LTC3406B-1.2 [Linear]

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; 为1.5MHz , 600mA同步降压型稳压器采用ThinSOT
LTC3406B-1.2
型号: LTC3406B-1.2
厂家: Linear    Linear
描述:

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
为1.5MHz , 600mA同步降压型稳压器采用ThinSOT

稳压器
文件: 总12页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3406B-1.2  
1.5MHz, 600mA  
Synchronous Step-Down  
Regulator in ThinSOT  
U
FEATURES  
DESCRIPTIO  
The LTC®3406B-1.2 is a high efficiency monolithic syn-  
chronous buck regulator using a constant frequency,  
current mode architecture. Supply current with no load is  
300µA dropping to <1µA in shutdown. The 2.5V to 5.5V  
inputvoltagerangemakestheLTC3406B-1.2ideallysuited  
forsingleLi-Ionbattery-poweredapplications. 100%duty  
cycle provides low dropout operation, extending battery  
lifeinportablesystems.PWMpulseskippingmodeopera-  
tion provides very low output ripple voltage for noise  
sensitive applications.  
High Efficiency: Up to 96%  
600mA Output Current at VIN = 3V  
2.5V to 5.5V Input Voltage Range  
1.5MHz Constant Frequency Operation  
No Schottky Diode Required  
Low Quiescent Current: 300µA  
Shutdown Mode Draws <1µA Supply Current  
Current Mode Operation for Excellent Line and  
Load Transient Response  
Overtemperature Protected  
Low Profile (1mm) ThinSOTTM Package  
Switching frequency is internally set at 1.5MHz, allowing  
the use of small surface mount inductors and capacitors.  
The internal synchronous switch increases efficiency and  
eliminates the need for an external Schottky diode. The  
LTC3406B-1.2isavailableinalowprofile(1mm)ThinSOT  
package.  
U
APPLICATIO S  
Cellular Telephones  
Personal Information Appliances  
Wireless and DSL Modems  
, LTC and LT are registered trademarks of Linear Technology Corporation. All other  
trademarks are the property of their respective owners. ThinSOT is a trademark of Linear  
Technology Corporation. Protected by U.S. Patents including 5481178, 6580258, 6304066,  
6127815, 6498466, 6611131.  
Digital Still Cameras  
MP3 Players  
Portable Instruments  
U
TYPICAL APPLICATIO  
Efficiency and Power Loss  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1
High Efficiency Step-Down Converter  
2.2µH  
EFFICIENCY  
V
V
IN  
OUT  
V
SW  
LTC3406B-1.2  
RUN  
IN  
0.1  
2.7V TO 5.5V  
C
1.2V  
C
OUT  
IN  
10µF 600mA  
4.7µF  
CER  
CER  
0.01  
0.001  
0.0001  
V
OUT  
3406B12 TA01a  
GND  
POWER LOSS  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
0.1  
1000  
1
10  
100  
LOAD CURRENT (mA)  
3406B12 TA01b  
sn3406b12 3406b12fs  
1
LTC3406B-1.2  
W W U W  
U W  
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
Input Supply Voltage .................................. 0.3V to 6V  
RUN, VOUT Voltages................................... 0.3V to VIN  
SW Voltage (DC) ......................... 0.3V to (VIN + 0.3V)  
P-Channel Switch Source Current (DC) ............. 800mA  
N-Channel Switch Sink Current (DC) ................. 800mA  
Peak SW Sink and Source Current (VIN = 3V)........ 1.3A  
Operating Temperature Range (Note 2) .. 40°C to 85°C  
Junction Temperature (Notes 3, 5) ...................... 125°C  
Storage Temperature Range ................ 65°C to 150°C  
Lead Temperature (Soldering, 10 sec)................. 300°C  
ORDER PART  
TOP VIEW  
NUMBER  
RUN 1  
GND 2  
SW 3  
5 V  
4 V  
OUT  
IN  
LTC3406BES5-1.2  
S5 PART MARKING  
LTBMR  
S5 PACKAGE  
5-LEAD PLASTIC TSOT-23  
TJMAX = 125°C, θJA = 250°C/ W, θJC = 90°C/ W  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
The denotes specifications which apply over the full operating  
ELECTRICAL CHARACTERISTICS  
temperature range, otherwise specifications are TA = 25°C. VIN = 3.6V unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
1.164  
2.5  
TYP  
1.2  
6.25  
0.04  
1
MAX  
1.236  
10  
UNITS  
V
Regulated Output Voltage  
Output Overvoltage Lockout  
Output Voltage Line Regulation  
Peak Inductor Current  
V
%
OUT  
V  
V  
V  
= V  
– V  
OVL  
OVL  
OVL OUT  
V
V
= 2.5V to 5.5V  
0.4  
%/V  
A
OUT  
IN  
IN  
I
= 3V, V  
= 1.08V, Duty Cycle < 35%  
0.75  
2.5  
1.25  
PK  
OUT  
V
V
Output Voltage Load Regulation  
Input Voltage Range  
0.5  
%
LOADREG  
IN  
5.5  
V
I
Input DC Bias Current  
(Note 4)  
S
V
V
= 1.08V  
300  
0.1  
400  
1
µA  
µA  
OUT  
RUN  
Shutdown  
= 0V, V = 5.5V  
IN  
f
Oscillator Frequency  
V
V
= 1.2V  
= 0V  
1.2  
0.3  
1.5  
210  
1.8  
MHz  
kHz  
OSC  
OUT  
OUT  
R
R
R
R
of P-Channel FET  
of N-Channel FET  
I
I
= 100mA  
0.4  
0.35  
±0.01  
1
0.5  
0.45  
±1  
PFET  
NFET  
LSW  
DS(ON)  
SW  
SW  
= –100mA  
DS(ON)  
I
SW Leakage  
V
= 0V, V = 0V or 5V, V = 5V  
µA  
V
RUN  
SW  
IN  
V
RUN Threshold  
RUN Leakage Current  
1.5  
±1  
RUN  
I
±0.01  
µA  
RUN  
sn3406b12 3406b12fs  
2
LTC3406B-1.2  
ELECTRICAL CHARACTERISTICS  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
Note 4: Dynamic supply current is higher due to the gate charge being  
of a device may be impaired.  
delivered at the switching frequency.  
Note 2: The LTC3406BE-1.2 is guaranteed to meet performance  
specifications from 0°C to 70°C. Specifications over the –40°C to 85°C  
operating temperature range are assured by design, characterization and  
correlation with statistical process controls.  
Note 5: This IC includes overtemperature protection that is intended to  
protect the device during momentary overload conditions. Junction  
temperature will exceed 125°C when overtemperature protection is active.  
Continuous operation above the specified maximum operating junction  
temperature may impair device reliability.  
Note 3: T is calculated from the ambient temperature T and power  
J
A
dissipation P according to the following formula:  
D
LTC3406B-1.2: T = T + (P )(250°C/W)  
J
A
D
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure 1)  
Reference Voltage vs  
Temperature  
Efficiency vs Input Voltage  
Efficiency vs Output Current  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
1.228  
1.218  
1.208  
1.198  
1.188  
1.178  
1.168  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
T
= 1.2V  
V
= 3.6V  
OUT  
= 25°C  
IN  
A
V
= 2.7V  
IN  
I
= 100mA  
OUT  
I
= 600mA  
OUT  
V
= 3.6V  
IN  
I
= 10mA  
V
= 4.2V  
OUT  
IN  
2
3
4
5
6
–50 –25  
25  
50  
TEMPERATURE (°C)  
75  
100 125  
0
0.1  
1000  
1
10  
100  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (mA)  
3406B12 G01  
3406B12 G03  
3406B12 GO2  
Oscillator Frequency vs  
Temperature  
Oscillator Frequency vs  
Supply Voltage  
Output Voltage vs Load Current  
1.70  
1.65  
1.60  
1.55  
1.50  
1.45  
1.40  
1.35  
1.30  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.224  
1.214  
1.204  
1.194  
1.184  
1.174  
T
= 25°C  
V
= 3.6V  
A
IN  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
2
3
4
5
6
0
700  
9001000  
800  
100 200 300 400 500 600  
SUPPLY VOLTAGE (V)  
LOAD CURRENT (mA)  
3406B12 G05  
3406B12 G06  
3406B12 G04  
sn3406b12 3406b12fs  
3
LTC3406B-1.2  
TYPICAL PERFOR A CE CHARACTERISTICS  
U W  
(From Figure 1)  
Dynamic Supply Current vs  
Supply Voltage  
RDS(ON) vs Input Voltage  
RDS(ON) vs Temperature  
0.7  
0.6  
0.7  
0.6  
400  
380  
360  
340  
320  
300  
280  
260  
240  
220  
200  
T
A
= 25°C  
I
= 0A  
LOAD  
A
V
IN  
= 2.7V  
T
= 25°C  
V
IN  
= 3.6V  
V
IN  
= 4.2V  
0.5  
0.4  
0.3  
0.2  
0.1  
0.5  
0.4  
0.3  
0.2  
0.1  
MAIN  
SWITCH  
SYNCHRONOUS  
SWITCH  
MAIN SWITCH  
SYNCHRONOUS SWITCH  
0
0
50  
100 125  
–50 –25  
0
25  
75  
5
7
0
1
2
3
4
6
2
3
4
5
6
TEMPERATURE (°C)  
INPUT VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
3406B12 G08  
3406B12 G07  
3406B12 G09  
Dynamic Supply Current vs  
Temperature  
Switch Leakage vs Temperature  
340  
320  
300  
280  
260  
240  
220  
200  
300  
250  
200  
150  
V
I
= 3.6V  
= 0A  
V
= 5.5V  
IN  
LOAD  
IN  
RUN = 0V  
100  
50  
0
MAIN SWITCH  
SYNCHRONOUS SWITCH  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
3406B12 G11  
3406B12 G10  
Switch Leakage vs Input Voltage  
Discontinuous Operation  
120  
100  
80  
60  
40  
20  
0
RUN = 0V  
T
= 25°C  
A
SW  
SYNCHRONOUS  
SWITCH  
2V/DIV  
V
OUT  
10mV/DIV  
AC COUPLED  
MAIN  
SWITCH  
I
L
200mA/DIV  
3406B12 G13  
1µs/DIV  
V
= 3.6V  
= 50mA  
IN  
I
LOAD  
0
2
3
4
5
6
1
INPUT VOLTAGE (V)  
3406B12 G12  
sn3406b12 3406b12fs  
4
LTC3406B-1.2  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
(From Figure 1a Except for the Resistive Divider Resistor Values)  
Start-Up from Shutdown  
Load Step  
Load Step  
V
OUT  
V
OUT  
RUN  
2V/DIV  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
V
OUT  
I
1V/DIV  
I
L
L
500mA/DIV  
500mA/DIV  
I
L
500mA/DIV  
I
I
LOAD  
500mA/DIV  
LOAD  
500mA/DIV  
3406B12 G15  
3406B12 G14  
3406B12 G16  
25µs/DIV  
= 0mA TO 600mA  
LOAD  
50µs/DIV  
25µs/DIV  
= 50mA TO 600mA  
V = 3.6V  
IN  
V
I
= 3.6V  
LOAD  
V
I
= 3.6V  
LOAD  
IN  
IN  
I
= 600mA  
Load Step  
Load Step  
V
V
OUT  
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
I
L
L
500mA/DIV  
500mA/DIV  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406B12 G17  
3406B12 G18  
25µs/DIV  
25µs/DIV  
= 200mA TO 600mA  
V
I
= 3.6V  
LOAD  
V
I
= 3.6V  
LOAD  
IN  
IN  
= 100mA TO 600mA  
U
U
U
PI FU CTIO S  
RUN (Pin 1): Run Control Input. Forcing this pin above  
1.5V enables the part. Forcing this pin below 0.3V shuts  
down the device. In shutdown, all functions are disabled  
drawing <1µA supply current. Do not leave RUN floating.  
VIN (Pin 4): Main Supply Pin. Must be closely decoupled  
to GND, Pin 2, with a 2.2µF or greater ceramic capacitor.  
VOUT (Pin 5): Output Voltage Feedback Pin. An internal  
resistive divider divides the output voltage down for com-  
parison to the internal reference voltage.  
GND (Pin 2): Ground Pin.  
SW (Pin 3): Switch Node Connection to Inductor. This pin  
connects to the drains of the internal main and synchro-  
nous power MOSFET switches.  
sn3406b12 3406b12fs  
5
LTC3406B-1.2  
U
U
W
FU CTIO AL DIAGRA  
SLOPE  
COMP  
OSC  
OSC  
V
IN  
4
FREQ  
+
SHIFT  
V
OUT  
5
+
5  
0.8V  
+
60k  
I
COMP  
EA  
FB  
Q
Q
S
R
120k  
SWITCHING  
LOGIC  
AND  
RS LATCH  
V
ANTI-  
SHOOT-  
THRU  
IN  
BLANKING  
CIRCUIT  
OV  
SW  
3
OVDET  
+
RUN  
1
0.8V + V  
OVL  
0.8V REF  
+
SHUTDOWN  
I
RCMP  
2
GND  
3406B12 BD  
U
OPERATIO  
(Refer to Functional Diagram)  
2.2µH*  
V
V
as indicated by the current reversal comparator IRCMP, or  
the beginning of the next clock cycle. The comparator  
OVDET guards against transient overshoots >6.25% by  
turning the main switch off and keeping it off until the fault  
is removed.  
IN  
OUT  
4
3
2.7V  
TO 5.5V  
1.2V  
V
SW  
IN  
C
C
**  
4.7µF  
OUT  
600mA  
IN  
10µF  
LTC3406B-1.2  
CER  
CER  
1
5
3406B12 F01  
RUN  
V
OUT  
GND  
2
*MURATA LQH3C2R2M24  
**TAIYO YUDEN JMK212BJ475MG  
Pulse Skipping Mode Operation  
TAIYO YUDEN JMK316BJ106ML  
At light loads, the inductor current may reach zero or re-  
verse on each pulse. The bottom MOSFET is turned off by  
the current reversal comparator, IRCMP, and the switch  
voltage will ring. This is discontinuous mode operation,  
and is normal behavior for the switching regulator. At very  
lightloads,theLTC3406B-1.2willautomaticallyskippulses  
inpulseskippingmodeoperationtomaintainoutputregu-  
lation. Refer to LTC3406-1.2 data sheet if Burst Mode op-  
eration is preferred.  
Figure 1. Typical Application  
Main Control Loop  
The LTC3406B-1.2 uses a constant frequency, current  
mode step-down architecture. Both the main (P-channel  
MOSFET)andsynchronous(N-channelMOSFET)switches  
are internal. During normal operation, the internal top  
power MOSFET is turned on each cycle when the oscillator  
sets the RS latch, and turned off when the current com-  
parator, ICOMP, resets the RS latch. The peak inductor  
current at which ICOMP resets the RS latch, is controlled by  
the output of error amplifier EA. When the load current  
increases, it causes a slight decrease in the feedback  
voltage, FB, relative to the 0.8V reference, which in turn  
causes the EA amplifier’s output voltage to increase until  
the average inductor current matches the new load cur-  
rent. While the top MOSFET is off, the bottom MOSFET is  
turnedonuntileithertheinductorcurrentstartstoreverse,  
Short-Circuit Protection  
Whentheoutputisshortedtoground, thefrequencyofthe  
oscillator is reduced to about 210kHz, 1/7 the nominal  
frequency. This frequency foldback ensures that the in-  
ductorcurrenthasmoretimetodecay, therebypreventing  
runaway. The oscillator’s frequency will progressively  
increase to 1.5MHz when VOUT rises above 0V.  
sn3406b12 3406b12fs  
6
LTC3406B-1.2  
W U U  
APPLICATIO S I FOR ATIO  
U
The basic LTC3406B-1.2 application circuit is shown in  
Figure 1. External component selection is driven by the  
load requirement and begins with the selection of L fol-  
Table 1. Representative Surface Mount Inductors  
PART  
NUMBER  
VALUE  
(µH)  
DCR  
MAX DC  
SIZE  
3
(MAX) CURRENT (A) W × L × H (mm )  
Sumida  
CDRH3D16  
1.5  
2.2  
3.3  
4.7  
0.043  
0.075  
0.110  
0.162  
1.55  
1.20  
1.10  
0.90  
3.8 × 3.8 × 1.8  
lowed by CIN and COUT  
.
Inductor Selection  
For most applications, the value of the inductor will fall in  
the range of 1µH to 4.7µH. Its value is chosen based on the  
desired ripple current. Large value inductors lower ripple  
current and small value inductors result in higher ripple  
currents. Higher VIN or VOUT also increases the ripple  
currentasshowninequation1. Areasonablestartingpoint  
for setting ripple current is IL = 240mA (40% of 600mA).  
Sumida  
CMD4D06  
2.2  
3.3  
4.7  
0.116  
0.174  
0.216  
0.950  
0.770  
0.750  
3.5 × 4.3 × 0.8  
Panasonic  
ELT5KT  
3.3  
4.7  
0.17  
0.20  
1.00  
0.95  
4.5 × 5.4 × 1.2  
2.5 × 3.2 × 2.0  
Murata  
LQH3C  
1.0  
2.2  
4.7  
0.060  
0.097  
0.150  
1.00  
0.79  
0.65  
VOUT  
V
IN  
1
IL =  
VOUT 1−  
CIN and COUT Selection  
(1)  
f L  
( )( )  
Incontinuousmode,thesourcecurrentofthetopMOSFET  
is a square wave of duty cycle VOUT/VIN. To prevent large  
voltage transients, a low ESR input capacitor sized for the  
maximum RMS current must be used. The maximum  
RMS capacitor current is given by:  
The DC current rating of the inductor should be at least  
equal to the maximum load current plus half the ripple  
current to prevent core saturation. Thus, a 720mA rated  
inductorshouldbeenoughformostapplications(600mA  
+ 120mA). For better efficiency, choose a low DC-resis-  
tance inductor.  
1/2  
]
V
V V  
OUT  
(
)
[
OUT IN  
CIN requiredIRMS IOMAX  
V
IN  
Inductor Core Selection  
This formula has a maximum at VIN = 2VOUT, where  
IRMS = IOUT/2. This simple worst-case condition is com-  
monlyusedfordesignbecauseevensignificantdeviations  
do not offer much relief. Note that the capacitor  
manufacturer’s ripple current ratings are often based on  
2000hoursoflife.Thismakesitadvisabletofurtherderate  
the capacitor, or choose a capacitor rated at a higher  
temperature than required. Always consult the manufac-  
turer if there is any question.  
Different core materials and shapes will change the size/  
current and price/current relationship of an inductor.  
Toroid or shielded pot cores in ferrite or permalloy mate-  
rials are small and don’t radiate much energy, but gener-  
ally cost more than powdered iron core inductors with  
similarelectricalcharacteristics. Thechoiceofwhichstyle  
inductor to use often depends more on the price vs size  
requirements and any radiated field/EMI requirements  
than on what the LTC3406B-1.2 requires to operate. Table  
1 shows some typical surface mount inductors that work  
well in LTC3406B-1.2 applications.  
The selection of COUT is driven by the required effective  
series resistance (ESR).  
sn3406b12 3406b12fs  
7
LTC3406B-1.2  
W U U  
U
APPLICATIO S I FOR ATIO  
Typically, once the ESR requirement for COUT has been  
met, the RMS current rating generally far exceeds the  
IRIPPLE(P-P) requirement.TheoutputrippleVOUT isdeter-  
mined by:  
When choosing the input and output ceramic capacitors,  
choose the X5R or X7R dielectric formulations. These  
dielectrics have the best temperature and voltage charac-  
teristics of all the ceramics for a given value and size.  
1
Efficiency Considerations  
VOUT ≅ ∆I ESR +  
L
8fCOUT  
The efficiency of a switching regulator is equal to the  
output power divided by the input power times 100%. It is  
oftenusefultoanalyzeindividuallossestodeterminewhat  
is limiting the efficiency and which change would produce  
the most improvement. Efficiency can be expressed as:  
where f = operating frequency, COUT = output capacitance  
and IL = ripple current in the inductor. For a fixed output  
voltage, the output ripple is highest at maximum input  
voltage since IL increases with input voltage.  
Efficiency = 100% – (L1 + L2 + L3 + ...)  
Aluminum electrolytic and dry tantalum capacitors are  
bothavailableinsurfacemountconfigurations.Inthecase  
oftantalum,itiscriticalthatthecapacitorsaresurgetested  
for use in switching power supplies. An excellent choice is  
the AVX TPS series of surface mount tantalum. These are  
specially constructed and tested for low ESR so they give  
the lowest ESR for a given volume. Other capacitor types  
include Sanyo POSCAP, Kemet T510 and T495 series, and  
Sprague 593D and 595D series. Consult the manufacturer  
for other specific recommendations.  
whereL1, L2, etc. aretheindividuallossesasapercentage  
of input power.  
Although all dissipative elements in the circuit produce  
losses, two main sources usually account for most of the  
losses in LTC3406B-1.2 circuits: VIN quiescent current  
and I2R losses. The VIN quiescent current loss dominates  
the efficiency loss at very low load currents whereas the  
I2R loss dominates the efficiency loss at medium to high  
load currents. In a typical efficiency plot, the efficiency  
curveatverylowloadcurrentscanbemisleadingsincethe  
actual power lost is of no consequence as illustrated in  
Figure 2.  
Using Ceramic Input and Output Capacitors  
Higher values, lower cost ceramic capacitors are now  
becoming available in smaller case sizes. Their high ripple  
current, high voltage rating and low ESR make them ideal  
for switching regulator applications. Because the  
LTC3406B-1.2’s control loop does not depend on the  
output capacitor’s ESR for stable operation, ceramic ca-  
pacitors can be used freely to achieve very low output  
ripple and small circuit size.  
1
0.1  
0.01  
0.001  
However, care must be taken when ceramic capacitors are  
usedattheinputandtheoutput.Whenaceramiccapacitor  
is used at the input and the power is supplied by a wall  
adapter through long wires, a load step at the output can  
induce ringing at the input, VIN. At best, this ringing can  
couple to the output and be mistaken as loop instability. At  
worst, a sudden inrush of current through the long wires  
can potentially cause a voltage spike at VIN, large enough  
to damage the part.  
V
V
V
= 2.7V  
= 3.6V  
= 4.2V  
IN  
IN  
IN  
0.0001  
0.1  
1
10  
100  
1000  
LOAD CURRENT (mA)  
3406B12 F02  
Figure 2. Power Loss vs Load Current  
sn3406b12 3406b12fs  
8
LTC3406B-1.2  
W U U  
APPLICATIO S I FOR ATIO  
U
1. The VIN quiescent current is due to two components:  
the DC bias current as given in the electrical character-  
istics and the internal main switch and synchronous  
switch gate charge currents. The gate charge current  
results from switching the gate capacitance of the  
internal power MOSFET switches. Each time the gate is  
switched from high to low to high again, a packet of  
charge, dQ, moves from VIN to ground. The resulting  
dQ/dtisthecurrentoutofVINthatistypicallylargerthan  
To avoid the LTC3406B-1.2 from exceeding the maximum  
junction temperature, the user will need to do some  
thermal analysis. The goal of the thermal analysis is to  
determine whether the power dissipated exceeds the  
maximum junction temperature of the part. The tempera-  
ture rise is given by:  
TR = (PD)(θJA)  
where PD is the power dissipated by the regulator and θJA  
is the thermal resistance from the junction of the die to the  
ambient temperature.  
the DC bias current. In continuous mode, IGATECHG  
=
f(QT + QB) where QT and QB are the gate charges of the  
internal top and bottom switches. Both the DC bias and  
gate charge losses are proportional to VIN and thus  
their effects will be more pronounced at higher supply  
voltages.  
The junction temperature, TJ, is given by:  
TJ = TA + TR  
where TA is the ambient temperature.  
2. I2R losses are calculated from the resistances of the  
internal switches, RSW, and external inductor RL. In  
continuous mode, the average output current flowing  
through inductor L is “chopped” between the main  
switch and the synchronous switch. Thus, the series  
resistance looking into the SW pin is a function of both  
top and bottom MOSFET RDS(ON) and the duty cycle  
(DC) as follows:  
As an example, consider the LTC3406B-1.2 with an input  
voltage of 2.7V, a load current of 600mA and an ambient  
temperature of 70°C. From the typical performance graph  
of switch resistance, the RDS(ON) at 70°C is approximately  
0.52for the P-channel switch and 0.42for the  
N-channel switch. Using equation (2) to find the series  
resistance looking into the SW pin gives:  
RSW = 0.52(0.44) + 0.42(0.56) = 0.46Ω  
Therefore, power dissipated by the part is:  
PD = ILOAD2 • RSW = 165.6mW  
(2)  
RSW = (RDS(ON)TOP)(DC) + (RDS(ON)BOT)(1 – DC)  
The RDS(ON) for both the top and bottom MOSFETs can  
beobtainedfromtheTypicalPerformanceCharateristics  
curves. Thus, to obtain I2R losses, simply add RSW to  
RL and multiply the result by the square of the average  
output current.  
For the SOT-23 package, the θJA is 250°C/W. Thus, the  
junction temperature of the regulator is:  
TJ = 70°C + (0.1656)(250) = 111.4°C  
Other losses including CIN and COUT ESR dissipative  
losses and inductor core losses generally account for less  
than 2% total additional loss.  
which is below the maximum junction temperature of  
125°C.  
Note that at higher supply voltages, the junction tempera-  
ture is lower due to reduced switch resistance (RSW).  
Thermal Considerations  
In most applications the LTC3406B-1.2 does not dissi-  
pate much heat due to its high efficiency. But, in applica-  
tionswheretheLTC3406B-1.2isrunningathighambient  
temperature with low supply voltage, the heat dissipated  
may exceed the maximum junction temperature of the  
part. If the junction temperature reaches approximately  
150°C,bothpowerswitcheswillbeturnedoffandtheSW  
node will become high impedance.  
Checking Transient Response  
The regulator loop response can be checked by looking at  
the load transient response. Switching regulators take  
several cycles to respond to a step in load current. When  
a load step occurs, VOUT immediately shifts by an amount  
equal to (ILOAD • ESR), where ESR is the effective series  
resistance of COUT. ILOAD also begins to charge or  
discharge COUT, which generates a feedback error signal.  
sn3406b12 3406b12fs  
9
LTC3406B-1.2  
W U U  
U
APPLICATIO S I FOR ATIO  
The regulator loop then acts to return VOUT to its steady-  
state value. During this recovery time VOUT can be moni-  
toredforovershootorringingthatwouldindicateastability  
problem. For a detailed explanation of switching control  
loop theory, see Application Note 76.  
3. Keepthe()platesofCIN andCOUT ascloseaspossible.  
Design Example  
As a design example, assume the LTC3406B-1.2 is used  
in a single lithium-ion battery-powered cellular phone  
application. The VIN will be operating from a maximum of  
4.2V down to about 2.7V. The load current requirement  
is a maximum of 0.6A but most of the time it will be in  
standbymode, requiringonly2mA. Efficiencyatbothlow  
and high load currents is important. With this informa-  
tion we can calculate L using equation (1),  
A second, more severe transient is caused by switching in  
loads with large (>1µF) supply bypass capacitors. The  
dischargedbypasscapacitorsareeffectivelyputinparallel  
with COUT, causing a rapid drop in VOUT. No regulator can  
deliver enough current to prevent this problem if the load  
switch resistance is low and it is driven quickly. The only  
solution is to limit the rise time of the switch drive so that  
the load rise time is limited to approximately (25 • CLOAD).  
Thus, a 10µF capacitor charging to 3.3V would require a  
250µs rise time, limiting the charging current to about  
130mA.  
1
1.2V⎞  
V ⎠  
IN  
L =  
1.2V 1−  
(3)  
f I  
( )(  
)
L
Substituting VIN = 4.2V, IL = 240mA and f = 1.5MHz in  
equation (3) gives:  
PC Board Layout Checklist  
1.2V  
1.5MHz(240mA)  
1.2V  
4.2V  
L =  
1−  
= 2.38µH  
When laying out the printed circuit board, the following  
checklist should be used to ensure proper operation of the  
LTC3406B-1.2. These items are also illustrated graphi-  
callyin Figures3and4. Checkthefollowinginyourlayout:  
A 2.2µH inductor works well for this application. For best  
efficiency choose a 720mA or greater inductor with less  
than 0.2series resistance.  
1. The power traces, consisting of the GND trace, the SW  
trace and the VIN trace should be kept short, direct and  
wide.  
CIN will require an RMS current rating of at least 0.3A ≅  
ILOAD(MAX)/2 at temperature and COUT will require an ESR  
of less than 0.25. In most cases, a ceramic capacitor will  
satisfy this requirement.  
2. Does the (+) plate of CIN connect to VIN as closely as  
possible? This capacitor provides the AC current to the  
internal power MOSFETs.  
VIA TO V  
OUT  
V
IN  
VIA TO V  
1
IN  
RUN  
LTC3406B-1.2  
2
3
5
4
PIN 1  
GND  
V
OUT  
+
C
V
OUT  
OUT  
LTC3406B-1.2  
V
OUT  
SW  
V
IN  
L1  
SW  
L1  
C
IN  
V
IN  
C
OUT  
C
IN  
3406B12 F03  
GND  
BOLD LINES INDICATE HIGH CURRENT PATHS  
3406B12 F04  
Figure 3. LTC3406B-1.2 Layout Diagram  
Figure 4. LTC3406B-1.2 Suggested Layout  
sn3406b12 3406b12fs  
10  
LTC3406B-1.2  
U
TYPICAL APPLICATIO S  
Single Li-Ion 1.2V/600mA Regulator for Lowest Profile, 1mm High  
2.2µH  
4
3
V
V
OUT  
1.2V  
IN  
2.7V TO 4.2V  
V
SW  
IN  
C
**  
IN  
C
*
LTC3406B-1.2  
RUN  
OUT1  
4.7µF  
1
10µF  
CER  
CER  
5
V
OUT  
GND  
3406B12 TA02  
2
*MURATA GRM219R60JI06KE19B  
**AVX06036D475MAT  
FDK MIPW3226D2R2M  
Efficiency vs Output Current  
Load Step  
Load Step  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
V
OUT  
V
OUT  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
I
L
V
IN  
= 2.7V  
I
L
500mA/DIV  
500mA/DIV  
V
IN  
= 4.2V  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
3406B12 TA04  
3406B12 TA05  
20µs/DIV  
20µs/DIV  
V
IN  
= 3.6V  
V
I
= 3.6V  
LOAD  
V
I
= 3.6V  
LOAD  
IN  
IN  
= 0mA TO 600mA  
= 200mA TO 600mA  
0.1  
1
10  
100  
1000  
OUTPUT CURRENT (mA)  
3406B12 TA03  
U
PACKAGE DESCRIPTIO  
S5 Package  
5-Lead Plastic TSOT-23  
(Reference LTC DWG # 05-08-1635)  
0.62  
MAX  
0.95  
REF  
2.90 BSC  
(NOTE 4)  
1.22 REF  
1.50 – 1.75  
(NOTE 4)  
2.80 BSC  
1.4 MIN  
3.85 MAX 2.62 REF  
PIN ONE  
RECOMMENDED SOLDER PAD LAYOUT  
PER IPC CALCULATOR  
0.30 – 0.45 TYP  
5 PLCS (NOTE 3)  
0.95 BSC  
0.80 – 0.90  
0.09 – 0.20  
(NOTE 3)  
0.20 BSC  
DATUM ‘A’  
0.01 – 0.10  
1.00 MAX  
0.30 – 0.50 REF  
1.90 BSC  
S5 TSOT-23 0302  
NOTE:  
1. DIMENSIONS ARE IN MILLIMETERS  
2. DRAWING NOT TO SCALE  
3. DIMENSIONS ARE INCLUSIVE OF PLATING  
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR  
5. MOLD FLASH SHALL NOT EXCEED 0.254mm  
6. JEDEC PACKAGE REFERENCE IS MO-193  
sn3406b12 3406b12fs  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC3406B-1.2  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
90% Efficiency, V = 3.6V to 25V, V  
LT1616  
500mA (I ), 1.4MHz, High Efficiency Step-Down  
= 1.25V, I = 1.9mA,  
Q
OUT  
IN  
OUT  
DC/DC Converter  
I
= <1µA, ThinSOT Package  
SD  
LT1676  
450mA (I ), 100kHz, High Efficiency Step-Down  
DC/DC Converter  
90% Efficiency, V = 7.4V to 60V, V  
= 1.24V, I = 3.2mA,  
Q
OUT  
IN  
OUT  
I
= 2.5µA, S8 Package  
SD  
LTC1701/LT1701B  
LT1776  
750mA (I ), 1MHz, High Efficiency Step-Down  
DC/DC Converter  
90% Efficiency, V = 2.5V to 5V, V  
= 1.25V, I = 135µA,  
OUT Q  
OUT  
IN  
I
= <1µA, ThinSOT Package  
SD  
500mA (I ), 200kHz, High Efficiency Step-Down  
90% Efficiency, V = 7.4V to 40V, V  
= 1.24V, I = 3.2mA,  
Q
OUT  
IN  
OUT  
OUT  
DC/DC Converter  
I
= 30µA, N8, S8 Packages  
SD  
LTC1877  
600mA (I ), 550kHz, Synchronous Step-Down  
95% Efficiency, V = 2.7V to 10V, V  
= 0.8V, I = 10µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, MS8 Package  
SD  
LTC1878  
600mA (I ), 550kHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V = 2.7V to 6V, V  
= 0.8V, I = 10µA,  
OUT Q  
OUT  
IN  
I
= <1µA, MS8 Package  
SD  
LTC1879  
1.2A (I ), 550kHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V = 2.7V to 10V, V  
= 0.8V, I = 15µA,  
OUT  
IN  
OUT  
Q
I
= <1µA, TSSOP-16 Package  
SD  
LTC3403  
600mA (I ), 1.5MHz, Synchronous Step-Down  
DC/DC Converter with Bypass Transistor  
96% Efficiency, V = 2.5V to 5.5V, V = Dynamically Adjustable,  
OUT  
I = 20µA, I = <1µA, DFN Package  
Q SD  
OUT  
IN  
LTC3404  
600mA (I ), 1.4MHz, Synchronous Step-Down  
DC/DC Converter  
95% Efficiency, V = 2.7V to 6V, V  
= 0.8V, I = 10µA,  
OUT Q  
OUT  
IN  
I
= <1µA, MS8 Package  
SD  
LTC3405/LTC3405A  
LTC3406  
300mA (I ), 1.5MHz, Synchronous Step-Down  
DC/DC Converter  
96% Efficiency, V = 2.5V to 5.5V, V  
= 0.8V, I = 20µA,  
Q
OUT  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
I
= <1µA, ThinSOT Package  
SD  
600mA (I ), 1.5MHz, Synchronous Step-Down  
96% Efficiency, V = 2.5V to 5.5V, V  
= 0.6V, I = 20µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, ThinSOT Package  
SD  
LTC3411  
1.25A (I ), 4MHz, Synchronous Step-Down  
95% Efficiency, V = 2.5V to 5.5V, V  
= 0.8V, I = 60µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, MS Package  
SD  
LTC3412  
2.5A (I ), 4MHz, Synchronous Step-Down  
95% Efficiency, V = 2.5V to 5.5V, V  
= 0.8V, I = 60µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, TSSOP-16E Package  
SD  
LTC3440  
600mA (I ), 2MHz, Synchronous Buck-Boost  
95% Efficiency, V = 2.5V to 5.5V, V  
= 2.5V, I = 25µA,  
Q
OUT  
IN  
DC/DC Converter  
I
= <1µA, MS Package  
SD  
sn3406b12 3406b12fs  
LT/TP 1004 1K • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
12  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
©LINEAR TECHNOLOGY CORPORATION 2004  

相关型号:

LTC3406B-1.5

1.5MHz, 600mA Synchronous Step-Down egulator in ThinSOT
Linear

LTC3406B-1.8

1.5MHz, 600mA Synchronous Step-Down egulator in ThinSOT
Linear

LTC3406B-2

2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406B-2ES5

2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406B-2ES5#TRM

LTC3406B-2 - 2.25MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5#TRPBF

暂无描述
Linear

LTC3406BES5-1.2

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5-1.2#TRM

LTC3406B-1.2 - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.5

1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT
Linear

LTC3406BES5-1.5#TR

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3406BES5-1.5#TRMPBF

LTC3406B - 1.5MHz, 600mA Synchronous Step-Down Regulator in ThinSOT; Package: SOT; Pins: 5; Temperature Range: -40&deg;C to 85&deg;C
Linear