LTC6800HMS8 [Linear]

Input and Output, Instrumentation Amplifier; 输入和输出,仪表放大器
LTC6800HMS8
型号: LTC6800HMS8
厂家: Linear    Linear
描述:

Input and Output, Instrumentation Amplifier
输入和输出,仪表放大器

仪表放大器 放大器电路 光电二极管
文件: 总12页 (文件大小:201K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC6800  
Rail-to-Rail  
Input and Output,  
Instrumentation Amplifier  
U
FEATURES  
DESCRIPTIO  
116dB CMRR Independent of Gain  
The LTC®6800 is a precision instrumentation amplifier.  
The CMRR is typically 116dB with a single 5V supply and  
is independent of gain. The input offset voltage is guaran-  
teed below 100µV with a temperature drift of less than  
250nV/°C. The LTC6800 is easy to use; the gain is adjust-  
able with two external resistors, like a traditional op amp.  
Maximum Offset Voltage: 100µV  
Maximum Offset Voltage Drift: 250nV/°C  
40°C to 125°C Operation  
Rail-to-Rail Input Range  
Rail-to-Rail Output Swing  
Supply Operation: 2.7V to 5.5V  
The LTC6800 uses charge balanced sampled data tech-  
niques to convert a differential input voltage into a single  
ended signal that is in turn amplified by a zero-drift  
operational amplifier.  
Available in an MS8 and 3mm × 3mm × 0.8mm  
DFN Packages  
U
APPLICATIO S  
The differential inputs operate from rail-to-rail and the  
singleendedoutputswingsfromrail-to-rail. TheLTC6800  
is available in an MS8 surface mount package. For space  
limited applications, the LTC6800 is available in a  
3mm × 3mm × 0.8mm dual fine pitch leadless package  
(DFN).  
Thermocouple Amplifiers  
Electronic Scales  
Medical Instrumentation  
Strain Gauge Amplifiers  
High Resolution Data Acquisition  
, LTC and LT are registered trademarks of Linear Technology Corporation.  
U
TYPICAL APPLICATIO  
High Side Power Supply Current Sense  
Typical Input Referred Offset vs  
Input Common Mode Voltage (VS = 3V)  
1.5m  
15  
V
REGULATOR  
V
V
A
= 3V  
REF  
= 25°C  
S
= 0V  
10  
5
T
2
3
8
OUT  
7
100mV/A  
OF LOAD  
CURRENT  
LTC6800  
+
6
10k  
0.1µF  
5
0
4
G = 1000  
G = 100  
I
LOAD  
LOAD  
–5  
–10  
–15  
G = 10  
150Ω  
G = 1  
2.5  
6800 TA01  
0
1
1.5  
2
3
0.5  
INPUT COMMON MODE VOLTAGE (V)  
6800 TA02  
6800fa  
1
LTC6800  
W W U W  
ABSOLUTE AXI U RATI GS  
(Note 1)  
Total Supply Voltage (V+ to V) .............................. 5.5V  
Input Current ...................................................... ±10mA  
VIN+ – VREF ........................................................ 5.5V  
VIN– VREF ........................................................ 5.5V  
Output Short Circuit Duration .......................... Indefinite  
Operating Temperature Range  
(Note 7) ................................................ 40°C to 125°C  
Storage Temperature Range  
MS8 Package ................................... 65°C to 150°C  
DD Package ...................................... 65°C to 125°C  
Lead Temperature (Soldering, 10 sec).................. 300°C  
U
W
U
PACKAGE/ORDER I FOR ATIO  
ORDER PART NUMBER  
LTC6800HMS8  
ORDER PART NUMBER  
TOP VIEW  
LTC6800HDD  
+
NC  
–IN  
+IN  
1
2
3
4
8
7
6
5
V
TOP VIEW  
OUT  
RG  
REF  
+
NC  
–IN  
+IN  
1
2
3
4
8 V  
7 OUT  
6 RG  
5 REF  
V
MS8 PART MARKING  
LTADE  
DD PART MARKING  
LAEP  
V
MS8 PACKAGE  
8-LEAD PLASTIC MSOP  
DD PACKAGE  
8-LEAD (3mm × 3mm) PLASTIC DFN  
TJMAX = 150°C, θJA = 200°C/W  
TJMAX = 125°C, θJA = 160°C/W  
UNDERSIDE METAL INTERNALLY  
CONNECTED TO V–  
(PCB CONNECTION OPTIONAL)  
Consult LTC Marketing for parts specified with wider operating temperature ranges.  
ELECTRICAL CHARACTERISTICS  
The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, REF = 200mV. Output voltage swing is referenced  
to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
= 200mV  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
±100  
µV  
CM  
T = –40°C to 85°C  
±250  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
A
–1  
Common Mode Rejection Ratio  
(Notes 4, 5)  
A = 1, V = 0V to 3V  
90  
113  
dB  
V
CM  
Integrated Input Bias Current (Note 3)  
Integrated Input Offset Current (Note 3)  
Input Noise Voltage  
V
V
= 1.2V  
= 1.2V  
4
1
10  
3
nA  
nA  
CM  
CM  
DC to 10Hz  
2.5  
116  
µV  
P-P  
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V = 2.7V to 5.5V  
110  
dB  
S
R = 2k to V  
R = 10k to V  
2.85  
2.95  
2.94  
2.98  
V
V
L
L
Output Voltage Swing Low  
Gain Error  
20  
0.1  
100  
mV  
%
A = 1  
V
Gain Nonlinearity  
A = 1  
V
ppm  
6800fa  
2
LTC6800  
ELECTRICAL CHARACTERISTICS The denotes the specifications which apply over the full operating  
temperature range, otherwise specifications are at TA = 25°C. V+ = 3V, V= 0V, REF = 200mV. Output voltage swing is referenced  
to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
mA  
Supply Current  
No Load  
1.2  
Internal Op Amp Gain Bandwidth  
Slew Rate  
200  
0.2  
3
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
The denotes the specifications which apply over the full operating temperature range, otherwise specifications are at TA = 25°C. V+ = 5V,  
V= 0V, REF = 200mV. Output voltage swing is referenced to V. All other specifications reference the OUT pin to the REF pin.  
PARAMETER  
CONDITIONS  
= 200mV  
MIN  
TYP  
MAX  
UNITS  
Input Offset Voltage (Note 2)  
Average Input Offset Drift (Note 2)  
V
±100  
µV  
CM  
T = –40°C to 85°C  
±250  
–2.5  
nV/°C  
µV/°C  
A
T = 85°C to 125°C  
A
–1  
Common Mode Rejection Ratio  
(Notes 4, 5)  
A = 1, V = 0V to 5V  
90  
116  
dB  
V
CM  
Integrated Input Bias Current (Note 3)  
Integrated Input Offset Current (Note 3)  
Power Supply Rejection Ratio (Note 6)  
Output Voltage Swing High  
V
V
= 1.2V  
= 1.2V  
4
1
10  
3
nA  
nA  
dB  
CM  
CM  
V = 2.7V to 5.5V  
110  
116  
S
R = 2k to V  
R = 10k to V  
4.85  
4.95  
4.94  
4.98  
V
V
L
L
Output Voltage Swing Low  
Gain Error  
20  
0.1  
100  
1.3  
mV  
%
A = 1  
V
Gain Nonlinearity  
A = 1  
V
ppm  
mA  
Supply Current  
No Load  
Internal Op Amp Gain Bandwidth  
Slew Rate  
200  
0.2  
3
kHz  
V/µs  
kHz  
Internal Sampling Frequency  
Note 1: Absolute Maximum Ratings are those values beyond which the life  
of a device may be impaired.  
Note 2: These parameters are guaranteed by design. Thermocouple effects  
preclude measurement of these voltage levels in high speed automatic test  
Note 6: The power supply rejection ratio (PSRR) measurement accuracy  
depends on the proximity of the power supply bypass capacitor to the  
device under test. Because of this, the PSRR is 100% tested to relaxed  
limits at final test. However, their values are guaranteed by design to meet  
the data sheet limits.  
systems. V is measured to a limit determined by test equipment  
OS  
capability.  
Note 7: The LTC6800H is guaranteed functional over the operating  
temperature range of –40°C to 125°C. Specifications over the –40°C to  
Note 3: If the total source resistance is less than 10k, no DC errors result  
from the input bias currents or the mismatch of the input bias currents or  
the mismatch of the resistances connected to –IN and +IN.  
125°C range (denoted by  
) are assured by design and characterization  
but are not tested or QA sampled at these temperatures.  
Note 4: The CMRR with a voltage gain, A , larger than 10 is 120dB (typ).  
V
Note 5: At temperatures above 70°C, the common mode rejection ratio  
lowers when the common mode input voltage is within 100mV of the  
supply rails.  
6800fa  
3
LTC6800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Offset Voltage  
vs Input Common Mode Voltage  
Input Offset Voltage  
vs Input Common Mode Voltage  
Input Offset Voltage  
vs Input Common Mode Voltage  
15  
10  
5
15  
10  
5
20  
15  
V
V
T
= 3V  
REF  
= 25°C  
V
V
T
= 5V  
V
V
= 3V  
REF  
G = 10  
S
S
S
= 0V  
= 0V  
REF  
= 0V  
= 25°C  
A
A
10  
G = 1000  
5
0
0
0
G = 1000  
G = 10  
T
= 70°C  
A
G = 100  
G = 1  
–5  
–10  
–15  
–20  
G = 100  
G = 1  
–5  
–10  
–15  
–5  
–10  
–15  
T
= 25°C  
A
G = 10  
T
= –55°C  
A
0
1.0  
1.5  
2.0  
2.5  
3.0  
0
2
3
4
5
0.5  
1
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G01  
2053 G02  
6800 G03  
Input Offset Voltage vs Input  
Common Mode Voltage,  
85°C TA 125°C  
Input Offset Voltage vs Input  
Common Mode Voltage,  
85°C TA 125°C  
Input Offset Voltage  
vs Input Common Mode Voltage  
20  
15  
60  
40  
60  
40  
V
V
= 5V  
REF  
V
V
= 5V  
S
= 0V  
REF  
V
V
= 3V  
REF  
S
S
= 0V  
= 0V  
G = 10  
G = 10  
G = 10  
10  
20  
20  
5
0
0
0
T
= 85°C  
T
= 85°C  
T
= 70°C  
A
A
A
–5  
–10  
–15  
–20  
–20  
–40  
–60  
–20  
–40  
–60  
T
= 25°C  
A
T
= 125°C  
A
T
= 125°C  
A
T
= –55°C  
A
0
2
3
4
5
0
2
3
4
5
1
1
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G04  
6800 G06  
6800 G05  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN < 100pF)  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN < 100pF)  
Additional Input Offset Due to Input  
RS Mismatch vs Input Common  
Mode (CIN < 100pF)  
30  
20  
50  
40  
60  
40  
V
V
R
C
= 5V  
V
V
C
= 3V  
V
V
R
C
= 3V  
S
S
S
= 0V  
= R  
R
= 20k  
= 0V  
REF  
= 0V  
REF  
S
REF  
+
+
= R  
+
R
= 0k, R = 15k  
S
< 100pF  
IN  
= R = R  
IN  
IN  
S
30  
< 100pF  
G = 10  
T = 25°C  
A
< 100pF  
IN  
IN  
G = 10  
G = 10  
= 25°C  
20  
+
R
= 15k  
R
= 0k, R = 10k  
10  
20  
S
T
= 25°C  
T
A
A
R
= 5k  
S
+
10  
R
+
= 0k, R = 5k  
R
= 10k  
S
R
= 0k  
S
0
0
0
R
= 5k  
S
–10  
–20  
–30  
–40  
–50  
R
= 10k  
R
+
= 5k, R = 0k  
= 10k, R = 0k  
S
+
–10  
–20  
–30  
–20  
–40  
–60  
R
R
= 15k  
R
R
R
S
S
S
+
+
+
R
S
= 20k  
SMALL C  
SMALL C  
R
SMALL C  
R
IN  
IN  
IN  
+
R
R
=15k, R = 0k  
2.0 2.5 3.0  
S
S
0
1.0  
1.5  
0.5  
0
2
3
4
5
0
1.0  
1.5  
2.0  
2.5  
3.0  
1
0.5  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G09  
6800 G08  
6800 G07  
6800fa  
4
LTC6800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Additional Input Offset Due to Input  
RS Mismatch vs Input Common  
Mode (CIN < 100pF)  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN > 1µF)  
Additional Input Offset Due to  
Input RS vs Input Common Mode  
(CIN > 1µF)  
40  
30  
40  
30  
70  
50  
+
V
V
= 3V  
S
V
V
C
= 5V  
REF  
R
= 0k, R = 20k  
IN  
S
IN  
+
R
S
= 10k  
= 0V  
REF  
= 0V  
+
R = 15k  
S
R
= R = R  
S
< 100pF  
R
= 0k, R = 15k  
IN  
IN  
IN  
+
C
> 1µF  
IN  
G = 10  
20  
R
S
= 5k  
20  
R
+
= 0k, R = 10k  
IN  
R
= 10k  
S
IN  
G = 10  
30  
T
= 25°C  
A
T
= 25°C  
A
R
= 10k, R = 0k  
IN  
IN  
10  
10  
R
S
= 1k  
= 500Ω  
R
= 5k  
S
10  
0
0
R
S
–10  
–30  
–50  
–70  
+
R
= 15k, R = 0k  
IN  
IN  
R
–10  
–20  
–30  
–40  
–10  
–20  
–30  
–40  
V
V
= 5V  
S
+
R
= 20k, R = 0k  
+
IN  
IN  
R
S
R
= 0V  
S
REF  
+
R
C
= R = R  
+
+
S
+
BIG C  
R
BIG C  
R
SMALL C  
> 1µF  
IN  
IN  
IN  
IN  
G = 10  
T
= 25°C  
A
R
S
S
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
0
2
3
4
5
0
2
3
4
5
1
1
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
6800 G11  
6800 G12  
6800 G10  
Additional Input Offset Due to  
Input RS Mismatch vs Input  
Common Mode (CIN > 1µF)  
Additional Input Offset Due to  
Input RS Mismatch vs Input  
Common Mode (CIN > 1µF)  
Offset Voltage vs Temperature  
200  
150  
100  
50  
80  
60  
200  
150  
100  
50  
V
V
T
= 3V  
V
V
T
= 5V  
S
S
= 0V  
= 0V  
REF  
REF  
= 25°C  
G = 10  
+
= 25°C  
A
R
= 0, R = 1k  
+
A
R
= 0, R = 1k  
G = 10  
40  
+
+
R
= 0, R = 500Ω  
R
= 0, R = 500Ω  
+
R
= 0, R = 100Ω  
20  
+
R
= 0, R = 100Ω  
0
0
0
+
+
V = 3V  
S
R
= 100, R = 0Ω  
V = 5V  
S
R
= 100, R = 0Ω  
–50  
–100  
–150  
–200  
–50  
–20  
–40  
–60  
–80  
+
+
R
= 500, R = 0Ω  
R
= 500, R = 0Ω  
+
+
R
R
–100  
–150  
–200  
+
+
+
+
R
= 1k, R = 0Ω  
R
= 1k, R = 0Ω  
BIG  
C
BIG  
C
IN  
IN  
R
R
0
1.0  
1.5  
2.0  
2.5  
3.0  
0.5  
1
2
4
–50 –25  
0
25  
50  
75 100 125  
0
5
3
INPUT COMMON MODE VOLTAGE (V)  
INPUT COMMON MODE VOLTAGE (V)  
TEMPERATURE (°C)  
6800 G13  
6800 G14  
6800 G15  
VOS vs VREF  
Gain Nonlinearity, G = 1  
Gain Nonlinearity, G = 10  
10  
8
10  
8
30  
20  
+
V
= V = REF  
IN  
V
V
= ±2.5V  
REF  
G = 1  
= 10k  
= 25°C  
V
V
= ±2.5V  
REF  
G = 10  
= 10k  
= 25°C  
IN  
G = 10  
= 25°C  
S
S
= 0V  
= 0V  
T
A
6
6
R
T
R
T
L
L
4
4
A
A
10  
2
2
0
0
0
V
= 5V  
S
–2  
–4  
–6  
–8  
–10  
–2  
–4  
–6  
–8  
–10  
V
= 3V  
S
–10  
–20  
–30  
–2.4  
–0.4  
0.6  
–2.4  
–0.4  
0.6 1.1  
–1.4  
1.6  
2.6  
0
2
3
4
–1.9 –1.4 –0.9  
0.1  
1.6  
1
OUTPUT VOLTAGE (V)  
V
(V)  
OUTPUT VOLTAGE (V)  
REF  
6800 G18  
6800 G17  
6800 G16  
6800fa  
5
LTC6800  
U W  
TYPICAL PERFOR A CE CHARACTERISTICS  
Input Voltage Noise Density  
vs Frequency  
Input Referred Noise in 10Hz  
Bandwidth  
CMRR vs Frequency  
120  
120  
110  
100  
90  
300  
250  
200  
150  
100  
50  
3
2
V
V
T
= 3V, 5V  
G = 10  
A
S
= 1V  
T
= 25°C  
IN  
P-P  
= 25°C  
A
+
R
= R = 1k  
1
V
= 5V  
= 3V  
S
+
R
= R = 10k  
0
V
S
+
R = 10k, R = 0Ω  
+
R = 0, R = 10k  
–1  
–2  
–3  
+
R
+
80  
R
70  
0
1
10  
100  
1000  
1
10  
100  
FREQUENCY (Hz)  
1000  
10000  
–5  
–3  
–1  
1
3
5
FREQUENCY (Hz)  
TIME (s)  
6800 G19  
6800 G20  
6800 G21  
Input Referred Noise in 10Hz  
Bandwidth  
Output Voltage Swing  
vs Output Current  
Supply Current vs Supply Voltage  
3
2
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
T
= 25°C  
V
S
= 5V, SOURCING  
A
T
= 125°C  
1
A
V
S
= 3V, SOURCING  
T
A
= 85°C  
0
–1  
–2  
–3  
T
= 0°C  
A
T
= –55°C  
A
V
S
= 3V, SINKING  
V
S
= 5V, SINKING  
–5  
–3  
–1  
1
3
5
0.01  
1
10  
2.5  
3.5  
4.5  
5.5  
6
0.1  
TIME (s)  
OUTPUT CURRENT (mA)  
SUPPLY VOLTAGE (V)  
6800 G22  
6800 G23  
6800 G24  
Low Gain Settling Time  
vs Settling Accuracy  
Internal Clock Frequency  
vs Supply Voltage  
Settling Time vs Gain  
35  
30  
25  
20  
15  
10  
5
8
3.40  
3.35  
3.30  
3.25  
3.20  
3.15  
3.10  
V
= 5V  
V
= 5V  
OUT  
S
S
dV  
= 1V  
dV  
= 1V  
OUT  
0.1% ACCURACY  
= 25°C  
7
6
5
4
3
2
1
G < 100  
= 25°C  
T
A
T
A
T
= 125°C  
A
T
= 85°C  
A
T
= 25°C  
A
T
= –55°C  
A
0
0
0.01  
SETTLING ACCURACY (%)  
0.0001  
0.001  
0.1  
1
10  
100  
1000  
10000  
2.5  
3.5  
4.5  
5.5  
6
GAIN (V/V)  
SUPPLY VOLTAGE (V)  
6800 G25  
6800 G26  
6800 G27  
6800fa  
6
LTC6800  
U
U
U
PI FU CTIO S  
NC (Pin 1): Not Connected.  
–IN (Pin 2): Inverting Input.  
+IN (Pin 3): Noninverting Input.  
V(Pin 4): Negative Supply.  
RG (Pin 6): Inverting Input of Internal Op Amp. With a  
resistor, R2, connected between the OUT pin and the RG  
pinandaresistor, R1, betweentheRGpinandtheREFpin,  
the DC gain is given by 1 + R2 / R1.  
OUT (Pin 7): Amplifier Output.  
REF (Pin 5): VoltageReference(VREF)forAmplifierOutput.  
V
OUT = GAIN (V+IN – V–IN) + VREF  
V+ (Pin 8): Positive Supply.  
W
BLOCK DIAGRA  
8
+
V
+IN  
3
+
OUT  
7
C
S
C
H
–IN  
2
REF  
RG  
V
5
6
4
6800 BD  
6800fa  
7
LTC6800  
U
W
U U  
APPLICATIO S I FOR ATIO  
Theory of Operation  
where V+IN and V–IN are the voltages of the +IN and –IN  
pins respectively, VREF is the voltage at the REF pin and V+  
is the positive supply voltage.  
The LTC6800 uses an internal capacitor (CS) to sample a  
differential input signal riding on a DC common mode  
voltage (see Block Diagram). This capacitor’s charge is  
transferred to a second internal hold capacitor (CH) trans-  
lating the common mode of the input differential signal to  
that of the REF pin. The resulting signal is amplified by a  
zero-drift op amp in the noninverting configuration. The  
RG pin is the negative input of this op amp and allows  
external programmability of the DC gain. Simple filtering  
can be realized by using an external capacitor across the  
feedback resistor.  
For example, with a 3V single supply and a 0V to 100mV  
differential input voltage, VREF must be between 0V and  
1.6V.  
Settling Time  
The sampling rate is 3kHz and the input sampling period  
duringwhichCS ischargedtotheinputdifferentialvoltage  
VIN is approximately 150µs. First assume that on each  
input sampling period, CS is charged fully to VIN. Since  
CS = CH (= 1000pF), a change in the input will settle to N  
bits of accuracy at the op amp noninverting input after N  
clock cycles or 333µs(N). The settling time at the OUT pin  
is also affected by the settling of the internal op amp.  
Since the gain bandwidth of the internal op amp is  
typically 200kHz, the settling time is dominated by the  
switched capacitor front end for gains below 100 (see  
Typical Performance Characteristics).  
Input Voltage Range  
The input common mode voltage range of the LTC6800 is  
rail-to-rail. However, the following equation limits the size  
of the differential input voltage:  
V(V+IN – V–IN) + VREF V+ – 1.3  
SINGLE SUPPLY, UNITY GAIN  
5V  
8
3
2
V
+
+IN  
+
7
V
D
6
V
–IN  
5
4
6800 F01  
0V < V < 5V  
+IN  
0V < V < 5V  
–IN  
0V < V < 3.7V  
D
V
OUT  
= V  
D
Figure 1  
6800fa  
8
LTC6800  
U
W U U  
APPLICATIO S I FOR ATIO  
Input Current  
In the Typical Performance Characteristics section of this  
data sheet, there are curves showing the additional error  
from nonzero source resistance in the inputs. If there are  
no large capacitors across the inputs, the amplifier is less  
sensitive to source resistance and source resistance mis-  
match. When large capacitors are placed across the in-  
puts,theinputchargingcurrentsdescribedaboveresultin  
larger DC errors, especially with source resistor mis-  
matches.  
Whenever the differential input VIN changes, CH must be  
charged up to the new input voltage via CS. This results in  
an input charging current during each input sampling  
period. Eventually, CH and CS will reach VIN and, ideally,  
the input current would go to zero for DC inputs.  
In reality, there are additional parasitic capacitors which  
disturb the charge on CS every cycle even if VIN is a DC  
voltage. For example, the parasitic bottom plate capacitor  
on CS must be charged from the voltage on the REF pin to  
the voltage on the –IN pin every cycle. The resulting input  
charging current decays exponentially during each input  
sampling period with a time constant equal to RSCS. If the  
voltage disturbance due to these currents settles before  
the end of the sampling period, there will be no errors  
due to source resistance or the source resistance mis-  
match between –IN and +IN. With RS less than 10k, no  
DC errors occur due to this input current.  
Power Supply Bypassing  
TheLTC6800usesasampleddatatechniqueandtherefore  
contains some clocked digital circuitry. It is therefore sen-  
sitivetosupplybypassing.A0.1µFceramiccapacitormust  
beconnectedbetweenPin 8(V+)andPin4(V)withleads  
as short as possible.  
6800fa  
9
LTC6800  
U
TYPICAL APPLICATIO S  
Precision ÷2  
5V  
0.1µF  
3
2
8
V
IN  
+
7
LTC6800  
V
OUT  
6
5
4
V
2
IN  
1k  
V
=
OUT  
0.1µF  
6800 TA03  
Precision Doubler (General Purpose)  
2.5V  
0.1µF  
3
8
5
V
IN  
+
7
LTC6800  
V
OUT  
2
6
4
V
= 2V  
IN  
OUT  
0.1µF  
0.1µF  
6800 TA04  
–2.5V  
Precision Inversion (General Purpose)  
2.5V  
0.1µF  
3
8
+
7
LTC6800  
V
OUT  
2
6
V
5
IN  
4
V
= –V  
IN  
OUT  
0.1µF  
6800 TA05  
–2.5V  
6800fa  
10  
LTC6800  
U
PACKAGE DESCRIPTIO  
MS8 Package  
8-Lead Plastic MSOP  
(Reference LTC DWG # 05-08-1660)  
DETAIL “A”  
0.254  
(.010)  
0° – 6° TYP  
GAUGE PLANE  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 3)  
0.53 ± 0.152  
(.021 ± .006)  
0.52  
(.0205)  
REF  
1.10  
(.043)  
MAX  
0.86  
(.034)  
REF  
8
7 6  
5
0.889 ± 0.127  
(.035 ± .005)  
DETAIL “A”  
0.18  
(.007)  
3.00 ± 0.102  
(.118 ± .004)  
(NOTE 4)  
SEATING  
PLANE  
4.90 ± 0.152  
(.193 ± .006)  
5.23  
(.206)  
MIN  
0.22 – 0.38  
(.009 – .015)  
TYP  
0.127 ± 0.076  
(.005 ± .003)  
3.20 – 3.45  
(.126 – .136)  
0.65  
(.0256)  
BSC  
NOTE:  
1. DIMENSIONS IN MILLIMETER/(INCH)  
2. DRAWING NOT TO SCALE  
1
2
3
4
0.65  
(.0256)  
BSC  
0.42 ± 0.038  
3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS.  
(.0165 ± .0015)  
TYP  
RECOMMENDED SOLDER PAD LAYOUT  
INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE  
5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX  
MSOP (MS8) 0603  
DD Package  
8-Lead Plastic DFN (3mm × 3mm)  
(Reference LTC DWG # 05-08-1698)  
R = 0.115  
0.38 ± 0.10  
TYP  
5
8
0.675 ±0.05  
3.00 ±0.10  
(4 SIDES)  
1.65 ± 0.10  
(2 SIDES)  
3.5 ±0.05  
2.15 ±0.05 (2 SIDES)  
1.65 ±0.05  
PIN 1  
TOP MARK  
PACKAGE  
OUTLINE  
4
1
0.28 ± 0.05  
0.75 ±0.05  
0.200 REF  
0.28 ± 0.05  
0.50 BSC  
0.50  
BSC  
2.38 ±0.05  
(2 SIDES)  
2.38 ±0.10  
(2 SIDES)  
0.00 – 0.05  
BOTTOM VIEW—EXPOSED PAD  
NOTE:  
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS  
1. DRAWING TO BE MADE A JEDEC PACKAGE OUTLINE M0-229 VARIATION OF (WEED-1)  
2. ALL DIMENSIONS ARE IN MILLIMETERS  
(DD8) DFN 0203  
3. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE  
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE  
4. EXPOSED PAD SHALL BE SOLDER PLATED  
6800fa  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no represen-  
tationthattheinterconnectionofitscircuitsasdescribedhereinwillnotinfringeonexistingpatentrights.  
11  
LTC6800  
U
TYPICAL APPLICATIO  
Differential Bridge Amplifier  
3V  
0.1µF  
R < 10k  
8
2
7
OUT  
LTC6800  
3
6
+
R2 10k  
5
4
0.1µF  
R1  
10Ω  
R2  
R1  
GAIN = 1 +  
6800 TA06  
RELATED PARTS  
PART NUMBER  
DESCRIPTION  
COMMENTS  
LTC1100  
Precision Zero Drift Instrumentation Amplifier  
Fixed Gains of 10 or 100, 10µV Offset,  
50pA Input Bias Current  
LT®1101  
LT1167  
Precision, Micropower, Single Supply Instrumentation Amplifier  
Fixed Gains of 10 or 100, I < 105µA  
S
Single Resistor Gain Programmable, Precision Instrumentation Amplifier  
Single Gain Set Resistor: G = 1 to 10,000,  
Low Noise: 7.5nVHz  
LT1168  
Low Power Single Resistor Gain Programmable,  
Precision Instrumentation Amplifier  
I
= 530µA  
SUPPLY  
LTC1043  
LT1789-1  
LTC2050  
LTC2051  
LTC2052  
LTC2053  
Dual Precision Instrumentation Switched-Capacitor Building Block  
Single Supply, Rail-to-Rail Output, Micropower Instrumentation Amplifier  
Zero-Drift Operation Amplifier  
Rail-to-Rail Input, 120dB CMRR  
= 80µA Maximum  
I
SUPPLY  
SOT-23 Package, 3µV Max V , 30nV/°C Max Drift  
OS  
Dual Zero-Drift Operational Amplifier  
MS8 Package, 3µV Max V , 30nV/°C Max Drift  
OS  
Quad Zero-Drift Operational Amplifier  
GN-16 Package, 3µV Max V , 30nV/°C Max Drift  
OS  
Single Supply, Zero Drift, Rail-to-Rail Input and Output Instrumentation Amplifier MS8 Package, 10µV Max V , 50nV/°C Max Drift  
OS  
6800fa  
LT/TP 0903 1K • PRINTED IN USA  
12 LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
(408) 432-1900 FAX: (408) 434-0507 www.linear.com  
LINEAR TECHNOLOGY CORPORATION 2002  

相关型号:

LTC6800HMS8#TR

LTC6800 - Rail-to-Rail, Input and Output, Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6800HMS8#TRPBF

LTC6800 - Rail-to-Rail, Input and Output, Instrumentation Amplifier; Package: MSOP; Pins: 8; Temperature Range: -40&deg;C to 125&deg;C
Linear

LTC6801

Independent Multicell Battery Stack Fault Monitor
Linear

LTC6801IG

Independent Multicell Battery Stack Fault Monitor
Linear

LTC6801IGPBF

Independent Multicell Battery Stack Fault Monitor
Linear

LTC6801IGTRPBF

Independent Multicell Battery Stack Fault Monitor
Linear

LTC6802-1

Multicell Battery Stack Monitor
Linear

LTC6802-1_1

Multicell Battery Stack Monitor
Linear

LTC6802-2

Multicell Addressable Battery Stack Monitor
Linear

LTC6802IG-1

Multicell Battery Stack Monitor
Linear

LTC6802IG-1#PBF

LTC6802-1 - Multicell Battery Stack Monitor; Package: SSOP; Pins: 44; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC6802IG-1#TRPBF

LTC6802-1 - Multicell Battery Stack Monitor; Package: SSOP; Pins: 44; Temperature Range: -40&deg;C to 85&deg;C
Linear