LTC3785EUF#PBF [Linear]

暂无描述;
LTC3785EUF#PBF
型号: LTC3785EUF#PBF
厂家: Linear    Linear
描述:

暂无描述

文件: 总28页 (文件大小:420K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTM4609  
36V , 34V High Efficiency  
IN  
OUT  
Buck-Boost DC/DC  
µModule Regulator  
Features  
Description  
n
Single Inductor Architecture Allows V Above,  
The LTM®4609 is a high efficiency switching mode buck-  
boost power supply. Included in the package are the  
switchingcontroller,powerFETsandsupportcomponents.  
Operating over an input voltage range of 4.5V to 36V, the  
LTM4609 supports an output voltage range of 0.8V to  
34V, set by a resistor. This high efficiency design delivers  
up to 4A continuous current in boost mode (10A in buck  
mode). Only the inductor, sense resistor, bulk input and  
output capacitors are needed to finish the design.  
IN  
Below or Equal to V  
OUT  
n
n
n
n
n
n
n
n
n
n
n
Wide V Range: 4.5V to 36V  
IN  
OUT  
Wide V  
OUT  
Range: 0.8V to 34V  
I
: 4A DC (10A DC in Buck Mode)  
Up to 98% Efficiency  
Current Mode Control  
Power Good Output Signal  
Phase-Lockable Fixed Frequency: 200kHz to 400kHz  
Ultrafast Transient Response  
Current Foldback Protection  
Output Overvoltage Protection  
Thelowprofilepackageenablesutilizationofunusedspace  
on the bottom of PC boards for high density point of load  
regulation. The high switching frequency and current  
mode architecture enable a very fast transient response  
to line and load changes without sacrificing stability. The  
LTM4609 can be frequency synchronized with an external  
clock to reduce undesirable frequency harmonics.  
RoHS Compliant with Pb-Free Finish:  
Gold Finish LGA (e4) or SAC 305 BGA (e1)  
Small Surface Mount Footprint, Low Profile  
(15mm × 15mm × 2.82mm) LGA and  
(15mm × 15mm × 3.42mm) BGA Packages  
n
Faultprotectionfeaturesincludeovervoltageandfoldback  
current protection. The DC/DC µModule® regulator is  
offered in small thermally enhanced 15mm × 15mm ×  
2.82mm LGA and 15mm × 15mm × 3.42mm BGA pack-  
ages. TheLTM4609isRoHScompliantwithPb-freenish.  
L, LT, LTC, LTM, Linear Technology, the Linear logo, µModule, Burst Mode and PolyPhase are  
applications  
n
Telecom, Servers and Networking Equipment  
n
Industrial and Automotive Equipment  
n
High Power Battery-Operated Devices  
registered trademarks and No R  
is a trademark of Linear Technology Corporation. All other  
SENSE  
trademarks are the property of their respective owners.  
typical application  
Efficiency and Power Loss  
vs Input Voltage  
30V/2A Buck-Boost DC/DC µModule Regulator with 6.5V to 36V Input  
V
IN  
99  
98  
97  
96  
95  
94  
93  
92  
91  
6
5
4
3
2
1
0
CLOCK SYNC  
6.5V TO 36V  
10µF  
50V  
V
30V  
2A  
OUT  
V
PLLIN  
IN  
V
OUT  
+
10µF  
50V  
330µF  
50V  
FCB  
ON/OFF  
RUN  
LTM4609  
5.6µH  
SW1  
SW2  
R
SENSE  
+
SENSE  
R2  
0.1µF  
15mΩ  
×2  
SS  
SENSE  
EFFICIENCY  
POWER LOSS  
SGND  
V
FB  
PGND  
2.74k  
24  
(V)  
28  
36  
8
12  
16  
20  
V
32  
IN  
4609 TA01a  
4609 TA01b  
4609fc  
1
LTM4609  
absolute MaxiMuM ratings  
(Note 1)  
V ............................................................. –0.3V to 36V  
OUT  
PLLFLTR.................................................... –0.3V to 2.7V  
Operating Temperature Range (Note 2)  
E- and I-grades....................................–40°C to 85°C  
MP-grade........................................... –55°C to 125°C  
Junction Temperature ........................................... 125°C  
Storage Temperature Range...................–55°C to 125°C  
Solder Temperature (Note 3)................................. 245°C  
IN  
V
............................................................. 0.8V to 36V  
INTV , EXTV , RUN, SS, PGOOD.............. –0.3V to 7V  
CC  
CC  
SW1, SW2 (Note 7) ...................................... –5V to 36V  
V , COMP................................................ –0.3V to 2.4V  
FB  
FCB, STBYMD....................................... –0.3V to INTV  
CC  
PLLIN........................................................ –0.3V to 5.5V  
(See Table 6 Pin Assignment)  
pin conFiguration  
TOP VIEW  
TOP VIEW  
SW2  
SW2  
(BANK 2)  
(BANK 2)  
M
L
M
L
SW1  
(BANK 4)  
V
SW1  
(BANK 4)  
V
IN  
(BANK 1)  
IN  
(BANK 1)  
K
J
K
J
H
G
F
H
G
F
V
V
OUT  
(BANK 5)  
OUT  
(BANK 5)  
R
R
SENSE  
(BANK 3)  
SENSE  
(BANK 3)  
INTV  
EXTV  
INTV  
EXTV  
CC  
CC  
CC  
CC  
E
E
D
C
B
A
D
C
B
A
PGND  
PGND  
(BANK 6)  
(BANK 6)  
COMP  
PLLFLTR  
PLLIN  
COMP  
PLLFLTR  
PLLIN  
PGOOD  
PGOOD  
V
FB  
V
FB  
SENSE SS SGND RUN FCB  
SENSE SS SGND RUN FCB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
1
2
3
4
5
6
7
8
9
10  
11  
12  
+
+
SENSE  
STBYMD  
SENSE  
STBYMD  
LGA PACKAGE  
141-LEAD (15mm × 15mm × 2.82mm)  
BGA PACKAGE  
141-LEAD (15mm × 15mm × 3.42mm)  
T
= 125°C, θ = 4°C/W, WEIGHT = 1.5g  
T
JMAX  
= 125°C, θ = 4°C/W, WEIGHT = 1.7g  
JMAX  
JCbottom  
JCbottom  
orDer inForMation  
LEAD FREE FINISH  
LTM4609EV#PBF  
LTM4609IV#PBF  
LTM4609MPV#PBF  
LTM4609EY#PBF  
LTM4609IY#PBF  
LTM4609MPY#PBF  
PART MARKING*  
LTM4609V  
LTM4609V  
LTM4609V  
LTM4609Y  
LTM4609Y  
LTM4609Y  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE (NOTE 2)  
–40°C to 85°C  
141-Lead (15mm × 15mm × 2.82mm) LGA  
141-Lead (15mm × 15mm × 2.82mm) LGA  
141-Lead (15mm × 15mm × 2.82mm) LGA  
141-Lead (15mm × 15mm × 3.42mm) BGA  
141-Lead (15mm × 15mm × 3.42mm) BGA  
141-Lead (15mm × 15mm × 3.42mm) BGA  
–40°C to 85°C  
–55°C to 125°C  
–40°C to 85°C  
–40°C to 85°C  
–55°C to 125°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
This product is only offered in trays. For more information go to: http://www.linear.com/packaging/  
4609fc  
2
LTM4609  
electrical characteristics  
The l denotes the specifications which apply over the specified operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Input Specifications  
l
V
V
Input DC Voltage  
Undervoltage Lockout Threshold  
4.5  
36  
4
4.5  
V
V
V
IN(DC)  
l
l
V
IN  
V
IN  
Falling (–40°C to 85°C)  
Falling (–55°C to 125°C)  
3.4  
3.4  
IN(UVLO)  
I
Input Supply Bias Current  
Normal  
Q(VIN)  
2.8  
1.6  
35  
mA  
mA  
µA  
Standby  
V
RUN  
V
RUN  
= 0V, V  
= 0V, V  
> 2V  
= Open  
STBYMD  
STBYMD  
Shutdown Supply Current  
60  
Output Specifications  
I
Output Continuous Current Range  
(See Output Current Derating Curves  
V
IN  
V
IN  
= 32V, V = 12V  
OUT  
10  
4
A
A
OUTDC  
= 6V, V  
= 12V  
OUT  
for Different V , V  
and T )  
A
IN OUT  
Reference Voltage Line Regulation  
Accuracy  
V
= 4.5V to 36V, V  
= 1.2V (Note 4)  
COMP  
0.002  
0.02  
%/V  
ΔV /V  
FB FB(NOM)  
IN  
l
l
Load Regulation Accuracy  
V
V
= 1.2V to 0.7V  
= 1.2V to 1.8V (Note 4)  
0.15  
–0.15  
0.5  
–0.5  
%
%
ΔV /V  
FB FB(LOAD)  
COMP  
COMP  
Switch Section  
M1 t  
M1 t  
M3 t  
M3 t  
Turn-On Time (Note 5)  
Turn-Off Time  
Drain to Source Voltage V = 12V,  
50  
40  
25  
20  
20  
20  
50  
50  
50  
50  
220  
220  
10  
14  
14  
14  
ns  
ns  
r
f
r
f
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
DS  
Bias Current I = 10mA  
SW  
Turn-On Time  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Turn-Off Time  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
M2, M4 t  
Turn-On Time  
Drain to Source Voltage V = 12V,  
ns  
r
f
DS  
Bias Current I = 10mA  
SW  
M2, M4 t  
Turn-Off Time  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
t
1d  
t
2d  
t
3d  
t
4d  
M1 Off to M2 On Delay (Note 5)  
M2 Off to M1 On Delay  
M3 Off to M4 On Delay  
M4 Off to M3 On Delay  
M2 Off to M4 On Delay  
M4 Off to M2 On Delay  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Mode Transition 1  
Mode Transition 2  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
Drain to Source Voltage V = 12V,  
ns  
DS  
Bias Current I = 10mA  
SW  
M1 R  
M2 R  
M3 R  
M4 R  
Static Drain-to-Source  
On-Resistance  
Static Drain-to-Source  
On-Resistance  
Static Drain-to-Source  
On-Resistance  
Static Drain-to-Source  
On-Resistance  
Bias Current I = 3A  
mΩ  
mΩ  
mΩ  
mΩ  
DS(ON)  
DS(ON)  
DS(ON)  
DS(ON)  
SW  
Bias Current I = 3A  
20  
20  
20  
SW  
Bias Current I = 3A  
SW  
Bias Current I = 3A  
SW  
Oscillator and Phase-Locked Loop  
f
f
Nominal Frequency  
Lowest Frequency  
V
V
= 1.2V  
= 0V  
260  
170  
300  
200  
330  
220  
kHz  
kHz  
NOM  
LOW  
PLLFLTR  
PLLFLTR  
4609fc  
3
LTM4609  
electrical characteristics The l denotes the specifications which apply over the specified operating  
temperature range (Note 2), otherwise specifications are at TA = 25°C, VIN = 12V, per typical application (front page) configuration.  
SYMBOL  
PARAMETER  
Highest Frequency  
PLLIN Input Resistance  
Phase Detector Output Current  
CONDITIONS  
MIN  
340  
TYP  
400  
50  
–15  
15  
MAX  
440  
UNITS  
kHz  
f
V
= 2.4V  
PLLFLTR  
HIGH  
R
kΩ  
µA  
µA  
PLLIN  
I
f
f
< f  
> f  
PLLFLTR  
PLLIN  
PLLIN  
OSC  
OSC  
Control Section  
l
l
V
FB  
Feedback Reference Voltage  
V
V
= 1.2V(–40°C to 85°C)  
= 1.2V (–55°C to 125°C)  
0.792  
0.785  
0.8  
0.8  
0.808  
0.815  
V
V
COMP  
COMP  
V
RUN Pin ON/OFF Threshold  
Soft-Start Charging Current  
Start-Up Threshold  
Keep-Active Power On Threshold  
Forced Continuous Threshold  
Forced Continuous Pin Current  
1
1
0.4  
1.6  
1.7  
0.7  
1.25  
0.8  
–0.2  
5.3  
2.2  
V
µA  
V
V
V
RUN  
I
V
V
V
= 2.2V  
RUN  
SS  
V
V
V
Rising  
Rising, V  
STBYMD(START)  
STBYMD(KA)  
FCB  
STBYMD  
STBYMD  
= 0V  
RUN  
0.76  
–0.3  
0.84  
–0.1  
5.5  
I
V
= 0.85V  
FCB  
µA  
V
FCB  
V
Burst Inhibit (Constant Frequency)  
Threshold  
Measured at FCB Pin  
BURST  
DF  
DF  
Maximum Duty Factor  
Maximum Duty Factor  
Minimum On-Time for Synchronous Switch M1 (Note 6)  
Switch in Buck Operation  
% Switch M4 On  
% Switch M1 On  
99  
99  
200  
%
%
ns  
(BOOST, MAX)  
(BUCK, MAX)  
t
250  
ON(MIN, BUCK)  
RFBHI  
Internal V Regulator  
Resistor Between V  
and V Pins  
99.5  
5.7  
100  
100.5  
kΩ  
OUT  
FB  
CC  
l
l
INTV  
Internal V Voltage  
V
I
> 7V, V = 5V  
EXTVCC  
6
6.3  
2
V
%
CC  
CC  
IN  
Internal V Load Regulation  
= 0mA to 20mA, V  
= 5V  
0.3  
5.6  
300  
60  
ΔV /V  
CC  
CC  
CC  
EXTVCC  
LDO LDO  
V
EXTV Switchover Voltage  
I
= 20mA, V  
Rising  
5.4  
V
mV  
mV  
EXTVCC  
CC  
EXTVCC  
EXTVCC  
EXTV Switchover Hysteresis  
ΔV  
ΔV  
CC  
EXTVCC(HYS)  
EXTV Switch Drop Voltage  
I
CC  
= 20mA, V  
= 6V  
150  
CC  
EXTVCC  
Current Sensing Section  
l
l
V
Maximum Current Sense Threshold Boost Mode  
Buck Mode  
160  
–130  
190  
–150  
mV  
mV  
SENSE(MAX)  
–95  
V
I
Minimum Current Sense Threshold Discontinuous Mode  
–6  
–380  
mV  
µA  
SENSE(MIN, BUCK)  
SENSE  
+
Sense Pins Total Source Current  
V
= V  
= 0V  
SENSE  
SENSE  
PGOOD  
PGOOD Upper Threshold  
PGOOD Lower Threshold  
PGOOD Hysteresis  
V
V
V
Rising  
Falling  
5.5  
7.5  
–7.5  
2.5  
10  
%
%
%
V
ΔV  
ΔV  
ΔV  
FB  
FBH  
–5.5  
–10  
FB  
FBL  
Returning  
FB  
FB(HYS)  
V
PGL  
PGOOD Low Voltage  
PGOOD Leakage Current  
I
= 2mA  
= 5V  
0.2  
0.3  
1
PGOOD  
I
V
µA  
PGOOD  
PGOOD  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Thermal Considerations and Output Current Derating discussion. High  
junction temperatures degrade operating lifetimes; operating lifetime is  
derated for junction temperatures greater than 125°C.  
Note 3: See Application Note 100.  
Note 2: The LTM4609 is tested under pulsed load conditions such that  
Note 4: The LTM4609 is tested in a feedback loop that servos V  
to a  
COMP  
T ≈ T . The LTM4609E is guaranteed to meet performance specifications  
J
A
specified voltage and measures the resultant V  
.
FB  
from 0°C to 85°C. Specifications over the –40°C to 85°C operating  
temperature range are assured by design, characterization and correlation  
with statistical process controls. The LTM4609I is guaranteed over  
the –40°C to 85°C operating temperature range. The LTM4609MP is  
guaranteed and tested over the –55°C to 125°C operating temperature  
range. For output current derating at high temperature, please refer to  
Note 5: Turn-on and turn-off time are measured using 10% and 90%  
levels. Transition delay time is measured using 50% levels.  
Note 6: 100% test at wafer level only.  
Note 7: Absolute Maximum Rating of –5V on SW1 and SW2 is under  
transient condition only.  
4609fc  
4
LTM4609  
typical perForMance characteristics (Refer to Figure 18)  
Efficiency vs Load Current  
6VIN to 12VOUT  
Efficiency vs Load Current  
12VIN to 12VOUT  
Efficiency vs Load Current  
32VIN to 12VOUT  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
BURST  
DCM  
BURST  
DCM  
SKIP CYCLE  
DCM  
CCM  
CCM  
CCM  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
0.01  
0.1  
1
10  
100  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4609 G01  
4609 G02  
4609 G03  
Efficiency vs Load Current  
5.6µH Inductor  
Efficiency vs Load Current  
8µH Inductor  
Efficiency vs Load Current  
3.3µH Inductor  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
100  
99  
98  
97  
96  
95  
94  
93  
100  
95  
90  
85  
80  
75  
70  
28V to 20V  
30V to 30V  
12V TO 5V  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
32V to 20V  
32V to 30V  
24V TO 5V  
IN  
IN  
IN  
36V to 20V  
IN  
36V to 30V  
IN  
32V TO 5V  
IN  
0
1
2
3
4
5
6
7
8
3
6
0
1
2
4
5
0
4
5
6
7
8
9
10  
1
2
3
LOAD CURRENT (A)  
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4609 G05  
4609 G06  
4609 G04  
Efficiency vs Load Current  
3.3µH Inductor  
Transient Response from  
12VIN to 12VOUT  
Transient Response from  
6VIN to 12VOUT  
100  
95  
90  
85  
80  
75  
70  
I
I
OUT  
OUT  
2A/DIV  
2A/DIV  
V
V
OUT  
OUT  
200mV/DIV  
200mV/DIV  
4609 G09  
4609 G08  
200µs/DIV  
200µs/DIV  
LOAD STEP: 0A TO 3A AT CCM  
LOAD STEP: 0A TO 3A AT CCM  
5V to 16V  
IN  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
OUT  
OUT  
OUT  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
5V to 24V  
IN  
5V to 30V  
IN  
2x 15mΩ SENSING RESISTORS  
2x 15mΩ SENSING RESISTORS  
0
0.5  
1
1.5  
2
2.5  
3
LOAD CURRENT (A)  
4609 G07  
4609fc  
5
LTM4609  
typical perForMance characteristics  
Transient Response from  
32VIN to 12VOUT  
Start-Up with 6VIN to 12VOUT at  
IOUT = 4A  
Start-Up with 32VIN to 12VOUT at  
IOUT = 5A  
I
I
L
L
5A/DIV  
5A/DIV  
I
OUT  
2A/DIV  
I
I
IN  
IN  
2A/DIV  
5A/DIV  
V
OUT  
V
100mV/DIV  
V
OUT  
OUT  
10V/DIV  
10V/DIV  
4609 G12  
4609 G10  
4609 G11  
10ms/DIV  
0.1µF SOFT-START CAP  
200µs/DIV  
50ms/DIV  
0.1µF SOFT-START CAP  
LOAD STEP: 0A TO 5A AT CCM  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
2x 12mΩ SENSING RESISTORS  
2x 12mΩ SENSING RESISTORS  
2x 12mΩ SENSING RESISTORS  
Short Circuit with 32VIN to 12VOUT  
at IOUT = 5A  
Short Circuit with 12VIN to 34VOUT  
at IOUT = 2A  
Short Circuit with 6VIN to 12VOUT  
at IOUT = 4A  
V
OUT  
10V/DIV  
V
OUT  
5V/DIV  
I
IN  
2A/DIV  
V
OUT  
5V/DIV  
I
IN  
I
IN  
5A/DIV  
5A/DIV  
4609 G14  
4607 G15  
4609 G13  
50µs/DIV  
20µs/DIV  
50µs/DIV  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
2x 12mΩ SENSING RESISTORS  
OUTPUT CAPS: 2x 10µF 50V CERAMIC CAPS AND  
2x 47µF 50V ELECTROLYTIC CAPS  
2x 15mΩ SENSING RESISTORS  
OUTPUT CAPS: 4x 22µF CERAMIC CAPS AND  
2x 180µF ELECTROLYTIC CAPS  
2x 12mΩ SENSING RESISTORS  
4609fc  
6
LTM4609  
pin Functions  
V (Bank 1): Power Input Pins. Apply input voltage be-  
STBYMD(PinA10):LDOControlPin.Determineswhether  
theinternalLDOremainsactivewhenthecontrollerisshut  
down. See Operations section for details. If the STBYMD  
pin is pulled to ground, the SS pin is internally pulled to  
ground to disable start-up and thereby providing a single  
control pin for turning off the controller. An internal de-  
coupling capacitor is tied to this pin.  
IN  
tween these pins and PGND pins. Recommend placing  
input decoupling capacitance directly between V pins  
IN  
and PGND pins.  
V
(Bank 5): Power Output Pins. Apply output load  
OUT  
between these pins and PGND pins. Recommend placing  
outputdecouplingcapacitancedirectlybetweenthesepins  
and PGND pins.  
V
(Pin B6): The Negative Input of the Error Amplifier.  
FB  
Internally, this pin is connected to V  
with a 100k preci-  
OUT  
PGND (Bank 6): Power Ground Pins for Both Input and  
Output Returns.  
sionresistor.Differentoutputvoltagescanbeprogrammed  
with an additional resistor between V and SGND pins.  
FB  
SW1, SW2 (Bank 4, Bank 2): Switch Nodes. The power  
inductor is connected between SW1 and SW2.  
See the Applications Information section.  
FCB(PinA9):ForcedContinuousControlInput.Thevoltage  
applied to this pin sets the operating mode of the module.  
When the applied voltage is less than 0.8V, the forced  
continuous current mode is active in boost operation and  
the skip cycle mode is active in buck operation. When the  
R
(Bank3):SensingResistorPin. Thesensingresis-  
SENSE  
tor is connected from this pin to PGND.  
+
SENSE (Pin A4): Positive Input to the Current Sense and  
Reverse Current Detect Comparators.  
pinistiedtoINTV ,theconstantfrequencydiscontinuous  
CC  
SENSE (Pin A5): Negative Input to the Current Sense and  
current mode is active in buck or boost operation. See the  
Reverse Current Detect Comparators.  
Applications Information section.  
EXTV (PinF6):ExternalV Input.WhenEXTV exceeds  
CC  
CC  
CC  
SGND (Pin A7): Signal Ground Pin. This pin connects to  
5.7V, an internal switch connects this pin to INTV and  
CC  
PGND at output capacitor point.  
shutsdowntheinternalregulatorsothatthecontrollerand  
COMP (Pin B7): Current Control Threshold and Error  
Amplifier Compensation Point. The current comparator  
threshold increases with this control voltage. The voltage  
ranges from 0V to 2.4V.  
gate drive power is drawn from EXTV . Do not exceed  
CC  
7V at this pin and ensure that EXTV < V  
CC  
IN  
INTV (Pin F5): Internal 6V Regulator Output. This pin  
CC  
is for additional decoupling of the 6V internal regulator.  
PGOOD (Pin B5): Output Voltage Power Good Indicator.  
Open drain logic output that is pulled to ground when the  
output voltage is not within 7.5% of the regulation point.  
Do not source more than 40mA from INTV .  
CC  
PLLIN (Pin B9): External Clock Synchronization Input  
to the Phase Detector. This pin is internally terminated  
to SGND with a 50k resistor. The phase-locked loop will  
force the rising bottom gate signal of the controller to be  
synchronized with the rising edge of PLLIN signal.  
RUN (Pin A8): Run Control Pin. A voltage below 1.6V will  
turn off the module. There is a 100k resistor between the  
RUN pin and SGND in the module. Do not apply more than  
6V to this pin. See the Applications Information section.  
PLLFLTR (Pin B8): The lowpass filter of the phase-locked  
loop is tied to this pin. This pin can also be used to set the  
frequency of the internal oscillator with an AC or DC volt-  
age. See the Applications Information section for details.  
SS (Pin A6): Soft-Start Pin. Soft-start reduces the input  
surgecurrentfromthepowersourcebygraduallyincreas-  
ing the controller’s current limit.  
4609fc  
7
LTM4609  
siMpliFieD block DiagraM  
V
IN  
4.5V TO 36V  
EXTV  
CC  
C1  
C
IN  
M1  
M2  
SW2  
INTV  
CC  
PGOOD  
RUN  
L
SW1  
ON/OFF  
V
OUT  
100k  
12V  
4A  
STBYMD  
COMP  
CO1  
M3  
M4  
C
OUT  
0.1µF  
100k  
R
FB  
V
FB  
7.15k  
CONTROLLER  
R
SENSE  
INT  
COMP  
+
SS  
SENSE  
SS  
0.1µF  
PLLIN  
PLLFLTR  
INT  
FILTER  
R
SENSE  
SENSE  
INT  
FILTER  
PGND  
FCB  
1000pF  
SGND  
TO PGND PLANE AS  
SHOWN IN FIGURE 15  
4609 BD  
Figure 1. Simplified LTM4609 Block Diagram  
Decoupling requireMents  
TA = 25°C. Use Figure 1 configuration.  
CONDITIONS  
SYMBOL  
PARAMETER  
MIN  
TYP  
MAX  
UNITS  
C
External Input Capacitor Requirement  
IN  
I
= 4A  
10  
µF  
IN  
OUT  
(V = 4.5V to 36V, V  
= 12V)  
OUT  
C
External Output Capacitor Requirement  
(V = 4.5V to 36V, V = 12V)  
I
= 4A  
200  
300  
µF  
OUT  
OUT  
IN  
OUT  
4609fc  
8
LTM4609  
operation  
Power Module Description  
input clock signal from the PLLIN pin. The typical switch-  
ing frequency is 400kHz.  
The LTM4609 is a non-isolated buck-boost DC/DC power  
supply.Itcandeliverawiderangeoutputvoltagefrom0.8V  
to 34V over a wide input range from 4.5V to 36V, by only  
adding the sensing resistor, inductor and some external  
inputandoutputcapacitors.Itprovidespreciselyregulated  
output voltage programmable via one external resistor.  
The typical application schematic is shown in Figure 18.  
The Burst Mode® and skip-cycle mode operations can be  
enabledatlightloadstoimproveefficiency,whiletheforced  
continuousmodeanddiscontinuousmodeoperationsare  
usedforconstantfrequencyapplications.Foldbackcurrent  
limiting is activated in an overcurrent condition as V  
FB  
drops. Internal overvoltage and undervoltage compara-  
tors pull the open-drain PGOOD output low if the output  
feedback voltage exits the 7.5% window around the  
regulation point. Pulling the RUN pin below 1.6V forces  
the controller into its shutdown state.  
The LTM4609 has an integrated current mode buck-boost  
controller, ultralowR  
FETswithfastswitchingspeed  
DS(ON)  
andintegratedSchottkydiodes.Withcurrentmodecontrol  
and internal feedback loop compensation, the LTM4609  
modulehassufficientstabilitymarginsandgoodtransient  
performance under a wide range of operating conditions  
and with a wide range of output capacitors. The operating  
frequency of the LTM4609 can be adjusted from 200kHz  
to 400kHz by setting the voltage on the PLLFLTR pin.  
Alternatively, its frequency can be synchronized by the  
IfanexternalbiassupplyisappliedontheEXTV pin,then  
CC  
an efficiency improvement will occur due to the reduced  
powerlossintheinternallinearregulator.Thisisespecially  
true at the higher end of the input voltage range.  
applications inForMation  
The typical LTM4609 application circuit is shown in Fig-  
ure 18. External component selection is primarily deter-  
mined by the maximum load current and output voltage.  
RefertoTable3forspecificexternalcapacitorrequirements  
for a particular application.  
Operation Frequency Selection  
The LTM4609 uses current mode control architecture at  
constant switching frequency, which is determined by the  
internal oscillator’s capacitor. This internal capacitor is  
charged by a fixed current plus an additional current that  
is proportional to the voltage applied to the PLLFLTR pin.  
The PLLFLTR pin can be grounded to lower the frequency  
to 200kHz or tied to 2.4V to yield approximately 400kHz.  
When PLLFLTR is left open, the PLLFLTR pin goes low,  
forcing the oscillator to its minimum frequency.  
Output Voltage Programming  
ThePWMcontrollerhasaninternal0.8Vreferencevoltage.  
As shown in the Block Diagram, a 100k internal feedback  
resistor connects V  
and V pins together. Adding a  
FB  
OUT  
FB  
resistor R from the V pin to the SGND pin programs  
FB  
A graph for the voltage applied to the PLLFLTR pin vs  
frequency is given in Figure 2. As the operating frequency  
increases, the gate charge losses will be higher, thus the  
efficiency is lower. The maximum switching frequency is  
approximately 400kHz.  
the output voltage:  
100k + RFB  
VOUT = 0.8V •  
RFB  
Table 1. RFB Resistor (0.5%) vs Output Voltage  
V
0.8V 1.5V 2.5V  
Open 115k 47.5k 32.4k 19.1k 15.4k  
10V 12V 15V 16V 20V 24V  
8.66k 7.15k 5.62k 5.23k 4.12k 3.4k 2.74k 2.37k  
3.3V  
5V  
6V  
8V  
11k 9.76k  
30V 34V  
9V  
OUT  
FREꢀUENCY SYNCHRONIꢁATION  
R
FB  
The LTM4609 can also be synchronized to an external  
source via the PLLIN pin instead of adjusting the voltage  
on the PLLFLTR pin directly. The power module has a  
V
OUT  
R
FB  
4609fc  
9
LTM4609  
applications inForMation  
phase-locked loop comprised of an internal voltage con-  
trolled oscillator and a phase detector. This allows turning  
on the internal top MOSFET for locking to the rising edge  
of the external clock. A pulse detection circuit is used to  
detect a clock on the PLLIN pin to turn on the phase-lock  
loop. The input pulse width of the clock has to be at least  
400ns, and 2V in amplitude. The synchronized frequency  
rangesfrom200kHzto400kHz,correspondingtoaDCvolt-  
age input from 0V to 2.4V at PLLFLTR. During the start-up  
of the regulator, the phase-lock loop function is disabled.  
load current is lower than the preset minimum output  
current level. The MOSFETs will turn on for several cycles,  
followed by a variable “sleep” interval depending upon the  
load current. During buck operation, skip-cycle mode sets  
a minimum positive inductor current level. In this mode,  
some cycles will be skipped when the output load current  
drops below 1% of the maximum designed load in order  
to maintain the output voltage.  
When the FCB pin voltage is tied to the INTV pin, the  
CC  
controllerentersconstantfrequencydiscontinuouscurrent  
mode (DCM). For boost operation, if the output voltage is  
highenough,thecontrollercanenterthecontinuouscurrent  
buck mode for one cycle to discharge inductor current.  
In the following cycle, the controller will resume DCM  
boost operation. For buck operation, constant frequency  
discontinuous current mode is turned on if the preset  
minimum negative inductor current level is reached. At  
very light loads, this constant frequency operation is not  
as efficient as Burst Mode operation or skip-cycle, but  
does provide low noise, constant frequency operation.  
450  
400  
350  
300  
250  
200  
150  
100  
50  
0
0
0.5  
1.0  
1.5  
2.0  
2.5  
PLLFLTR PIN VOLTAGE (V)  
Input Capacitors  
4609 F02  
Figure 2. Frequency vs PLLFLTR Pin Voltage  
In boost mode, since the input current is continuous, only  
minimuminputcapacitorsarerequired.However,theinput  
current is discontinuous in buck mode. So the selection  
Low Current Operation  
of input capacitor C is driven by the need of filtering the  
To improve efficiency at low output current operation,  
LTM4609 provides three modes for both buck and boost  
operations by accepting a logic input on the FCB pin. Table  
2 shows the different operation modes.  
IN  
input square wave current.  
For a buck converter, the switching duty-cycle can be  
estimated as:  
Table 2. Different Operating Modes (VINTVCC = 6V)  
VOUT  
D=  
FCB PIN  
0V to 0.75V  
0.85V to  
BUCK  
BOOST  
V
IN  
Force Continuous Mode  
Skip-Cycle Mode  
Force Continuous Mode  
Burst Mode Operation  
Without considering the inductor current ripple, the RMS  
current of the input capacitor can be estimated as:  
V
– 1V  
INTVCC  
>5.3V  
DCM with Constant Freq DCM with Constant Freq  
IOUT(MAX)  
ICIN(RMS)  
=
D(1D)  
When the FCB pin voltage is lower than 0.8V, the controller  
behavesasacontinuous,PWMcurrentmodesynchronous  
switching regulator. When the FCB pin voltage is below  
η
In the above equation, η is the estimated efficiency of the  
power module. C can be a switcher-rated electrolytic  
V
– 1V, but greater than 0.85V, where V  
is 6V,  
IN  
INTVCC  
INTVCC  
aluminum capacitor, OS-CON capacitor or high volume  
ceramic capacitors. Note the capacitor ripple current  
ratings are often based on temperature and hours of life.  
thecontrollerentersBurstModeoperationinboostopera-  
tion or enters skip-cycle mode in buck operation. During  
boost operation, Burst Mode operation is activated if the  
4609fc  
10  
LTM4609  
applications inForMation  
Thismakesitadvisabletoproperlyderatetheinputcapaci-  
tor, or choose a capacitor rated at a higher temperature  
than required. Always contact the capacitor manufacturer  
for derating requirements.  
ripple ΔI is typically set to 20% to 40% of the maximum  
L
inductor current. In the inductor design, the worst cases  
in continuous mode are considered as follows:  
V2 V  
V  
IN  
(
)
IN  
OUT(MAX)  
LBOOST  
V2OUT(MAX) ƒ IOUT(MAX) Ripple%  
Output Capacitors  
In boost mode, the discontinuous current shifts from the  
input to the output, so the output capacitor C  
must be  
VOUT V  
V  
OUT  
OUT  
(
)
IN(MAX)  
LBUCK  
where:  
capable of reducing the output voltage ripple.  
V
IN(MAX) ƒ IOUT(MAX) Ripple%  
For boost and buck modes, the steady ripple due to charg-  
ing and discharging the bulk capacitance is given by:  
ƒ is operating frequency, Hz  
IOUT(MAX) V  
V  
IN(MIN)  
(
)
OUT  
VRIPPLE,BOOST  
=
Ripple% is allowable inductor current ripple, %  
COUT VOUT ƒ  
V
V
V
I
is maximum output voltage, V  
OUT(MAX)  
VOUT V  
8 L COUT VIN(MAX) ƒ2  
V  
OUT  
(
)
IN(MAX)  
is maximum input voltage, V  
VRIPPLE,BUCK  
=
IN(MAX)  
is output voltage, V  
OUT  
is maximum output load current, A  
The steady ripple due to the voltage drop across the ESR  
(effective series resistance) is given by:  
OUT(MAX)  
The inductor should have low DC resistance to reduce the  
I R losses, and must be able to handle the peak inductor  
current without saturation. To minimize radiated noise,  
use a toroid, pot core or shielded bobbin inductor. Please  
refer to Table 3 for the recommended inductors for dif-  
ferent cases.  
2
VESR,BUCK = ΔIL(MAX) ESR  
VESR,BOOST = IL(MAX) ESR  
The LTM4609 is designed for low output voltage ripple.  
The bulk output capacitors defined as C  
are chosen  
OUT  
R
Selection and Maximum Output Current  
SENSE  
withlowenoughESRtomeettheoutputvoltagerippleand  
transient requirements. C can be the low ESR tantalum  
R
is chosen based on the required inductor current.  
OUT  
SENSE  
capacitor, the low ESR polymer capacitor or the ceramic  
capacitor. Multiple capacitors can be placed in parallel to  
meettheESRandRMScurrenthandlingrequirements.The  
typicalcapacitanceis300µF.Additionaloutputlteringmay  
be required by the system designer, if further reduction of  
outputrippleordynamictransientspikeisrequired.Table3  
shows a matrix of different output voltages and output  
capacitors to minimize the voltage droop and overshoot  
at a current transient.  
Since the maximum inductor valley current at buck mode  
is much lower than the inductor peak current at boost  
mode, different sensing resistors are suggested to use  
in buck and boost modes.  
The current comparator threshold sets the peak of the  
inductorcurrentinboostmodeandthemaximuminductor  
valley current in buck mode. In boost mode, the allowed  
maximum average load current is:  
160mV ΔIL  
V
IN  
VOUT  
IOUT(MAX,BOOST)  
=
Inductor Selection  
R
2
SENSE  
The inductor is chiefly decided by the required ripple cur-  
rent and the operating frequency. The inductor current  
where ΔI is peak-to-peak inductor ripple current.  
L
4609fc  
11  
LTM4609  
applications inForMation  
In buck mode, the allowed maximum average load cur-  
rent is:  
Run Enable  
The RUN pin is used to enable the power module. The pin  
can be driven with a logic input, not to exceed 6V.  
ΔIL  
2
130mV  
RSENSE  
IOUT(MAX,BUCK)  
=
+
The RUN pin can also be used as an undervoltage lockout  
(UVLO) function by connecting a resistor from the input  
supply to the RUN pin. The equation:  
The maximum current sensing R  
mode is:  
value for the boost  
SENSE  
R1+ R2  
V _UVLO=  
1.6V  
RSENSE(MAX,BOOST)  
=
R2  
2160mV V  
IN  
Power Good  
2IOUT(MAX,BOOST) VOUT + ΔIL V  
IN  
The PGOOD pin is an open drain pin that can be used to  
monitor valid output voltage regulation. This pin monitors  
a 7.5% window around the regulation point.  
The maximum current sensing R  
mode is:  
value for the buck  
SENSE  
2130mV  
2IOUT(MAX,BUCK) ΔIL  
RSENSE(MAX,BUCK)  
=
COMP Pin  
This pin is the external compensation pin. The module  
has already been internally compensated for most output  
voltages. A spice model is available for other control loop  
optimization.  
A 20% to 30% margin on the calculated sensing resistor  
is usually recommended. Please refer to Table 3 for the  
recommendedsensingresistorsfordifferentapplications.  
Fault Conditions: Current Limit and Overcurrent  
Foldback  
Soft-Start  
The SS pin provides a means to soft-start the regulator.  
A capacitor on this pin will program the ramp rate of the  
output voltage. A 1.7µA current source will charge up the  
external soft-start capacitor. This will control the ramp of  
the internal reference and the output voltage. The total  
soft-start time can be calculated as:  
LTM4609 has a current mode controller, which inherently  
limitsthecycle-by-cycleinductorcurrentnotonlyinsteady  
state operation, but also in transient. Refer to Table 3.  
To further limit current in the event of an overload condi-  
tion,theLTM4609providesfoldbackcurrentlimiting.Ifthe  
output voltage falls by more than 70%, then the maximum  
output current is progressively lowered to about 30% of  
its full current limit value for boost mode and about 40%  
for buck mode.  
2.4V CSS  
1.7µA  
tSOFTSTART  
=
When the RUN pin falls below 1.6V, then soft-start pin  
is reset to allow for proper soft-start control when the  
regulator is enabled again. Current foldback and force  
continuous mode are disabled during the soft-start pro-  
cess. The soft-start function can also be used to control  
the output ramp up time, so that another regulator can be  
easily tracked. Do not apply more than 6V to the SS pin.  
Standby Mode (STBYMD)  
Thestandbymode(STBYMD)pinprovidesseveralchoices  
for start-up and standby operational modes. If the pin is  
pulled to ground, the SS pin is internally pulled to ground,  
preventing start-up and thereby providing a single control  
4609fc  
12  
LTM4609  
applications inForMation  
pin for turning off the controller. If the pin is left open or  
decoupledwithacapacitortoground,theSSpinisinternally  
providedwithastartingcurrent,permittingexternalcontrol  
for turning on the controller. If the pin is connected to a  
Thermal Considerations and Output Current Derating  
In different applications, LTM4609 operates in a variety  
of thermal environments. The maximum output current is  
limited by the environmental thermal condition. Sufficient  
cooling should be provided to ensure reliable operation.  
When the cooling is limited, proper output current de-  
rating is necessary, considering ambient temperature,  
airflow, input/output condition, and the need for increased  
reliability.  
voltage greater than 1.25V, the internal regulator (INTV )  
CC  
will be on even when the controller is shut down (RUN  
pin voltage <1.6V). In this mode, the onboard 6V output  
linear regulator can provide power to keep-alive functions  
such as a keyboard controller.  
INTV and EXTV  
The power loss curves in Figures 5 and 6 can be used  
in coordination with the load current derating curves in  
CC  
CC  
An internal P-channel low dropout regulator produces 6V  
Figures 7 to 14 for calculating an approximate θ for  
JA  
at the INTV pin from the V supply pin. INTV powers  
CC  
IN  
CC  
the module. Column designation delineates between no  
heat sink, and a BGA heat sink. Each of the load current  
derating curves will lower the maximum load current as  
a function of the increased ambient temperature to keep  
the maximum junction temperature of the power module  
at 115°C allowing a safe margin for the maximum operat-  
ing temperature below 125°C. Each of the derating curves  
and the power loss curve that corresponds to the correct  
output voltage can be used to solve for the approximate  
the control chip and internal circuitry within the module.  
TheLTM4609alsoprovidestheexternalsupplyvoltagepin  
EXTV . When the voltage applied to EXTV rises above  
CC  
CC  
5.7V, the internal regulator is turned off and an internal  
switch connects the EXTV pin to the INTV pin thereby  
CC  
CC  
supplyinginternalpower.Theswitchremainsclosedaslong  
as the voltage applied to EXTV remains above 5.5V. This  
CC  
allows the MOSFET driver and control power to be derived  
from the output when (5.7V < V  
< 7V) and from the  
θ ofthecondition.Acompleteexplanationofthethermal  
OUT  
JA  
internalregulatorwhentheoutputisoutofregulation(start-  
characteristics is provided in the thermal application note  
up, short-circuit). If more current is required through the  
for the LTM4609.  
EXTV switchthanisspecified,anexternalSchottkydiode  
CC  
can be interposed between the EXTV and INTV pins.  
CC  
CC  
DESIGN EXAMPLES  
Ensure that EXTV ≤ V .  
CC  
IN  
Buck Mode Operation  
The following list summarizes the three possible connec-  
tions for EXTV :  
CC  
As a design example, use input voltage V = 12V to 36V,  
IN  
V
OUT  
= 12V and ƒ = 400kHz.  
1. EXTV left open (or grounded). This will cause INTV  
CC  
CC  
to be powered from the internal 6V regulator at the cost  
Set the PLLFLTR pin at 2.4V or more for 400kHz frequency  
and connect FCB to ground for continuous current mode  
operation.Ifadividerisusedtosetthefrequencyasshown  
in Figure 16, the bottom resistor R3 is recommended not  
to exceed 1kΩ.  
of a small efficiency penalty.  
2. EXTV connected directly to V  
(5.7V < V  
< 7V).  
CC  
OUT  
OUT  
This is the normal connection for a 6V regulator and  
provides the highest efficiency.  
To set the output voltage at 12V, the resistor R from V  
3. EXTV connected to an external supply. If an external  
FB  
FB  
CC  
pin to ground should be chosen as:  
supply is available in the 5.5V to 7V range, it may be  
used to power EXTV provided it is compatible with  
CC  
0.8V 100k  
RFB =  
7.15k  
the MOSFET gate drive requirements.  
VOUT 0.8V  
4609fc  
13  
LTM4609  
applications inForMation  
To choose a proper inductor, we need to know the current  
ripple at different input voltages. The inductor should  
be chosen by considering the worst case in the practi-  
cal operating region. If the maximum output power P is  
120W at buck mode, we can get the current ripple ratio  
For the input capacitor, use a low ESR sized capacitor to  
handle the maximum RMS current. Input capacitors are  
required to be placed adjacent to the module. In Figure 16,  
the 10µF ceramic input capacitors are selected for their  
ability to handle the large RMS current into the converter.  
The100µFbulkcapacitorisonlyneedediftheinputsource  
impedance is compromised by long inductive leads or  
traces.  
of the current ripple ΔI to the maximum inductor current  
L
I as follows:  
L
2
(V – VOUT )VOUT  
ΔIL  
IL  
IN  
=
For the output capacitor, the output voltage ripple and  
transient requirements require low ESR capacitors. If  
assuming that the ESR dominates the output ripple, the  
output ripple is as follows:  
V L ƒ P  
IN  
Figure 3 shows the current ripple ratio at different input  
voltagesbasedontheinductorvalues:2.5µH,3.3µH,4.7µH  
and 6µH. If we need about 40% ripple current ratio at all  
inputs, the 4.7µH inductor can be selected.  
ΔVOUT(P-P) = ESR ΔIL  
If a total low ESR of about 5mΩ is chosen for output  
capacitors, the maximum output ripple of 21.5mV occurs  
at the input voltage of 36V with the current ripple at 4.3A.  
At buck mode, sensing resistor selection is based on  
the maximum output current and the allowed maximum  
sensing threshold 130mV.  
2130mV  
2(P / VOUT )− ΔIL  
Boost Mode Operation  
RSENSE  
=
For boost mode operation, use input voltage V = 5V to  
IN  
12V, V  
= 12V and ƒ = 400kHz.  
OUT  
Consider the safety margin about 30%, we can choose  
the sensing resistor as 9mΩ.  
Set the PLLFLTR pin and R as in buck mode.  
FB  
If the maximum output power P is 50W at boost mode  
0.8  
and the module efficiency η is about 90%, we can get  
V
= 12V  
OUT  
2.5µH  
ƒ = 400kHz  
the current ripple ratio of the current ripple ΔI to the  
L
maximum inductor current I as follows:  
0.6  
0.4  
0.2  
0
L
3.3µH  
4.7µH  
2
(VOUT V )V η  
ΔIL  
IL  
IN  
IN  
=
VOUT L ƒ P  
6µH  
12  
18  
24  
30  
36  
INPUT VOLTAGE V (V)  
IN  
4609 F03  
Figure 3. Current Ripple Ratio at Different Inputs for Buck Mode  
4609fc  
14  
LTM4609  
applications inForMation  
0.8  
If assuming that the ESR dominates the output ripple,  
the output ripple is as follows:  
V
= 12V  
OUT  
ƒ = 400kHz  
1.5µH  
0.6  
0.4  
0.2  
0
ΔVOUT(P-P) = ESR IL(MAX)  
2.5µH  
If a total low ESR about 5mΩ is chosen for output capaci-  
tors, the maximum output ripple of 70mV occurs at the  
input voltage of 5V with the peak inductor current at 14A.  
3.3µH  
4.7µH  
An RC snubber is recommended on SW1 to obtain low  
switching noise, as shown in Figure 17.  
5
6
7
8
9
10  
11  
12  
INPUT VOLTAGE V (V)  
IN  
Wide Input Mode Operation  
4609 F04  
Figure 4. Current Ripple Ratio at Different Inputs for Boost Mode  
Ifawideinputrangeisrequiredfrom5Vto36V,themodule  
will work in different operation modes. If input voltage  
Figure 4 shows the current ripple ratio at different input  
voltages based on the inductor values: 1.5µH, 2.5µH,  
3.3µH and 4.7µH. If we need 30% ripple current ratio at  
all inputs, the 3.3µH inductor can be selected.  
V = 5V to 36V, V  
= 12V and ƒ = 400kHz, the design  
IN  
OUT  
needs to consider the worst case in buck or boost mode  
design. Therefore, the maximum output power is limited  
to 60W. The sensing resistor is chosen at 8mΩ, the input  
capacitor is the same as the buck mode design and the  
output capacitor uses the boost mode design. Since the  
maximum output ripple normally occurs at boost mode  
in the wide input mode design, more inductor ripple cur-  
rent, up to 150% of the inductor current, is allowed at  
buck mode to meet the ripple design requirement. Thus,  
a 3.3µH inductor is chosen at the wide input mode. The  
maximum output ripple voltage is still 70mV if the total  
ESR is about 5mΩ.  
At boost mode, sensing resistor selection is based on  
the maximum input current and the allowed maximum  
sensing threshold 160mV.  
2160mV  
RSENSE  
=
P
2•  
+ ΔIL  
η V  
IN(MIN)  
Consider the safety margin about 30%, we can choose  
the sensing resistor as 8mΩ.  
Additionally, the current limit may become very high when  
the module runs at buck mode due to the low sensing  
resistor used in the wide input mode operation.  
For the input capacitor, only minimum capacitors are  
needed to handle the maximum RMS current, since it  
is a continuous input current at boost mode. A 100µF  
capacitor is only needed if the input source impedance is  
compromised by long inductive leads or traces.  
Safety Considerations  
The LTM4609 modules do not provide isolation from V  
IN  
Since the output capacitors at boost mode need to filter  
the square wave current, more capacitors are expected  
to achieve the same output ripples as the buck mode.  
to V . There is no internal fuse. If required, a slow blow  
OUT  
fuse with a rating twice the maximum input current needs  
tobeprovidedtoprotecteachunitfromcatastrophicfailure.  
4609fc  
15  
LTM4609  
applications inForMation  
Table 3. Typical Components (ƒ = 400kHz)  
C
VENDORS  
PART NUMBER  
C
OUT2  
VENDORS  
PART NUMBER  
OUT1  
TDK  
C4532X7R1E226M (22µF, 25V)  
PART NUMBER  
Sanyo  
16SVP180MX (180µF, 16V), 20SVP150MX (150µF, 20V)  
PART NUMBER  
INDUCTOR VENDORS  
R
VENDORS  
SENSE  
Toko  
FDA1254  
Vishay  
Panasonic  
Power Metal Strip Resistors WSL1206-18  
Thick Film Chip Resistors ERJ12  
Sumida  
CDEP134, CDEP145, CDEP147  
V
(V)  
V
(V)  
R
Inductor  
(µH)  
C
C
C
C
I
*
IN  
OUT  
SENSE  
IN  
IN  
OUT1  
OUT2  
OUT(MAX)  
(0.5W RATING)  
(CERAMIC)  
(BULK)  
(CERAMIC)  
(BULK)  
(A)  
5
10  
10  
10  
10  
10  
10  
12  
12  
12  
12  
12  
12  
16  
16  
16  
16  
16  
16  
16  
20  
20  
20  
20  
24  
24  
24  
24  
2 × 16mW 0.5W  
2 × 18mW 0.5W  
2 × 20mW 0.5W  
2 × 18mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 14mΩ 0.5W  
2 × 16mW 0.5W  
2 × 18mW 0.5W  
2 × 18mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 18mW 0.5W  
2 × 16mW 0.5W  
2 × 14mW 0.5W  
2 × 20mW 0.5W  
2 × 20mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 22mΩ 0.5W  
2 × 18mΩ 0.5W  
2 × 18mΩ 0.5W  
1 × 12mΩ 0.5W  
1 × 13mΩ 0.5W  
2 × 16mΩ 0.5W  
2 × 18mΩ 0.5W  
1 × 14mΩ 0.5W  
1 × 13mΩ 0.5W  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
2.2  
2.2  
3.3  
3.3  
4.7  
4.7  
3.3  
3.3  
2.2  
2.2  
3.3  
4.7  
6
None  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 50V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 50V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 35V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
4 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
4 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
4 × 22µF 25V  
4 × 22µF 25V  
4 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
4 × 22µF 25V  
4 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
4 × 22µF 25V  
4 × 22µF 25V  
2 × 22µF 25V  
2 × 22µF 25V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 180µF 16V  
2 × 150µF 20V  
2 × 150µF 20V  
2 × 150µF 20V  
2 × 150µF 20V  
2 × 150µF 20V  
2 × 150µF 20V  
2 × 150µF 20V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
4
11  
10  
10  
9
15  
20  
24  
32  
36  
6
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 50V  
2 × 10µF 50V  
None  
9
4
16  
20  
24  
32  
36  
5
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 50V  
2 × 10µF 50V  
None  
11  
10  
9
9
9
2.5  
4
8
None  
12  
20  
24  
32  
36  
5
None  
8
2 × 10µF 25V  
2 × 10µF 25V  
2 × 10µF 50V  
2 × 10µF 50V  
NONE  
10  
10  
9
9
3.3  
3.3  
6
2
10  
32  
36  
5
NONE  
5
2 × 10µF 50V  
2 × 10µF 50V  
NONE  
9
8
8
3.3  
4.7  
4.7  
7
1.5  
5
12  
32  
36  
NONE  
2 × 10µF 50V  
2 × 10µF 50V  
8
8
4609fc  
16  
LTM4609  
applications inForMation  
Table 3. Typical Components (ƒ = 400kHz) Continued  
V
(V)  
V
(V)  
R
Inductor  
(µH)  
C
C
C
C
I
*
IN  
OUT  
SENSE  
IN  
IN  
OUT1  
OUT2  
OUT(MAX)  
(0.5W RATING)  
(CERAMIC)  
(BULK)  
(CERAMIC)  
(BULK)  
(A)  
5
30  
30  
30  
30  
34  
34  
34  
34  
2 × 16mΩ 0.5W  
2 × 14mΩ 0.5W  
1 × 12mΩ 0.5W  
1 × 13mΩ 0.5W  
2 × 18mΩ 0.5W  
2 × 16mΩ 0.5W  
1 × 12mΩ 0.5W  
1 × 12mΩ 0.5W  
3.3  
4.7  
2.5  
4.7  
3.3  
4.7  
5.6  
2.5  
NONE  
NONE  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
150µF 50V  
4 × 22µF 50V  
4 × 22µF 50V  
2 × 22µF 50V  
2 × 22µF 50V  
4 × 22µF 50V  
4 × 22µF 50V  
4 × 22µF 50V  
2 × 22µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
2 × 150µF 50V  
1.3  
3
12  
32  
36  
5
2 × 10µF 50V  
2 × 10µF 50V  
NONE  
8
8
1
12  
24  
36  
NONE  
3
NONE  
5
2 × 10µF 50V  
8
INDUCTOR MANUFACTURER  
WEBSITE  
PHONE NUMBER  
408-321-9660  
847-297-0070  
Sumida  
Toko  
www.sumida.com  
www.toko.com  
SENSING RESISTOR MANUFACTURER  
WEBSITE  
PHONE NUMBER  
949-462-1816  
814-362-5536  
800-433-5700  
Panasonic  
KOA  
www.panasonic.com/industrial/components  
www.koaspeer.com  
Vishay  
www.vishay.com  
*Maximum load current is based on the Linear Technology DC1198A at room temperature with natural convection. Poor board layout design may  
decrease the maximum load current.  
(Power Loss includes all external components)  
typical applications  
7
6
5
4
7
6
5
4
3
2
1
0
32V TO 12V  
IN  
OUT  
OUT  
36V TO 20V  
IN  
3
2
1
0
5V TO 16V  
IN  
OUT  
OUT  
5V TO 30V  
IN  
0
1
2
3
0
1
2
3
4
5
6
7
8
9
LOAD CURRENT (A)  
LOAD CURRENT (A)  
4609 F05  
4609 F06  
Figure 5. Boost Mode Operation  
Figure 6. Buck Mode Operation  
4609fc  
17  
LTM4609  
typical applications  
3.0  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
2.5  
2.0  
1.5  
1.0  
0.5  
5V TO 16V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
IN  
OUT  
OUT  
OUT  
5V TO 16V  
IN  
5V TO 16V  
IN  
0
25 35 45 55 65 75 85 95 105 115  
AMBIENT TEMPERATURE (°C)  
25  
45  
65  
85  
105  
125  
AMBIENT TEMPERATURE (°C)  
4609 F07  
4609 F08  
5V TO 16V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
IN  
OUT  
OUT  
OUT  
5V TO 16V  
IN  
5V TO 16V  
IN  
Figure 7. 5VIN to 16VOUT without Heat Sink  
Figure 8. 5VIN to 16VOUT with Heat Sink  
1.50  
1.25  
1.00  
0.75  
0.50  
1.50  
1.25  
1.00  
0.75  
0.50  
5V TO 30V  
IN  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
5V TO 30V  
IN  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
0.25  
0
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
0.25  
0
5V TO 30V  
IN  
5V TO 30V  
IN  
5V TO 30V  
IN  
5V TO 30V  
IN  
25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
4609 F10  
4609 F09  
Figure 9. 5VIN to 30VOUT without Heat Sink  
Figure 10. 5VIN to 30VOUT with Heat Sink  
10  
9
8
7
6
5
4
3
2
1
0
10  
9
8
7
6
5
4
3
2
1
0
25  
35  
45  
55  
65  
75  
85  
95  
25  
35  
45  
55  
65  
75  
85  
95  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
32V TO 12V  
WITH 0LFM  
32V TO 12V  
WITH 0LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
32V TO 12V  
WITH 200LFM  
32V TO 12V  
WITH 200LFM  
IN  
IN  
32V TO 12V  
WITH 400LFM 4609 F11  
32V TO 12V  
WITH 400LFM 4609 F12  
IN  
IN  
Figure 11. 32VIN to 12VOUT without Heat Sink  
Figure 12. 32VIN to 12VOUT with Heat Sink  
4609fc  
18  
LTM4609  
typical applications  
8
7
6
5
4
3
2
1
8
7
6
5
4
3
2
1
0
0
25 35 45 55 65 75 85 95 105  
25 35 45 55 65 75 85 95 105  
AMBIENT TEMPERATURE (°C)  
AMBIENT TEMPERATURE (°C)  
4609 F13  
4609 F14  
36V TO 20V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
36V TO 20V  
WITH 0LFM  
WITH 200LFM  
WITH 400LFM  
IN  
OUT  
OUT  
OUT  
IN  
OUT  
OUT  
OUT  
36V TO 20V  
36V TO 20V  
IN  
IN  
36V TO 20V  
36V TO 20V  
IN  
IN  
Figure 13. 36VIN to 20VOUT without Heat Sink  
Figure 14. 36VIN to 20VOUT with Heat Sink  
applications inForMation  
Table 4. Boost Mode  
DERATING CURVE  
Figure 7, 9  
V
(V)  
POWER LOSS CURVE  
Figure 5  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)*  
11.4  
8.5  
OUT  
16, 30  
16, 30  
16, 30  
16, 30  
16, 30  
16, 30  
0
Figure 7, 9  
Figure 5  
200  
400  
0
None  
Figure 7, 9  
Figure 5  
None  
7.5  
Figure 8, 10  
Figure 8, 10  
Figure 8, 10  
Figure 5  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
11.0  
7.9  
Figure 5  
200  
400  
Figure 5  
7.1  
Table 5. Buck Mode  
DERATING CURVE  
Figure 11, 13  
V
(V)  
POWER LOSS CURVE  
Figure 6  
AIR FLOW (LFM)  
HEAT SINK  
None  
θ
JA  
(°C/W)*  
8.2  
OUT  
12, 20  
0
Figure 11, 13  
12, 20  
12, 20  
12, 20  
12, 20  
12, 20  
Figure 6  
200  
400  
0
None  
5.9  
Figure 11, 13  
Figure 6  
None  
5.4  
Figure 12, 14  
Figure 6  
BGA Heat Sink  
BGA Heat Sink  
BGA Heat Sink  
7.5  
Figure 12, 14  
Figure 6  
200  
400  
5.3  
Figure 12, 14  
Figure 6  
4.8  
HEAT SINK MANUFACTURER  
Aavid Thermalloy  
PART NUMBER  
WEBSITE  
375424B00034G  
www.aavidthermalloy.com  
www.coolinnovations.com  
Cool Innovations  
4-050503P to 4-050508P  
*The results of thermal resistance from junction to ambient θ are based on the demo board DC 1198A. Thus, the maximum temperature on board is treated  
JA  
as the junction temperature (which is in the µModule regulator for most cases) and the power losses from all components are counted for calculations. It  
has to be mentioned that poor board design may increase the θ  
.
JA  
4609fc  
19  
LTM4609  
applications inForMation  
Layout Checklist/Example  
•ꢀ Placeꢀaꢀdedicatedꢀpowerꢀgroundꢀlayerꢀunderneathꢀtheꢀ  
unit.  
The high integration of LTM4609 makes the PCB board  
layoutverysimpleandeasy.However,tooptimizeitselectri-  
cal and thermal performance, some layout considerations  
are still necessary.  
•ꢀ Toꢀminimizeꢀtheꢀviaꢀconductionꢀlossꢀandꢀreduceꢀmoduleꢀ  
thermal stress, use multiple vias for interconnection  
between the top layer and other power layers  
•ꢀ Doꢀnotꢀputꢀviasꢀdirectlyꢀonꢀpads,ꢀunlessꢀtheꢀviasꢀareꢀ  
•ꢀ UselargePCBcopperareasforhighcurrentpath,includ-  
capped.  
ing V , R  
, SW1, SW2, PGND and V . It helps to  
IN SENSE  
OUT  
minimize the PCB conduction loss and thermal stress.  
•ꢀ UseꢀaꢀseparatedꢀSGNDꢀgroundꢀcopperꢀareaꢀforꢀcom-  
ponents connected to signal pins. Connect the SGND  
to PGND underneath the unit.  
•ꢀ Placeꢀhighꢀfrequencyꢀinputꢀandꢀoutputꢀceramicꢀcapaci-  
tors next to the V , PGND and V  
pins to minimize  
IN  
OUT  
high frequency noise  
Figure 15. gives a good example of the recommended  
layout.  
+
•ꢀ RouteSENSE andSENSE leadstogetherwithminimum  
PC trace spacing. Avoid sense lines passing through  
noisy areas, such as switch nodes.  
SW1  
SW2  
V
IN  
L1  
C
IN  
R
SENSE  
V
OUT  
C
OUT  
+
SGND  
PGND  
PGND  
R
SENSE  
4609 F15  
KELVIN CONNECTIONS TO R  
SENSE  
Figure 15. Recommended PCB Layout  
(LGA Shown, for BGA Use Circle Pads)  
4609fc  
20  
LTM4609  
typical applications  
V
IN  
CLOCK SYNC  
12V TO 36V  
10µF  
50V  
×2  
V
12V  
10A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
100µF  
25V  
ON/OFF  
FCB  
L1  
4.7µH  
LTM4609  
COMP  
INTV  
SW1  
SW2  
CC  
R1  
PLLFLTR  
EXTV  
1.5k  
R
CC  
SENSE  
+
R3  
1k  
STBYMD  
SENSE  
C3  
0.1µF  
R2  
9mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
7.15k  
4609 TA02  
Figure 16. Buck Mode Operation with 12V to 36V Input  
V
IN  
CLOCK SYNC  
5V TO 12V  
4.7µF  
V
12V  
4A  
OUT  
V
PLLIN  
35V  
IN  
PGOOD  
RUN  
V
OUT  
+
330µF  
25V  
22µF  
25V  
×2  
ON/OFF  
FCB  
LTM4609  
COMP  
2200pF  
2Ω  
INTV  
SW1  
SW2  
CC  
R1  
1.5k  
PLLFLTR  
L1  
3.3µH  
OPTIONAL  
FOR LOW  
SWITCHING NOISE  
R3  
1k  
EXTV  
CC  
R
SENSE  
+
STBYMD  
SENSE  
C3  
0.1µF  
R2  
8mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
7.15k  
4609 TA03  
Figure 17. Boost Mode Operation with 5V to 12V Input with Low Switching Noise (Optional)  
4609fc  
21  
LTM4609  
typical applications  
V
IN  
CLOCK SYNC  
5V TO 36V  
10µF  
50V  
×2  
V
12V  
4A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
330µF  
25V  
22µF  
25V  
×4  
ON/OFF  
FCB  
2200pF  
LTM4609  
COMP  
INTV  
SW1  
CC  
R1  
1.5k  
2Ω  
L1  
3.3µH  
PLLFLTR  
SW2  
R3  
1k  
EXTV  
CC  
R
SENSE  
+
STBYMD  
SENSE  
C3  
0.1µF  
R2  
8mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
7.15k  
4609 TA04  
Figure 18. Wide Input Mode with 5V to 36V Input, 12V at 4A Output  
V
IN  
CLOCK SYNC  
8V TO 36V  
10µF  
50V  
×2  
V
32V  
2A  
OUT  
V
PLLIN  
IN  
PGOOD  
RUN  
V
OUT  
+
220µF  
50V  
ON/OFF  
FCB  
L1  
4.7µH  
LTM4609  
COMP  
INTV  
SW1  
SW2  
CC  
R1  
PLLFLTR  
EXTV  
1.5k  
R
CC  
SENSE  
+
R3  
1k  
STBYMD  
SENSE  
C3  
0.1µF  
R2  
9mΩ  
SS  
SENSE  
SGND  
V
FB  
PGND  
R
FB  
2.55k  
4609 TA05  
Figure 19. 32V at 2A Design  
4609fc  
22  
LTM4609  
typical applications  
V
IN  
5V TO 36V  
CLOCK SYNC 0° PHASE  
PLLIN  
10µF  
50V  
V
12V  
8A  
OUT  
R5  
100k  
V
IN  
PGOOD  
RUN  
V
OUT  
+
C2  
330µF  
25V  
FCB  
L1  
3.3µH  
22µF  
25V  
×2  
LTM4609  
COMP  
SW1  
SW2  
200Ω  
INTV  
CC  
LTC6908-1  
PLLFLTR  
R
5.1V  
SENSE  
+
5.1V  
ZENER  
C1  
EXTV  
CC  
SENSE  
0.1µF  
+
V
OUT1  
OUT2  
MOD  
R2  
8mΩ  
STBYMD  
R4  
324k  
GND  
SET  
SS  
SENSE  
C3  
0.1µF  
SGND  
V
FB  
PGND  
R
*
FB  
2-PHASE OSCILLATOR  
3.57k  
CLOCK SYNC 180° PHASE  
PLLIN  
10µF  
50V  
V
IN  
PGOOD  
V
OUT  
+
C4  
330µF  
25V  
FCB  
L2  
3.3µH  
22µF  
25V  
×2  
LTM4609  
RUN  
COMP  
SW1  
SW2  
INTV  
CC  
PLLFLTR  
EXTV  
R
SENSE  
+
*R IS SELECTED USING  
FB  
SENSE  
CC  
R3  
8mΩ  
STBYMD  
100k  
+RFB  
SS  
N
SENSE  
VOUT = 0.8V  
RFB  
WHERE N IS THE NUMBER  
OF PARALLELED MODULES.  
SGND  
V
FB  
PGND  
4609 TA06  
Figure 20. Two-Phase Parallel, 12V at 8A Design  
4609fc  
23  
LTM4609  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
Z
b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4609fc  
24  
LTM4609  
package Description  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
/ / b b b  
Z
6 . 9 8 5 0  
5 . 7 1 5 0  
4 . 4 4 5 0  
3 . 1 7 5 0  
1 . 9 0 5 0  
0 . 6 3 5 0  
0 . 0 0 0 0  
0 . 6 3 5 0  
1 . 9 0 5 0  
3 . 1 7 5 0  
4 . 4 4 5 0  
5 . 7 1 5 0  
6 . 9 8 5 0  
a a a  
Z
4609fc  
25  
LTM4609  
package Description  
Pin Assignment Table 6 (Arranged by Pin Number)  
PIN NAME FUNCTION PIN NAME FUNCTION PIN NAME FUNCTION PIN NAME FUNCTION PIN NAME FUNCTION PIN NAME FUNCTION  
A1  
A2  
PGND  
PGND  
PGND  
C1  
C2  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
E1  
E2  
V
V
G1  
G2  
V
V
V
V
J1  
J2  
SW1  
SW1  
SW1  
SW1  
L1  
L2  
SW1  
SW1  
SW1  
SW1  
OUT  
OUT  
OUT  
OUT  
OUT  
OUT  
A3  
C3  
E3  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
G3  
J3  
L3  
+
A4  
SENSE  
SENSE  
SS  
C4  
E4  
G4  
J4  
L4  
A5  
C5  
E5  
G5  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
J5  
R
L5  
R
SENSE  
SENSE  
SENSE  
SENSE  
SENSE  
A6  
C6  
E6  
G6  
J6  
R
R
L6  
R
A7  
SGND  
RUN  
C7  
E7  
G7  
J7  
L7  
SW2  
SW2  
SW2  
A8  
C8  
E8  
G8  
J8  
SW2  
SW2  
L8  
A9  
FCB  
C9  
E9  
G9  
J9  
L9  
A10  
A11  
A12  
B1  
STBYMD  
PGND  
PGND  
PGND  
PGND  
PGND  
PGND  
PGOOD  
C10  
C11  
C12  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
E10  
E11  
E12  
F1  
G10  
G11  
G12  
H1  
J10  
J11  
J12  
K1  
K2  
K3  
K4  
K5  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
V
V
V
L10  
L11  
L12  
M1  
M2  
M3  
M4  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
V
OUT  
V
OUT  
V
OUT  
V
OUT  
V
SW1  
SW1  
SW1  
SW1  
SW1  
SW1  
SW1  
SW1  
OUT  
OUT  
OUT  
OUT  
B2  
F2  
H2  
V
B3  
F3  
H3  
V
V
B4  
F4  
H4  
B5  
F5  
INTV  
H5  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
SENSE  
R
R
CC  
SENSE  
SENSE  
SENSE  
SENSE  
B6  
V
F6  
EXTV  
H6  
R
R
FB  
CC  
B7  
COMP  
PLLFLTR  
PLLIN  
PGND  
F7  
H7  
SW2  
SW2  
SW2  
SW2  
SW2  
SW2  
B8  
F8  
H8  
B9  
F9  
H9  
B10  
B11  
B12  
F10  
F11  
F12  
R
SENSE  
R
SENSE  
R
SENSE  
H10  
H11  
H12  
V
V
V
V
V
V
IN  
IN  
IN  
IN  
IN  
IN  
PGND  
PGND  
4609fc  
26  
LTM4609  
revision history (Revision history begins at Rev B)  
REV  
DATE  
DESCRIPTION  
PAGE NUMBER  
B
10/10 MP-grade part added. Reflected throughout the data sheet.  
1-26  
C
03/12 Added the BGA Package option and updated the Typical Application.  
Updated the Pin Configuration and Order Information sections.  
Updated Note 2.  
1
2
4
Added INTV maximum load current.  
7
CC  
Updated the recommended heat sinks table.  
Added BGA Package drawing.  
19  
25  
28  
Updated the Related Parts table.  
4609fc  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
27  
LTM4609  
package photos  
relateD parts  
PART NUMBER  
DESCRIPTION  
COMMENTS  
Synchronous Operation; Single Inductor, 4V ≤ V ≤ 36V, 0.8V ≤ V  
LTC3780  
36V Buck-Boost Controller  
≤ 30V  
OUT  
IN  
LTC3785  
10V Buck-Boost Controller  
Synchronous, No R  
™, 2.7V ≤ V ≤ 10V, 2.7V ≤ V  
≤ 10V  
OUT  
SENSE  
IN  
LTM4601/LTM4601A 12A DC/DC µModule Regulator with PLL, Output Synchronizable, PolyPhase® Operation to 48A, LTM4601-1 Has No Remote  
Tracking/ Margining and Remote Sensing  
Sensing  
LTM4603  
6A DC/DC µModule with PLL and Output  
Tracking/Margining and Remote Sensing  
Synchronizable, PolyPhase Operation, LTM4603-1 Version Has No Remote  
Sensing, Pin Compatible with the LTM4601  
LTM4604A  
4A, Low V , DC/DC µModule Regulator  
2.375V ≤ V ≤ 5.5V, 0.8V ≤ V  
≤ 5V, 9mm × 15mm × 2.32mm  
IN  
IN  
OUT  
LTM4605/LTM4607 5A High Efficiency Buck-Boost DC/DC µModule  
Regulators  
Pin Compatible with LTM4609, Lower Voltage Versions of the LTM4609  
LTM4606/LTM4612 Ultralow Noise DC/DC µModule Regulators  
Low EMI, LTM4606 Verified by Xilinx to Power Rocket IO™, CISPR22 Compliant  
LTM4608A  
LTM4627  
8A, Low V , DC/DC µModule Regulator  
2.7V ≤ V ≤ 5.5V, 0.6V ≤ V  
≤ 5V, 9mm × 15mm × 2.82mm  
IN  
IN  
OUT  
20V, 15A DC/DC Step-Down µModule Regulator  
4.5V ≤ V ≤ 20V, 0.6V ≤ V  
≤ 5V, PLL Input, V  
Tracking, Remote Sense  
IN  
OUT  
OUT  
Amplifier, 15mm × 15mm × 4.32mm LGA or 15mm × 15mm × 4.92mm BGA  
4609fc  
LT 0312 REV C • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
28  
l
l
LINEAR TECHNOLOGY CORPORATION 2009  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3785EUF#TR

IC 3 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, PLASTIC, MO-220WGGD, QFN-24, Switching Regulator or Controller
Linear

LTC3785EUF#TRPBF

LTC3785 - 10V, High Efficiency, Synchronous, No RSENSE Buck-Boost Controller; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3785EUF-1#PBF

LTC3785-1 - 10V, High Efficiency, Buck-Boost Controller with Power Good; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3785EUF-1#TRPBF

LTC3785-1 - 10V, High Efficiency, Buck-Boost Controller with Power Good; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3785EUF-1-PBF

10V, High Effi ciency, Buck-Boost Controller with Power Good
Linear

LTC3785EUF-1-TRPBF

10V, High Effi ciency, Buck-Boost Controller with Power Good
Linear

LTC3785EUF-PBF

10V, High Effi ciency, Synchronous, No RSENSE Buck-Boost Controller
Linear

LTC3785EUF-TR

10V, High Effi ciency, Synchronous, No RSENSE Buck-Boost Controller
Linear

LTC3785EUF-TRPBF

10V, High Effi ciency, Synchronous, No RSENSE Buck-Boost Controller
Linear

LTC3785IUF

IC 3 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, PLASTIC, MO-220WGGD, QFN-24, Switching Regulator or Controller
Linear

LTC3785IUF#PBF

LTC3785 - 10V, High Efficiency, Synchronous, No RSENSE Buck-Boost Controller; Package: QFN; Pins: 24; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3785IUF#TR

IC 3 A SWITCHING CONTROLLER, 1000 kHz SWITCHING FREQ-MAX, PQCC24, 4 X 4 MM, PLASTIC, MO-220WGGD, QFN-24, Switching Regulator or Controller
Linear