LTC3789IUFD#TRPBF [Linear]

LTC3789 - High Efficiency, Synchronous, 4-Switch Buck-Boost Controller; Package: QFN; Pins: 28; Temperature Range: -40°C to 85°C;
LTC3789IUFD#TRPBF
型号: LTC3789IUFD#TRPBF
厂家: Linear    Linear
描述:

LTC3789 - High Efficiency, Synchronous, 4-Switch Buck-Boost Controller; Package: QFN; Pins: 28; Temperature Range: -40°C to 85°C

控制器
文件: 总32页 (文件大小:395K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LT3796  
100V Constant-Current and  
Constant-Voltage Controller  
with Dual Current Sense  
DESCRIPTION  
FEATURES  
The LT®3796 is a DC/DC controller designed to regulate a  
constant-current or constant-voltage and is ideal for driv-  
ing LEDs. It drives a low side external N-channel power  
MOSFET from an internal regulated 7.7V supply. The fixed  
frequency and current mode architecture result in stable  
operation over a wide range of supply and output volt-  
ages. Two ground referred voltage FB pins serve as the  
input for several LED protection features, and also allow  
the converter to operate as a constant-voltage source.  
The LT3796 features a programmable threshold output  
sense amplifier with rail-to-rail common mode range. The  
LT3796 also includes a separate high side current sensing  
amplifier that is gain configurable with two resistors. The  
TG pin inverts and level shifts the PWM signal to drive  
the gate of the external PMOS. The PWM input provides  
LED dimming ratios of up to 3000:1, and the CTRL input  
provides additional analog dimming capability.  
n
3000:1 True Color PWM™ Dimming  
n
Wide Input Voltage Range: 6V to 100V  
n
Current Monitoring Up to 100V  
n
High Side PMOS Disconnect and PWM Switch Driver  
n
Constant-Current and Constant-Voltage Regulation  
n
Dual Current Sense Amplifiers with Reporting  
n
C/10 Detection for Battery and SuperCap Charging  
n
Linear Current Sense Threshold Programming  
n
Short-Circuit Protection  
n
Adjustable Frequency: 100kHz to 1MHz  
n
Frequency Synchronization  
n
Programmable Open LED Protection with VMODE Flag  
n
Programmable Undervoltage Lockout with Hysteresis  
n
Soft-Start with Programmable Fault Restart Timer  
n
Low Shutdown Current: <1μA  
n
Available in 28-Lead TSSOP Package  
APPLICATIONS  
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and True  
Color PWM is a trademark of Linear Technology Corporation. All other trademarks are the  
property of their respective owners. Protected by U.S. Patents, including 7199560, 7321203,  
7746300.  
n
High Power LED, High Voltage LED  
n
Battery and SuperCap Chargers  
n
Accurate Current Limited Voltage Regulators  
TYPICAL APPLICATION  
Boost LED Driver with Input Current Monitor  
Efficiency vs VIN  
22µH  
50mΩ  
V
IN  
100  
9V TO 60V  
100V (TRANSIENT)  
2.2µF  
×4  
2k  
95  
2.2µF  
×3  
1M  
1M  
499k  
V
V
CSP  
CSN  
GATE  
90  
IN  
S
13.7k  
EN/UVLO  
118k  
85  
97.6k  
V
SENSE  
REF  
15mΩ  
CTRL  
80  
75  
70  
LT3796  
GND  
FB1  
ISP  
C
SOUT  
CSOUT  
PWM  
10nF  
100k  
40.2k  
100k  
PWM  
ISMON  
SYNC  
0
10  
20  
30  
(V)  
40  
50  
60  
0.1µF  
620mΩ  
INTV  
CC  
V
IN  
ISN  
TG  
3796 TA01b  
FAULT  
FAULT  
INTV  
CC  
INTV  
CC  
VMODE  
VMODE  
V
C
RT  
FB2  
SS  
4.7µF  
85V LED  
400mA  
31.6k  
250kHz  
10k  
0.1µF  
10nF  
3796 TA01a  
3796f  
1
LT3796  
ABSOLUTE MAXIMUM RATINGS  
PIN CONFIGURATION  
(Note 1)  
V , V ....................................................................100V  
IN  
S
TOP VIEW  
EN/UVLO.................................................................100V  
ISP, ISN...................................................................100V  
TG, GATE...............................................................Note 3  
CSP, CSN ................................................................100V  
1
2
CSOUT  
CSP  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ISP  
ISN  
3
CSN  
TG  
4
V
S
GND  
ISMON  
FB2  
V - CSP, V - CSN ....................................... –0.3V to 4V  
S
S
5
EN/UVLO  
INTV (Note 2) .....................................8.6V, V + 0.3V  
CC  
IN  
6
V
IN  
PWM, VMODE, FAULT ...............................................12V  
FB1, FB2, SYNC...........................................................8V  
CTRL.........................................................................15V  
SENSE......................................................................0.5V  
ISMON, CSOUT...........................................................5V  
7
GND  
GND  
FB1  
29  
GND  
8
V
C
9
INTV  
CC  
CTRL  
10  
11  
12  
13  
14  
GATE  
V
REF  
SS  
SENSE  
GND  
V , V , SS................................................................3V  
C
REF  
RT  
RT...............................................................................2V  
VMODE  
FAULT  
SYNC  
PWM  
Operating Junction Temperature Range (Note 4)  
LT3796E/LT3796I ..................................40 to 125°C  
LT3796H ................................................–40 to 150°C  
Storage Temperature Range ......................–65 to 150°C  
FE PACKAGE  
T
= 150°C, θ = 30°C/W, θ = 10°C/W  
JMAX  
JA JC  
EXPOSED PAD (PIN 29) IS GND, MUST BE SOLDERED TO PCB  
ORDER INFORMATION  
LEAD FREE FINISH  
LT3796EFE#PBF  
LT3796IFE#PBF  
LT3796HFE#PBF  
TAPE AND REEL  
PART MARKING*  
LT3796FE  
PACKAGE DESCRIPTION  
TEMPERATURE RANGE  
LT3796EFE#TRPBF  
LT3796IFE#TRPBF  
LT3796HFE#TRPBF  
28-Lead Plastic TSSOP  
28-Lead Plastic TSSOP  
28-Lead Plastic TSSOP  
–40°C to 125°C  
–40°C to 125°C  
–40°C to 150°C  
LT3796FE  
LT3796FE  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
Consult LTC Marketing for information on non-standard lead based finish parts.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
3796f  
2
LT3796  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 24V, EN/UVLO = 24V, CTRL = 2V, PWM = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
Tied to INTV  
CC  
MIN  
TYP  
MAX  
UNITS  
V
V
Minimum Operating Voltage  
V
6
V
IN  
IN  
IN  
Shutdown I  
EN/UVLO = 0V, PWM = 0V  
EN/UVLO = 1.15V, PWM = 0V  
1
12  
µA  
µA  
Q
V
V
V
V
Operating I (Not Switching)  
R = 82.5k to GND, FB1 = 1.5V  
2.5  
2.015  
1.5  
3
mA  
V
IN  
Q
T
l
l
Voltage  
–100µA ≤ I ≤ 10µA  
1.97  
100  
2.06  
REF  
REF  
REF  
REF  
Pin Line Regulation  
Pin Load Regulation  
6V < V < 100V  
m%/V  
m%/µA  
mV  
IN  
–100µA < I < 0µA  
10  
REF  
SENSE Current Limit Threshold  
SENSE Input Bias Current  
SS Sourcing Current  
113  
60  
125  
Current Out of Pin  
SS = 0V  
µA  
28  
µA  
SS Sinking Current  
ISP – ISN = 1V, SS = 2V  
2.8  
µA  
Error Amplifier  
l
l
Full Scale LED Current Sense Threshold  
(ISP-ISN)  
ISP = 48V, CTRL ≥ 1.2V  
ISP = 0V, CTRL ≥ 1.2V  
243  
243  
250  
250  
257  
257  
mV  
mV  
(V  
)
l
l
9/10th LED Current Sense Threshold  
(V  
CTRL = 1V, ISP = 48V  
CTRL = 1V, ISP = 0V  
220  
220  
225  
225  
230  
230  
mV  
mV  
)
(ISP-ISN)  
l
l
1/2 LED Current Sense Threshold  
(V  
CTRL = 0.6V, ISP = 48V  
CTRL = 0.6V, ISP = 0V  
119  
119  
125  
125  
131  
131  
mV  
mV  
)
(ISP-ISN)  
l
l
1/10th LED Current Sense Threshold  
(V  
CTRL = 0.2V, ISP = 48V  
CTRL = 0.2V, ISP = 0V  
16  
16  
25  
25  
32  
32  
mV  
mV  
)
(ISP-ISN)  
l
l
ISP/ISN Current Monitor Voltage (V  
)
V
V
= 250mV, ISP = 48V, 50µA < I  
= 250mV, ISP = 0V, 50µA < I  
< 0 µA  
< 0 µA  
0.96  
0.96  
1
1
1.04  
1.04  
V
V
ISMON  
(ISP-ISN)  
(ISP-ISN)  
ISMON  
ISMON  
l
l
ISP/ISN Over Current Protection Threshold  
(V  
ISN = 48V  
ISN = 0V  
360  
360  
375  
375  
390  
390  
mV  
mV  
)
(ISP-ISN)  
CTRL Input Bias Current  
Current Out of Pin, CTRL = 1.2V  
50  
200  
100  
nA  
V
ISP/ISN Current Sense Amplifier Input  
Common Mode Range  
0
ISP/ISN Input Current Bias Current  
(Combined)  
PWM = 5V (Active), ISP = 48V  
PWM = 0V (Standby), ISP = 48V  
700  
0
µA  
µA  
0.1  
ISP/ISN Current Sense Amplifier g  
V
= 250mV  
(ISP-ISN)  
400  
µs  
kΩ  
nA  
m
V Output Impedance  
C
2000  
V Standby Input Bias Current  
C
PWM = 0V  
–20  
20  
l
FB1, FB2 Regulation Voltage (V  
)
FB  
ISP = ISN = 48V  
ISP = ISN = 48V  
1.230  
1.238  
1.250  
1.250  
1.270  
1.264  
V
V
FB1 Amplifier g  
FB2 Amplifier g  
800  
130  
1000  
170  
1200  
210  
µS  
µS  
nA  
V
m
m
FB1, FB2 Pin Input Bias Current  
FB1 Open LED Threshold  
FB = V  
100  
200  
FB  
VMODE Falling, ISP = ISN = 48V  
V
FB  
– 70mV  
V
– 60mV V – 50mV  
FB  
FB  
C/10 Comparator Threshold (V  
)
VMODE Falling, FB1 = 1.5V, ISP = 48V  
VMODE Falling, FB1 = 1.5V, ISN = 0V  
25  
25  
mV  
mV  
(ISP-ISN)  
FB1 Overvoltage Threshold  
FB2 Overvoltage Threshold  
FAULT Falling  
V
V
+ 35mV  
+ 35mV  
V
V
+ 50mV V + 60mV  
V
V
FB  
FB  
FB  
TG Rising  
+ 50mV V + 60mV  
FB  
FB  
FB  
V Current Mode Gain (∆V /∆V )  
SENSE  
4.2  
V/V  
C
VC  
3796f  
3
LT3796  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 24V, EN/UVLO = 24V, CTRL = 2V, PWM = 5V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Current Sense Amplifier (CSA)  
l
l
Power Supply Voltage Range (V )  
3
100  
100  
V
V
S
CSA Input Voltage Common Mode Range  
2.5  
(V  
and V  
)
CSP  
CSN  
l
l
CSOUT Maximum Output Current  
Input Voltage Offset (V  
CSOUT = 10kΩ to GND  
200  
3
µA  
mV  
nA  
nA  
µA  
µs  
)
V
SNS  
V
SNS  
V
SNS  
= 100mV, V = 48V (Note 5)  
–3  
0
100  
0
(CSP-CSN)  
S
CSP, CSN Input Bias Current  
CSP, CSN Input Current Offset  
= 0mV, R = R = 1k (Note 5)  
IN1 IN2  
= 0mV, R = R = 1k (Note 5)  
IN1  
IN2  
V Supply Current  
S
V = 48V  
S
80  
1
Input Step Response ( to 50% of Output Step) V  
= 100mV Step, R = R = 1k, R = 10k  
IN1 IN2 OUT  
SENSE  
Linear Regulator  
l
INTV Regulation Voltage  
7.4  
7.7  
8
V
CC  
Dropout (V INTV  
)
I
= –20mA, V = 6V  
400  
mV  
IN  
CC  
INTVCC  
IN  
INTV Current Limit  
V
V
= 100V, INTV = 6V  
20  
85  
mA  
mA  
CC  
IN  
IN  
CC  
= 12V, INTV = 6V  
CC  
INTV Shutdown Bias Current if Externally  
EN/UVLO = 0V, INTV = 7V  
10  
µA  
CC  
CC  
Driven to 7V  
INTV Undervoltage Lockout  
3.8  
4
4.1  
V
CC  
INTV Undervoltage Lockout Hysteresis  
150  
mV  
CC  
Oscillator  
l
l
l
Switching Frequency  
R = 82.5k  
85  
340  
900  
105  
400  
1000  
125  
480  
1150  
kHz  
kHz  
kHz  
T
R = 19.6k  
T
R = 6.65k  
T
Minimum Off-Time  
(Note 6)  
(Note 6)  
190  
210  
ns  
ns  
Minimum On-Time  
LOGIC Input/Outputs  
l
l
PWM Input Threshold Rising  
PWM Pin Bias Current  
0.96  
1
10  
1.04  
V
µA  
V
EN/UVLO Threshold Voltage Falling  
EN/UVLO Rising Hysteresis  
EN/UVLO Input Low Voltage  
EN/UVLO Pin Bias Current Low  
EN/UVLO Pin Bias Current High  
VMODE OUTPUT Low  
1.185  
1.220  
20  
1.250  
mV  
V
I
Drops Below 1µA  
0.4  
2.5  
VIN  
EN/UVLO = 1.15V  
EN/UVLO = 1.30V  
3
3.8  
200  
300  
300  
µA  
nA  
mV  
mV  
kΩ  
V
40  
I
I
= 0.5mA  
VMODE  
FAULT OUTPUT Low  
= 0.5mA  
FAULT  
SYNC Pin Resistance to GND  
SYNC Input Low Threshold  
SYNC Input High Threshold  
40  
0.4  
1.5  
V
3796f  
4
LT3796  
ELECTRICAL CHARACTERISTICS The l denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C, VIN = 24V, EN/UVLO = 24V, CTRL = 2V, PWM = 5V, unless otherwise noted.  
PARAMETER  
Gate Driver  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
t NMOS GATE Driver Output Rise Time  
C = 3300pF, 10% to 90%  
20  
18  
ns  
ns  
V
r
L
t NMOS GATE Driver Output Fall Time  
f
C = 3300pF, 10% to 90%  
L
NMOS GATE Output Low (V  
)
OL  
0.05  
NMOS GATE Output High (V  
)
OH  
INTV  
V
CC  
0.05  
t Top GATE Driver Output Rise Time  
C = 300pF  
50  
100  
7
ns  
ns  
V
r
L
t Top GATE Driver Output Fall Time  
f
C = 300pF  
L
Top Gate On Voltage (V -V  
)
ISP = 48V  
8
ISP TG  
Top Gate Off Voltage (V -V  
)
PWM = 0V, ISP = 48V  
0
0.3  
V
ISP TG  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
correlation with statistical process controls. The LT3796I is guaranteed  
to meet performance specifications over the –40°C to 125°C operating  
temperature range. The LT3796H is guaranteed over the full –40°C to  
150° C operating junction temperature range. High junction temperatures  
degrade operating lifetimes. Operating lifetime is derated at junction  
temperatures greater than 125°C.  
Note 2: Operating maximum for INTV is 8V.  
CC  
Note 3: Do not apply a positive or negative voltage source to TG and GATE  
pins, otherwise permanent damage may occur.  
Note 5: Measured in servo. See Figure 9 for details.  
Note 6: See Duty Cycle Considerations in the Applications Information  
section.  
Note 4: The LT3796E is guaranteed to meet specified performance  
from 0°C to 125°C. Specifications over the –40°C to 125°C operating  
temperature range are assured by design, characterization and  
3796f  
5
LT3796  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, unless otherwise noted.  
V(ISP-ISN) Full-Scale Threshold vs  
Temperature  
V(ISP-ISN) Threshold vs VCTRL  
V(ISP-ISN) Threshold vs VISP  
254  
253  
252  
251  
300  
250  
253  
252  
ISP = 48V  
CTRL = 2V  
200  
150  
100  
251  
250  
249  
250  
249  
248  
247  
246  
50  
0
248  
247  
50  
100 125 150  
0.8  
(V)  
1.2  
1.4  
60  
(V)  
100  
–50 –25  
0
25  
75  
0
0.2  
0.4 0.6  
1.0  
0
20  
40  
80  
TEMPERATURE (°C)  
V
CTRL  
V
ISP  
3796 G03  
3796 G01  
3796 G02  
V
(ISP-ISN) Threshold at CTRL = 0.6V  
V(ISP-ISN) Threshold vs FB Voltage  
VFB vs Temperature  
vs Temperature  
300  
250  
200  
128  
127  
126  
125  
124  
1.27  
1.26  
FB1  
FB2  
150  
100  
50  
1.25  
1.24  
1.23  
123  
122  
0
1.2  
(V)  
1.25  
1.3  
1.1  
1.15  
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G03a  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G05  
–50 –25  
V
FB  
3796 G04  
ISP/ISN Overcurrent Protection  
Threshold vs Temperature  
ISP/ISN Input Bias Current vs  
VISP , VISN  
VREF Voltage vs Temperature  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
380  
378  
376  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
1.96  
PWM = 5V  
I
= 0µA  
REF  
ISP  
I
= –100µA  
REF  
374  
372  
370  
ISN  
40  
60  
80  
100  
0
20  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G06  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
–50 –25  
–50 –25  
V
, V (V)  
ISP ISN  
3796 G07  
3796 G08  
3796f  
6
LT3796  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
Switching Frequency vs  
Temperature  
V
REF vs VIN  
RT vs Switching Frequency  
440  
430  
420  
410  
400  
390  
380  
370  
360  
2.05  
2.04  
2.03  
2.02  
2.01  
2.00  
1.99  
1.98  
1.97  
100  
10  
1
R
T
= 19.6k  
I
= 0µA  
REF  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G11  
–50 –25  
0
60  
(V)  
80  
100  
0
20  
40  
500 600 700 800 900 1000  
0
100 200 300 400  
V
SWITCHING FREQUENCY (kHz)  
IN  
3796 G09  
3796 G10  
Switching Frequency vs  
SS Voltage  
Quiescent Current vs VIN  
VISMON vs V(ISP-ISN)  
450  
400  
350  
300  
2.5  
2.0  
1.5  
2000  
1800  
1600  
1400  
1200  
1000  
800  
250  
200  
150  
1.0  
0.5  
0
600  
100  
50  
0
400  
200  
PWM = 0V  
0
200  
300  
400  
500  
200  
400  
600  
800 1000 1200  
0
100  
0
60  
(V)  
80  
100  
0
20  
40  
V
(mV)  
SS VOLTAGE (mV)  
V
(ISP-ISN)  
IN  
3796 G13  
3796 G11a  
3796 G12  
EN/UVLO Falling/Rising  
Threshold vs Temperature  
SENSE Current Limit Threshold vs  
Temperature  
EN/UVLO Hysteresis Current vs  
Temperature  
118  
117  
3.5  
3.0  
2.5  
2.0  
1.28  
1.27  
116  
115  
114  
113  
112  
111  
1.26  
1.25  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
EN/UVLO RISING THRESHOLD  
EN/UVLO FALLING THRESHOLD  
1.5  
1.0  
0.5  
0
110  
109  
108  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G16  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G14  
–50 –25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G15  
–50 –25  
–50 –25  
3796f  
7
LT3796  
TYPICAL PERFORMANCE CHARACTERISTICS TA = 25°C, unless otherwise noted.  
INTVCC Current Limit  
vs Temperature  
SENSE Current Limit Threshold vs  
Duty Cycle  
INTVCC Current Limit vs VIN  
120  
115  
120  
100  
80  
100  
90  
V
IN  
= 24V  
80  
110  
105  
100  
60  
40  
20  
0
V
= 48V  
IN  
70  
60  
50  
20  
40  
60  
80  
100  
60  
(V)  
80  
100  
0
0
20  
40  
–50 –25  
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G19  
0
DUTY CYCLE (%)  
V
IN  
3796 G17  
3796 G18  
INTVCC Dropout Voltage vs  
Current, Temperature  
INTVCC vs VIN  
INTVCC vs Temperature  
1800  
1600  
1400  
1200  
1000  
800  
9
8
7
6
5
4
3
2
1
0
8.0  
7.9  
7.8  
7.7  
7.6  
7.5  
7.4  
7.3  
V
IN  
= 6V  
150°C  
125°C  
75°C  
25°C  
0°C  
600  
400  
200  
–55°C  
–40°C  
10  
0
5
15  
20  
0
20  
40  
60  
(V)  
80  
100  
0
–25  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G22  
–50  
INTV LOAD (mA)  
V
CC  
IN  
3796 G21  
3796 G20  
V(CSP-CSN) Offset Voltage with  
Different ICSOUT vs VS  
V(CSP-CSN) Offset Voltage vs  
Temperature  
Current Sense Amplifier Gain  
Error vs Temperature  
2.0  
1.5  
1.0  
0.5  
0
2
1
0.6  
0.4  
I
= 100µA  
CSOUT  
I
= 100µA  
CSOUT  
I
= 10µA  
CSOUT  
I
= 50µA  
= 10µA  
I
= 100µA  
CSOUT  
CSOUT  
I
= 50µA  
CSOUT  
0
–1  
–2  
0.2  
0
I
= 50µA  
CSOUT  
–0.5  
–1.0  
–1.5  
–2  
I
CSOUT  
I
= 10µA  
CSOUT  
SEE NOTE 5 FOR TEST SETUP  
20 40 60  
–0.2  
–25  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 G25  
80  
100  
–25  
–50  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
0
V
(V)  
S
3796 G23  
3796 G24  
3796f  
8
LT3796  
TA = 25°C, unless otherwise noted.  
TYPICAL PERFORMANCE CHARACTERISTICS  
Top Gate (PMOS) Rise/Fall Time  
vs Capacitance  
NMOS Gate Rise/Fall Time vs  
Capacitance  
Current Sense Amplifier Gain vs  
Frequency  
160  
140  
120  
100  
80  
800  
700  
600  
500  
400  
300  
200  
100  
0
30  
25  
20  
15  
10  
5
RISE TIME  
FALL TIME  
FALL TIME  
0
60  
–5  
40  
–10  
–15  
–20  
V
= 48V, R = 1k  
IN  
S
RISE TIME  
20  
R
= 10k, V  
= 100mV  
OUT  
SENSE  
(NOTE 5)  
0
10  
20  
30  
40  
50  
1
2
3
4
5
6
7
8
9
10  
0
0
0.1  
1
10  
100 1000 10000  
0.01  
CAPACITANCE (nF)  
CAPACITANCE (nF)  
FREQUENCY (kHz)  
3796 G26  
3796 G27  
3796 G28  
Top Gate Driver Rising Edge  
Top Gate Driver Falling Edge  
5V  
0V  
PWM  
TG  
5V  
0V  
PWM  
TG  
85V  
75V  
85V  
75V  
3796 G29  
3796 G30  
100ns/DIV  
100ns/DIV  
PMOS VISHAY SILICONIX Si7113DN  
PMOS VISHAY SILICONIX Si7113DN  
3796f  
9
LT3796  
PIN FUNCTIONS  
ISP (Pin 1): Connection Point for the Positive Terminal  
V (Pin 8): Transconductance Error Amplifier Output Pin.  
C
of the Current Feedback Resistor (R ). Also serves as  
Used to stabilize the control loop with an RC network.  
This pin is high impedance when PWM is low, a feature  
that stores the demand current state variable for the next  
PWM high transition. Connect a capacitor between this  
pin and GND; a resistor in series with the capacitor is  
recommended for fast transient response. Do not leave  
this pin open.  
LED  
positive rail for TG pin driver.  
ISN (Pin 2): Connection Point for the Negative Terminal  
of the Current Feedback Resistor (R ).  
LED  
TG(Pin3):TopGateDriverOutput.AninvertedPWMsignal  
drives series PMOS device between V and (V – 7V)  
ISP  
ISP  
if V > 7V. An internal 7V clamp protects the PMOS gate  
ISP  
CTRL (Pin 9): Current Sense Threshold Adjustment Pin.  
by limiting VGS. Leave TG unconnected if not used.  
RegulatingthresholdV  
is0.25•V  
CTRL  
plusanoffset  
(ISP-ISN)  
< 1V. For V  
CTRL  
GND (Pins 4, 17, 21, 22, Exposed Pad Pin 29): Ground.  
These pins also serve as current sense input for control  
loop,sensingnegativeterminalofcurrentsenseresistorin  
the source of the N-channel MOSFET. Solder the exposed  
pad directly to ground plane.  
for 0.1V < V  
> 1.2V the current sense  
CTRL  
threshold is constant at the full-scale value of 250mV. For  
1V < V < 1.2V, the dependence of the current sense  
CTRL  
threshold upon V  
transitions from a linear function  
CTRL  
to a constant value, reaching 98% of full-scale value by  
= 1.1V. Connect CTRL to V for the 250mV default  
V
CTRL  
REF  
ISMON (Pin 5): ISP/ISN Current Report Pin. The LED  
current sensed by ISP/ISN inputs is reported as V  
current threshold. Do not leave this pin open. Pull CTRL  
pin to GND for zero LED current.  
=
ISMON  
I
• R • 4. Leave ISMON pin unconnected if not used.  
LED  
LED  
When PWM is low, ISMON is driven to ground. Bypass  
V
(Pin 10): Voltage Reference Output Pin. Typically  
REF  
with a 47nF capacitor or higher if needed.  
2.015V. This pin drives a resistor divider for the CTRL  
pin, either for analog dimming or for temperature limit/  
compensation of LED load. It can supply up to 100μA.  
FB2 (Pin 6): Voltage Loop Feedback 2 Pin. This pin is  
connectedtotheinternaltransconductanceamplifierposi-  
tive input node. The internal transconductance amplifier  
SS (Pin 11): Soft-Start Pin. This pin modulates oscillator  
with output V regulates FB2 to 1.25V through the DC/  
frequency and compensation pin voltage (V ) clamp. The  
C
C
DC converter. If FB2 is driven above 1.3V, the TG pin is  
pulled high to turn off the external PMOS and GATE pin is  
driven to GND to turn off the external N-channel MOSFET.  
Connect to GND if not used.  
soft-start interval is set with an external capacitor. The pin  
has a 28μA (typical) pull-up current source to an internal  
2.5V rail. This pin can be used as fault timer. Provided the  
SS pin has exceeded 1.7V, the pull-up current source is  
disabled and a 2.8µA pull-down current enabled when any  
one of the following fault conditions happen:  
FB1 (Pin 7): Voltage Loop Feedback 1 Pin. FB1 is intended  
forconstant-voltageregulationorforLEDprotection/open  
LED detection. The internal transconductance amplifier  
1. LED overcurrent  
with output V regulates FB1 to 1.25V (nominal) through  
2. INTV undervoltage  
C
CC  
the DC/DC converter. If the FB1 input is regulating the loop  
3. Thermal limit  
and V  
is less than 25mV (normal), the VMODE  
(ISP-ISN)  
The SS pin must be discharged below 0.2V to reinitiate a  
soft-startcycle.SwitchingisdisableduntilSSisrecharged.  
pull-down is asserted. This action may signal an open  
LED fault. If FB1 is driven above the 1.3V (by an external  
power supply spike, for example), the FAULT pull-down is  
asserted, the GATE pin is pulled low to turn off the external  
N-channelMOSFETandtheTGpinisdrivenhightoprotect  
the LEDs from an overcurrent event. Do not leave the FB1  
pin open. If not used, connect FB1 to GND.  
RT (Pin 12): Switching Frequency Adjustment Pin. Set the  
frequency using a resistor to GND (for resistor values, see  
the Typical Performance curve or Table 2). Do not leave  
the RT pin open.  
3796f  
10  
LT3796  
PIN FUNCTIONS  
SYNC (Pin 13): The SYNC pin is used to synchronize the  
INTV (Pin20):RegulatedSupplyforInternalLoads,GATE  
CC  
internal oscillator to an external logic level signal. If SYNC  
Driver and Top Gate (PMOS) Driver. Supplied from V and  
IN  
is used, the R resistor should be chosen to program an  
regulates to 7.7V (typical). INTV must be bypassed with  
CC  
T
internal switching frequency 20% slower than the SYNC  
pulse frequency. Gate turn-on occurs a fixed delay after  
the rising edge of SYNC. Use a 50% duty cycle waveform  
to drive this pin. If not used, tie this pin to GND.  
a 4.7μF capacitor placed close to the pin. Connect INTV  
CC  
directly to V if V is always less than or equal to 7V.  
IN  
IN  
V (Pin 23): Input Supply Pin. Must be locally bypassed  
IN  
with a 0.22μF (or larger) capacitor placed close to the IC.  
PWM (Pin 14): PWM Input Signal Pin. A signal low turns  
EN/UVLO (Pin 24): Enable and Undervoltage Lockout  
Pin. An accurate 1.22V falling threshold with externally  
programmable hysteresis detects when power is OK to  
enable switching. Rising hysteresis is generated by the  
external resistor divider and an accurate internal 3μA  
pull-down current. Above the threshold (but below 6V),  
EN/UVLO input bias current is sub-μA. Below the falling  
threshold, a 3μA pull-down current is enabled so the  
user can define the hysteresis with the external resistor  
selection. An undervoltage condition resets soft-start.  
off switching, idles the oscillator, disconnects the V pin  
C
from all internal loads, and makes the TG pin high.  
FAULT (Pin 15): An open-collector pull-down on FAULT  
asserts when any of the following conditions happen: 1.  
FB1 overvoltage (V > 1.3V), 2. INTV undervoltage,  
FB1  
CC  
3. LED overcurrent (V  
> 375mV), or 4. Thermal  
(ISP-ISN)  
shutdown. If all faults are removed, FAULT flag returns  
high. Fault status is only updated during PWM high  
state and latched during PWM low state. FAULT remains  
asserted until the SS pin is discharged below 0.2V for  
cases 2, 3 and 4 above.  
Tie to 0.4V, or less, to disable the device and reduce V  
quiescent current below 1μA.  
IN  
VMODE(Pin16): An open-collector pull-downon VMODE  
V (Pin 25): Current Sense Amplifier Power Supply Pin.  
S
asserts if the FB1 input is above 1.19V (typical), and  
This pin supply current to the current sense amplifier and  
V
is less than 25mV (typical). To function, the  
can operate from 3V to 100V.  
(ISP-ISN)  
pin requires an external pull-up resistor. VMODE status is  
updated only during PWM high state and latched during  
PWM low state.  
CSN (Pin 26): Negative Current Sense Input Terminal.  
CSN remains functional for voltages up to 100V. Typically  
connected to V and CSP as shown in Figure 9.  
S
SENSE (Pin 18): The current sense input for the control  
CSP (Pin 27): Positive Current Sense Input Terminal. The  
loop. Kelvin connect this pin to the positive terminal of  
internalsenseamplifiersinkscurrentfromCSPtoregulate  
the switch current sense resistor, R  
, in the source  
SENSE  
it to the same potential as CSN. A resistor (R ) tied from  
IN1  
= V /R  
of the N-channel MOSFET. The negative terminal of the  
current sense resistor should be Kelvin connected to the  
GND plane of the IC.  
V
V
to CSP sets the output current I  
SNS  
.
IN  
CSOUT  
SNS  
SNS IN1  
is the voltage developed across R . See Figure 9.  
CSOUT (Pin 28): Current Sense Amplifier Output. CSOUT  
pin sources the current that is drawn from CSP. Typically  
is output to an external resistor to GND.  
GATE (Pin 19): N-Channel MOSFET Gate Driver Output.  
Switches between INTV and GND. It is driven to GND  
CC  
during shutdown, fault or idle states.  
3796f  
11  
LT3796  
BLOCK DIAGRAM  
FB1  
V
TG  
PWM  
1.25V  
V
IN  
C
A1  
EN/UVLO  
+
LDO  
+
ISP  
ISP-7V  
SHDN  
A3  
A2  
gm  
A4  
+
+
1.22V  
3µA  
7.7V  
INTV  
CC  
10µA AT  
FB1 = 1.25V  
OVFB1  
1.3V  
1.25V  
0VFB  
COMPARA  
TOR  
SHORT-CIRCUIT  
DETECT  
1.5V  
+
TGOFFB  
SCILMB  
A5  
V
LED  
2.5V  
ISMON  
ISP  
X1  
10µA  
gm  
FAULTB  
+
100mV  
+
EAMP  
GATE  
DRIVER  
– +  
1.1V  
X4  
+
R
Q
A7  
S
ISN  
10µA AT  
A6  
+
A1 = A1  
PWM  
TOR  
COMPARA  
CTRL  
FB2  
I
LIM  
113mV  
+
A8  
gm  
A9  
+
10µA AT  
FB2 = 1.25V  
1.25V  
A16  
+
V
S
0VFB2  
1.3V  
5.5V  
5.5V  
I
SENSE  
SENSE  
GND  
CSP  
+
2.5V  
A10  
28µA  
THERMAL  
SHDN  
A11  
CSN  
RAMP  
TOR  
+
GENERA  
PWM  
SS  
CSOUT  
100kHz TO 1MHz  
TOR  
TGOFFB  
FAULTB  
5.5V  
OSCILLA  
VMODE  
SS AND FAULT  
LOGIC  
FAULT  
1mA  
2.8µA  
A12  
A14  
1.19V  
OVFB1 INTV SCILMB  
CC  
OVFB2  
1V  
+
+
+
FB1  
INTV  
CC  
A13  
FREQ  
PROG  
100µA  
V
V
LED  
REF  
+
200mV  
+
A15  
ARATOR  
C/10 COMP  
WITH 200mV  
HYSTERESIS  
2.015V  
SS  
RT  
SYNC  
3796 BD  
LT3796 Block Diagram  
3796f  
12  
LT3796  
OPERATION  
The LT3796 is a constant-frequency, current mode con-  
troller with a low side NMOS gate driver. The operation of  
the LT3796 is best understood by referring to the Block  
Diagram. In normal operation, with the PWM pin low, the  
GATE pin is driven to GND, the TG pin is pulled high to ISP  
1.3V), LED over current, or INTV undervoltage (INTV  
CC CC  
< 4V), the GATE pin is pulled down to GND immediately.  
In voltage feedback mode, the operation is similar to that  
described above, except the voltage at the V pin is set  
C
by the amplified difference of the internal reference of  
1.25V (nominal) and the FB1 and FB2 pins. If FB1 and  
FB2 are both lower than the reference voltage, the switch  
current increases; if FB1 or FB2 is higher than the refer-  
ence voltage, the switch demand current decreases. The  
LED current sense feedback interacts with the voltage  
feedback so that neither FB1 or FB2 exceeds the internal  
reference and the voltage between ISP and ISN does not  
exceed the threshold set by the CTRL pin. For accurate  
current or voltage regulation, it is necessary to be sure  
that under normal operating conditions, the appropriate  
loop is dominant. To deactivate the voltage loop entirely,  
FB1 and FB2 can be connected to GND. To deactivate the  
LED current loop entirely, the ISP and ISN should be tied  
to turn off the PMOS disconnect switch, the V pin goes  
C
high impedance to store the previous switching state on  
the external compensation capacitor, and the ISP and ISN  
pin bias currents are reduced to leakage levels. When the  
PWMpintransitionshigh,theTGpintransitionslowaftera  
short delay. At the same time, the internal oscillator wakes  
up and generates a pulse to set the PWM latch, turning on  
the external power N-channel MOSFET switch (GATE goes  
high). A voltage input proportional to the switch current,  
sensed by an external current sense resistor between  
the SENSE and GND input pins, is added to a stabilizing  
slope compensation ramp and the resulting switch cur-  
rent sense signal is fed into the negative terminal of the  
PWM comparator. The current in the external inductor  
increases steadily during the time the switch is on. When  
the switch current sense voltage exceeds the output of the  
together and the CTRL input tied to V  
.
REF  
Two LED specific functions featured on the LT3796 are  
controlled by the voltage feedback FB1 pin. First, when  
the FB1 pin exceeds a voltage 60mV lower (–5%) than  
error amplifier, labeled V , the latch is reset and the switch  
C
is turned off. During the switch off phase, the inductor  
current decreases. At the completion of each oscillator  
cycle, internal signals such as slope compensation return  
to their starting points and a new cycle begins with the set  
pulsefromtheoscillator.Throughthisrepetitiveaction,the  
PWM control algorithm establishes a switch duty cycle to  
the FB1 regulation voltage and V  
is less than  
(ISP-ISN)  
25mV (typical), the pull-down driver on the VMODE pin  
is activated. This function provides a status indicator that  
the load may be disconnected and the constant-voltage  
feedback loop is taking control of the switching regulator.  
When the FB1 pin exceeds the FB1 regulation voltage by  
50mV (4% typical), the FAULT pin is activated.  
regulate a current or voltage in the load. The V signal is  
C
integrated over many switching cycles and is an amplified  
version of the difference between the LED current sense  
voltage, measured between ISP and ISN, and the target  
difference voltage set by the CTRL pin. In this manner,  
the error amplifier sets the correct peak switch current  
level to keep the LED current in regulation. If the error  
amplifier output increases, more current is demanded in  
the switch; if it decreases, less current is demanded. The  
switch current is monitored during the on phase and the  
voltage across the SENSE pin is not allowed to exceed the  
currentlimitthresholdof113mV(typical).IftheSENSEpin  
exceeds the current limit threshold, the SR latch is reset  
regardless of the output state of the PWM comparator.  
LT3796 features a PMOS disconnect switch driver. The  
PMOSdisconnectswitchcanbeusedtoimprovethePWM  
dimming ratio, and operate as fault protection as well.  
Once a fault condition is detected, the TG pin is pulled high  
to turnoff the PMOS switch. The action isolates the LED  
array from the power path, preventing excessive current  
from damaging the LEDs.  
A standalone current sense amplifier is integrated in the  
LT3796. It can work as input current limit or open LED  
protection. The detailed information can be found in the  
Application Information section.  
Likewise, any fault condition, i.e. FB1 overvoltage (V  
>
FB1  
3796f  
13  
LT3796  
APPLICATIONS INFORMATION  
INTV Regulator Bypassing and Operation  
is to allow the user to program the rising hysteresis. The  
following equations should be used to determine the  
values of the resistors:  
CC  
The INTV pin requires a capacitor for stable operation  
CC  
and to store the charge for the large GATE switching cur-  
rents. Choose a 10V rated low ESR, X7R or X5R ceramic  
capacitorforbestperformance. A4.7μFceramiccapacitor  
is adequate for many applications. Place the capacitor  
R1+ R2  
VIN(FALLING) = 1.22•  
R2  
VIN(RISING) = VIN(FALLING) + 3µA R1  
close to the IC to minimize the trace length to the INTV  
pin and also to the power ground.  
CC  
V
IN  
An internal current limit on the INTV output protects the  
CC  
LT3796 from excessive on-chip power dissipation. The  
minimum value of this current limit should be considered  
when choosing the switching N-channel MOSFET and the  
R1  
LT3796  
EN/UVLO  
R2  
operating frequency. I  
following equation:  
can be calculated from the  
INTVCC  
3796 F01  
Figure 1.  
I
= Q • f  
G OSC  
INTVCC  
Careful choice of a lower Q MOSFET allows higher  
G
LED Current Programming  
switching frequencies, leading to smaller magnetics. The  
The LED current is programmed by placing an appropriate  
valuecurrentsenseresistorR betweentheISPandISN  
INTV pin has its own undervoltage disable (UVLO) set  
CC  
LED  
to 4V (typical) to protect the external FETs from excessive  
pins. Typically, sensing of the current should be done at  
the top of the LED string. If this option is not available,  
thenthecurrentmaybesensedatthebottomofthestring.  
The CTRL pin should be tied to a voltage higher than 1.2V  
to get the full-scale 250mV (typical) threshold across the  
sense resistor. The CTRL pin can also be used to dim the  
LED current to zero, although relative accuracy decreases  
with the decreasing voltage sense threshold. When the  
CTRL pin voltage is less than 1V, the LED current is:  
power dissipation caused by not being fully enhanced.  
If the INTV pin drops below the UVLO threshold, the  
CC  
GATE pin is forced to 0V, TG pin is pulled high and the  
soft-start pin will be reset. If the input voltage, V , will  
IN  
not exceed 7V, then the INTV pin should be connected  
CC  
to the input supply. Be aware that a small current (typically  
10μA) loads the INTV in shutdown. If V is normally  
CC  
IN  
above, but occasionally drops below the INTV regula-  
CC  
tion voltage, then the minimum operating V is close to  
IN  
6V. This value is determined by the dropout voltage of the  
V
CTRL 100mV  
linear regulator and the 4V INTV undervoltage lockout  
CC  
ILED  
=
, 0.1V < V  
≤ 1V  
CTRL  
threshold mentioned above.  
RLED 4  
I
= 0, V  
= 0V  
Programming the Turn-On and Turn-Off Thresholds  
with the EN/UVLO Pin  
LED  
CTRL  
When the CTRL pin voltage is between 1V and 1.2V, the  
LED current varies with CTRL, but departs from the previ-  
ous equation by an increasing amount as the CTRL volt-  
age increases. Ultimately above 1.2V, the LED current no  
ThefallingUVLOvaluecanbeaccuratelysetbytheresistor  
divider. A small 3μA pull-down current is active when EN/  
UVLO is below the threshold. The purpose of this current  
3796f  
14  
LT3796  
APPLICATIONS INFORMATION  
longer varies with CTRL. The typical V  
vs CTRL is listed in the Table 1.  
threshold  
have this extra comparator. The output voltage can be set  
by selecting the values of R3 and R4 (see Figure 2) ac-  
cording to the following equation:  
(ISP-ISN)  
Table 1. V(ISP-ISN) Threshold vs CTRL  
V
(V)  
V
(mV)  
CTRL  
(ISP-ISN)  
R3+R4  
1
225  
VOUT =1.25•  
R4  
1.05  
1.1  
236  
244.5  
248.5  
250  
V
OUT  
R3  
1.15  
1.2  
LT3796  
FB1/FB2  
R4  
When CTRL is higher than 1.2V, the LED current is regu-  
lated to:  
3796 F02  
Figure 2. Feedback Resistor Connections for Boost and SEPIC  
Applications  
250mV  
RLED  
ILED  
=
ForaboosttypeLEDdriver,settheresistorfromtheoutput  
The CTRL pin should not be left open (tie to V  
if not  
REF  
to the FB1 pin such that the expected V during normal  
FB1  
used). The CTRL pin can also be used in conjunction with  
a thermistor to provide overtemperature protection for the  
operationdoesnotexceed1.15V.ForanLEDdriverofbuck  
mode or a buck-boost mode configuration, the FB voltage  
is typically level shifted to a signal with respect to GND as  
illustrated in Figure 3. The output can be expressed as:  
LED load, or with a resistor divider to V to reduce output  
IN  
powerandswitchingcurrentwhenV islow.Thepresence  
IN  
of a time varying differential voltage signal (ripple) across  
ISP and ISN at the switching frequency is expected. The  
amplitude of this signal is increased by high LED load  
current, low switching frequency and/or a smaller value  
output filter capacitor.  
R5 R6+ R7  
VOUT = 1.25 •  
R8  
R6  
V
S
+
Programming Output Voltage (Constant-Voltage  
Regulation) or Open LED/Overvoltage Threshold  
R
LED  
R6  
R7  
LT3796  
R5  
V
LED  
STRING  
OUT  
CSP  
CSN  
The LT3796 has two voltage feedback pins, FB1 and FB2.  
EitheronecanbeusedforaboostorSEPICapplication.The  
difference between these two pins is FB1 has a compara-  
CSOUT  
FB1  
tor that senses when FB1 exceeds V – 60mV (VMODE  
FB  
threshold) and asserts the VMODE output if V  
is  
R8  
(ISP-ISN)  
3796 F03  
less than 25mV. This indicates that the output is in voltage  
regulation mode and not current regulation. FB2 does not  
Figure 3. Feedback Resistor Connection for Buck Mode or  
Buck-Boost Mode LED Driver  
3796f  
15  
LT3796  
APPLICATIONS INFORMATION  
Open LED Detection  
With the PNP helper, the short-circuit current can be  
limited to 2A, whereas the short-circuit current can reach  
to 20A without the PNP helper as shown in Figure 5 and  
Figure6respectively.RefertoboostLEDdriverwithoutput  
short-circuit protection and LED current monitor for the  
testschematic.Notethattheimpedanceoftheshort-circuit  
cable affects the peak current.  
TheLT3796providesanopen-collectorstatuspin,VMODE,  
that pulls low when the FB1 pin is above 1.19V and  
V
is less than 25mV. If the open LED clamp volt-  
(ISP-ISN)  
age is programmed correctly using the resistor divider,  
then the FB1 pin should never exceed 1.15V when LEDs  
are connected, therefore, the only way for the FB1 pin to  
be within 60mV of the 1.25V regulation voltage is for an  
open LED event to have occurred.  
+
LED  
50V/DIV  
LED Over Current Protection Feature  
I
M2  
TheISPandISNpinshaveashort-circuitprotectionfeature  
independent ofthe LEDcurrentsense feature. This feature  
preventsthedevelopmentofexcessiveswitchingcurrents  
and protects the power components. The short-circuit  
protection threshold (375mV, typ) is designed to be 50%  
higher than the default LED current sense threshold. Once  
the LED over current is detected, the GATE pin is driven  
to GND to stop switching, and TG pin is pulled high to  
disconnect the LED array from the power path.  
10A/DIV  
FAULT  
10V/DIV  
3796 F05  
1µs/DIV  
Figure 5. Short-circuit Current without PNP Helper  
+
LED  
50V/DIV  
A typical LED short-circuit protection scheme for boost  
or buck-boost mode converter is shown in Figure 4. The  
Schottky diode D2 should be put close to the drain of  
I
M2  
1A/DIV  
+
FAULT  
10V/DIV  
M2 on the board. It protects the LED node from swing-  
ing well below ground when being shorted to ground  
through a long cable. Usually, the internal protection loop  
takes about 1µs to respond. Including PNP helper Q1 is  
recommended to limit the transient short-circuit current.  
3796 F06  
1µs/DIV  
Figure 6. Short-circuit Current with PNP Helper  
D1  
L1  
V
IN  
R
LED  
+
V
M2  
IN  
LED  
C1  
C2  
M1  
V
GATE  
IN  
D3  
Q1  
LED  
STRING  
C2  
D2  
SENSE  
LT3796  
R
SNS  
Q1  
V
ISP  
ISN TG  
IN  
LED  
ISP  
LT3796  
R
LED  
L1  
D1  
ISN  
TG  
M2  
+
C1  
M1  
LED  
GATE  
SENSE  
LED  
STRING  
D2  
3796 F07  
R
SNS  
GND (BOOST) OR  
(BUCK-BOOST MODE)  
3796 F04  
V
IN  
Figure 7. The Simplified LED Short-Circuit Protection  
Schematic for Buck Mode Converter  
Figure 4. The Simplified LED Short-Circuit Protection  
Schematic for Boost/Buck-Boost Mode LED Driver  
3796f  
16  
LT3796  
APPLICATIONS INFORMATION  
Similar to boost, Schottky diodes D2, D3 and PNP transis-  
tor Q1 are recommended to protect short-circuit event in  
the buck mode.  
increases switching losses and gate driving current, and  
maynotallowsufficientlyhighorlowdutycycleoperation.  
Lowerfrequencyoperationgivesbetterperformanceatthe  
cost of larger external component size. For an appropriate  
PWM Dimming Control for Brightness  
R resistor value see Table 2. An external resistor from the  
T
RT pin to GND is required—do not leave this pin open.  
There are two methods to control the LED current for dim-  
ming using the LT3796. One method uses the CTRL pin to  
adjust the current regulated in the LEDs. A second method  
uses the PWM pin to modulate the LED current between  
zero and full current to achieve a precisely programmed  
average current, without the possibility of color shift that  
occurs at low current in LEDs. To make PWM dimming  
more accurate, the switch demand current is stored on  
Table 2. Typical Switching Frequency vs RT Value (1% Resistor)  
f
(kHz)  
osc  
R (kΩ)  
T
1000  
6.65  
7.50  
8.87  
10.2  
12.4  
15.4  
19.6  
26.1  
39.2  
82.5  
900  
800  
700  
600  
500  
400  
300  
200  
100  
the V node during the quiescent phase when PWM is  
C
low. This feature minimizes recovery time when the PWM  
signal goes high. To further improve the recovery time, a  
disconnect switch should be used in the LED current path  
topreventtheoutputcapacitorfromdischargingduringthe  
PWM signal low phase. The minimum PWM on or off time  
depends on the choice of operating frequency through the  
RT input. For best current accuracy, the minimum PWM  
high time should be at least three switching cycles (3μs  
Frequency Synchronization  
TheLT3796switchingfrequencycanbesynchronizedtoan  
external clock using the SYNC pin. For proper operation,  
for f = 1MHz).  
SW  
theR resistorshouldbechosenforaswitchingfrequency  
T
A low duty cycle PWM signal can cause excessive start-up  
timesifitwereallowedtointerruptthesoft-startsequence.  
Therefore, once start-up is initiated by PWM > 1V, it will  
ignore a logical disable by the external PWM input signal.  
The device will continue to soft-start with switching and  
TG enabled until either the voltage at SS reaches the 1.0V  
level, or the output current reaches one-fourth of the full-  
scale current. At this point the device will begin following  
the dimming control as designated by PWM. If at any time  
an output overcurrent is detected, GATE and TG will be  
disabled even as SS continues to charge.  
20% lower than the external clock frequency. The SYNC  
pin is disabled during the soft-start period. Observation  
of the following guidelines about the SYNC waveform will  
ensure proper operation of this feature. Driving SYNC  
with a 50% duty cycle waveform is always a good choice,  
otherwise,maintainthedutycyclebetween20%and60%.  
WhenusingbothPWMandSYNCfeatures,thePWMsignal  
rising edge must have the aligned rising edges to achieve  
the optimized high PWM dimming ratio. If the SYNC pin  
is not used, it should be connected to GND.  
Duty Cycle Considerations  
Programming the Switching Frequency  
Switching duty cycle is a key variable defining converter  
operation, therefore, its limits must be considered when  
programming the switching frequency for a particular  
application. The fixed minimum on-time and minimum  
The RT frequency adjust pin allows the user to program  
the switching frequency from 100kHz to 1MHz to optimize  
efficiency/performanceorexternalcomponentsize.Higher  
frequency operation yields smaller component size but  
3796f  
17  
LT3796  
APPLICATIONS INFORMATION  
off-time (see Figure 8) and the switching frequency define  
the minimum and maximum duty cycle of the switch,  
respectively. The following equations express the mini-  
mum/ maximum duty cycle:  
CSNandCSPpins.Forboostandbuck-boostapplications,  
R
and C  
are not required.  
IN2(OPT)  
OPT  
+V  
SNS  
SNS  
I
IN  
R
V
TO LOAD  
IN  
Min Duty Cycle = minimum on-time • switching  
frequency  
R
R
IN1  
IN2(OPT)  
C
OPT  
Max Duty Cycle = 1 – minimum off-time • switching  
frequency  
CSN  
CSP  
V
S
350  
300  
V
S
+
250  
MIN ON-TIME  
FB2  
LT3796  
CSOUT  
200  
150  
100  
50  
3796 F03  
MIN OFF-TIME  
C
R
OUT  
FILT  
Figure 9. Setting Input Current Limit  
0
25 50 75 100 125 150  
TEMPERATURE (°C)  
3796 F08  
–50 –25  
0
Thermal Considerations  
The LT3796 is rated to a maximum input voltage of 100V.  
Careful attention must be paid to the internal power dis-  
sipation of the IC at higher input voltages to ensure that  
a junction temperature of 150°C is not exceeded. This  
junction limit is especially important when operating at  
highambienttemperatures. Themajorityofthepowerdis-  
sipationintheICcomesfromthesupplycurrentneededto  
drivethegatecapacitanceoftheexternalpowerN-channel  
MOSFET. This gate drive current can be calculated as:  
Figure 8. Typical Minimum On- and Off-Time  
vs Temperature  
When calculating the operating limits, the typical values  
for on/off-time in the data sheet should be increased by  
at least 100ns to allow margin for PWM control latitude,  
GATE rise/fall times and SW node rise/fall times.  
Setting Input Current Limit  
TheLT3796hasastandalonecurrentsenseamplifier.Itcan  
be used to limit the input current. As shown in Figure 9,  
the input current signal is converted to voltage output at  
CSOUTpin. WhentheCSOUTvoltageexceedsFB2regula-  
tionvoltage,theGATEis pulledlow,andtheconverterstops  
switching. The input current limit is calculated as follows:  
I
= f • Q  
SW G  
GATE  
A low Q power MOSFET should always be used when  
G
operating at high input voltages, and the switching fre-  
quency should also be chosen carefully to ensure that the  
ICdoesnotexceedasafejunctiontemperature.Theinternal  
junction temperature, T of the IC can be estimated by:  
J
T = T + [V • (I + f • Q ) •θ ]  
RIN1  
IIN = 1.25•  
J
A
IN  
Q
SW  
G
JA  
ROUT RSNS  
whereT istheambienttemperature,I istheV operating  
A
Q
IN  
current of the part (2.5mA typical) and θ is the package  
JA  
For buck applications, filter components, R  
and  
IN2(OPT)  
thermal impedance (30°C/W for the TSSOP package). For  
C
, are recommended to be placed close to LT3796 to  
OPT  
example, an application with T  
= 85°C, V  
=
A(MAX)  
IN(MAX)  
suppressthesubstantialtransientsignalornoiseatacross  
60V, f = 400kHz, and having a N-channel MOSFET with  
SW  
3796f  
18  
LT3796  
APPLICATIONS INFORMATION  
Q = 20nC, the maximum IC junction temperature will be  
A 10µF input capacitor is an appropriate selection for a  
400kHz buck mode converter with 24V input, 12V output  
and 1A load.  
G
approximately:  
T = 85°C + [60V • (2.5mA + 400kHz • 20nC) • 30°C/W]  
J
In the buck mode configuration, the input capacitor has  
large pulsed currents due to the current returned through  
the Schottky diode when the switch is off. It is important  
to place the capacitor as close as possible to the Schottky  
diode and to the GND return of the switch (i.e., the sense  
resistor). It is also important to consider the ripple current  
rating of the capacitor. For best reliability, this capacitor  
should have low ESR and ESL and have an adequate ripple  
current rating. The RMS input current for a buck mode  
LED driver is:  
≈ 104°C  
The exposed pad on the bottom of the package must be  
soldered to a ground plane. This ground should then be  
connectedtoaninternalcoppergroundplanewiththermal  
vias placed directly under the package to spread out the  
heat dissipated by the IC.  
It is best if the copper plane is extended on either the top  
orbottom layer of thePCBtohavethemaximumexposure  
to air. Internal ground layers do not dissipate thermals as  
much as top and bottom layer copper does. See recom-  
mended layout as an example.  
I
= I  
• √(1–D)D  
LED  
IN(RMS)  
VLED  
VIN  
D =  
Input Capacitor Selection  
Theinputcapacitorsuppliesthetransientinputcurrentfor  
the power inductor of the converter and must be placed  
andsizedaccordingtothetransientcurrentrequirements.  
Theswitchingfrequency,outputcurrentandtolerableinput  
voltage ripple are key inputs to estimating the capacitor  
value. An X7R type ceramic capacitor is usually the best  
choice since it has the least variation with temperature  
and DC bias. Typically, boost and SEPIC converters re-  
quire a lower value capacitor than a buck mode converter.  
Assuming that a 100mV input voltage ripple is acceptable,  
the required capacitor value for a boost converter can be  
where D is the switch duty cycle.  
Table 3. Recommended Ceramic Capacitor Manufacturers  
MANUFACTURER  
TDK  
WEB  
www.tdk.com  
www.kemet.com  
www.murata.com  
www.t-yuden.com  
www.avx.com  
Kemet  
Murata  
Taiyo Yuden  
AVX  
Output Capacitor Selection  
estimated as follows (T = 1/f ):  
SW  
OSC  
The selection of the output capacitor depends on the load  
and converter configuration, i.e., step-up or step-down  
and the operating frequency. For LED applications, the  
equivalent resistance of the LED is typically low and the  
output filter capacitor should be sized to attenuate the  
current ripple. Use of an X7R type ceramic capacitor is  
recommended.  
V
VIN  
1µF  
A µs 2.8  
CIN(µF)= ILED(A)LED TSW(µs)•  
Therefore, a 2.2µF capacitor is an appropriate selection  
for a 400kHz boost regulator with 12V input, 48V output  
and 500mA load.  
To achieve the same LED ripple current, the required filter  
capacitor is larger in the boost and buck-boost mode ap-  
plications than that in the buck mode applications. Lower  
operating frequencies will require proportionately higher  
capacitor values.  
With the same V voltage ripple of less than 100mV, the  
IN  
input capacitor for a buck converter can be estimated as  
follows:  
V
LED(VIN VLED  
)
10µF  
A µs  
CIN(µF)= ILED(A)•  
TSW(µs)•  
2
VIN  
3796f  
19  
LT3796  
APPLICATIONS INFORMATION  
Power MOSFET Selection  
increaseswiththetemperature,fromtheoutputduringthe  
PWM low interval. Therefore, choose the Schottky diode  
with sufficiently low leakage current. Table 5 has some  
recommended component vendors.  
Forapplicationsoperatingathighinputoroutputvoltages,  
the power N-channel MOSFET switch is typically chosen  
for drain voltage V rating and low gate charge Q .  
DS  
G
Consideration of switch on-resistance, R  
, is usually  
DS(ON)  
Table 5. Schottky Rectifier Manufacturers  
secondarybecauseswitchinglossesdominatepowerloss.  
VENDOR  
WEB  
The INTV regulator on the LT3796 has a fixed current  
On Semiconductor  
Diodes, Inc  
www.onsemi.com  
www.diodes.com  
www.centralsemi.com  
www.rohm.com  
CC  
limit to protect the IC from excessive power dissipation  
at high V , so the MOSFET should be chosen so that  
Central Semiconductor  
Rohm Semiconductor  
IN  
the product of Q at 7.7V and switching frequency does  
G
not exceed the INTV current limit. For driving LEDs be  
CC  
careful to choose a switch with a V rating that exceeds  
Sense Resistor Selection  
DS  
the threshold set by the FB pin in case of an open load  
fault. Several MOSFET vendors are listed in Table 4. The  
MOSFETs used in the application circuits in this data sheet  
have been found to work well with the LT3796. Consult  
factory applications for other recommended MOSFETs.  
The resistor, R  
, between the source of the external  
SENSE  
N-channelMOSFETandGNDshouldbeselectedtoprovide  
adequate switch current to drive the application without  
exceeding the 113mV (typical) current limit threshold on  
the SENSE pin of LT3796. For buck mode applications,  
select a resistor that gives a switch current at least 30%  
greater than the required LED current. For buck mode,  
select a resistor according to:  
Table 4. MOSFET Manufacturers  
VENDOR  
WEB  
Vishay Siliconix  
Fairchild  
www.vishay.com  
www.fairchildsemi.com  
www.irf.com  
0.07V  
ILED  
International Rectifier  
Infineon  
RSENSE(BUCK)  
www.infineon.com  
For buck-boost mode, select a resistor according to:  
High Side PMOS Disconnect Switch Selection  
A high side PMOS disconnect switch with a minimum  
TH  
VIN 0.07V  
(VIN+ VLED)ILED  
RSENSE(BUCK BOOST)  
V
of –1V to –2V is recommended in most LT3796 ap-  
plications to optimize or maximize the PWM dimming  
ratio and protect the LED string from excessive heating  
during fault conditions as well. The PMOS disconnect  
For boost, select a resistor according to:  
switch is typically selected for drain-source voltage V ,  
DS  
VIN 0.07V  
VLED ILED  
and continuous drain current I . For proper operations,  
RSENSE(BOOST)  
D
V
DS  
rating must exceed the open LED regulation voltage  
set by the FB1 pin, and I rating should be above I  
.
D
LED  
The placement of R  
should be close to the source of  
SENSE  
the NMOS FET and GND of the LT3796. The SENSE input  
Schottky Rectifier Selection  
to LT3796 should be a Kelvin connection to the positive  
The power Schottky diode conducts current during the  
interval when the switch is turned off. Select a diode rated  
forthemaximumSWvoltage. IfusingthePWMfeaturefor  
dimming, it is important to consider diode leakage, which  
terminal of R  
.
SENSE  
70mV is used in the equations above to give some margin  
below the 113mV (typical) sense current limit threshold.  
3796f  
20  
LT3796  
APPLICATIONS INFORMATION  
Inductor Selection  
on the V pin to maintain tighter regulation of LED current  
C
during fast transients on the input supply to the converter.  
TheinductorusedwiththeLT3796shouldhaveasaturation  
current rating appropriate to the maximum switch current  
Soft-Start Capacitor Selection  
selectedwiththeR  
resistor.Chooseaninductorvalue  
SENSE  
For many applications, it is important to minimize the  
inrush current at start-up. The built-in soft-start circuit  
significantly reduces the start-up current spike and output  
voltage overshoot. The soft-start interval is set by the  
soft-start capacitor selection according to the equation:  
based on operating frequency, input and output voltage to  
provide a current mode signal on SENSE of approximately  
20mV magnitude. The following equations are useful to  
estimate the inductor value (T = 1/f ):  
SW  
OSC  
T
SW RSENSE VLED(VIN VLED  
)
LBUCK  
=
2V  
TSS = CSS•  
28µA  
VIN 0.02V  
A typical value for the soft-start capacitor is 0.1µF. The  
soft-start pin reduces the oscillator frequency and the  
maximum current in the switch. Soft-start also operates  
as fault protection, which forces the converter into hiccup  
or latchoff mode. Detailed information is provided in the  
FaultProtection:HiccupModeandLatchoffModesection.  
T
SW RSENSE VLED VIN  
(VLED + VIN)0.02V  
LBUCK, BOOST  
=
T
SW RSENSE VIN (VLED VIN)  
LBOOST  
=
VLED 0.02V  
Fault Protection: Hiccup Mode and Latchoff Mode  
Table 6 provides some recommended inductor vendors.  
If an LED overcurrent condition, INTV undervoltage, or  
CC  
Table 6. Inductor Manufacturers  
thermal limit happens, an open-drain pull-down on FAULT  
asserts. The TG pin is pulled high to disconnect the LED  
array from the power path, and the GATE pin is driven low.  
If the soft-start pin is charging and still below 1.7V, then  
it will continue to do so with a 28µA source. Once above  
1.7V, the pull-up source is disabled and a 2.8µA pull-down  
is activated. While the SS pin is discharging, the GATE is  
forced low. When SS pin is discharged below 0.2V, a new  
cycleisinitiated.Thisisreferredashiccupmodeoperation.  
If the fault still exists when SS crosses below 0.2V, then  
a full SS charge/discharge cycle has to complete before  
switching is enabled and the FAULT flag is deasserted.  
VENDOR  
WEB  
Sumida  
www.sumida.com  
www.we-online.com  
www.cooperet.com  
www.vishay.com  
www.coilcraft.com  
Würth Elektronik  
Coiltronics  
Vishay  
Coilcraft  
Loop Compensation  
The LT3796 uses an internal transconductance error  
amplifier whose V output compensates the control loop.  
C
The external inductor, output capacitor and the compen-  
sation resistor and capacitor determine the loop stability.  
The inductor and output capacitor are chosen based on  
performance, size and cost. The compensation resistor  
If a resistor is placed between V pin and SS pin to hold  
REF  
SS pin higher than 0.2V during a fault, then the LT3796  
will enter latchoff mode with GATE pin low, TG pin high  
and FAULT pin low. To exit latchoff mode, the EN/UVLO  
pin must be toggled low to high.  
and capacitor at V are selected to optimize control loop  
C
responseandstability.FortypicalLEDapplications,a22nF  
compensation capacitor at V is adequate, and a series  
C
resistor should always be used to increase the slew rate  
3796f  
21  
LT3796  
APPLICATIONS INFORMATION  
Board Layout  
capacitor for the INTV regulator should be placed near  
CC  
the GND of the switching path. Typically, this requirement  
The high speed operation of the LT3796 demands careful  
attention to board layout and component placement. The  
exposed pad of the package is the GND terminal of the IC  
and is also important for thermal management of the IC. It  
is crucial to achieve a good electrical and thermal contact  
between the exposed pad and the ground plane of the  
board. To reduce electromagnetic interference (EMI), it is  
important to minimize the area of the high dV/dt switching  
node between the inductor, switch drain and anode of the  
Schottky rectifier. Use a ground plane under the switching  
node to eliminate interplane coupling to sensitive signals.  
The lengths of the high dI/dt traces: 1) from the switch  
node through the switch and sense resistor to GND, and  
2) from the switch node through the Schottky rectifier and  
filter capacitor to GND should be minimized. The ground  
points of these two switching current traces should come  
toacommonpointthenconnecttothegroundplaneunder  
the LT3796. Likewise, the ground terminal of the bypass  
results in the external switch being closest to the IC,  
along with the INTV bypass capacitor. The ground for  
CC  
the compensation network and other DC control signals  
should be star connected to the underside of the IC. Do  
notextensivelyroutehighimpedancesignalssuchasFB1,  
FB2, RT and V , as they may pick up switching noise.  
C
Since there is a small variable DC input bias current to the  
ISN and ISP inputs, resistance in series with these pins  
should be minimized to avoid creating an offset in the  
current sense threshold. Likewise, minimize resistance in  
series with the SENSE input to avoid changes (most likely  
reduction) to the switch current limit threshold.  
Figure 10 is a suggested two sided layout for a boost  
converter. Note that the 4-layer layout is recommended  
for best performance. Please contact the factory for the  
reference layout design.  
3796f  
22  
LT3796  
APPLICATIONS INFORMATION  
X
V
IN  
VIA  
V
R
IN  
SNS1  
VIAS TO GROUND PLANE  
X ROUTING ON THE 2nd LAYER  
C1  
C1  
C1  
X
C3  
VIA FROM ISP  
VIA FROM ISN  
VIA FROM TG  
X
X
X
1
2
28  
27  
LT3796  
R6  
R5  
3
26  
L1  
4
25 X  
24  
VIA FROM V  
IN  
X
C4  
5
R4  
VIA FROM V  
ISMON  
VIA FROM  
OUT  
R7  
R3  
R8  
6
23 X  
22  
IN  
7
C
R
C
C
8
21  
INTV VIA  
CC  
C5  
X
GATE VIA  
R2  
C6  
9
20  
X
R1  
X
V
VIA FROM V  
IN  
10  
11  
12  
13  
14  
19  
REF  
1
8
7
18  
29  
2
3
4
17  
M1  
6
R
T
16  
SYNC  
PWM  
X
5
15  
R9 R10  
D1  
VIA FROM  
GATE  
X
R
SNS  
VIA FROM INTV  
CC  
C2  
C2  
C2  
C2  
X
OUT VIA  
TG VIA  
5
6
7
8
4
Q1  
X
3
D2  
M2  
2
R
LED  
+
LED  
1
3796 F10  
ISN VIA X X ISP VIA  
COMPONENT DESIGNATIONS REFER TO BOOST LED DRIVER WITH OUTPUT SHORT CIRCUIT PROTECTION AND LED CURRENT MONITOR  
Figure 10. Boost Converter Suggested Layout  
3796f  
23  
LT3796  
TYPICAL APPLICATIONS  
Boost LED Driver with Output Short Circuit Protection and LED Current Monitor  
V
L1 22µH  
D1  
R
50mΩ  
IN  
I
SNS1  
IN  
9V TO 60V  
100V (TRANSIENT)  
C2  
C1  
2.2µF  
×3  
2.2µF  
×4  
100V  
R7  
1M  
R5  
2k  
R1  
1M  
R3  
499k  
V
V
CSP  
CSN  
IN  
S
R8  
13.7k  
R2  
EN/UVLO  
GATE  
M1  
118k  
R4  
97.6k  
SENSE  
OPTIONAL INPUT  
CURRENT REPORTING  
R
SNS  
CTRL  
15mΩ  
UP TO  
400mA  
LT3796  
GND  
FB1  
ISP  
C
SOUT  
CSOUT  
PWM  
C3  
10nF  
R6  
40.2k  
PWM  
SYNC  
SYNC  
Q1  
R
LED  
620mΩ  
LED CURRENT REPORTING  
ISMON  
ISN  
TG  
C4  
0.1µF  
INTV  
CC  
R10  
100k  
R9  
100k  
M2  
FAULT  
INTV  
CC  
FAULT  
INTV  
CC  
VMODE  
D2  
VMODE  
C5  
4.7µF  
V
REF  
FB2  
RT  
SS  
V
C
85V LED  
R
T
R
C
31.6k  
10k  
250kHz  
R11 OPTIONAL  
FOR FAULT LATCHOFF  
C
C6  
0.1µF  
C
R11 402k (OPT)  
M1: INFINEON BCS160N10NS3-G  
M2: VISHAY SILICONIX Si7113DN  
L1: COILTRONICS DR127-220  
D1: DIODES INC PDS5100  
D2: VISHAY ES1C  
10nF  
3796 TA02a  
Q1: ZETEX FMMT589  
LED: CREE XLAMP XR-E  
Fault (Short LED) Protection without R11: Hiccup Mode  
Fault (Short LED) Protection with R11: Latchoff Mode  
SS  
2V/DIV  
SS  
2V/DIV  
+
+
LED  
LED  
50V/DIV  
50V/DIV  
FAULT  
10V/DIV  
FAULT  
10V/DIV  
I
I
M2  
M2  
1A/DIV  
1A/DIV  
3796 TA02b  
3796 TA02c  
50ms/DIV  
50ms/DIV  
3796f  
24  
LT3796  
TYPICAL APPLICATIONS  
Buck LED Driver with Open LED Flag and LED Current Reporting  
V
IN  
24V TO 80V  
R
100mΩ  
ISN  
+
LED  
M2  
LED  
2.5A  
R3  
49.9k  
R4  
49.9k  
R1  
1M  
18V  
LED  
C2  
V
V
ISP  
TG  
IN  
S
4.7µF  
×2  
25V  
EN/UVLO  
CSP  
R5 1M  
R2  
61.9k  
V
CSN  
CSOUT  
FB1  
REF  
CTRL  
L1  
33µH  
R6  
59k  
LT3796  
PWM  
FB2  
PWM  
D1  
C1  
2.2µF  
×3  
100V  
M1  
GATE  
LED CURRENT REPORTING  
ISMON  
C5  
0.1µF  
SENSE  
INTV  
CC  
R
SNS  
R8  
100k  
R9  
100k  
15mΩ  
GND  
FAULT  
FAULT  
VMODE  
VMODE  
INTV  
CC  
INTV  
CC  
C3  
4.7µF  
V
C
SYNC  
RT  
SS  
R
R
T
C
C4  
0.1µF  
M1: VISHAY SILICONIX Si7454DP  
M2: VISHAY SILICONIX Si7113DN  
D1: DIODES INC PDS3100  
L1: COILTRONICS HC9-220  
LED: CREE XLAMP XM-L  
10k  
C
19.6k  
400kHz  
C
4.7nF  
3796 TA03a  
Efficiency vs VIN  
100  
95  
90  
85  
80  
75  
70  
40  
50  
(V)  
60  
70  
80  
20  
30  
V
IN  
3796 TA03b  
3796f  
25  
LT3796  
TYPICAL APPLICATIONS  
SEPIC LED Driver Using FB2 for Input Overvoltage Protection  
C6  
2.2µF  
100V  
L1A 33µH  
D1  
I
IN  
R
50mΩ  
SNS1  
V
IN  
8V TO 60V  
C2  
C1  
R1  
10µF  
×3  
R10  
R6  
2k  
2.2µF  
×3  
953k  
R4  
L1B  
909k  
511k  
25V  
100V  
R2  
75k  
V
V
CSP  
CSN  
IN  
S
R11  
40.2k  
EN/UVLO  
GATE  
M1  
R5  
100k  
R3  
20k  
V
SENSE  
REF  
R
SNS  
CTRL  
15mΩ  
LT3796  
OPTIONAL INPUT  
CURRENT REPORTING  
GND  
FB1  
ISP  
FB2  
UP TO  
1A  
C
CSOUT  
PWM  
SOUT  
C3  
0.1µF  
R7  
40.2k  
PWM  
R
LED  
250mΩ  
ISN  
TG  
ISMON  
LED CURRENT REPORTING  
M2  
C7  
0.1µF  
INTV  
CC  
R8  
100k  
R9  
100k  
22V  
LED  
FAULT  
FAULT  
VMODE  
INTV  
CC  
INTV  
CC  
VMODE  
C5  
4.7µF  
V
C
RT  
SYNC SS  
M1: VISHAY SILICONIX Si7456DP  
M2: ZETEX ZXMP6A13F  
L1: COILTRONICS DRQ127-330  
D1: DIODES INC PDS5100  
LED: CREE XLAMP XR-E  
R
T
R
C
19.6k  
4.99k  
400kHz  
C
C4  
0.1µF  
C
10nF  
3796 TA04a  
Efficiency vs VIN  
100  
95  
90  
85  
80  
75  
70  
0
20  
30  
(V)  
40  
50  
60  
10  
V
IN  
3796 TA04b  
3796f  
26  
LT3796  
TYPICAL APPLICATIONS  
SEPIC Sealed Lead Acid (SLA) Battery Charger  
C6  
V
V
= 14.6V  
CHARGE  
FLOAT  
AT 25°C  
2.2µF  
OUT  
BAT  
= 13.5V  
100V  
L1A 33µH  
V
D1  
M2  
R
50mΩ  
CSN  
R
SNS2  
IN  
8V TO 40V  
I
SNS1  
IN  
+
C1  
4.7µF  
50V  
250mΩ  
100V (TRANSIENT)  
D2  
15V  
C2  
10µF  
BAT  
R11  
R12  
30.1k  
R6  
2k  
10k  
R2  
R4  
L1B  
NTC  
806k  
357k  
R1  
10k  
V
V
CSP  
S
IN  
R13  
93.1k  
R3  
20k  
EN/UVLO  
GATE  
M1  
R5  
100k  
V
SENSE  
REF  
R
SNS  
15mΩ  
CTRL  
FB2  
LT3796  
GND  
FB1  
ISP  
OPTIONAL INPUT  
CURRENT REPORTING  
C
SOUT  
CSOUT  
PWM  
R10  
10.2k  
OUT  
BAT  
R9  
113k  
C3  
10nF  
R7  
40.2k  
V
REF  
ISN  
M3  
OUTPUT CURRENT  
REPORTING  
ISMON  
SS  
C7  
0.1µF  
VMODE  
VMODE  
C4  
0.1µF  
SYNC  
TG  
R7  
49.9k  
INTV  
CC  
INTV  
CC  
V
C
RT  
R
19.6k  
400kHz  
FAULT  
C5  
4.7µF  
R12  
49.9k  
M1: VISHAY SILICONIX Si7456DP  
M2: VISHAY SUD19P06-60-E3  
M3: ZETEX ZXM61N03F  
T
R
C
499Ω  
FAULT  
L1: COILCRAFT MSD1260-333  
D1: ON SEMI MBRS260T3G  
D2: CENTRAL SEMI CMDZ15L  
R11: MURATA NCP18XH103F03RB  
C
C
10nF  
3796 TA05a  
VCHARGE, VFLOAT vs Temperature  
17.5  
V
CHARGE  
14.0  
13.5  
13.0  
12.5  
V
FLOAT  
–302010  
0
10 20 30 40 50 60 70 80  
–40  
TEMPERATURE (°C)  
3796 TA05b  
3796f  
27  
LT3796  
TYPICAL APPLICATIONS  
28VIN to 28V SuperCap Charger with Input Current Limit and Charge Done Flag  
C6  
10µF  
L1A 33µH  
V
28V  
V
= 0V TO 28V  
C2  
D1  
R
150mΩ  
IN  
1.33A MAX  
OUT  
SNS1  
C1  
4.7µF  
R8  
R1  
10µF  
L1B  
×2  
50V  
536k  
20k  
CSP  
V
V
CSN  
IN  
S
R9  
EN/UVLO  
ISMON  
PWM  
GATE  
M1  
24.9k  
OUTPUT CURRENT REPORTING  
SENSE  
C7  
0.1µF  
R
SNS  
V
REF  
33mΩ  
LT3796  
1.67A  
MAX  
GND  
FB1  
ISP  
INPUT CURRENT  
REPORTING AND LIMIT  
SYNC  
CSOUT  
FB2  
C
SOUT  
C3  
0.1µF  
R2  
124k  
R
SNS2  
150mΩ  
SS  
C4  
ISN  
TG  
0.1µF  
SUPERCAP  
INTV  
CC  
R7  
100k  
R6  
100k  
INTV  
CC  
C6  
4.7µF  
FAULT  
FAULT  
CHGDONE  
VMODE  
CTRL  
V
V
C
RT  
REF  
R
V
C
L1: COILCRAFT MSD1260-333  
D1: ON SEMI MBRS260T3G  
M1: VISHAY SILICONIX Si7850  
Q1: ZETEX FMMT591A  
OUT  
499Ω  
R4  
R3  
499k  
C
22nF  
C
30.1k  
R10  
499k  
Q1  
R5  
1M  
C5  
0.1µF  
R
T
19.6k  
400kHz  
3796 TA06a  
Input and Output Current vs Output Voltage  
1800  
I
OUT  
1600  
1400  
1200  
1000  
I
IN  
800  
600  
400  
200  
0
10  
15  
20  
25  
30  
0
5
V
(V)  
OUT  
3796 TA06b  
3796f  
28  
LT3796  
TYPICAL APPLICATIONS  
SEPIC Converter with RWIRE Compensation and Output Current Limit  
C2  
10µF  
OUT  
R
SNS1  
L1A 22µH  
1:1  
V
12V  
R
D1  
250mΩ  
IN  
WIRE  
V
LOAD  
12V, 1A CURRENT LIMIT  
+
C4  
100µF  
25V  
C1  
10µF  
C3  
10µF  
M1  
L1B  
R
SNS  
33mΩ  
V
GATE SENSE GND  
ISP  
IN  
EN/UVLO  
ISMON  
PWM  
ISN  
C8  
0.1µF  
R1  
38.3k  
R2  
38.3k  
V
REF  
LT3796  
CSN  
SYNC  
FB2  
R3  
154k  
SS  
C5  
0.1µF  
V
S
OUT  
C7  
1µF  
CTRL  
V
REF  
CSP  
CSOUT  
FB1  
INTV  
CC  
R4  
287k  
R7  
100k  
R6  
100k  
FAULT  
FAULT  
VMODE  
RT  
VMODE  
TG  
R5  
12.4k  
V
C
INTV  
CC  
R
T
R
C
19.6k  
INTV  
CC  
24.9k  
400kHz  
C
C6  
4.7µF  
C
L1: WÜRTH 744871220  
D1: ZETEX ZLLS2000TA  
M1: VISHAY SILICONIX Si4840DY  
10nF  
3796 TA08a  
Line Impedance Compensation  
Load Step Response  
13.0  
12.5  
12.0  
11.5  
11.0  
10.5  
10.0  
R
WIRE  
= 0.5Ω  
V
800mA  
OUT  
I
OUT  
500mA/DIV  
V
LOAD  
200mA  
V
OUT  
500mV/DIV  
(AC)  
3796 TA08c  
500µs/DIV  
0
200  
400  
600  
(mA)  
800 1000 1200  
I
LOAD  
3796 TA08b  
3796f  
29  
LT3796  
TYPICAL APPLICATIONS  
Solar Panel Driven SLA Battery Charger with Maximum Power Point Tracking  
V
V
= 14.6V  
C6  
OUT  
BAT  
CHARGE  
FLOAT  
AT 25°C  
R
SNS1  
= 13.5V  
2.2µF 100V  
L1A 33µH  
1:1  
R4  
301k  
D1  
250mΩ  
M2  
V
IN  
+
C1  
4.7µF  
50V  
WÜRTH SOLAR PANEL  
C2  
10µF  
BAT  
D2  
15V  
R10  
30.1k  
R9  
10k  
NTC  
V
V
= 37.5V  
MPP  
OC  
= 28V  
L1B  
INTV  
CC  
R1  
10k  
R5  
137k  
R2  
475k  
V
V
CSN  
CSP  
IN  
S
M1  
R
GATE  
EN/UVLO  
R3  
20k  
SENSE  
R11  
93.1k  
SNS  
CTRL  
15mΩ  
LT3796  
GND  
FB1  
C
CSOUT  
FB2  
SOUT  
R6  
100k  
C3  
0.1µF  
ISP  
ISN  
OUT  
BAT  
R8  
113k  
R12  
10.2k  
PWM  
V
REF  
M3  
ISMON  
SS  
C6  
0.1µF  
C4  
0.1µF  
VMODE  
VMODE  
SYNC  
TG  
R7  
49.9k  
INTV  
CC  
INTV  
CC  
V
C
RT  
FAULT  
C5  
4.7µF  
R12  
49.9k  
M1: VISHAY SILICONIX Si7456DP  
M2: VISHAY SUD19P06-60-E3  
M3: ZETEX ZXM61N03F  
L1: COILCRAFT MSD1260-333  
D1: ON SEMI MBRS260T3G  
D2: CENTRAL SEMI CMDZ15L  
R9: MURATA NCP18XH103F03RB  
R
T
R
C
19.6k  
499Ω  
FAULT  
400kHz  
C
22nF  
C
3796 TA09a  
ICHARGE vs VIN  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
20  
25  
30  
(V)  
35  
40  
V
IN  
3796 TA09b  
3796f  
30  
LT3796  
PACKAGE DESCRIPTION  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
FE Package  
28-Lead Plastic TSSOP (4.4mm)  
(Reference LTC DWG # 05-08-1663 Rev I)  
Exposed Pad Variation EB  
9.60 – 9.80*  
(.378 – .386)  
4.75  
(.187)  
4.75  
(.187)  
28 27 26 2524 23 22 21 20 1918 17 16 15  
2.74  
(.108)  
EXPOSED  
PAD HEAT SINK  
ON BOTTOM OF  
PACKAGE  
6.60 ±0.10  
4.50 ±0.10  
SEE NOTE 4  
6.40  
(.252)  
BSC  
2.74  
(.108)  
0.45 ±0.05  
1.05 ±0.10  
0.65 BSC  
RECOMMENDED SOLDER PAD LAYOUT  
5
7
1
2
3
4
6
8
9 10 12 13 14  
11  
1.20  
(.047)  
MAX  
4.30 – 4.50*  
(.169 – .177)  
0.25  
REF  
0° – 8°  
0.65  
(.0256)  
BSC  
0.09 – 0.20  
(.0035 – .0079)  
0.50 – 0.75  
(.020 – .030)  
0.05 – 0.15  
(.002 – .006)  
FE28 (EB) TSSOP REV I 0211  
0.195 – 0.30  
(.0077 – .0118)  
TYP  
NOTE:  
1. CONTROLLING DIMENSION: MILLIMETERS 4. RECOMMENDED MINIMUM PCB METAL SIZE  
2. DIMENSIONS ARE IN  
FOR EXPOSED PAD ATTACHMENT  
MILLIMETERS  
(INCHES)  
*DIMENSIONS DO NOT INCLUDE MOLD FLASH. MOLD FLASH  
SHALL NOT EXCEED 0.150mm (.006") PER SIDE  
3. DRAWING NOT TO SCALE  
3796f  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
31  
LT3796  
TYPICAL APPLICATION  
Buck-Boost Mode LED Driver with Open LED Clamp and Output Voltage Limit  
V
IN  
L1 68µH  
D1  
9V TO 55V  
75V (TRANSIENT)  
R4  
715k  
R5  
20k  
C3  
4.7µF  
×2  
C1  
2.2µF  
×2  
C2  
1µF  
R6  
200k  
V
R1  
1M  
IN  
Efficiency vs VIN  
V
CSN  
CSP  
V
S
IN  
100  
PWM = V  
REF  
EN/UVLO  
CTRL  
GATE  
M1  
R2  
187k  
R7  
95  
90  
SENSE  
1M  
R
SNS  
V
REF  
33mΩ  
LT3796  
R8  
13.3k  
GND  
CSOUT  
FB1  
R3  
249k  
85  
80  
FB2  
ISP  
PWM  
LED CURRENT REPORTING  
INTV  
PWM  
ISMON  
R
LED  
1Ω  
C4  
0.1µF  
75  
70  
ISN  
TG  
CC  
R10  
100k  
R9  
100k  
M2  
0
10  
20  
30  
(V)  
40  
50  
60  
FAULT  
FAULT  
V
IN  
VMODE  
VMODE  
V
C
INTV  
CC  
SS  
INTV  
CC  
3796 TA07b  
25V LED  
250mA  
C5  
SYNC  
RT  
4.7µF  
R
M1: FAIRCHILD SEMICONDUCTOR  
FDM3622  
T
C6  
0.1µF  
R
C
19.6k  
4.99k  
400kHz  
M2: ZETEX ZXMP6A13F  
L1: WÜRTH 744066680  
D1: IRF 10BQ100  
V
C
C
10nF  
IN  
3796 TA07a  
LED: CREE XLAMP XR-E  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
V : 4.7V to 60V, V  
LT3791  
60V, Synchronous Buck-Boost 1MHz  
LED Controller  
Range: 0V to 60V, True Color PWM, Analog = 100:1, I < 1µA,  
OUT SD  
IN  
TSSOP-38E Package  
V : 4.5V to 40V, V Range: 5V to 60V, True Color PWM, Analog = 3000:1, I < 1µA,  
OUT SD  
LT3755/LT3755-1  
LT3755-2  
High Side 60V, 1MHz LED Controller  
with True Color 3,000:1 PWM Dimming  
IN  
3mm × 3mm QFN-16, MSOP-16E Packages  
LT3756/LT3756-1  
LT3756-2  
High Side 100V, 1MHz LED Controller  
with True Color 3,000:1 PWM Dimming  
V : 6V to 100V, V Range: 5V to 100V, True Color PWM, Analog = 3000:1, I < 1µA,  
IN  
OUT  
SD  
3mm × 3mm QFN-16, MSOP-16E Packages  
LT3743  
Synchronous Step-Down 20A LED  
Driver with Three-State LED Current  
Control  
V : 5.5V to 36V, V Range: 5.5V to 35V, True Color PWM, Analog = 3000:1, I < 1µA,  
IN  
OUT  
SD  
4mm × 5mm QFN-28, TSSOP-28E Packages  
LTC3780  
High Efficiency, Synchronous, 4-Switch V : 4V to 36V, V  
Range: 0.8V to 30V, I < 55µA, SSOP-24, QFN-32 Packages  
SD  
IN  
OUT  
OUT  
Buck-Boost Controller  
LTC3789  
High Efficiency, Synchronous, 4-Switch V : 4V to 38V, V  
Range: 0.8V to 38V, I < 40µA, 4mm × 5mm QFN-28, SSOP-28  
SD  
IN  
Packages  
Buck-Boost Controller  
LT3517  
1.3A, 2.5MHz High Current LED Driver  
with 3,000:1 Dimming  
V : 3V to 30V, True Color PWM, Analog = 3000:1, I < 1µA, 4mm × 4mm QFN-16  
IN  
SD  
Package  
LT3518  
2.3A, 2.5MHz High Current LED Driver  
with 3,000:1 Dimming  
V : 3V to 30V, True Color PWM, Analog = 3000:1, I < 1µA, 4mm × 4mm QFN-16  
IN  
SD  
Package  
LT3474/LT3474-1  
LT3475/LT3475-1  
36V, 1A (ILED), 2MHz, Step-Down LED V : 4V to 36V, V  
Range = 13.5V, True Color PWM = 400:1, I < 1µA, TSSOP-16E  
SD  
IN  
OUT  
Package  
Driver  
Dual 1.5A(ILED), 36V, 2MHz, Step-Down V : 4V to 36V, V  
Range = 13.5V, True Color PWM, Analog = 3000:1, I < 1µA,  
IN  
OUT  
SD  
TSSOP-20E Package  
LED Driver  
3796f  
LT 0412 • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
32  
LINEAR TECHNOLOGY CORPORATION 2012  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  

相关型号:

LTC3801

Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT
Linear

LTC3801B

Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT
Linear

LTC3801BES6

Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT
Linear

LTC3801BES6#PBF

IC 1 A SWITCHING CONTROLLER, 650 kHz SWITCHING FREQ-MAX, PDSO6, MO-193, PLASTIC, TSOT-23, Switching Regulator or Controller
Linear

LTC3801BES6#TR

LTC3801 - Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3801BES6#TRM

LTC3801 - Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3801BES6#TRMPBF

LTC3801 - Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3801BES6#TRPBF

LTC3801 - Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3801B_15

Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT
Linear

LTC3801ES6

Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT
Linear

LTC3801ES6#TR

LTC3801 - Micropower Constant Frequency Step-Down DC/DC Controllers in ThinSOT; Package: SOT; Pins: 6; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC3801ES6#TRM

暂无描述
Linear