 1.5A step with a frequency of 217Hz and a duty cycle  
of 12.5%. The input current limit is set to 500mA. In order  
to meet the 300mV droop requirement, the amount of  
capacitance must be calculated at the highest V to V  
VDROOP_LOAD  
=
3V 500mA 0.9  
3.6V  
1.5A−  
0A •0.1254.6ms  
IN  
OUT  
step-up ratio. All of the following calculations assume a  
2.2mF  
minimum V of 3V and an efficiency of 90%.  
IN  
=0.294V  
Given the application, the following is known:  
V = 3V  
IN  
VDROOP_ESR  
=
V
I
= 3.6V  
OUT  
3V 500mA 0.9  
3.6V  
1.5A−  
0A •0.04Ω  
= 500mA  
IN(MAX)  
I
I
= 1.5A  
=0.045V  
PULSE  
= 0A  
STANDBY  
VDROOP = VDROOP_LOAD + VDROOP_ESR =0.339V  
h = 0.9  
D = 0.125  
Due to the ESR of the capacitor, the total droop is greater  
than 300mV. In this case, if the higher droop cannot be  
accepted, a larger valued, lower ESR capacitor can be  
selected.  
T = 1/217Hz = 4.6ms  
V
= 300mV  
DROOP  
Step 1: Check to make sure the application can provide  
PCB Layoꢀt Considerations  
enough current to recover from the pulsed load using the  
I
equation:  
LOAD(MAX)  
The LTC3127 switches large currents at high frequencies.  
Special care should be given to the PCB layout to ensure  
stable, noise-free operation. Figure 4 depicts the recom-  
mended PCB layout to be utilized for the LTC3127. A few  
key guidelines follow:  
3V 500mA 0.9  
ILOAD(MAX)  
=
= 3A  
0.1253.6V  
The maximum load that can be pulsed at this V to V  
combination is 3A.  
IN  
OUT  
1.Allcirculatinghighcurrentpathsshouldbekeptasshort  
as possible. This can be accomplished by keeping the  
routes to all bold components in Figure 4 as short and  
as wide as possible. Capacitor ground connections  
should via down to the ground plane in the shortest  
Step2:Calculatetheminimumoutputcapacitancerequired.  
3V 500mA 0.9  
3.6V  
COUT(MIN) 1.5A−  
route possible. The bypass capacitor on V should be  
IN  
0.1254.6ms  
= 2.15mF  
placed as close to the IC as possible and should have  
the shortest possible path to ground.  
300mV  
3127fa  
14  
For more information www.linear.com/LTC3127  
LTC3127  
APPLICATIONS INFORMATION  
2. The small-signal ground pad (SGND) should have a  
single point connection to the power ground. A con-  
venient way to achieve this is to short the pin directly  
to the Exposed Pad as shown in Figure 4.  
VIA TO  
GROUND  
VIA TO  
GROUND  
SW1  
SW2  
3. The components shown in bold and their connections  
should all be placed over a complete ground plane.  
10  
1
V
C
OUT  
V
9
8
7
6
2
3
4
5
IN  
4. To prevent large circulating currents from disrupting  
the output voltage sensing, the ground for the resistor  
V
SHDN  
MODE  
PROG  
PGND  
FB  
divider and R  
should be returned directly to the  
PROG  
small signal ground pin (SGND).  
SGND  
5. Use of vias in the die attach pad will enhance the ther-  
mal environment of the converter especially if the vias  
extend to a ground plane region on the exposed bottom  
surface of the PCB.  
3127 F04  
Figꢀre ±. Recommended PCB Layoꢀt  
6. Keep the connections to the FB and PROG pins as  
short as possible and away from the switch pin con-  
nections.  
TYPICAL APPLICATIONS  
USB (500mA Max), 3.8V GSM Pꢀlsed Load  
L1  
4.7µH  
SW1  
SW2  
V
V
OUT  
IN  
V
V
OUT  
IN  
3.8V  
USB  
MODE  
PWM BURST  
2.15M  
1M  
LTC3127  
FB  
C1  
2.2mF  
C2  
2.2mF  
OFF ON  
SHDN  
V
C
PROG  
10µF  
SGND  
PGND  
100pF  
499k  
32.4k  
C1, C2: VISHAY TANTAMOUNT  
TANTALUM, LOW ESR CAPACITORS  
L1: COILCRAFT XPL4020-472ML  
3127 TA02  
3127fa  
15  
For more information www.linear.com/LTC3127  
LTC3127  
TYPICAL APPLICATIONS  
PCMCIA/Compact Flash (3.3V or 5V/500mA Max), 3.8V GPRS, Class 10 Pꢀlsed Load  
L1  
4.7µH  
SW1  
SW2  
V
IN  
V
OUT  
3.3V OR  
5V  
V
V
IN  
OUT  
3.8V  
2.15M  
1M  
MODE  
PWM BURST  
OFF ON  
LTC3127  
FB  
C3  
2.2mF  
SHDN  
PROG  
V
C
C2  
2.2mF  
10µF  
SGND  
PGND  
C1  
2.2mF  
100pF  
499k  
32.4k  
C1, C2, C3: VISHAY TANTAMOUNT  
TANTALUM, LOW ESR CAPACITORS  
L1: COILCRAFT XPL4020-472ML  
3127 TA03  
Stacked Sꢀpercapacitor Charger (1000mA Max Inpꢀt Cꢀrrent)  
L1  
4.7µH  
SW1  
SW2  
V
V
V
OUT  
5V  
IN  
V
OUT  
IN  
1.8V to 5.5V  
PWM BURST  
MODE  
100k  
3.16M  
1M  
C1  
100F  
LTC3127  
FB  
SHDN  
OFF ON  
V
C
PROG  
10µF  
100k  
C2  
100F  
SGND  
PGND  
100pF  
499k  
60.4k  
L1: COILCRAFT XPL4020-472ML  
3127 TA04  
General Pꢀrpose Forced Continꢀoꢀs Condꢀction Application with 500µs Start-Up  
L1  
4.7µH  
SW1  
SW2  
V
V
OUT  
3.3V  
IN  
V
V
IN  
OUT  
3V TO 4.3V  
33pF  
316k  
182k  
FB  
MODE  
SHDN  
PROG  
PWM BURST  
OFF ON  
LTC3127  
V
C
22µF  
× 2  
10µF  
SGND  
PGND  
47k  
3300pF  
60.4k  
0.01µF  
L1: COILCRAFT XPL4020-472ML  
3127 TA05  
3127fa  
16  
For more information www.linear.com/LTC3127  
LTC3127  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/prodꢀct/LTC3127#packaging for the most recent package drawings.  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1699 Rev C)  
0.70 ±0.05  
3.55 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PACKAGE  
OUTLINE  
0.25 ±0.05  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
R = 0.125  
0.40 ±0.10  
TYP  
6
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ±0.10  
(2 SIDES)  
PIN 1 NOTCH  
R = 0.20 OR  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
0.35 × 45°  
CHAMFER  
(DD) DFN REV C 0310  
5
1
0.25 ±0.05  
0.50 BSC  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
CHECK THE LTC WEBSITE DATA SHEET FOR CURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO SCALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION ON THE  
TOP AND BOTTOM OF PACKAGE  
3127fa  
17  
For more information www.linear.com/LTC3127  
LTC3127  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/prodꢀct/LTC3127#packaging for the most recent package drawings.  
MSE Package  
12-Lead Plastic MSOP, Exposed Die Pad  
(Reference LTC DWG # 05-08-1666 Rev G)  
BOTTOM VIEW OF  
EXPOSED PAD OPTION  
2.845 ±0.102  
2.845 ±0.102  
(.112 ±.004)  
0.889 ±0.127  
(.035 ±.005)  
(.112 ±.004)  
1
6
0.35  
REF  
1.651 ±0.102  
(.065 ±.004)  
5.10  
(.201)  
MIN  
1.651 ±0.102  
(.065 ±.004)  
3.20 – 3.45  
(.126 – .136)  
0.12 REF  
DETAIL “B”  
CORNER TAIL IS PART OF  
THE LEADFRAME FEATURE.  
FOR REFERENCE ONLY  
NO MEASUREMENT PURPOSE  
DETAIL “B”  
12  
7
0.65  
(.0256)  
BSC  
0.42 ±0.038  
4.039 ±0.102  
(.159 ±.004)  
(NOTE 3)  
(.0165 ±.0015)  
TYP  
0.406 ±0.076  
RECOMMENDED SOLDER PAD LAYOUT  
(.016 ±.003)  
12 11 10 9 8 7  
REF  
DETAIL “A”  
0.254  
(.010)  
3.00 ±0.102  
(.118 ±.004)  
(NOTE 4)  
0° – 6° TYP  
4.90 ±0.152  
(.193 ±.006)  
GAUGE PLANE  
0.53 ±0.152  
(.021 ±.006)  
1
2 3 4 5 6  
DETAIL “A”  
0.86  
(.034)  
REF  
1.10  
(.043)  
MAX  
0.18  
(.007)  
SEATING  
PLANE  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.1016 ±0.0508  
(.004 ±.002)  
MSOP (MSE12) 0213 REV G  
0.650  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
6. EXPOSED PAD DIMENSION DOES INCLUDE MOLD FLASH. MOLD FLASH ON E-PAD SHALL  
NOT EXCEED 0.254mm (.010") PER SIDE.  
3127fa  
18  
For more information www.linear.com/LTC3127  
LTC3127  
REVISION HISTORY  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
A
10/16 Modified Efficiency Graph axis  
1
4
Added Maximum Programmable Input Current vs V curve  
IN  
Modified Related Parts Table  
20  
3127fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However,noresponsibilityisassumedforitsuse.LinearTechnologyCorporationmakesnorepresentation  
that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC3127  
TYPICAL APPLICATION  
Single Sꢀpercapacitor Charger (1000mA Max Inpꢀt Cꢀrrent)  
L1  
4.7µH  
SW1  
SW2  
V
V
OUT  
IN  
V
V
OUT  
IN  
2.5V  
1.8V TO 5V  
1.05M  
1M  
MODE  
PWM BURST  
C1  
100F  
LTC3127  
FB  
SHDN  
OFF ON  
PROG  
10µF  
V
C
SGND  
PGND  
60.4k  
C1: COOPER BUSSMANN POWERSTOR  
B-SERIES, B1860-2R5107-R  
L1: COILCRAFT XPL4020-472ML  
100pF  
499k  
3127 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC3125  
1.2A I , 1.6MHz, Synchronous Boost DC/DC  
94% Efficiency, V : 1.8V to 5.5V, V  
= 5.25V, I = 15µA, I < 1µA,  
Q SD  
OUT  
IN  
OUT(MAX)  
Converter With Adjustable Input Current Limit  
2mm × 3mm DFN-8 Package  
LTC3606B  
LTC3128  
800mA I , Synchronous Step-Down DC/DC  
95% Efficiency, V : 2.5V to 5.5V, V  
= 0.6V, I = 420µA, I < 1µA,  
Q SD  
OUT  
IN  
OUT(MAX)  
Converter with Average Input Current Limit  
3mm × 3mm DFN-8 Package  
3A Buck-Boost Supercapacitor Charger and Balancer 91% Efficiency, V : 1.73V to 5.5V, V : 1.8V to 5.5V, 4mm x 5mm  
with Accurate Current Limit  
IN  
OUT  
QFN-20 and TSSOP Packages  
LTC3619B  
400mA/800mA Synchronous Step-Down DC/DC  
with Average Input Current Limit  
96% Efficiency, V : 2.5V to 5.5V, V : 0.6V to 5V, 4mm x 5mm QFN-20  
IN  
OUT  
and TSSOP Packages  
LTC3625/LTC3625-1 1A High-Efficiency 2-Cell Supercapacitor Charger  
with Automatic Cell Balancing  
Step-Up/Step-Down Charging of Two Series Supercapacitors,  
Programmable Charge Current to 500mA/1A (Single/Dual Inductors),  
Selectable Regulator Voltage per Cell, V : 2.7V to 5.5V, 3mm x 4mm  
IN  
DFN-12 Package  
3127fa  
LT 1016 REV A • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
© LINEAR TECHNOLOGY CORPORATION 2010  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/LTC3127  

相关型号:

LTC3127EDD#TRPBF

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127EDDPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EDDTRPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EMSE

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EMSE#PBF

LTC3127 - 1A Buck-Boost DC/DC Converter with Programmable Input Current Limit; Package: MSOP; Pins: 12; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3127EMSEPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3127EMSETRPBF

1A Buck-Boost DC/DC Converter with Programmable Input Current Limit
Linear

LTC3129

15V, 200mA Synchronous Buck-Boost DC/DC Converter with 1.3μA Quiescent Current
Linear

LTC3129-1

15V, 200mA Synchronous Buck-Boost DC/DC Converter with 1.3μA Quiescent Current
Linear

LTC3129EMSE#PBF

LTC3129 - 15V, 200mA Synchronous Buck-Boost DC/DC Converter with 1.3&#181;A Quiescent Current; Package: MSOP; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3129EUD#PBF

LTC3129 - 15V, 200mA Synchronous Buck-Boost DC/DC Converter with 1.3&#181;A Quiescent Current; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3129EUD-1#PBF

LTC3129-1 - 15V, 200mA Synchronous Buck-Boost DC/DC Converter with 1.3&#181;A Quiescent Current; Package: QFN; Pins: 16; Temperature Range: -40&deg;C to 85&deg;C
Linear