LTC3541-3 [Linear]

High Efficiency Buck + VLDO Regulator; 高效率降压+ VLDO稳压器
LTC3541-3
型号: LTC3541-3
厂家: Linear    Linear
描述:

High Efficiency Buck + VLDO Regulator
高效率降压+ VLDO稳压器

稳压器
文件: 总20页 (文件大小:380K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC3541-3  
High Efficiency  
Buck + VLDO Regulator  
U
DESCRIPTIO  
FEATURES  
High Efficiency 500mA Buck Plus 300mA VLDO  
Theꢀ LTC®3541-3ꢀ combinesꢀ aꢀ synchronousꢀ buckꢀ DC/  
DCconverterwithaveryꢀlowꢀdropoutꢀlinearꢀregulatorꢀ  
(VLDOTMregulator)andinternalfeedbackresistornetworksꢀ  
toprovidetwooutputvoltagesfromasingleinputvoltageꢀ  
withꢀminimumꢀexternalꢀcomponents.ꢀWhenꢀconfiguredꢀ  
forꢀdualꢀoutputꢀoperation,ꢀtheꢀLTC3541-3’sꢀautoꢀstart-upꢀ  
featurewillbringthe1.575VVLDO/linearregulatoroutputꢀ  
intoregulationinacontrolledmannerpriortoenablingtheꢀ  
1.8Vbuckoutputwithouttheneedforexternalpincontrol.ꢀ  
The300mAVLDO/linearregulatoroutputwillsourceonlyꢀ  
30mAuntilthebuckoutputachievesregulation.Theinputꢀ  
voltageꢀrangeꢀisꢀideallyꢀsuitedꢀforꢀapplicationsꢀpoweredꢀ  
fromaLi-Ionbatteryand5Vor3.3Vrails.  
Regulator  
Auto Start-Up Powers VLDO/Linear Regulator  
Output Prior to Buck Output  
Independent 500mA High Efficiency Buck  
(V : 2.7V to 5.5V)  
IN  
300mA VLDO Regulator with 30mA Standalone Mode  
No External Schottky Diodes Required  
FixedBuck Output Voltage: 1.8V  
VLDO Input Voltage Range (LV : 1.675V to 5.5V)  
IN  
FixedVLDO Output Voltage: 1.575V  
ꢀ SelectableꢀFixedꢀFrequency,ꢀPulse-SkipꢀOperation  
ꢀ orꢀBurstꢀMode®ꢀOperation  
ꢀ Short-CircuitꢀProtected  
Thesynchronousbuckconverterprovidesahighefficiencyꢀ  
output,typically90%.Itcanprovideupto500mAofoutputꢀ  
currentꢀwhileꢀswitchingꢀatꢀ2.25MHz,ꢀallowingꢀtheꢀuseꢀofꢀ  
smallꢀsurfaceꢀmountꢀinductorsꢀandꢀcapacitors.ꢀAꢀmodeꢀ  
selectꢀpinꢀallowsꢀBurstꢀModeꢀoperationꢀtoꢀbeꢀenabledꢀforꢀ  
higherefficiencyatlightloadcurrents,ordisabledforlowerꢀ  
noise,constantfrequencyoperation.ꢀ  
ꢀ CurrentꢀModeꢀOperationꢀforꢀExcellentꢀLineꢀandꢀLoadꢀ  
TransientꢀResponse  
ꢀ ShutdownꢀCurrent:ꢀ<3µA  
ꢀ ConstantꢀFrequencyꢀOperation:ꢀ2.25MHz  
ꢀ LowꢀDropoutꢀBuckꢀOperation:ꢀ100%ꢀDutyꢀCycle  
ꢀ Small,ꢀThermallyꢀEnhanced,ꢀ10-Leadꢀ(3mmꢀ×ꢀ3mm)ꢀ  
DFNꢀPackage  
U
TheVLDOregulatorprovidesalownoise,lowvoltageꢀ  
outputcapableofprovidingupto300mAofoutputcurrentꢀ  
usingꢀonlyꢀaꢀ2.2µFꢀceramicꢀcapacitor.ꢀTheꢀinputꢀsupplyꢀ  
voltageꢀofꢀtheꢀVLDOꢀregulatorꢀ(LV )ꢀmayꢀcomeꢀfromꢀtheꢀ  
buckꢀregulatorꢀorꢀaꢀseparateꢀsupply.  
APPLICATIO S  
ꢀ DigitalꢀCameras  
IN  
ꢀ CellularꢀPhones  
ꢀ PCꢀCards  
, LT, LTC, LTM and Burst Mode are registered trademarks of Linear Technology  
ꢀ WirelessꢀandꢀDSLꢀModems  
Corporation. VLDO is a trademark of Linear Technology Corporation.  
All other trademarks are the property of their respective owners.  
ꢀ OtherꢀPortableꢀPowerꢀSystems  
Protected by U.S. Patents, including 5481178, 6611131, 6304066, 6498466, 6580258.  
U
Buck (Burst) Efficiency vs Load Current  
TYPICAL APPLICATIO  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1
V
= 3V  
IN  
LTC3541-3 Typical Application  
EFFICIENCY  
V
IN  
3V TO 5V  
0.1  
SW  
ENVLDO  
MODE  
POWER  
LOSS  
0.01  
0.001  
0.0001  
V
IN  
2.2µH  
10µF  
LTC3541-3  
ENBUCK  
GND  
V
OUT  
V
OUT1  
1.8V  
V
OUT2  
1.575V  
LV  
LV  
OUT  
PGND  
IN  
2.2µF  
1
10  
100  
1000  
35413 TA01a  
35413 TA01b  
LOAD CURRENT (mA)  
35413fc  
            
                         
ꢀ ENVLDO,ꢀENBUCK,ꢀMODE,ꢀSWꢀ......–0.3VꢀtoꢀV ꢀ+ꢀ0.3V  
IN  
                            
LTC3541-3  
W W W U  
U
W
U
ABSOLUTE AXI U RATI GS  
PACKAGE/ORDER I FOR ATIO  
(Note 1)  
TOP VIEW  
SupplyꢀVoltages:  
ꢀ V ,ꢀLV ꢀ.................................................. –0.3Vꢀtoꢀ6V  
IN  
IN  
V
1
2
3
4
5
10 SW  
IN  
ꢀ LV ꢀ–ꢀV ꢀ..........................................................<0.3V  
IN  
IN  
ENBUcK  
9
8
7
6
ENVLDO  
11  
V
MODE  
GND  
PinꢀVoltages:  
OUT  
Nc  
LV  
LV  
IN  
OUT  
LinearꢀRegulatorꢀI  
ꢀ(100ms)ꢀ(Noteꢀ9)......100mA  
OUT(MAX)  
OperatingꢀAmbientꢀTemperatureꢀRangeꢀ  
(Noteꢀ2).................................................... –40°Cꢀtoꢀ85°C  
JunctionꢀTemperatureꢀ(Notesꢀ5,ꢀ10)...................... 125°C  
StorageꢀTemperatureꢀRange................... –65°Cꢀtoꢀ125°C  
DD PAcKAGE  
10-LEAD (3mm × 3mm) PLASTIc DFN  
ꢀ=ꢀ125°C,ꢀθ ꢀ=ꢀ43°C/W  
JA  
EXPOSEDꢀPADꢀ(PINꢀ11)ꢀISꢀPGND,ꢀMUSTꢀBEꢀSOLDEREDꢀTOꢀPCB  
T
JMAX  
ORDERꢀPARTꢀNUMBER  
LTC3541EDD-3  
DDꢀPARTꢀMARKING  
LCHR  
Order OptionsꢀꢀꢀTapeꢀandꢀReel:ꢀAddꢀ#TRꢀ  
LeadꢀFree:ꢀAddꢀ#PBFꢀꢀꢀLeadꢀFreeꢀTapeꢀandꢀReel:ꢀAddꢀ#TRPBFꢀ  
LeadꢀFreeꢀPartꢀMarking:ꢀhttp://www.linear.com/leadfree/  
ConsultꢀLTCꢀMarketingꢀforꢀpartsꢀspecifiedꢀwithꢀwiderꢀoperatingꢀtemperatureꢀranges.  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise specified (Notes 2, 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
0.8  
TYP  
MAX  
1.25  
5.5  
UNITS  
Aꢀ  
I
PeakꢀInductorꢀCurrent  
InputꢀVoltageꢀRange  
V ꢀ=ꢀ4.2Vꢀ(Noteꢀ8)  
IN  
0.95  
PK  
V
V
(Noteꢀ4)  
2.7  
V
IN  
BuckꢀV ꢀLineꢀRegulationꢀꢀ  
V ꢀ=ꢀ2.7Vꢀtoꢀ5.5V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
0.04  
2.2  
2.2  
0.8  
0.4  
%/V  
IN(LINEREG)  
IN  
IN  
IN  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV ꢀ(Noteꢀ6)  
IN  
VLDOꢀV ꢀLineꢀRegulationꢀꢀ  
V ꢀ=ꢀ3Vꢀtoꢀ5.5V,ꢀLV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀV ,ꢀ  
mV/V  
mV/V  
mV/V  
IN  
IN  
OUT  
IN  
(ReferredꢀtoꢀLV  
)
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V, I  
ꢀ=ꢀ100mAꢀ  
OUT  
IN  
ꢀ OUT(VLDO)  
LinearꢀRegulatorꢀV ꢀLineꢀ  
Regulationꢀ(ReferredꢀtoꢀLV  
V ꢀ=ꢀ3Vꢀtoꢀ5.5V,ꢀLV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀ0V,ꢀ  
IN OUT  
IN  
)
ENVLDOꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ10mA  
OUT  
IN OUT(LDO)  
LV  
LV ꢀLineꢀRegulationꢀꢀ  
LV ꢀ=ꢀ1.675Vꢀtoꢀ5.5V,ꢀV ꢀ=ꢀ5.5V,ꢀLV ꢀ=ꢀ1.575V,ꢀꢀ  
IN IN OUT  
IN(LINEREG)  
IN  
(ReferredꢀtoꢀLV  
)
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀꢀ  
OUT  
IN  
IN  
IN  
I
ꢀ=ꢀ100mA  
OUT(VLDO)  
VLDO  
LV ꢀ–ꢀLV ꢀDropoutꢀVoltage LV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀꢀ  
20  
50  
mV  
DO  
IN  
OUT  
OUT  
IN  
IN  
MODEꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ50mAꢀ(Noteꢀ9)  
IN OUT(VLDO)  
V
BuckꢀOutputꢀLoadꢀRegulationꢀ ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV ꢀ(Noteꢀ6)  
0.5  
%
%
LOADREG  
IN  
IN  
VLDOꢀOutputꢀLoadꢀRegulationꢀ  
I
ꢀ=ꢀ1mAꢀ–ꢀ300mA,ꢀLV ꢀ=ꢀ1.8V,ꢀLV ꢀ=ꢀ1.575V,ꢀ  
0.25  
0.5  
0.5  
OUT(VLDO)  
IN  
OUT  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV  
IN  
IN  
IN  
LinearꢀRegulatorꢀOutputꢀLoadꢀ  
Regulation  
I
ꢀ=ꢀ1mAꢀ–ꢀ30mA,ꢀLV ꢀ=ꢀ1.575V,ꢀꢀ  
0.25  
%
OUT(LDO)  
OUT  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV  
IN  
V
V
ReferenceꢀRegulationꢀVoltageꢀ ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀT ꢀ=ꢀ25°C  
1.764  
1.760  
1.755  
1.543  
1.540  
1.536  
1.8  
1.8  
1.836  
1.840  
1.845  
1.607  
1.610  
1.614  
V
V
V
V
V
V
VOUT  
IN  
A
(Noteꢀ6)ꢀ  
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀ0°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀ0V,ꢀ–40°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
1.8  
IN  
A
ReferenceꢀRegulationꢀVoltageꢀ ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀT ꢀ=ꢀ25°C  
1.575  
1.575  
1.575  
LVOUT  
IN  
A
(Noteꢀ7)  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ0°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀV ,ꢀ–40°Cꢀ≤ꢀT ꢀ≤ꢀ85°C  
IN  
A
35413fc  
LTC3541-3  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. VIN = 3.6V unless otherwise specified (Notes 2, 3).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
I
Buckꢀ+ꢀVLDOꢀꢀ  
LV ꢀ=ꢀ1.8V,ꢀLV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
85  
µA  
S
IN  
OUT  
IN  
BurstꢀModeꢀSleepꢀꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀ0V,ꢀI  
ꢀ=ꢀ10µA,ꢀꢀ  
IN  
OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
IN  
V
ꢀ=ꢀ2.03V  
VOUT  
Buckꢀ+ꢀVLDOꢀꢀ  
LV ꢀ=ꢀ1.8V,ꢀLV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
315  
300  
55  
µA  
µA  
µA  
µA  
µA  
IN  
OUT  
IN  
BurstꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀI  
ꢀ=ꢀ10µA,ꢀꢀ  
IN  
IL OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
IN  
V
ꢀ=ꢀ1.575V  
VOUT  
Buckꢀ+ꢀVLDOꢀ  
LV ꢀ=ꢀ1.8V,ꢀLV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀV ,ꢀꢀ  
IN  
OUT  
IN  
Pulse-SkipꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀV ,ꢀMODEꢀ=ꢀV ,ꢀI  
V
V
ꢀ=ꢀ10µA,ꢀꢀ  
IN  
IN OUT(VLDO)  
V ꢀQuiescentꢀCurrent  
ꢀ=ꢀ1.575V  
IN  
VOUT  
Buckꢀ  
ꢀ=ꢀ2.03V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
VOUT  
OUT(BUCK)  
IN  
BurstꢀModeꢀSleepꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀ0V  
V ꢀQuiescentꢀCurrent  
IN  
Buckꢀ  
V
ꢀ=ꢀ1.575V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
OUT(BUCK)  
300  
285  
VOUT  
IN  
BurstꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀ0V  
V ꢀQuiscentꢀCurrent  
IN  
Buckꢀ  
V
ꢀ=ꢀ1.575V,ꢀI  
ꢀ=ꢀ0A,ꢀENBUCKꢀ=ꢀV ,ꢀ  
VOUT  
OUT(BUCK)  
IN  
Pulse-SkipꢀModeꢀActiveꢀ  
ENVLDOꢀ=ꢀ0V,ꢀMODEꢀ=ꢀV  
IN  
V ꢀQuiescentꢀCurrent  
IN  
LinearꢀRegulatorꢀV ꢀQuiescentꢀ LV ꢀ=ꢀ1.575V,ꢀENBUCKꢀ=ꢀV ,ꢀENVLDOꢀ=ꢀV ,ꢀꢀ  
50  
2.5  
0.1  
µA  
µA  
µA  
IN  
OUT  
IL  
IN  
Current  
I
ꢀ=ꢀ10µA  
OUT(VLDO)  
V ꢀShutdownꢀQuiescentꢀ  
ENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀ0V  
IN  
Current  
LV ꢀShutdownꢀQuiescentꢀ  
LV ꢀ=ꢀ3.6V,ꢀENBUCKꢀ=ꢀ0V,ꢀENVLDOꢀ=ꢀ0V  
IN  
IN  
Current  
f
OscillatorꢀFrequency  
1.8  
0.9  
2.25  
0.25  
0.35  
0.01  
2.7  
1
MHz  
Ω
OSC  
R
R
I
R
R
ꢀofꢀP-ChannelꢀMOSFET  
ꢀofꢀN-ChannelꢀMOSFET  
I
I
ꢀ=ꢀ100mA  
PFET  
DS(ON)  
SW  
Ω
ꢀ=ꢀ–100mA  
SW  
NFET  
DS(ON)  
SWꢀLeakage  
Enableꢀ=ꢀ0V,ꢀV ꢀ=ꢀ0Vꢀorꢀ6V,ꢀV ꢀ=ꢀ6V  
SW IN  
µA  
V
LSW  
V
InputꢀPinꢀHighꢀThreshold  
InputꢀPinꢀLowꢀThreshold  
InputꢀPinꢀCurrent  
MODE,ꢀENBUCK,ꢀENVLDO  
IH  
IL  
V
I
I
I
MODE,ꢀENBUCK,ꢀENVLDO  
0.3  
1
V
,ꢀ  
0.01  
µA  
MODE  
ENBUCK  
ENVLDO  
,ꢀ  
Note 6:ꢀTheꢀLTC3541-3ꢀisꢀtestedꢀinꢀaꢀproprietaryꢀtestꢀmodeꢀthatꢀconnectsꢀ  
ꢀtoꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifier.ꢀForꢀtheꢀreferenceꢀregulationꢀ  
andꢀlineꢀregulationꢀtests,ꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifierꢀisꢀsetꢀtoꢀtheꢀ  
midpoint.ꢀForꢀtheꢀloadꢀregulationꢀtest,ꢀtheꢀoutputꢀofꢀtheꢀerrorꢀamplifierꢀisꢀ  
drivenꢀtoꢀminimumꢀandꢀmaximumꢀofꢀtheꢀsignalꢀrange.  
Note 1:ꢀStressesꢀbeyondꢀthoseꢀlistedꢀunderꢀAbsoluteꢀMaximumꢀRatingsꢀ  
mayꢀcauseꢀpermanentꢀdamageꢀtoꢀtheꢀdevice.ꢀExposureꢀtoꢀanyꢀAbsoluteꢀ  
MaximumꢀRatingꢀconditionꢀforꢀextendedꢀperiodsꢀmayꢀaffectꢀdeviceꢀ  
reliabilityꢀandꢀlifetime.  
V
BUCKFB  
Note 2:ꢀTheꢀLTC3541-3ꢀisꢀguaranteedꢀtoꢀmeetꢀperformanceꢀspecificationsꢀ  
fromꢀ0°Cꢀtoꢀ85°C.ꢀVLDO/linearꢀregulatorꢀoutputꢀisꢀtestedꢀandꢀspecifiedꢀ  
underꢀpulseꢀloadꢀconditionsꢀsuchꢀthatꢀT ꢀ≈ꢀT ,ꢀandꢀareꢀ100%ꢀproductionꢀ  
Note 7:ꢀMeasurementꢀmadeꢀinꢀclosedꢀloopꢀlinearꢀregulatorꢀconfigurationꢀ  
withꢀLV ꢀ=ꢀ1.575V,ꢀI  
ꢀ=ꢀ10µA.  
LOAD  
OUT  
J
A
testedꢀatꢀ25°C.ꢀSpecificationsꢀoverꢀtheꢀ–40°Cꢀtoꢀ85°Cꢀoperatingꢀ  
temperatureꢀrangeꢀareꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀcorrelationꢀ  
withꢀstatisticalꢀprocessꢀcontrols.  
Note 8:ꢀMeasurementꢀmadeꢀinꢀaꢀproprietaryꢀtestꢀmodeꢀwithꢀslopeꢀ  
compensationꢀdisabled.  
Note 9:ꢀMeasurementꢀassuredꢀbyꢀdesign,ꢀcharacterizationꢀandꢀstatisticalꢀ  
processꢀcontrol.  
Note 10:ꢀThisꢀICꢀincludesꢀovertemperatureꢀprotectionꢀthatꢀisꢀintendedꢀ  
toꢀprotectꢀtheꢀdeviceꢀduringꢀmomentaryꢀoverloadꢀconditions.ꢀJunctionꢀ  
temperatureꢀwillꢀexceedꢀ125°Cꢀwhenꢀovertemperatureꢀprotectionꢀisꢀactive.ꢀ  
Continuousꢀoperationꢀaboveꢀtheꢀspecifiedꢀmaximumꢀoperatingꢀjunctionꢀ  
temperatureꢀmayꢀimpairꢀdeviceꢀreliability.  
Note 3:ꢀMinimumꢀoperatingꢀLV ꢀvoltageꢀrequiredꢀforꢀVLDOꢀregulationꢀis:ꢀꢀ ꢀ  
IN  
LV ꢀ≥ꢀLV ꢀ+ꢀV  
IN OUT DROPOUT  
Note 4:ꢀMinimumꢀoperatingꢀV ꢀvoltageꢀrequiredꢀforꢀVLDOꢀandꢀlinearꢀ  
IN  
regulatorꢀregulationꢀis:ꢀꢀ  
V ꢀ≥ꢀLV ꢀ+ꢀ1.4V  
IN  
OUT  
Note 5:ꢀT ꢀisꢀcalculatedꢀfromꢀtheꢀambientꢀtemperature,ꢀT ,ꢀandꢀpowerꢀ  
J
A
dissipation,ꢀP ,ꢀaccordingꢀtoꢀtheꢀfollowingꢀformula:  
D
T ꢀ=ꢀT ꢀ+ꢀ(P ꢀ•ꢀ43°C/W)  
J A D  
35413fc  
LTC3541-3  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Efficiency vs Input Voltage for  
Buck (Pulse Skip)  
Efficiency vs Input Voltage for  
Buck (Burst)  
Efficiency vs Load Current for  
Buck (Pulse Skip)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
V
= 2.7V  
IN  
I
= 500mA  
OUT  
V
= 3.6V  
IN  
I
= 500mA  
OUT  
V
= 4.2V  
IN  
I
= 100mA  
OUT  
I
= 30mA  
I
= 100mA  
OUT  
OUT  
I
= 30mA  
OUT  
4
INPUT VOLTAGE (V)  
0.1  
1
10  
100  
1000  
2
3
5
6
2
3
4
5
6
LOAD CURRENT (mA)  
INPUT VOLTAGE (V)  
35413 G03  
35413 G01  
35413 G02  
VLDO Dropout Voltage  
vs Load Current  
Buck (Burst) Plus VLDO Bias  
Current vs VLDO Load Current  
Efficiency vs Load Current for  
Buck (Burst)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
80  
250  
200  
150  
100  
50  
V
= 2.7V  
V
I
= 3.6V  
IN  
IN  
V
= 3.6V  
= 0  
IN  
LOAD_BUCK  
I
= I + I  
– I  
BIAS VIN LVIN LOAD  
V
= 3V  
IN  
V
= 4.2V  
IN  
V
= 3.6V  
IN  
60  
V
= 4.2V  
IN  
40  
20  
0
0
1
10  
100  
0.1  
1
10  
100  
1000  
0
100  
150  
200  
250  
300  
0.1  
1000  
50  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
LOAD CURRENT (mA)  
35413 G04  
35413 G06  
35413 G05  
Output (Auto-Start-Up Sequence)  
vs Time  
Oscillator Frequency  
vs Temperature  
Oscillator Frequency  
vs Supply Voltage  
2.50  
2.45  
2.40  
2.35  
2.30  
2.25  
2.20  
2.15  
2.10  
2.05  
2.00  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
V
= 3.6V  
V
= 3.6V  
IN  
IN  
V
OUT  
1V/DIV  
LV  
OUT  
1V/DIV  
V
IN  
2V/DIV  
35413 G07  
I
I
= 200mA  
2ms/DIV  
VOUT  
LVOUT  
= 30mA  
–50  
0
25  
50  
75 100 125  
–25  
5
6
3
4
TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
35413 G08  
35413 G09  
35413fc  
LTC3541-3  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
VLDO/Linear Regulator vs  
Temperature  
Buck Reference vs Temperature  
RDS(0N) vs Temperature  
0.410  
0.408  
0.406  
0.404  
0.402  
0.400  
0.398  
0.396  
0.394  
0.392  
0.390  
0.820  
0.816  
0.812  
0.808  
0.804  
0.800  
0.796  
0.792  
0.788  
0.784  
0.780  
0.700  
0.600  
0.500  
0.400  
0.300  
0.200  
0.100  
0
V
= 3.6V  
V
= 3.6V  
IN  
IN  
SYNCH SWITCH  
MAIN SWITCH  
V
V
V
= 2.5V  
= 3.6V  
= 5.5V  
IN  
IN  
IN  
–50  
0
25  
50  
75 100 125  
–25  
–50  
0
25  
50  
75 100 125  
–50 –25  
25  
50  
TEMPERATURE (°C)  
75  
100 125  
–25  
0
TEMPERATURE (°C)  
TEMPERATURE (°C)  
35413 G19  
35413 G20  
35413 G10  
Buck (Pulse Skip) Load Step from  
1mA to 500mA  
Buck (Burst) Load Step from 1mA  
to 500mA  
Buck (Burst) and VLDO Output  
LV  
V
V
OUT  
OUT  
OUT  
10mV/DIV  
100mV/DIV  
100mV/DIV  
AC COUPLED  
AC COUPLED  
AC COUPLED  
I
I
L
L
V
OUT  
500mA/DIV  
500mA/DIV  
10mV/DIV  
AC COUPLED  
I
I
LOAD  
LOAD  
500mA/DIV  
500mA/DIV  
35413 G12  
35413 G21  
35413 G11  
V
V
I
= 3.6V  
40µs/DIV  
V
LV  
V
= 3.6V  
OUT  
2µs/DIV  
V
V
I
= 3.6V  
40µs/DIV  
IN  
OUT  
IN  
IN  
OUT  
= 1.8V  
= 1.5V  
= 1.8V  
= 1mA TO 500mA  
= 1.875V  
= 50mA  
= 1mA TO 500mA  
LOAD  
OUT  
LOAD  
I
LOAD  
Burst Mode OPERATION  
VLDO Load Step from 100mA to  
300mA  
VLDO Load Step from 1mA to  
300mA  
LV  
OUT  
20mV/DIV  
LV  
OUT  
AC COUPLED  
20mV/DIV  
AC COUPLED  
I
LOAD  
250mA/DIV  
I
LOAD  
250mA/DIV  
35413 G13  
35413 G14  
V
V
I
= 3.6V  
400µs/DIV  
V
V
I
= 3.6V  
400µs/DIV  
IN  
OUT  
IN  
OUT  
= 1.575V  
= 1.575V  
= 1mA TO 300mA  
= 100mA TO 300mA  
LOAD  
LOAD  
35413fc  
LTC3541-3  
W U  
TYPICAL PERFOR A CE CHARACTERISTICS  
Linear Regulator to VLDO  
Transient Step, Load = 1mA  
Linear Regulator to VLDO  
Transient Step, Load = 30mA  
LV  
LV  
OUT  
OUT  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
I
LOAD  
I
LOAD  
25mA/DIV  
5mA/DIV  
35413 G15  
35413 G16  
V
V
I
= 3.6V  
40µs/DIV  
V
V
I
= 3.6V  
40µs/DIV  
IN  
OUT  
IN  
OUT  
= 1.575V  
= 1mA  
= 1.575V  
= 30mA  
LOAD  
LOAD  
VLDO to Linear Regulator  
Transient Step, Load = 1mA  
VLDO to Linear Regulator  
Transient Step, Load = 30mA  
LV  
LV  
OUT  
OUT  
10mV/DIV  
10mV/DIV  
AC COUPLED  
AC COUPLED  
I
I
LOAD  
LOAD  
5mA/DIV  
25mA/DIV  
35413 G17  
35413 G18  
V
V
I
= 3.6V  
40µs/DIV  
V
V
I
= 3.6V  
40µs/DIV  
IN  
OUT  
IN  
OUT  
= 1.575V  
= 1mA  
= 1.575V  
= 30mA  
LOAD  
LOAD  
35413fc  
LTC3541-3  
U U  
U
PI FU CTIO S  
V (Pin 1):ꢀMainꢀSupplyꢀPin.ꢀThisꢀpinꢀmustꢀbeꢀcloselyꢀ  
SW (Pin 10):SwitchNodePin.Thispinconnectstheꢀ  
internalꢀmainꢀandꢀsynchronousꢀpowerꢀMOSFETꢀswitchesꢀ  
toꢀtheꢀexternalꢀinductorꢀforꢀtheꢀbuckꢀregulator.  
IN  
decoupledꢀtoꢀGNDꢀwithꢀaꢀ10µFꢀorꢀgreaterꢀcapacitor.  
ENBUCK (Pin 2):ꢀBuckꢀEnableꢀPin.ꢀThisꢀpinꢀenablesꢀtheꢀ  
buckꢀregulatorꢀwhenꢀdrivenꢀtoꢀaꢀlogicꢀhigh.  
Exposed Pad (Pin 11):GroundPin.Thispinmustbeꢀ  
solderedꢀtoꢀtheꢀPCBꢀtoꢀprovideꢀbothꢀelectricalꢀcontactꢀtoꢀ  
groundꢀandꢀgoodꢀthermalꢀcontactꢀtoꢀtheꢀPCB.  
V
(Pin3):BuckRegulatorOutputPin.Thispinreceivesꢀ  
OUT  
theꢀbuckꢀregulator’sꢀoutputꢀvoltage.  
Note:ꢀTableꢀ1ꢀdetailsꢀtheꢀtruthꢀtableꢀforꢀtheꢀcontrolꢀpinsꢀ  
ofꢀtheꢀLTC3541-3.  
NC(Pin4):NotConnected.Thispinmustnotbeconnectedꢀ  
orꢀcapacitivelyꢀloaded.  
Table 1. LTC3541-3 Control Truth Table  
LV  
(Pin 5):ꢀVLDO/LinearꢀRegulatorꢀOutputꢀPin.ꢀThisꢀ  
OUT  
PIN NAME  
OPERATIONAL DESCRIPTION  
pinꢀprovidesꢀtheꢀregulatedꢀoutputꢀvoltageꢀfromꢀtheꢀVLDOꢀ  
ENBUCK ENVLDO MODE  
orꢀlinearꢀregulator.  
0
0
0
1
X
X
LTC3541-3ꢀPoweredꢀDown  
LV (Pin 6):VLDO/LinearRegulatorInputSupplyPin.ꢀ  
IN  
BuckꢀPoweredꢀDown,ꢀVLDOꢀPoweredꢀ  
Down,ꢀLinearꢀRegulatorꢀEnabled  
ThisꢀpinꢀprovidesꢀtheꢀinputꢀsupplyꢀvoltageꢀforꢀtheꢀVLDOꢀ  
powerꢀFET.  
1
1
1
1
0
0
1
1
0
1
0
1
BuckꢀEnabled,ꢀVLDOꢀPoweredꢀDown,ꢀ  
LinearꢀRegulatorꢀPoweredꢀDown,ꢀꢀꢀ  
BurstꢀModeꢀOperation  
GND (Pin 7):ꢀAnalogꢀGroundꢀPin.  
BuckꢀEnabled,ꢀVLDOꢀPoweredꢀDown,ꢀ  
LinearꢀRegulatorꢀPoweredꢀDown,ꢀꢀ  
Pulse-SkipꢀMode  
MODE (Pin 8):ꢀBuckꢀModeꢀSelectionꢀPin.ꢀThisꢀpinꢀenablesꢀ  
buckPulse-Skipoperationwhendriventoalogichighꢀ  
andꢀenablesꢀbuckꢀBurstꢀModeꢀoperationꢀwhenꢀdrivenꢀtoꢀ  
aꢀlogicꢀlow.  
BuckꢀEnabled,ꢀVLDOꢀEnabled,ꢀLinearꢀ  
RegulatorꢀPoweredꢀDown,ꢀBurstꢀModeꢀ  
Operation  
ENVLDO (Pin 9):ꢀ VLDO/Linearꢀ Regulatorꢀ Enableꢀ Pin.ꢀ  
Whenꢀdrivenꢀtoꢀaꢀlogicꢀhigh,ꢀthisꢀpinꢀenablesꢀtheꢀlinearꢀ  
regulatorꢀwhenꢀtheꢀENBUCKꢀpinꢀisꢀdrivenꢀtoꢀaꢀlogicꢀlow,ꢀ  
andꢀenablesꢀtheꢀVLDOꢀregulatorꢀwhenꢀtheꢀENBUCKꢀpinꢀisꢀ  
drivenꢀtoꢀaꢀlogicꢀhigh.  
BuckꢀEnabled,ꢀVLDOꢀEnabled,ꢀLinearꢀ  
RegulatorꢀPoweredꢀDown,ꢀPulse-Skipꢀ  
Mode  
35413fc  
LTC3541-3  
U
U
W
FU CTIO AL BLOCK DIAGRA  
V
I
= 1.8V  
= 500mA  
OUT(BUCK)  
OUT(BUCK)  
2.2µH  
V
LV  
+ 1.4V  
OUT  
IN(MIN)  
10µF  
10  
SW  
V
IN  
1
500mA BUCK  
SW  
V
IN  
REF  
FB  
GND  
V
OUT  
3
6
PGND  
LV  
IN  
VLDO/LINEAR REG  
V
LV  
IN  
IN  
REF  
LV  
= 1.575V  
OUT  
+
REF  
I
I
= 300mA (LDO)  
OUT  
OUT  
= 30mA (LINEAR REG)  
LFB  
ENBUCK  
ENVLDO  
MODE  
LV  
OUT  
2
9
8
5
CNTRL  
CONTROL  
LOGIC  
GND  
2.2µF  
GND  
7
PGND  
11  
35413 F01  
Figure 1. LTC3541-3 Functional Block Diagram  
35413fc  
LTC3541-3  
U
OPERATIO  
TheꢀLTC3541-3containsꢀaꢀhighꢀefficiencyꢀsynchronousꢀ  
buckꢀconverter,ꢀaꢀveryꢀlowꢀdropoutꢀregulatorꢀ(VLDO)ꢀandꢀ  
alinearregulator.Itcanbeusedtoprovideuptotwoꢀ  
outputꢀvoltagesꢀfromꢀaꢀsingleꢀinputꢀvoltageꢀmakingꢀtheꢀ  
LTC3541-3idealforapplicationswithlimitedboardspace.ꢀ  
Theꢀcombinationꢀandꢀconfigurationꢀofꢀtheseꢀmajorꢀblocksꢀ  
withinꢀtheꢀLTC3541-3ꢀisꢀdeterminedꢀbyꢀwayꢀofꢀtheꢀcontrolꢀ  
pinsꢀENBUCKꢀandꢀENVLDOꢀasꢀdefinedꢀinꢀTableꢀ1.  
Buck Regulator Control Loop  
TheꢀLTC3541-3ꢀinternalꢀbuckꢀregulatorꢀusesꢀaꢀconstantꢀ  
frequency,currentmode,step-downarchitecture.Boththeꢀ  
main(top,P-channelMOSFET)andsynchronous(bottom,ꢀ  
N-channelꢀMOSFET)ꢀswitchesꢀareꢀinternal.ꢀDuringꢀnormalꢀ  
operation,ꢀtheꢀinternalꢀmainꢀswitchꢀisꢀturnedꢀonꢀatꢀtheꢀbe-  
ginningꢀofꢀeachꢀclockꢀcycleꢀprovidedꢀtheꢀinternalꢀfeedbackꢀ  
voltageꢀtoꢀtheꢀbuckꢀisꢀlessꢀthanꢀtheꢀreferenceꢀvoltage.ꢀTheꢀ  
currentꢀintoꢀtheꢀinductorꢀprovidedꢀtoꢀtheꢀloadꢀincreasesꢀ  
untilꢀtheꢀcurrentꢀlimitꢀisꢀreached.ꢀOnceꢀtheꢀcurrentꢀlimitꢀisꢀ  
reachedꢀtheꢀmainꢀswitchꢀturnsꢀoffꢀandꢀtheꢀenergyꢀstoredꢀ  
intheinductorowsthroughthebottomsynchronousꢀ  
switchꢀintoꢀtheꢀloadꢀuntilꢀtheꢀnextꢀclockꢀcycle.  
WithꢀtheꢀENBUCKꢀpinꢀdrivenꢀtoꢀaꢀlogicꢀhighꢀandꢀENVLDOꢀ  
driventoalogiclow,theLTC3541-3enablesthebuckꢀ  
converterꢀtoꢀefficientlyꢀreduceꢀtheꢀvoltageꢀprovidedꢀatꢀtheꢀ  
V inputpintoanoutputvoltageof1.8Vasdeterminedbyꢀ  
IN  
anꢀinternalꢀfeedbackꢀresistorꢀnetwork.ꢀTheꢀbuckꢀregulatorꢀ  
canꢀbeꢀconfiguredꢀforꢀPulse-SkipꢀorꢀBurstꢀModeꢀopera-  
tionꢀbyꢀdrivingꢀtheꢀMODEꢀpinꢀtoꢀaꢀlogicꢀhighꢀorꢀlogicꢀlowꢀ  
respectively.ꢀTheꢀbuckꢀregulatorꢀisꢀcapableꢀofꢀprovidingꢀ  
amaximumoutputcurrentof500mA,whichmustbeꢀ  
takenꢀintoꢀconsiderationꢀwhenꢀusingꢀtheꢀbuckꢀregulatorꢀ  
toꢀprovideꢀtheꢀpowerꢀforꢀbothꢀtheꢀVLDOꢀregulatorꢀandꢀforꢀ  
externalꢀloads.ꢀ  
Thepeakinductorcurrentisdeterminedbycomparingtheꢀ  
buckꢀfeedbackꢀsignalꢀtoꢀanꢀinternalꢀ0.8Vꢀreference.ꢀWhenꢀ  
theloadcurrentincreases,theoutputofthebuckandꢀ  
henceꢀtheꢀbuckꢀfeedbackꢀsignalꢀdecrease.ꢀThisꢀdecreaseꢀ  
causesthepeakinductorcurrenttoincreaseuntiltheaver-  
ageꢀinductorꢀcurrentꢀmatchesꢀtheꢀloadꢀcurrent.ꢀWhileꢀtheꢀ  
mainꢀswitchꢀisꢀoff,ꢀtheꢀsynchronousꢀswitchꢀisꢀturnedꢀonꢀ  
untilꢀeitherꢀtheꢀinductorꢀcurrentꢀstartsꢀtoꢀreverseꢀdirectionꢀ  
orꢀtheꢀbeginningꢀofꢀaꢀnewꢀclockꢀcycle.  
WithꢀtheꢀENBUCKꢀpinꢀdrivenꢀtoꢀaꢀlogicꢀlowꢀandꢀENVLDOꢀ  
drivenꢀtoꢀaꢀlogicꢀhigh,ꢀtheꢀLTC3541-3ꢀenablesꢀtheꢀlinearꢀ  
regulator,providingalownoiseregulatedoutputvoltageofꢀ  
WhentheMODEpinisdriventoalogiclow,theLTC3541-3ꢀ  
buckꢀregulatorꢀoperatesꢀinꢀBurstꢀModeꢀoperationꢀforꢀhighꢀ  
efficiency.ꢀInꢀthisꢀmode,ꢀtheꢀmainꢀswitchꢀoperatesꢀbasedꢀ  
uponloaddemand.InBurstModeoperationthepeakꢀ  
inductorꢀcurrentꢀisꢀsetꢀtoꢀaꢀfixedꢀvalue,ꢀwhereꢀeachꢀburstꢀ  
eventꢀcanꢀlastꢀfromꢀaꢀfewꢀclockꢀcyclesꢀatꢀlightꢀloadsꢀtoꢀ  
nearlyꢀ continuousꢀ cyclingꢀ atꢀ moderateꢀ loads.ꢀ Betweenꢀ  
burstꢀeventsꢀtheꢀmainꢀswitchꢀandꢀanyꢀunneededꢀcircuitryꢀ  
areturnedoff,reducingthequiescentcurrent.Inthissleepꢀ  
state,ꢀtheꢀloadꢀisꢀbeingꢀsuppliedꢀsolelyꢀfromꢀtheꢀoutputꢀ  
capacitor.ꢀAsꢀtheꢀoutputꢀvoltageꢀdroops,ꢀanꢀinternalꢀerrorꢀ  
amplifier’sꢀoutputꢀrisesꢀuntilꢀaꢀwakeꢀthresholdꢀisꢀreachedꢀ  
causingꢀtheꢀmainꢀswitchꢀtoꢀagainꢀturnꢀon.ꢀThisꢀprocessꢀ  
repeatsꢀatꢀaꢀrateꢀthatꢀisꢀdependantꢀuponꢀtheꢀloadꢀcurrentꢀ  
demand.  
1.575VꢀatꢀtheꢀLV ꢀpinꢀwhileꢀdrawingꢀminimalꢀquiescentꢀ  
OUT  
currentꢀfromꢀtheꢀV ꢀinputꢀpin.ꢀThisꢀfeatureꢀallowsꢀoutputꢀ  
IN  
voltageꢀLV ꢀtoꢀbeꢀbroughtꢀintoꢀregulationꢀwithoutꢀtheꢀ  
OUT  
presenceꢀofꢀtheꢀLV ꢀvoltage.ꢀ  
IN  
WithꢀtheꢀENBUCKꢀandꢀENVLDOꢀpinsꢀbothꢀdrivenꢀtoꢀaꢀlogicꢀ  
high,theLTC3541-3ꢀenablesꢀtheꢀhighꢀefficiencyꢀbuckꢀcon-  
verterꢀandꢀVLDO,ꢀprovidingꢀdualꢀoutputꢀoperationꢀfromꢀaꢀ  
singleꢀinputꢀvoltage.ꢀWhenꢀconfiguredꢀinꢀthisꢀmanner,ꢀtheꢀ  
LTC3541-3’sꢀautoꢀstart-upꢀsequencingꢀfeatureꢀwillꢀinitallyꢀ  
bringtheVLDO/linearregulatoroutput(1.575V)intoregula-  
tionꢀinꢀaꢀcontrolledꢀmannerꢀusingꢀtheꢀlinearꢀregulatorꢀpriorꢀ  
toꢀenablingꢀtheꢀbuckꢀoutputꢀ(1.8V)ꢀwithoutꢀtheꢀneedꢀforꢀ  
externalꢀpinꢀcontrol.ꢀTheꢀLTC3541-3ꢀautomaticallyꢀtransi-  
tionsꢀtheꢀVLDO/linearꢀregulatorꢀoutputꢀ(1.575V)ꢀfromꢀtheꢀ  
linearregulatortotheVLDOregulatorwithin20msofbuckꢀ  
soft-startinitiation.Adetaileddiscussionofthetransitionsꢀ  
betweenꢀtheꢀVLDOꢀregulatorꢀandꢀlinearꢀregulatorꢀcanꢀbeꢀ  
foundꢀinꢀtheꢀVLDO/LinearꢀRegulatorꢀLoopꢀsection.ꢀ  
35413fc  
LTC3541-3  
U
OPERATIO  
WhentheMODEpinisdriventoalogichightheLTC3541-3ꢀ  
operatesinPulse-Skipmodeforlowoutputvoltageripple.ꢀ  
Inthismode,theLTC3541-3continuestoswitchataꢀ  
constantꢀfrequencyꢀdownꢀtoꢀveryꢀlowꢀcurrents,ꢀwhereꢀitꢀ  
willꢀbeginꢀskippingꢀpulsesꢀusedꢀtoꢀcontrolꢀtheꢀmainꢀ(top)ꢀ  
switchꢀtoꢀmaintainꢀtheꢀproperꢀaverageꢀinductorꢀcurrent.  
TheN-channelMOSFETincorporatedintheVLDOregulatorꢀ  
hasꢀitsꢀdrainꢀconnectedꢀtoꢀtheꢀLV ꢀpinꢀasꢀshownꢀinꢀFigureꢀ  
IN  
1.ꢀToꢀensureꢀreliableꢀoperation,ꢀtheꢀLV ꢀvoltageꢀmustꢀbeꢀ  
IN  
stableꢀbeforeꢀtheꢀVLDOꢀregulatorꢀisꢀenabled.ꢀForꢀtheꢀcaseꢀ  
whereꢀtheꢀvoltageꢀonꢀLV ꢀisꢀsuppliedꢀbyꢀtheꢀbuckꢀregula-  
IN  
tor,ꢀtheꢀinternalꢀpowerꢀsupplyꢀsequencingꢀlogicꢀassuresꢀ  
voltagesꢀareꢀappliedꢀinꢀtheꢀappropriateꢀmanner.ꢀForꢀtheꢀ  
caseꢀwhereꢀtheꢀbuckꢀisꢀenabledꢀbeforeꢀtheꢀVLDOꢀregula-  
Iftheinputsupplyvoltageisdecreasedtoavalueap-  
proachingꢀtheꢀoutputꢀvoltage,ꢀtheꢀdutyꢀcycleꢀofꢀtheꢀbuckꢀ  
isincreasedtowardmaximumon-timeand100%dutyꢀ  
cycle.ꢀTheꢀoutputꢀvoltageꢀwillꢀthenꢀbeꢀdeterminedꢀbyꢀtheꢀ  
inputvoltageminusthevoltagedropacrossthemainꢀ  
switchꢀandꢀtheꢀinductor.  
torꢀandꢀanꢀexternalꢀsupplyꢀisꢀusedꢀtoꢀpowerꢀtheꢀLV ꢀpin,ꢀ  
IN  
thevoltageonLV pinmustbestable1msbeforetheꢀ  
IN  
ENVLDOꢀpinꢀisꢀbroughtꢀfromꢀaꢀlowꢀtoꢀaꢀhigh.ꢀFurther,ꢀtheꢀ  
externallyꢀsuppliedꢀLV ꢀmustꢀbeꢀreducedꢀinꢀconjunctionꢀ  
IN  
withꢀV ꢀwheneverꢀV ꢀisꢀpulledꢀlowꢀorꢀremoved.  
IN  
IN  
VLDO/Linear Regulator Loop  
Theꢀlinearꢀregulatorꢀisꢀdesignedꢀtoꢀprovideꢀaꢀlowerꢀoutputꢀ  
currentꢀ(30mA)ꢀthanꢀthatꢀavailableꢀfromꢀtheꢀVLDOꢀregula-  
tor.ꢀTheꢀlinearꢀregulator’sꢀoutput,ꢀpassꢀtransistorꢀhasꢀitsꢀ  
InꢀtheꢀLTC3541-3,theꢀVLDOꢀandꢀlinearꢀregulatorꢀloopsꢀ  
consistofanamplifierandN-channelMOSFEToutputꢀ  
stagesthatservotheoutputtomaintainaregulatoroutputꢀ  
drainꢀtiedꢀtoꢀtheꢀV ꢀrail.ꢀThisꢀallowsꢀtheꢀlinearꢀregulatorꢀ  
IN  
tobeturnedonpriorto,andindependentof,thebuckꢀ  
regulatorꢀwhichꢀordinarilyꢀdrivesꢀtheꢀVLDOꢀregulator.ꢀTheꢀ  
linearꢀregulatorꢀisꢀprovidedꢀwithꢀthermalꢀprotectionꢀthatꢀ  
isꢀdesignedꢀtoꢀdisableꢀtheꢀlinearꢀregulatorꢀfunctionꢀwhenꢀ  
theꢀoutputꢀpassꢀtransistor’sꢀjunctionꢀtemperatureꢀreachesꢀ  
approximatelyꢀ160°C.ꢀInꢀadditionꢀtoꢀthermalꢀprotection,ꢀ  
short-circuitdetectionisprovidedtodisablethelinearꢀ  
regulatorfunctionwhenashort-circuitconditionissensed.ꢀ  
Thiscircuitisdesignedsuchthatanoutputcurrentofꢀ  
approximatelyꢀ120mAꢀcanꢀbeꢀprovidedꢀbeforeꢀthisꢀcircuitꢀ  
willꢀtrigger.ꢀAsꢀdetailedꢀinꢀtheꢀElectricalꢀCharacteristics,ꢀ  
thelinearregulatorwillbeoutofregulationwhenthisꢀ  
eventꢀoccurs.ꢀBothꢀtheꢀthermalꢀandꢀshort-circuitꢀfaultsꢀareꢀ  
treatedꢀasꢀcatastrophicꢀfaultꢀconditions.ꢀTheꢀLTC3541-3ꢀ  
willꢀbeꢀresetꢀuponꢀtheꢀdetectionꢀofꢀeitherꢀevent.ꢀ  
voltage,ꢀLV .ꢀLoopꢀconfigurationsꢀenablingꢀtheꢀVLDOꢀorꢀ  
OUT  
theꢀlinearꢀregulatorꢀareꢀstableꢀwithꢀanꢀoutputꢀcapacitanceꢀ  
asꢀlowꢀasꢀ2.2µFꢀandꢀasꢀhighꢀasꢀ100µF.ꢀBothꢀtheꢀVLDOꢀ  
regulatorandthelinearregulatorsarecapableofoperatingꢀ  
withꢀanꢀinputꢀvoltage,ꢀV ,ꢀasꢀlowꢀasꢀ3V.ꢀꢀ  
IN  
TheꢀVLDOꢀregulatorꢀisꢀdesignedꢀtoꢀprovideꢀupꢀtoꢀ300mAꢀ  
ofꢀoutputꢀcurrentꢀatꢀaꢀveryꢀlowꢀLV ꢀtoꢀLV ꢀvoltage.ꢀThisꢀ  
IN  
OUT  
allowsaclean,secondary,analogsupplyvoltagetobeꢀ  
providedꢀwithꢀaꢀminimumꢀdropꢀinꢀefficiency.ꢀTheꢀVLDOꢀ  
regulatorꢀisꢀprovidedꢀwithꢀthermalꢀprotectionꢀthatꢀisꢀde-  
signedtodisabletheVLDOfunctionwhentheoutput,passꢀ  
transistor’sꢀjunctionꢀtemperatureꢀreachesꢀapproximatelyꢀ  
160°C.ꢀ Inꢀ additionꢀ toꢀ thermalꢀ protection,ꢀ short-circuitꢀ  
detectionꢀisꢀprovidedꢀtoꢀdisableꢀtheꢀVLDOꢀfunctionꢀwhenꢀ  
ashort-circuitconditionissensed.Thiscircuitisdesignedꢀ  
suchꢀthatꢀanꢀoutputꢀcurrentꢀofꢀapproximatelyꢀ1Aꢀcanꢀbeꢀ  
providedꢀbeforeꢀthisꢀcircuitꢀwillꢀtrigger.ꢀAsꢀdetailedꢀinꢀtheꢀ  
ElectricalꢀCharacteristics,ꢀtheꢀVLDOꢀregulatorꢀwillꢀbeꢀoutꢀ  
ofregulationwhenthiseventoccurs.Boththethermalꢀ  
andꢀ short-circuitꢀ faults,ꢀ whenꢀ detected,ꢀ areꢀ treatedꢀ asꢀ  
catastrophicꢀfaultꢀconditions.ꢀTheꢀLTC3541-3ꢀwillꢀbeꢀresetꢀ  
uponꢀtheꢀdetectionꢀofꢀeitherꢀevent.  
TheN-channelMOSFETincorporatedinthelinearregulatorꢀ  
hasꢀitsꢀdrainꢀconnectedꢀtoꢀtheꢀV ꢀpinꢀasꢀshownꢀinꢀFigureꢀ  
IN  
1.ꢀTheꢀsizeꢀofꢀtheseꢀMOSFETsꢀandꢀtheirꢀassociatedꢀpowerꢀ  
bussingisdesignedtoaccommodate30mAofDCcurrent.ꢀ  
Currentsabovethisvaluecanbesupportedforshortperiodsꢀ  
asꢀstipulatedꢀinꢀtheꢀAbsoluteꢀMaximumꢀRatings.  
35413fc  
ꢀ0  
LTC3541-3  
U
OPERATIO  
TransitioningꢀfromꢀlinearꢀregulatorꢀmodeꢀtoꢀVLDOꢀmode,ꢀ  
accomplishedꢀbyꢀbringingꢀENBUCKꢀfromꢀaꢀlogicꢀlowꢀtoꢀaꢀ  
logichighwhileENVLDOisalogichighorasoccursduringꢀ  
theꢀautoꢀstart-upꢀsequence,ꢀisꢀdesignedꢀtoꢀbeꢀasꢀseam-  
lessꢀandꢀtransientꢀfreeꢀasꢀpossible.ꢀTheꢀpreciseꢀtransientꢀ  
Inasimilarmanner,transitioningfromVLDOmodetoꢀ  
linearregulatormode,accomplishedbybringingENBUCKꢀ  
fromꢀaꢀhighꢀlowꢀtoꢀaꢀlogicꢀlowꢀwhileꢀENVLDOꢀisꢀaꢀlogicꢀ  
high,ꢀisꢀdesignedꢀtoꢀbeꢀasꢀseamlessꢀandꢀtransientꢀfreeꢀasꢀ  
possible.ꢀAgain,ꢀtheꢀpreciseꢀtransientꢀresponseꢀofꢀLV  
OUT  
responseꢀofꢀLV ꢀdueꢀtoꢀthisꢀtransitionꢀisꢀaꢀfunctionꢀofꢀ  
dueꢀtoꢀthisꢀtransitionꢀisꢀaꢀfunctionꢀofꢀC ꢀandꢀtheꢀloadꢀ  
OUT  
OUT  
C
ꢀandꢀtheꢀloadꢀcurrent.ꢀWaveformsꢀgivenꢀinꢀtheꢀTypicalꢀ  
current.ꢀ Waveformsꢀ givenꢀ inꢀ theꢀ Typicalꢀ Performanceꢀ  
OUT  
PerformanceCharacteristicssectionshowtypicaltransientꢀ  
Characteristicsꢀsectionꢀshowꢀtypicalꢀtransientꢀresponsesꢀ  
responsesusingtheminimumC ꢀof2.2µFandloadꢀ  
usingꢀtheꢀminimumꢀC ꢀofꢀ2.2µFꢀandꢀloadꢀcurrentsꢀofꢀ  
OUT  
OUT  
currentsof1mAand30mArespectively.Generally,theꢀ  
1mAꢀandꢀ30mAꢀrespectively.ꢀGenerally,ꢀtheꢀamplitudeꢀofꢀ  
amplitudeꢀofꢀanyꢀtransientsꢀpresentꢀwillꢀdecreaseꢀasꢀC  
anyꢀtransientsꢀpresentꢀwillꢀdecreaseꢀasꢀC ꢀisꢀincreased.ꢀ  
OUT  
OUT  
isꢀincreased.ꢀToꢀensureꢀreliableꢀoperationꢀandꢀadherenceꢀ  
totheloadregulationlimitspresentedintheElectricalꢀ  
Charactersticstable,theloadcurrentmustnotexceedꢀ  
theꢀlinearꢀregulatorꢀI ꢀlimitꢀofꢀ30mAꢀwithinꢀ20msꢀafterꢀ  
ENBUCKꢀhasꢀtransitionedꢀtoꢀaꢀlogicꢀhigh.ꢀTheꢀ300mAꢀI  
Toensurereliableoperationandadherencetotheloadꢀ  
regulationꢀlimitsꢀpresentedꢀinꢀtheꢀElectricalꢀCharactersticsꢀ  
table,theloadcurrentmustnotexceedthelinearregulatorꢀ  
I
ꢀlimitꢀofꢀ30mAꢀ1msꢀpriorꢀtoꢀENBUCKꢀtransitioningꢀtoꢀ  
OUT  
OUT  
aꢀlogicꢀlowꢀandꢀthereafer.ꢀFurther,ꢀforꢀconfigurationsꢀthatꢀ  
doꢀnotꢀuseꢀtheꢀLTC3541-3’sꢀbuckꢀregulatorꢀtoꢀprovideꢀtheꢀ  
OUT  
limitofVLDOappliesthereafter.Further,forconfigurationsꢀ  
thatꢀdoꢀnotꢀuseꢀtheꢀLTC3541-3’sꢀbuckꢀregulatorꢀtoꢀprovideꢀ  
VLDOinputvoltage(LV ),theusermustcontinuetoensureꢀ  
IN  
theVLDOinputvoltage(LV ),theusermustensureaꢀ  
aꢀstableꢀLV ꢀvoltageꢀnoꢀlessꢀthanꢀ1msꢀafterꢀENBUCKꢀhasꢀ  
IN  
IN  
stableꢀLV ꢀvoltageꢀisꢀpresentꢀnoꢀlessꢀthanꢀ1msꢀpriorꢀtoꢀ  
transitionedꢀtoꢀaꢀlogicꢀlow.  
IN  
ENBUCKꢀtransitioningꢀtoꢀaꢀlogicꢀhigh.  
35413fc  
ꢀꢀ  
LTC3541-3  
U U  
W U  
APPLICATIO S I FOR ATIO  
TheꢀbasicꢀLTC3541-3ꢀapplicationꢀcircuitꢀisꢀshownꢀonꢀtheꢀ  
firstꢀpageꢀofꢀthisꢀdataꢀsheet.ꢀExternalꢀcomponentꢀselectionꢀ  
isdrivenbytheloadrequirementandrequirestheselectionꢀ  
Table 2. Representative Surface Mount Inductors  
PART  
NUMBER  
VALUE  
(µH)  
DCR  
MAX DC  
SIZE  
3
(Ω MAX) CURRENT (A) W × L × H (mm )  
Sumidaꢀ  
CDRH3D23  
1.0ꢀ  
1.5ꢀ  
2.2ꢀ  
3.3  
0.025ꢀ  
0.029ꢀ  
0.038ꢀ  
0.048  
2ꢀ  
3.9ꢀ×ꢀ3.9ꢀ×ꢀ2.4  
ofꢀL,ꢀfollowedꢀbyꢀC ,ꢀC ,ꢀandꢀfeedbackꢀresistorꢀvaluesꢀ  
IN OUT  
1.65ꢀ  
1.3ꢀ  
1.1  
forꢀtheꢀbuckꢀandꢀtheꢀselectionꢀofꢀtheꢀoutputꢀcapacitorꢀandꢀ  
feedbackꢀvaluesꢀforꢀtheꢀVLDOꢀandꢀlinearꢀregulator.  
Sumidaꢀ  
2.2ꢀ  
3.3  
0.116ꢀ  
0.174  
0.950ꢀ  
0.770  
3.5ꢀ×ꢀ4.3ꢀ×ꢀ0.8  
2.5ꢀ×ꢀ3.2ꢀ×ꢀ2.0  
CMD4D06  
BUCK REGULATOR  
Inductor Selection  
Coilcraftꢀ  
ME3220  
1.0ꢀ  
1.5ꢀ  
2.2ꢀ  
3.3  
0.058ꢀ  
0.068ꢀ  
0.104ꢀ  
0.138  
2.7ꢀ  
2.2ꢀ  
1.8ꢀ  
1.3  
Formostapplications,theappropriateinductorvaluewillbeꢀ  
2.2µH.Itsvalueischosenlargelybasedonthedesiredrippleꢀ  
currentandburstrippleperformance.Generally,largevalueꢀ  
inductorsreduceripplecurrent,andconversely,smallvalueꢀ  
Murataꢀ  
LQH3C  
1.0ꢀ  
2.2  
0.060ꢀ  
0.097  
1.00ꢀ  
0.79  
2.5ꢀ×ꢀ3.2ꢀ×ꢀ2.0  
C and C  
IN  
Selection  
OUT  
inductorsproducehigherripplecurrent.HigherV ꢀorV  
IN  
OUT  
Incontinuousmode,thesourcecurrentofthetopMOSFETꢀ  
isꢀaꢀsquareꢀwaveꢀofꢀdutyꢀcycleꢀV /V .ꢀToꢀpreventꢀlargeꢀ  
voltageꢀtransients,ꢀaꢀlowꢀESRꢀinputꢀcapacitorꢀsizedꢀforꢀtheꢀ  
maximumRMScurrentmustbeused.ThemaximumRMSꢀ  
capacitorꢀcurrentꢀisꢀgivenꢀby:  
mayꢀalsoꢀincreaseꢀtheꢀrippleꢀcurrentꢀasꢀshownꢀinꢀEquationꢀ  
OUT IN  
1.ꢀAꢀreasonableꢀstartingꢀpointꢀforꢀsettingꢀrippleꢀcurrentꢀisꢀ  
ΔI ꢀ=ꢀ200mAꢀ(40%ꢀofꢀ500mA).  
L
VOUT  
VIN  
1
ΔIL =  
VOUT 1−  
(1)  
f L  
( )( )  
1/2  
VOUT V V  
(
)
IN  
OUT  
cIN required IRMS IOMAX  
VIN  
TheꢀDCꢀcurrentꢀratingꢀofꢀtheꢀinductorꢀshouldꢀbeꢀatꢀleastꢀ  
equalꢀtoꢀtheꢀmaximumꢀloadꢀcurrentꢀplusꢀhalfꢀtheꢀrippleꢀ  
currentꢀtoꢀpreventꢀcoreꢀsaturation.ꢀThus,ꢀaꢀ600mAꢀratedꢀ  
inductorꢀshouldꢀbeꢀenoughꢀforꢀmostꢀapplicationsꢀ(500mAꢀ  
+ꢀ100mA).ꢀForꢀbetterꢀefficiency,ꢀchooseꢀaꢀlowꢀDCꢀresis-  
tanceꢀinductor.  
Thisꢀ formulaꢀ hasꢀ aꢀ maximumꢀ atꢀ V ꢀ =ꢀ 2V ,ꢀ whereꢀ  
IN  
OUT  
I
ꢀ=ꢀI /2.ꢀThisꢀsimple,ꢀworst-caseꢀconditionꢀisꢀcom-  
RMS  
OUT  
monlyusedfordesign.Notethatthecapacitormanu-  
facturer’sꢀrippleꢀcurrentꢀratingsꢀareꢀoftenꢀbasedꢀonꢀ2000ꢀ  
hoursꢀofꢀlife.ꢀThisꢀmakesꢀitꢀadvisableꢀtoꢀfurtherꢀderateꢀtheꢀ  
capacitorꢀorꢀchooseꢀaꢀcapacitorꢀratedꢀatꢀaꢀhigherꢀtempera-  
tureꢀthanꢀrequired.ꢀAlwaysꢀconsultꢀtheꢀmanufacturerꢀwithꢀ  
anyꢀquestionꢀregardingꢀproperꢀcapacitorꢀchoice.  
Inductor Core Selection  
Differentꢀ coreꢀ materialsꢀ andꢀ shapesꢀ willꢀ changeꢀ theꢀ  
size/currentandprice/currentrelationshipofaninduc-  
tor.Toroidorꢀshieldedꢀpotꢀcoresꢀinꢀferriteꢀorꢀpermalloyꢀ  
materialsꢀareꢀsmallꢀandꢀdon’tꢀradiateꢀmuchꢀenergy,ꢀbutꢀ  
generallyꢀcostꢀmoreꢀthanꢀpowderedꢀironꢀcoreꢀinductorsꢀ  
withꢀsimilarꢀelectricalꢀcharacteristics.ꢀTheꢀchoiceꢀofꢀwhichꢀ  
styleꢀinductorꢀtoꢀuseꢀoftenꢀdependsꢀmoreꢀonꢀtheꢀpriceꢀvsꢀ  
sizeꢀrequirementꢀandꢀanyꢀradiatedꢀfield/EMIꢀrequirementsꢀ  
ratherthanwhattheLTC3541-3requirestooperate.Tableꢀ2ꢀ  
showsꢀsomeꢀtypicalꢀsurfaceꢀmountꢀinductorsꢀthatꢀworkꢀ  
wellꢀinꢀLTC3541-3ꢀapplications.  
TheꢀselectionꢀofꢀC ꢀforꢀtheꢀbuckꢀregulatorꢀisꢀdrivenꢀbyꢀ  
OUT  
thedesiredbucklooptransientresponse,requiredeffectiveꢀ  
seriesꢀresistanceꢀ(ESR)ꢀandꢀburstꢀrippleꢀperformance.  
TheLTC3541-3minimizestherequirednumberofexternalꢀ  
componentsꢀbyꢀprovidingꢀinternalꢀloopꢀcompensationꢀforꢀ  
theꢀbuckꢀregulatorꢀloop.ꢀLoopꢀstability,ꢀtransientꢀresponseꢀ  
andꢀburstꢀrippleꢀperformanceꢀcanꢀbeꢀtailoredꢀbyꢀchoiceꢀ  
ofꢀoutputꢀcapacitance.ꢀForꢀmanyꢀapplications,ꢀdesirableꢀ  
stability,ꢀtransientꢀresponseꢀandꢀrippleꢀperformanceꢀcanꢀ  
35413fc  
ꢀꢁ  
LTC3541-3  
U U  
W U  
APPLICATIO S I FOR ATIO  
beꢀ obtainedꢀ byꢀ choosingꢀ anꢀ outputꢀ capacitorꢀ valueꢀ ofꢀ  
10µFꢀtoꢀ22µF.  
theꢀlongꢀwiresꢀcanꢀpotentiallyꢀcauseꢀaꢀvoltageꢀspikeꢀatꢀV ,ꢀ  
IN  
largeꢀenoughꢀtoꢀdamageꢀtheꢀpart.  
Typically,onceꢀtheꢀESRꢀrequirementꢀforꢀC ꢀhasꢀbeenꢀ  
Whenꢀchoosingꢀtheꢀinputꢀandꢀoutputꢀceramicꢀcapacitors,ꢀ  
choosetheX5RorX7Rdielectricformulations.Theseꢀ  
dielectricsꢀhaveꢀtheꢀbestꢀtemperatureꢀandꢀvoltageꢀcharac-  
teristicsꢀofꢀallꢀtheꢀceramicsꢀforꢀaꢀgivenꢀvalueꢀandꢀsize.  
OUT  
met,theRMScurrentratinggenerallyfarexceedstheꢀ  
I
ꢀ requirement.ꢀ Theꢀ outputꢀ rippleꢀ ΔV ꢀ isꢀ  
RIPPLE(P-P)  
OUT  
determinedꢀby:  
1
Checking Transient Response  
ΔVOUT ≅ ΔIL ESR+  
8fc  
OUT   
Theꢀregulatorꢀloopꢀresponseꢀcanꢀbeꢀcheckedꢀbyꢀlookingꢀ  
atꢀtheꢀloadꢀtransientꢀresponse.ꢀSwitchingꢀregulatorsꢀtakeꢀ  
severalꢀcyclesꢀtoꢀrespondꢀtoꢀaꢀstepꢀinꢀloadꢀcurrent.ꢀWhenꢀ  
whereꢀfꢀ=ꢀoperatingꢀfrequency,ꢀC ꢀ=ꢀoutputꢀcapacitanceꢀ  
OUT  
andꢀΔI ꢀ=ꢀrippleꢀcurrentꢀinꢀtheꢀinductor.ꢀForꢀaꢀfixedꢀoutputꢀ  
L
aꢀloadꢀstepꢀoccurs,ꢀV ꢀimmediatelyꢀshiftsꢀbyꢀanꢀamountꢀ  
voltage,theoutputrippleishighestatmaximuminputꢀ  
OUT  
equalꢀtoꢀ(ΔI  
ꢀ•ꢀESR),ꢀwhereꢀESRꢀisꢀtheꢀeffectiveꢀseriesꢀ  
voltageꢀsinceꢀΔI ꢀincreasesꢀwithꢀinputꢀvoltage.  
LOAD  
L
resistanceꢀofꢀC .ꢀΔI  
ꢀalsoꢀbeginsꢀtoꢀchargeꢀorꢀdis-  
OUT  
LOAD  
Aluminumelectrolyticanddrytantalumcapacitorsarebothꢀ  
availableꢀinꢀsurfaceꢀmountꢀconfigurations.ꢀInꢀtheꢀcaseꢀofꢀ  
tantalum,ꢀitꢀisꢀcriticalꢀthatꢀtheꢀcapacitorsꢀareꢀsurgeꢀtestedꢀ  
foruseinswitchingpowersupplies.Anexcellentchoiceisꢀ  
theꢀAVXꢀTPSꢀseriesꢀofꢀsurfaceꢀmountꢀtantalum.ꢀTheseꢀareꢀ  
speciallyꢀconstructedꢀandꢀtestedꢀforꢀlowꢀESRꢀsoꢀtheyꢀgiveꢀ  
theꢀlowestꢀESRꢀforꢀaꢀgivenꢀvolume.ꢀOtherꢀcapacitorꢀtypesꢀ  
includeꢀSanyoꢀPOSCAP,ꢀKemetꢀT510ꢀandꢀT495ꢀseries,ꢀandꢀ  
Sprague593Dand595Dseries.Consultthemanufacturerꢀ  
forꢀotherꢀspecificꢀrecommendations.  
chargeC ,whichgeneratesafeedbackerrorsignal.Theꢀ  
OUT  
regulatorꢀloopꢀthenꢀactsꢀtoꢀreturnꢀV ꢀtoꢀitsꢀsteady-stateꢀ  
value.ꢀDuringꢀthisꢀrecoveryꢀtimeꢀV ꢀcanꢀbeꢀmonitoredꢀ  
OUT  
OUT  
forovershootorringingthatwouldindicateastabilityꢀ  
problem.ꢀForꢀaꢀdetailedꢀexplanationꢀofꢀswitchingꢀcontrolꢀ  
loopꢀtheoryꢀseeꢀApplicationꢀNoteꢀ76.  
Aꢀsecond,ꢀmoreꢀsevereꢀtransientꢀisꢀcausedꢀbyꢀswitchingꢀ  
inꢀloadsꢀwithꢀlargeꢀ(>1µF)ꢀsupplyꢀbypassꢀcapacitors.ꢀTheꢀ  
dischargedꢀbypassꢀcapacitorsꢀareꢀeffectivelyꢀputꢀinꢀparal-  
lelꢀwithꢀC ,ꢀcausingꢀaꢀrapidꢀdropꢀinꢀV .ꢀNoꢀregulatorꢀ  
OUT  
OUT  
Using Ceramic Input and Output Capacitors  
canꢀdeliverꢀenoughꢀcurrentꢀtoꢀpreventꢀthisꢀproblemꢀifꢀtheꢀ  
loadꢀswitchꢀresistanceꢀisꢀlowꢀandꢀitꢀisꢀdrivenꢀquickly.ꢀTheꢀ  
onlyꢀsolutionꢀisꢀtoꢀlimitꢀtheꢀriseꢀtimeꢀofꢀtheꢀswitchꢀdriveꢀ  
soꢀ thatꢀ theꢀ loadꢀ riseꢀ timeꢀ isꢀ limitedꢀ toꢀ approximatelyꢀ  
Highvalue,lowcostceramiccapacitorsarenowbecomingꢀ  
availableꢀinꢀsmallerꢀcaseꢀsizes.ꢀTheirꢀhighꢀrippleꢀcurrent,ꢀ  
highvoltagerating,andlowESRmakethemidealforꢀ  
switchingꢀregulatorꢀapplications.ꢀSinceꢀtheꢀLTC3541-3’sꢀ  
controlloopdoesnotdependontheoutputcapacitor’sESRꢀ  
forstableoperation,ceramiccapacitorscanbeusedfreelyꢀ  
toꢀachieveꢀveryꢀlowꢀoutputꢀrippleꢀandꢀsmallꢀcircuitꢀsize.  
(25C  
).Thus,a10µFcapacitorchargingto3.3Vꢀ  
LOAD  
wouldrequirea250µsrisetime,limitingthechargingꢀ  
currentꢀtoꢀaboutꢀ130mA.  
VLDO/LINEAR REGULATOR  
However,caremustbetakenwhenceramiccapacitorsꢀ  
areusedattheinputandtheoutput.Whenaceramicꢀ  
capacitorꢀisꢀusedꢀatꢀtheꢀinputꢀandꢀtheꢀpowerꢀisꢀsuppliedꢀ  
byꢀaꢀwallꢀadapterꢀthroughꢀlongꢀwires,ꢀaꢀloadꢀstepꢀatꢀtheꢀ  
Output Capacitance and Transient Response  
TheꢀLTC3541-3ꢀisꢀdesignedꢀtoꢀbeꢀstableꢀwithꢀaꢀwideꢀrangeꢀ  
ofceramicoutputcapacitors.TheESRoftheoutputcapaci-  
torꢀaffectsꢀstability,ꢀmostꢀnotablyꢀwithꢀsmallꢀcapacitors.ꢀAꢀ  
minimumꢀoutputꢀcapacitorꢀofꢀ2.2µFꢀwithꢀanꢀESRꢀofꢀ0.05Ωꢀ  
outputꢀcanꢀinduceꢀringingꢀatꢀtheꢀinput,ꢀV .ꢀAtꢀbest,ꢀthisꢀ  
IN  
ringingꢀcanꢀcoupleꢀtoꢀtheꢀoutputꢀandꢀbeꢀmistakenꢀasꢀloopꢀ  
instability.ꢀAtꢀworst,ꢀaꢀsuddenꢀinrushꢀofꢀcurrentꢀthroughꢀ  
35413fc  
ꢀꢂ  
LTC3541-3  
U U  
W U  
APPLICATIO S I FOR ATIO  
orlessisrecommendedtoensurestability.TheLTC3541-3ꢀ  
VLDOisamicropowerdeviceandoutputtransientresponseꢀ  
willbeafunctionofoutputcapacitance.Largervaluesꢀ  
ofꢀoutputꢀcapacitanceꢀdecreaseꢀtheꢀpeakꢀdeviationsꢀandꢀ  
provideimprovedtransientresponseforlargerloadcurrentꢀ  
changes.ꢀNoteꢀthatꢀbypassꢀcapacitorsꢀusedꢀtoꢀdecoupleꢀ  
individualcomponentspoweredbytheLTC3541-3willꢀ  
increaseꢀtheꢀeffectiveꢀoutputꢀcapacitorꢀvalue.ꢀHighꢀESRꢀ  
tantalumꢀ andꢀ electrolyticꢀ capacitorsꢀ mayꢀ beꢀ used,ꢀ butꢀ  
alowESRceramiccapacitormustbeinparallelattheꢀ  
output.ꢀThereꢀisꢀnoꢀminimumꢀESRꢀorꢀmaximumꢀcapacitorꢀ  
sizeꢀrequirement.  
Extraꢀconsiderationꢀmustꢀbeꢀgivenꢀtoꢀtheꢀuseꢀofꢀceramicꢀ  
capacitors.ꢀCeramicꢀcapacitorsꢀareꢀmanufacturedꢀwithꢀaꢀ  
varietyꢀofꢀdielectrics,ꢀeachꢀwithꢀdifferentꢀbehaviorꢀacrossꢀ  
temperatureꢀ andꢀ appliedꢀ voltage.ꢀ Theꢀ mostꢀ commonꢀ  
dielectricsusedareZ5U,Y5V,X5RandX7R.TheZ5Uꢀ  
andꢀY5Vꢀdielectricsꢀareꢀgoodꢀforꢀprovidingꢀhighꢀcapaci-  
tancesꢀinꢀaꢀsmallꢀpackage,ꢀbutꢀexhibitꢀlargeꢀvoltageꢀandꢀ  
temperaturecoefficientsasshowninFigures6and7.ꢀ  
Whenꢀusedꢀwithꢀaꢀ2Vꢀregulator,ꢀaꢀ1µFꢀY5Vꢀcapacitorꢀcanꢀ  
loseꢀasꢀmuchꢀasꢀ75%ꢀofꢀitsꢀinitialꢀcapacitanceꢀoverꢀtheꢀ  
operatingtemperaturerange.TheX5RandX7Rdielectricsꢀ  
resultꢀinꢀmoreꢀstableꢀcharacteristicsꢀandꢀareꢀusuallyꢀmoreꢀ  
suitableꢀforꢀuseꢀasꢀtheꢀoutputꢀcapacitor.ꢀTheꢀX7Rꢀtypeꢀhasꢀ  
betterꢀstabilityꢀacrossꢀtemperature,ꢀwhileꢀtheꢀX5Rꢀisꢀlessꢀ  
expensiveꢀandꢀisꢀavailableꢀinꢀhigherꢀvalues.ꢀInꢀallꢀcases,ꢀ  
theꢀoutputꢀcapacitanceꢀshouldꢀneverꢀdropꢀbelowꢀ1µFꢀorꢀ  
instabilityꢀorꢀdegradedꢀperformanceꢀmayꢀoccur.  
20  
BOTH cAPAcITORS ARE 1µF,  
10V, 0603 cASE SIZE  
0
X5R  
–20  
–40  
EFFICIENCY CONSIDERATIONS  
Y5V  
Generally,ꢀtheꢀefficiencyꢀofꢀaꢀregulatorꢀisꢀequalꢀtoꢀtheꢀout-  
putꢀpowerꢀdividedꢀbyꢀtheꢀinputꢀpowerꢀtimesꢀ100%.ꢀItꢀisꢀ  
oftenꢀusefulꢀtoꢀanalyzeꢀindividualꢀlossꢀtermsꢀtoꢀdetermineꢀ  
whichꢀtermsꢀareꢀlimitingꢀefficiencyꢀandꢀwhatꢀifꢀanyꢀchangeꢀ  
wouldꢀyieldꢀtheꢀgreatestꢀimprovement.ꢀEfficiencyꢀcanꢀbeꢀ  
expressedꢀas:  
–60  
–80  
–100  
0
8
2
4
6
10  
Dc BIAS VOLTAGE (V)  
35413 F06  
ꢀ Efficiencyꢀ=ꢀ100%ꢀ–ꢀ(L1ꢀ+ꢀL2ꢀ+ꢀL3ꢀ+ꢀ...)  
Figure 6. Change in Capacitor vs Bias Voltage  
whereꢀL1,ꢀL2,ꢀetc.ꢀareꢀtheꢀindividualꢀlossꢀtermsꢀasꢀaꢀper-  
centageꢀofꢀinputꢀpower.  
20  
0
Althoughꢀallꢀdissipativeꢀelementsꢀinꢀtheꢀcircuitꢀproduceꢀ  
losses,threemainsourcestypicallyaccountforthemajor-  
X5R  
–20  
ityꢀofꢀtheꢀlossesꢀinꢀtheꢀLTC3541-3ꢀcircuits:ꢀV ꢀquiescentꢀ  
Y5V  
IN  
2
–40  
–60  
current,ꢀI RꢀlossesꢀandꢀlossꢀacrossꢀVLDOꢀoutputꢀdevice.ꢀ  
WhenꢀoperatingꢀwithꢀbothꢀtheꢀbuckꢀandꢀVLDOꢀregulatorꢀ  
active(ENBUCKandENVLDOequaltologichigh),V ꢀ  
IN  
quiescentꢀcurrentꢀlossꢀandꢀlossꢀacrossꢀtheꢀVLDOꢀoutputꢀ  
–80  
BOTH cAPAcITORS ARE 1µF,  
deviceꢀdominateꢀtheꢀefficiencyꢀlossꢀatꢀlowꢀloadꢀcurrents,ꢀ  
10V, 0603 cASE SIZE  
–100  
2
whereasꢀtheꢀI RꢀlossꢀandꢀlossꢀacrossꢀtheꢀVLDOꢀoutputꢀ  
–50  
0
25  
50  
75  
–25  
TEMPERATURE (°c)  
devicedominatetheefficiencylossatmediumtohighloadꢀ  
currents.ꢀAtꢀlowꢀloadꢀcurrentsꢀwithꢀtheꢀpartꢀoperatingꢀwithꢀ  
theꢀlinearꢀregulatorꢀ(ENBUCKꢀequalꢀtoꢀlogicꢀlow,ꢀENVLDOꢀ  
35413 F07  
Figure 7. Change in Capacitor vs Temperature  
35413fc  
ꢀꢃ  
LTC3541-3  
U U  
W U  
APPLICATIO S I FOR ATIO  
equalꢀtoꢀlogicꢀhigh),ꢀefficiencyꢀisꢀtypicallyꢀdominatedꢀbyꢀ  
THERMAL CONSIDERATIONS  
theꢀlossꢀacrossꢀtheꢀlinearꢀregulatorꢀoutputꢀdeviceꢀandꢀV ꢀ  
IN  
Theꢀ LTC3541-3ꢀ requiresꢀ theꢀ packageꢀ backplaneꢀ metalꢀ  
(GNDꢀpin)ꢀtoꢀbeꢀwellꢀsolderedꢀtoꢀtheꢀPCꢀboard.ꢀThisꢀgivesꢀ  
theꢀ DFNꢀ packageꢀ exceptionalꢀ thermalꢀ properties.ꢀ Theꢀ  
powerhandlingcapabilityofthedevicewillbelimitedꢀ  
bythemaximumratedjunctiontemperatureof125°C.ꢀ  
TheꢀLTC3541-3ꢀhasꢀinternalꢀthermalꢀlimitingꢀdesignedꢀtoꢀ  
protectthedeviceduringmomentaryoverloadconditions.ꢀ  
Forꢀcontinuousꢀnormalꢀconditions,ꢀtheꢀmaximumꢀjunctionꢀ  
temperatureꢀratingꢀofꢀ125°Cꢀmustꢀnotꢀbeꢀexceeded.ꢀItꢀisꢀ  
importantꢀtoꢀgiveꢀcarefulꢀconsiderationꢀtoꢀallꢀsourcesꢀofꢀ  
thermalꢀresistanceꢀfromꢀjunctionꢀtoꢀambient.ꢀAdditionalꢀ  
heatꢀsourcesꢀmountedꢀnearbyꢀmustꢀalsoꢀbeꢀconsidered.ꢀ  
Forꢀsurfaceꢀmountꢀdevices,ꢀheatꢀsinkingꢀisꢀaccomplishedꢀ  
byꢀusingꢀtheꢀheat-spreadingꢀcapabilitiesꢀofꢀtheꢀPCꢀboardꢀ  
andꢀitsꢀcopperꢀtraces.ꢀCopperꢀboardꢀstiffenersꢀandꢀplatedꢀ  
throughꢀholesꢀcanꢀalsoꢀbeꢀusedꢀtoꢀspreadꢀtheꢀheatꢀgener-  
atedꢀbyꢀpowerꢀdevices.  
quiescentcurrent.Inatypicalefficiencyplot,theefficiencyꢀ  
curveꢀatꢀveryꢀlowꢀloadꢀcurrentsꢀcanꢀbeꢀmisleadingꢀsinceꢀ  
theꢀactualꢀpowerꢀlostꢀisꢀofꢀlittleꢀconsequence.  
1.ꢀTheꢀV ꢀquiescentꢀcurrentꢀlossꢀinꢀtheꢀbuckꢀisꢀdueꢀtoꢀtwoꢀ  
IN  
components:ꢀtheꢀDCꢀbiasꢀcurrentꢀasꢀgivenꢀinꢀtheꢀElectricalꢀ  
Characteristicsꢀandꢀtheꢀinternalꢀmainꢀswitchꢀandꢀsynchro-  
nousswitchgatechargecurrents.Thegatechargecurrentꢀ  
resultsꢀfromꢀswitchingꢀtheꢀgateꢀcapacitanceꢀofꢀtheꢀinternalꢀ  
powerꢀswitches.ꢀEachꢀtimeꢀtheꢀgateꢀisꢀswitchedꢀfromꢀhighꢀ  
toꢀlowꢀtoꢀhighꢀagain,ꢀaꢀpacketꢀofꢀcharge,ꢀdQ,ꢀmovesꢀfromꢀ  
V ꢀtoꢀground.ꢀTheꢀresultingꢀdQ/dtꢀisꢀtheꢀcurrentꢀoutꢀofꢀ  
IN  
V ꢀthatꢀisꢀtypicallyꢀlargerꢀthanꢀtheꢀDCꢀbiasꢀcurrentꢀandꢀ  
IN  
proportionaltofrequency.BoththeDCbiasandgatechargeꢀ  
lossesꢀareꢀproportionalꢀtoꢀV ꢀandꢀthusꢀtheirꢀeffectsꢀwillꢀ  
IN  
beꢀmoreꢀpronouncedꢀatꢀhigherꢀsupplyꢀvoltages.  
2
2.ꢀI Rꢀlossesꢀareꢀcalculatedꢀfromꢀtheꢀresistancesꢀofꢀtheꢀ  
internalꢀswitches,ꢀR ,ꢀandꢀexternalꢀinductorꢀR .ꢀInꢀcon-  
ToꢀavoidꢀtheꢀLTC3541-3ꢀexceedingꢀtheꢀmaximumꢀjunctionꢀ  
temperature,ꢀsomeꢀthermalꢀanalysisꢀisꢀrequired.ꢀTheꢀgoalꢀ  
ofꢀtheꢀthermalꢀanalysisꢀisꢀtoꢀdetermineꢀwhetherꢀtheꢀpowerꢀ  
dissipatedꢀexceedsꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀofꢀ  
theꢀpart.ꢀTheꢀtemperatureꢀriseꢀisꢀgivenꢀby:  
SW  
L
tinuousmode,theaverageoutputcurrentowingthroughꢀ  
inductorꢀLꢀisꢀ“chopped”ꢀbetweenꢀtheꢀmainꢀswitchꢀandꢀtheꢀ  
synchronousꢀswitch.ꢀThus,ꢀtheꢀseriesꢀresistanceꢀlookingꢀ  
intotheSWpinisafunctionofbothtopandbottomꢀ  
MOSFETꢀR ꢀandꢀtheꢀdutyꢀcycleꢀ(DC)ꢀasꢀfollows:  
DS(ON)  
ꢀ T ꢀ=ꢀP •ꢀθ  
R
Dꢀ JA  
ꢀ R ꢀ=ꢀ(R  
)(DC)ꢀ+ꢀ(R )(1ꢀ–ꢀDC)  
DS(ON)TOP DS(ON)BOT  
SW  
whereꢀP ꢀisꢀtheꢀpowerꢀdissipatedꢀbyꢀtheꢀregulatorꢀandꢀθ ꢀ  
D
JA  
TheꢀR  
ꢀforꢀbothꢀtheꢀtopꢀandꢀbottomꢀMOSFETsꢀcanꢀ  
isꢀtheꢀthermalꢀresistanceꢀfromꢀtheꢀjunctionꢀofꢀtheꢀdieꢀtoꢀ  
DS(ON)  
beꢀobtainedꢀfromꢀtheꢀTypicalꢀPerformanceꢀCharacteristicsꢀ  
theꢀambientꢀtemperature.  
2
curves.Thus,toobtainI Rlosses,simplyaddR toꢀ  
SW  
Theꢀjunctionꢀtemperature,ꢀT ,ꢀisꢀgivenꢀby:  
J
R ꢀandꢀmultiplyꢀtheꢀresultꢀbyꢀtheꢀsquareꢀofꢀtheꢀaverageꢀ  
L
ꢀ T ꢀ=ꢀT ꢀ+ꢀT  
R
outputꢀcurrent.  
J
A
whereꢀT ꢀisꢀtheꢀambientꢀtemperature.  
3.LossesintheVLDO/linearregulatorareduetotheDCbiasꢀ  
currentsasgivenintheElectricalCharacteristicsandtotheꢀ  
A
Asꢀanꢀexample,ꢀconsiderꢀtheꢀLTC3541-3ꢀatꢀanꢀinputꢀvolt-  
(V V )voltagedropacrosstheinternaloutputdeviceꢀ  
IN  
OUT  
ageV ꢀof3V,anLV ꢀvoltageꢀofꢀ1.8Vꢀprovidedꢀbyꢀtheꢀbuckꢀ  
IN  
IN  
transistor.  
regulator,ꢀanꢀLV ꢀvoltageꢀofꢀ1.575V,ꢀaꢀloadꢀcurrentꢀofꢀ  
OUT  
300mAꢀforꢀtheꢀVLDOꢀregulator,ꢀaꢀloadꢀcurrentꢀofꢀ200mAꢀ  
forthebuck(totalloadforbuck=500mA),andanambientꢀ  
temperatureꢀofꢀ85°C.ꢀFromꢀtheꢀtypicalꢀperformanceꢀgraphꢀ  
Otherꢀ lossesꢀ whenꢀ theꢀ buckꢀ andꢀ VLDOꢀ regulatorꢀ areꢀ  
inoperation(ENBUCKandꢀ ENVLDOequallogichigh),ꢀ  
includingꢀC ꢀandꢀC ꢀESRꢀdissipativeꢀlossesꢀandꢀinduc-  
IN  
OUT  
ofswitchresistance,theR  
oftheP-channelswitchatꢀ  
torꢀcoreꢀlosses,ꢀgenerallyꢀaccountꢀforꢀlessꢀthanꢀ2%ꢀtotalꢀ  
additionalꢀloss.  
DS(ON)  
35413fc  
ꢀꢄ  
LTC3541-3  
U U  
W U  
APPLICATIO S I FOR ATIO  
85°Cisapproximately0.25Ω.TheR  
oftheN-channelꢀ  
DS(ON)  
DESIGN EXAMPLE  
switchisapproximately0.4Ω.Therefore,powerdissipatedꢀ  
Asꢀaꢀdesignꢀexample,ꢀassumeꢀtheꢀLTC3541-3ꢀisꢀusedꢀinꢀ  
aꢀsingleꢀlithium-ionꢀbatteryꢀpoweredꢀcellularꢀphoneꢀap-  
byꢀtheꢀpartꢀisꢀapproximately:  
2
ꢀ P =(I  
) R  
+(I  
)ꢀ  
plication.ꢀTheꢀV ꢀwillꢀbeꢀoperatingꢀfromꢀaꢀmaximumꢀofꢀ  
D
LOADBUCK  
SW(ON)  
LOADVLDO ꢀ  
IN  
4.2Vꢀdownꢀtoꢀaboutꢀ3V.ꢀTheꢀloadꢀcurrentꢀrequirementꢀisꢀ  
aꢀmaximumꢀofꢀ0.5Aꢀforꢀtheꢀbuckꢀoutputꢀbutꢀmostꢀofꢀtheꢀ  
timeꢀitꢀwillꢀbeꢀinꢀstandbyꢀmode,ꢀrequiringꢀonlyꢀ2mA.ꢀEf-  
ficiencyꢀatꢀbothꢀlowꢀandꢀhighꢀloadꢀcurrentsꢀisꢀimportant.ꢀ  
Theoutputvoltageforthebuckis1.8V.Therequirementforꢀ  
theꢀoutputꢀvoltageꢀofꢀtheꢀVLDOꢀregulatorꢀisꢀ1.575Vꢀwhileꢀ  
providingꢀupꢀtoꢀ0.3Aꢀofꢀcurrent.ꢀWithꢀthisꢀinformationꢀweꢀ  
canꢀcalculateꢀLꢀusingꢀEquationꢀ2:  
ꢀ ꢀ ꢀꢀꢀꢀ(LV ꢀ–ꢀLV )ꢀ=ꢀ145mW  
IN  
OUT  
Forꢀtheꢀ3mmꢀ×ꢀ3mmꢀDFNꢀpackage,ꢀtheꢀθ ꢀisꢀ43°C/W.  
JA  
Thus,ꢀtheꢀjunctionꢀtemperatureꢀofꢀtheꢀregulatorꢀis:  
ꢀ T ꢀ=ꢀ85°Cꢀ+ꢀ(0.145)(43)ꢀ=ꢀ91°C  
J
whichꢀisꢀwellꢀbelowꢀtheꢀmaximumꢀjunctionꢀtemperatureꢀ  
ofꢀ125°C.  
Noteꢀthatꢀatꢀhigherꢀsupplyꢀvoltages,ꢀtheꢀjunctionꢀtempera-  
VOUT  
VIN  
1
f ΔI  
(
L =  
VOUT 1−  
(2)  
tureꢀisꢀlowerꢀdueꢀtoꢀreducedꢀswitchꢀresistanceꢀR  
.
DS(ON)  
( )  
)
L
SubstitutingꢀV ꢀ=ꢀ1.8V,ꢀV ꢀ=ꢀ3.6Vꢀ(typ),ꢀΔI ꢀ=ꢀ200mAꢀ  
PC BOARD LAYOUT CHECKLIST  
OUT  
IN  
L
andꢀfꢀ=ꢀ2.25MHzꢀinꢀEquationꢀ3ꢀgives:  
Whenꢀlayingꢀoutꢀtheꢀprintedꢀcircuitꢀboard,ꢀtheꢀfollowingꢀ  
checklistshouldbeusedtoensureproperoperationoftheꢀ  
LTC3541-3.ꢀCheckꢀtheꢀfollowingꢀinꢀyourꢀlayout:  
1.8V  
2.25MHz(200mA)  
1.8V  
3.6V  
L =  
1−  
= 2µH  
(3)  
1.ꢀTheꢀpowerꢀtraces,ꢀconsistingꢀofꢀtheꢀGNDꢀtrace,ꢀtheꢀSWꢀ  
Aꢀ2.2µHꢀinductorꢀworksꢀwellꢀforꢀthisꢀapplication.ꢀForꢀbestꢀ  
efficiencyꢀchooseꢀaꢀ600mAꢀorꢀgreaterꢀinductorꢀwithꢀlessꢀ  
thanꢀ0.2Ωꢀseriesꢀresistance.  
traceꢀandꢀtheꢀV ꢀtraceꢀshouldꢀbeꢀkeptꢀshort,ꢀdirectꢀandꢀ  
IN  
wide.  
2.ꢀDoesꢀtheꢀ(+)ꢀplateꢀofꢀC ꢀconnectꢀtoꢀV ꢀasꢀcloselyꢀasꢀ  
IN  
IN  
C ꢀwillꢀrequireꢀanꢀRMSꢀcurrentꢀratingꢀofꢀatꢀleastꢀ0.25Aꢀ  
IN  
possible?ꢀThisꢀcapacitorꢀprovidesꢀtheꢀACꢀcurrentꢀtoꢀtheꢀ  
=ꢀ I  
/2ꢀ atꢀ temperature.ꢀ C ꢀ forꢀ theꢀ buckꢀ isꢀ  
LOAD(MAX)  
OUT  
internalꢀpowerꢀMOSFETs.  
chosenꢀtoꢀhaveꢀaꢀvalueꢀofꢀ22µFꢀandꢀanꢀESRꢀofꢀlessꢀthanꢀ  
0.25Ω.ꢀInꢀmostꢀcases,ꢀaꢀceramicꢀcapacitorꢀwillꢀsatisfyꢀ  
thisꢀrequirement.  
3.ꢀKeepꢀtheꢀswitchingꢀnode,ꢀSW,ꢀawayꢀfromꢀtheꢀsensitiveꢀ  
LFBꢀnode.  
4.ꢀ Keepꢀ theꢀ (–)ꢀ platesꢀ ofꢀ C ꢀ andꢀ C ꢀ asꢀ closeꢀ asꢀ  
IN  
OUT  
C
ꢀforꢀtheꢀVLDOꢀregulatorꢀisꢀchosenꢀasꢀ2.2µF.  
OUT  
possible.  
35413fc  
ꢀꢅ  
LTC3541-3  
U
TYPICAL APPLICATIO S  
Dual Output with Minimal External Components Using Auto Start-Up Sequence,  
Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
3V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
LV  
V
OUT  
IN  
2.2µH  
1V/DIV  
LTC3541-3  
ENBUCK  
GND  
V
V
V
IN  
OUT1  
OUT  
V
2V/DIV  
1.8V  
200mA  
OUT2  
1.575V  
300mA  
LV  
LV  
OUT  
PGND  
IN  
10µF  
2.2µF  
35413TA02b  
I
I
= 200mA  
LVOUT  
2ms/DIV  
VOUT  
35413 TA02a  
= 30mA  
Dual Output with Minimal External Components Using Auto Start-Up Sequence,  
Buck in Pulse-Skip Mode for Low Noise Operation  
V
IN  
3V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
V
IN  
LV  
OUT  
2.2µH  
LTC3541-3  
ENBUCK GND  
1V/DIV  
V
V
OUT  
OUT1  
1.8V  
V
IN  
V
OUT2  
2V/DIV  
1.575V  
300mA  
200mA  
LV  
LV  
OUT  
PGND  
IN  
10µF  
2.2µF  
35413TA03b  
35413 TA03a  
I
I
= 200mA  
LVOUT  
2ms/DIV  
VOUT  
= 30mA  
35413fc  
ꢀꢆ  
LTC3541-3  
U
TYPICAL APPLICATIO S  
Dual Output Using Minimal External Components with VOUT2 Controlled by External Logic Signal,  
Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
3V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
V
IN  
LV  
OUT  
2.2µH  
LTC3541-3  
1V/DIV  
ENBUCK  
GND  
V
V
V
OUT1  
OUT  
IN  
1.8V  
200mA  
V
OUT2  
1.575V  
300mA  
2V/DIV  
LV  
LV  
OUT  
PGND  
IN  
10µF  
2.2µF  
35413TA04b  
I
I
= 200mA  
LVOUT  
4ms/DIV  
35413 TA04a  
VOUT  
= 300mA  
Dual Output Using Minimal External Components with VOUT1 Controlled by External Logic Signal,  
Buck in Burst Mode Operation for High Efficiency Down to Low Load Currents  
V
IN  
3V TO 4.2V  
V
OUT  
1V/DIV  
SW  
ENVLDO  
MODE  
LV  
V
OUT  
IN  
1V/DIV  
2.2µH  
LTC3541-3  
ENBUCK GND  
V
IN  
V
V
OUT  
OUT1  
1.8V  
2V/DIV  
V
OUT2  
200mA  
LV  
LV  
PGND  
1.575V  
300mA  
IN  
OUT  
2.2µF  
10µF  
35413TA05b  
I
I
= 200mA  
LVOUT  
4ms/DIV  
VOUT  
35413 TA05a  
= 30mA  
35413fc  
ꢀꢇ  
LTC3541-3  
U
PACKAGE DESCRIPTIO  
DD Package  
10-Lead Plastic DFN (3mm × 3mm)  
(Referenꢀe LTc DWG # 05-08-1699)  
0.675 ±0.05  
3.50 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PAcKAGE  
OUTLINE  
0.25 ± 0.05  
0.50  
BSc  
2.38 ±0.05  
(2 SIDES)  
RECOMMENDED SOLDER PAD PITcH AND DIMENSIONS  
R = 0.115  
TYP  
6
0.38 ± 0.10  
10  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
PIN 1  
TOP MARK  
(SEE NOTE 6)  
(DD10) DFN 1103  
5
1
0.25 ± 0.05  
0.50 BSc  
0.75 ±0.05  
0.200 REF  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
1. DRAWING TO BE MADE A JEDEc PAcKAGE OUTLINE M0-229 VARIATION OF (WEED-2).  
cHEcK THE LTc WEBSITE DATA SHEET FOR cURRENT STATUS OF VARIATION ASSIGNMENT  
2. DRAWING NOT TO ScALE  
3. ALL DIMENSIONS ARE IN MILLIMETERS  
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PAcKAGE DO NOT INcLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXcEED 0.15mm ON ANY SIDE  
5. EXPOSED PAD SHALL BE SOLDER PLATED  
6. SHADED AREA IS ONLY A REFERENcE FOR PIN 1 LOcATION ON THE  
TOP AND BOTTOM OF PAcKAGE  
35413fc  
Information furnished by Linear Teꢀhnology corporation is believed to be aꢀꢀurate and reliable.  
However, no responsibility is assumed for its use. Linear Teꢀhnology corporation makes no represen-  
tation that the interꢀonneꢀtion of its ꢀirꢀuits as desꢀribed herein will not infringe on existing patent rights.  
ꢀꢈ  
LTC3541-3  
RELATED PARTS  
PART NUMBER  
LT®3023ꢀ  
DESCRIPTION  
COMMENTS  
V :ꢀ1.8Vꢀtoꢀ20V,ꢀV  
Dual,ꢀ2x100mA,ꢀLowꢀNoiseꢀMicropowerꢀLDOꢀ  
ꢀ=ꢀ1.22V,ꢀV ꢀ=ꢀ0.30V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀꢀ  
IN  
OUT(MIN)  
DO  
Q
SD  
V
ꢀ=ꢀADJ,ꢀDFN,ꢀMSꢀPackages,ꢀLowꢀNoiseꢀ<ꢀ20µV  
,ꢀStableꢀwithꢀ  
OUT  
RMS(P-P)  
1µFꢀCeramicꢀCapacitorsꢀ  
LT3024ꢀ  
Dual,ꢀ100mA/500mA,ꢀLowꢀNoiseꢀMicropowerꢀLDO  
300mA,ꢀMicropowerꢀVLDOꢀLinearꢀRegulator  
V :ꢀ1.8Vꢀtoꢀ20V,ꢀV  
OUT  
1µFꢀCeramicꢀCapacitorsꢀ  
ꢀ=ꢀ1.22V,ꢀV ꢀ=ꢀ0.30V,ꢀI ꢀ=ꢀ60µA,ꢀI ꢀ<ꢀ1µA,ꢀꢀ  
IN  
OUT(MIN)  
DO  
Q
SD  
V
ꢀ=ꢀADJ,ꢀDFN,ꢀTSSOPꢀPackages,ꢀLowꢀNoiseꢀ<ꢀ20µV  
,ꢀStableꢀwithꢀ  
RMS(P-P)  
LTC3025ꢀ  
V :ꢀ0.9Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.4V,ꢀ2.7Vꢀtoꢀ5.5VꢀBiasꢀVoltageꢀRequired,ꢀꢀ  
OUT(MIN)  
IN  
DO  
V
ꢀ=ꢀ45mV,ꢀI ꢀ=ꢀ50µA,ꢀI ꢀ<ꢀ1µA,ꢀV ꢀ=ꢀADJ,ꢀDFNꢀPackages,ꢀStableꢀwithꢀ  
Q SD OUT  
1µFꢀCeramicꢀCapacitors  
LTC3407  
LTC3407-2  
LTC3445  
DualꢀSynchronousꢀ600mAꢀSynchronousꢀStep-Downꢀ 1.5MHzꢀConstantꢀFrequencyꢀCurrentꢀModeꢀOperation,ꢀV ꢀfromꢀ2.5Vꢀtoꢀ  
IN  
DC/DCꢀRegulator  
5.5V,ꢀV ꢀDownꢀtoꢀ0.6V,ꢀDFN,ꢀMSꢀPackages  
OUT  
DualꢀSynchronousꢀ800mAꢀSynchronousꢀStep-Downꢀ 2.25MHzꢀConstantꢀFrequencyꢀCurrentꢀModeꢀOperation,ꢀV ꢀfromꢀ2.5Vꢀtoꢀ  
IN  
DC/DCꢀRegulator,ꢀ2.25MHz  
5.5V,ꢀV ꢀDownꢀtoꢀ0.6V,ꢀDFN,ꢀMSꢀPackages  
OUT  
2
2
I CꢀControllableꢀBuckꢀRegulatorꢀwithꢀTwoꢀLDOsꢀandꢀ 600mA,ꢀ1.5MHzꢀCurrentꢀModeꢀBuckꢀRegulator,ꢀI CꢀProgrammableꢀ  
BackupꢀBatteryꢀInput  
V
ꢀfromꢀ0.85Vꢀtoꢀ1.55V,ꢀtwoꢀ50mAꢀLDOs,ꢀBackupꢀBatteryꢀInputꢀwithꢀ  
OUT  
PowerPathꢀControl,ꢀQFNꢀPackageꢀ  
LTC3446  
LTC3448  
LTC3541  
TripleꢀOutputꢀStep-DownꢀConverterꢀ1AꢀOutputꢀBuck,ꢀ V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV ꢀBuckꢀ=ꢀ0.8V,ꢀV  
ꢀVDLOꢀ=ꢀ0.4V  
,ꢀ  
IN  
OUT(MIN)  
OUT(MIN)  
OUT(MIN)  
TwoꢀEachꢀ300mAꢀVDLOs  
14-PinꢀDFNꢀPackage  
V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV ꢀ=ꢀ0.6V,ꢀSwitchesꢀtoꢀLDOꢀModeꢀatꢀ≤3A,ꢀꢀ  
OUT(MIN)  
600mAꢀ(I ),ꢀHighꢀEfficiency,ꢀ1.5MHz/2.25MHzꢀ  
OUT  
IN  
SynchronousꢀStep-DownꢀRegulatorꢀwithꢀLDOꢀMode  
DD8,ꢀMS8/EꢀPackages  
HighꢀEfficiencyꢀBuckꢀ+ꢀVLDOꢀRegulator  
V :ꢀ2.7Vꢀtoꢀ5.5V,ꢀV  
ꢀBuckꢀ=ꢀ0.8V,ꢀV  
ꢀVLDOꢀ=ꢀ0.4V,ꢀꢀ  
IN  
OUT(MIN)  
OUT(MIN)  
3mmꢀ×ꢀ3mmꢀ10-PinꢀDFNꢀPackage  
LTC3548/LTC3548-1ꢀ Dualꢀ800mA/400mAꢀI ,ꢀ2.25MHz,ꢀSynchronousꢀꢀ  
95%ꢀEfficiency,ꢀV :ꢀ2.5Vꢀtoꢀ5.5V,ꢀV  
ꢀ=ꢀ0.6V,ꢀI ꢀ=ꢀ40µA,ꢀI ꢀ<ꢀ1µA,ꢀ  
OUT(MIN) Q SD  
OUT  
IN  
LTC3548-2  
Step-DownꢀDC/DCꢀConverter  
DFNꢀandꢀ10-PinꢀMSꢀPackages  
LTC3700  
Step-DownꢀDC/DCꢀControllerꢀwithꢀLDOꢀRegulator  
V ꢀfromꢀ2.65Vꢀtoꢀ9.8V,ꢀConstantꢀFrequencyꢀ550kHzꢀOperation  
IN  
PowerPathꢀisꢀaꢀtrademarkꢀofꢀLinearꢀTechnologyꢀCorporation.ꢀ  
35413fc  
LT 0507 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 Mꢀcarthy Blvd., Milpitas, cA 95035-7417  
ꢁ0  
ꢀ●ꢀ  
LINEAR TECHNOLOGY CORPORATION 2006  
(408)432-1900 FAX: (408) 434-0507 www.linear.ꢀom  

相关型号:

LTC3541EDD

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-1#PBF

LTC3541-1 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-1#TRPBF

LTC3541-1 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-1-PBF

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-1-TRPBF

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-2

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-2#PBF

LTC3541-2 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-2#TRPBF

LTC3541-2 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3541EDD-3

High Efficiency Buck + VLDO Regulator
Linear

LTC3541EDD-3#TR

IC 1.25 A SWITCHING REGULATOR, 2700 kHz SWITCHING FREQ-MAX, PDSO10, 3 X 3 MM, PLASTIC, M0-229WEED-2, DFN-10, Switching Regulator or Controller
Linear

LTC3541EDD-3#TRPBF

LTC3541-3 - High Efficiency Buck + VLDO Regulator; Package: DFN; Pins: 10; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3542

500mA, 2.25MHz Synchronous Step-Down DC/DC Converter
Linear