LTC694IS8#PBF [Linear]

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C;
LTC694IS8#PBF
型号: LTC694IS8#PBF
厂家: Linear    Linear
描述:

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40°C to 85°C

光电二极管
文件: 总20页 (文件大小:269K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LTC690/LTC691  
LTC694/LTC695  
Microprocessor  
Supervisory Circuits  
FeaTures  
DescripTion  
The LTC®690 family, LTC690/LTC691/LTC694/LTC695,  
provides complete power supply monitoring and battery  
control functions for microprocessor reset, battery back-  
up, CMOS RAM write protection, power failure warning  
and watchdog timing. A precise internal voltage reference  
and comparator circuit monitor the power supply line.  
When an out-of-tolerance condition occurs, the reset  
outputs are forced to active states and the chip enable  
output unconditionally write-protects external memory.  
In addition, the RESET output is guaranteed to remain  
n
Guaranteed Reset Assertion at V = 1V  
CC  
n
1.5mA Maximum Supply Current  
n
Fast (35ns Max) Onboard Gating of RAM Chip  
Enable Signals  
SO-8 and S16 Packaging  
4.65V Precision Voltage Monitor  
n
n
n
Power OK/Reset Time Delay: 50ms, 200ms  
or Adjustable  
n
Minimum External Component Count  
n
1µA Maximum Standby Current  
n
Voltage Monitor for Power-Fail  
logic low even with V as low as 1V.  
CC  
or Low Battery Warning  
Thermal Limiting  
The LTC690 family powers the active CMOS RAMs with a  
charge pumped NMOS power switch to achieve low drop-  
out and low supply current. When primary power is lost,  
auxiliary power, connected to the battery input pin, powers  
the RAMs in standby through an efficient PMOS switch.  
n
n
Performance Specified Over Temperature  
Superior Upgrade for MAX690 Family  
n
applicaTions  
Foranearlywarningofimpendingpowerfailure,theLTC690  
family provides an internal comparator with a user-defined  
threshold.Aninternalwatchdogtimerisalsoavailable,which  
forces the reset pins to active states when the watchdog  
input is not toggled prior to a preset timeout period.  
n
Critical µP Power Monitoring  
n
Intelligent Instruments  
n
Battery-Powered Computers and Controllers  
Automotive Systems  
n
L, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear  
Technology Corporation. All other trademarks are the property of their respective owners.  
Typical applicaTion  
RESET Output Voltage  
vs Supply Voltage  
5
LT®1086-5  
T
= 25°C  
A
V
IN  
≥ 7.5V  
5V  
EXTERNAL PULL-UP = 10µA  
= 0V  
POWER TO  
µP  
V
V
V
CC  
V
IN  
OUT  
V
OUT  
BATT  
4
3
+
+
CMOS RAM POWER  
0.1µF  
3V  
0.1µF  
LTC690/LTC691  
LTC694/LTC695  
100µF  
10µF  
ADJ  
µP  
SYSTEM  
V
BATT  
µP RESET  
µP NMI  
RESET  
PFO  
51k  
10k  
2
1
0
I/O LINE  
PFI  
WDI  
GND  
690 TA01  
0.1µF 100Ω  
MICROPROCESSOR RESET, BATTERY BACK-UP, POWER FAILURE  
WARNING AND WATCHDOG TIMING ARE ALL IN A SINGLE CHIP  
FOR MICROPROCESSOR SYSTEMS  
0
1
2
3
4
5
SUPPLY VOLTAGE (V)  
690 TA02  
690ff  
1
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
absoluTe MaxiMuM raTings  
(Notes 1 and 2)  
Terminal Voltage  
V
Output Current ...................Short-Circuit Protected  
OUT  
V
V
.....................................................0.3V to 6.0V  
Power Dissipation...............................................500mW  
Operating Temperature Range  
CC  
BATT  
.................................................. –0.3V to 6.0V  
All Other Inputs ....................0.3V to (V  
+ 0.3V)  
LTC690/91/94/95C ................................ 0°C to 70°C  
LTC690/91/94/95I .............................40°C to 85°C  
Storage Temperature Range .................. –65°C to 150°C  
Lead Temperature (Soldering, 10 sec.) ................. 300°C  
OUT  
Input Current  
V
................................................................200mA  
BATT  
CC  
V
...............................................................50mA  
GND.................................................................20mA  
pin conFiguraTion  
TOP VIEW  
TOP VIEW  
V
RESET  
RESET  
WDO  
CE IN  
CE OUT  
WDI  
V
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
1
2
RESET  
RESET  
WDO  
16  
15  
14  
13  
BATT  
BATT  
V
V
OUT  
OUT  
V
V
CC  
3
4
5
6
7
8
CC  
GND  
GND  
BATT ON  
LOWLINE  
OSC IN  
CE IN  
BATT ON  
LOWLINE  
OSC IN  
12  
CE OUT  
11 WDI  
PFO  
PFO  
10  
9
OSC SEL  
PFI  
PFI  
OSC SEL  
SW PACKAGE  
16-LEAD WIDE PLASTIC SO  
N PACKAGE  
16-LEAD PDIP  
T
= 110°C, θ = 130°C/W CONDITIONS: PCB MOUNT ON  
JA  
FR4 MATERIAL, STILL AIR AT 25°C, COPPER TRACE  
JMAX  
T
= 110°C, θ = 130°C/W  
JMAX  
JA  
TOP VIEW  
TOP VIEW  
V
1
2
3
4
V
V
OUT  
8
7
6
5
1
2
OUT  
8
7
6
5
V
BATT  
BATT  
V
V
RESET  
RESET  
WDI  
CC  
CC  
WDI  
GND  
PFI  
GND  
PFI  
3
4
PFO  
PFO  
S8 PACKAGE  
8-LEAD PLASTIC SO  
J8 PACKAGE  
N8 PACKAGE  
8-LEAD CERDIP 8-LEAD PDIP  
T
= 110°C, θ = 180°C/W CONDITIONS; PCB MOUNT ON  
JA  
T
= 110°C, θ = 130°C/W (N8)  
JA  
JMAX  
JMAX  
FR4 MATERIAL, STILL AIR AT 25°C, COPPER TRACE  
690ff  
2
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
orDer inForMaTion  
LEAD FREE FINISH  
LTC691CN#PBF  
LTC691IN#PBF  
TAPE AND REEL  
LTC691CN#PBF  
LTC691IN#PBF  
LTC695CN#PBF  
LTC695IN#PBF  
LTC691CSW#PBF  
LTC691ISW#PBF  
LTC695CSW#PBF  
LTC695ISW#PBF  
LTC690CN8#PBF  
LTC690IN8#PBF  
LTC694CN8#PBF  
LTC694IN8#PBF  
LTC690CS8#PBF  
LTC690IS8#PBF  
LTC694CS8#PBF  
LTC694IS8#PBF  
PART MARKING*  
LTC691CN  
LTC691IN  
LTC695CN  
LTC695IN  
LTC691CSW  
LTC691ISW  
LTC695CSW  
LTC695ISW  
LTC690CN8  
LTC690IN8  
LTC694CN8  
LTC694IN8  
690  
PACKAGE DESCRIPTION  
16-Lead PDIP  
TEMPERATURE RANGE  
0°C to 70°C  
16-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LTC695CN#PBF  
LTC695IN#PBF  
16-Lead PDIP  
16-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
LTC691CSW#PBF  
LTC691ISW#PBF  
LTC695CSW#PBF  
LTC695ISW#PBF  
LTC690CN8#PBF  
LTC690IN8#PBF  
LTC694CN8#PBF  
LTC694IN8#PBF  
LTC690CS8#PBF  
LTC690IS8#PBF  
LTC694CS8#PBF  
LTC694IS8#PBF  
16-Lead Wide Plastic SO  
16-Lead Wide Plastic SO  
16-Lead Wide Plastic SO  
16-Lead Wide Plastic SO  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
–40°C to 85°C  
0°C to 70°C  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
8-Lead PDIP  
8-Lead PDIP  
–40°C to 85°C  
0°C to 70°C  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
8-Lead Plastic SO  
690  
–40°C to 85°C  
0°C to 70°C  
694  
694  
–40°C to 85°C  
Consult LTC Marketing for parts specified with wider operating temperature ranges. *The temperature grade is identified by a label on the shipping container.  
For more information on lead free part marking, go to: http://www.linear.com/leadfree/  
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/  
proDucT selecTion guiDe  
CONDITIONAL  
BATTERY  
BACK-UP  
WATCHDOG  
TIMER  
BATTERY  
BACK-UP  
POWER-FAIL  
WARNING  
RAM WRITE  
PROTECT  
PUSHBUTTON  
RESET  
PINS  
8
RESET  
LTC690  
LTC691  
LTC694  
LTC695  
LTC699  
LTC1232  
LTC1235  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
16  
8
X
X
16  
8
8
X
X
16  
X
X
X
X
690ff  
3
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
elecTrical characTerisTics The l denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = full operating range, VBATT = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Battery Back-Up Switching  
Operating Voltage Range  
V
V
4.75  
2.00  
5.50  
4.25  
V
V
CC  
BATT  
V
Output Voltage  
I
= 1mA  
V
CC  
V
CC  
– 0.05  
– 0.10  
V
V
– 0.005  
– 0.005  
V
V
OUT  
OUT  
CC  
CC  
l
I
I
I
= 50mA  
V
– 0.50  
V
– 0.250  
V
V
OUT  
OUT  
OUT  
CC  
CC  
V
in Battery Back-Up Mode  
= 250µA, V < V  
V
BATT  
– 0.1  
V
– 0.2  
BATT  
OUT  
CC  
BATT  
Supply Current (Exclude I  
)
= 50mA  
0.6  
0.6  
1.5  
2.5  
mA  
mA  
OUT  
l
l
l
Supply Current in Battery Back-Up Mode  
V
= 0V, V  
= 2.8V  
0.04  
0.04  
1
5
µA  
µA  
CC  
BATT  
Battery Standby Current (+ = Discharge, – = Charge) 5.5 > V > V  
+ 0.2V  
BATT  
–0.1  
–0.1  
+0.02  
+0.10  
µA  
µA  
CC  
Battery Switchover Threshold, V – V  
Power Up  
Power Down  
70  
50  
mV  
mV  
CC  
BATT  
Battery Switchover Hysteresis  
20  
mV  
V
BATT ON Output Voltage (Note 4)  
I
= 3.2mA  
0.4  
25  
SINK  
BATT ON Output Short-Circuit Current (Note 4)  
BATT ON = V  
Sink Current  
35  
1
m
OUT  
BATT ON = 0V Source Current  
0.5  
4.5  
µA  
Reset and Watchdog Timer  
Reset Voltage Threshold  
l
4.65  
40  
4.75  
V
Reset Threshold Hysteresis  
Reset Active Time (LTC690/91) (Note 5)  
mV  
OSC SEL HIGH, V = 5V  
40  
35  
50  
50  
60  
70  
ms  
ms  
CC  
l
l
l
l
Reset Active Time (LTC694/95) (Note 5)  
OSC SEL HIGH, V = 5V  
160  
140  
200  
200  
240  
280  
ms  
ms  
CC  
Watchdog Timeout Period, Internal Oscillator  
Long Period, V = 5V  
1.2  
1
1.6  
1.6  
2.00  
2.25  
sec  
sec  
CC  
Short Period, V = 5V  
80  
70  
100  
100  
120  
140  
ms  
ms  
CC  
Watchdog Timeout Period, External Clock (Note 6)  
Long Period  
Short Period  
4032  
960  
4097  
1025  
Clock  
Cycles  
Reset Active Time PSRR  
1
1
ms/V  
ms/V  
ns  
Watchdog Timeout Period PSRR, Internal OSC  
Minimum WDI Input Pulse Width  
l
V
= 0.4V, V = 3.5V  
200  
IL  
IH  
RESET Output Voltage at V = 1V  
I
= 10µA, V = 1V  
4
200  
0.4  
mV  
CC  
SINK  
CC  
RESET and LOWLINE Output Voltage (Note 4)  
I
I
= 1.6mA, V = 4.25V  
V
V
SINK  
CC  
= 1µA, V = 5V  
3.5  
3.5  
SOURCE  
CC  
RESET and WDO Output Voltage (Note 4)  
I
I
= 1.6mA, V = 5V  
0.4  
V
V
SINK  
CC  
= 1µA, V = 4.25V  
SOURCE  
CC  
690ff  
4
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
elecTrical characTerisTics The l denotes specifications which apply over the operating temperature  
range, otherwise specifications are at TA = 25°C. VCC = full operating range, VBATT = 2.8V, unless otherwise noted.  
PARAMETER  
CONDITIONS  
MIN  
TYP  
3
MAX  
UNITS  
µA  
RESET, RESET, WDO, LOWLINE  
Output Short-Circuit Current (Note 4)  
Output Source Current  
Output Sink Current  
1
25  
25  
mA  
V
WDI Input Threshold  
WDI Input Current  
Logic Low  
Logic high  
0.8  
50  
3.5  
l
l
WDI = V  
4
–8  
µA  
OUT  
WDI = 0V  
–50  
Power-Fail Detector  
PFI Input Threshold  
l
V
= 5V  
1.25  
1.3  
1.35  
V
mV/V  
nA  
CC  
PFI Input Threshold PSRR  
PFI Input Current  
0.3  
0.01  
25  
PFO Output Voltage (Note 4)  
I
I
= 3.2mA  
SOURCE  
0.4  
V
SINK  
= 1µA  
3.5  
1
PFO Short-Circuit Source Current (Note 4)  
PFI = HIGH, PFO = 0V  
PFI = LOW, PFO = V  
3
25  
2
25  
µA  
mA  
µs  
OUT  
PFI Comparator Response Time (Falling)  
∆V = –20mV, V = 15mV  
IN OD  
PFI Comparator Response Time (Rising) (Note 4)  
∆V = 20mV, V = 15mV  
40  
8
µs  
IN  
OD  
with 10kΩ Pull-Up  
Chip Enable Gating  
CE IN Threshold  
V
V
0.8  
0.4  
V
IL  
IH  
2
CE IN Pull-Up Current (Note 7)  
CE OUT Output Voltage  
3
µA  
V
I
I
I
= 3.2mA  
SINK  
SOURCE  
SOURCE  
= 3.0mA  
V
V
– 1.50  
– 0.05  
OUT  
OUT  
= 1µA, V = 0V  
CC  
CE Propagation Delay  
V
= 5V, C = 20pF  
20  
20  
35  
45  
ns  
CC  
L
l
CE OUT Output Short-Circuit Current  
Output Source Current  
Output Sink Current  
30  
35  
mA  
Oscillator  
OSC IN Input Current (Note 7)  
OSC SEL Input Pull-Up Current (Note 7)  
OSC IN Frequency Range  
2
5
µA  
µA  
l
OSC SEL = 0V  
0
250  
kHz  
kHz  
OSC IN Frequency with External Capacitor  
OSC SEL = 0V, C  
= 47pF  
4
OSC  
Note 1: Stresses beyond those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to any Absolute  
Maximum Rating condition for extended periods may affect device  
reliability and lifetime.  
Note 5: The LTC690 and LTC691 have minimum reset active time of 35ms  
(50ms typically) while the LTC694 and LTC695 have longer minimum  
reset active time of 140ms (200ms typically). The reset active time of  
the LTC691 and LTC695 can be adjusted (see Table 2 in Applications  
Information section).  
Note 2: All voltage values are with respect to GND.  
Note 6: The external clock feeding into the circuit passes through the  
oscillator before clocking the watchdog timer (See Block Diagram).  
Variation in the timeout period is caused by phase errors which occur  
when the oscillator divides the external clock by 64. The resulting variation  
in the timeout period is 64 clocks plus one clock of jitter.  
Note 3: For military temperature range parts or for the LTC692 and  
LTC693, consult the factory.  
Note 4: The output pins of BATT ON, LOWLINE, PFO, WDO, RESET and  
RESET have weak internal pull-ups of typically 3µA. However, external  
pull-up resistors may be used when higher speed is required.  
Note 7: The input pins of CE IN, OSC IN and OSC SEL have weak internal  
pull-ups which pull to the supply when the input pins are floating.  
690ff  
5
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
block DiagraM  
M2  
V
V
BATT  
OUT  
M1  
V
CC  
CHARGE  
PUMP  
+
BATT ON  
C2  
LOWLINE  
+
C1  
CE OUT  
1.3V  
GND  
CE IN  
C3  
PFO  
+
PFI  
RESET  
RESET  
OSC IN  
RESET PULSE  
GENERATOR  
OSC  
OSC SEL  
WATCHDOG  
TIMER  
WDO  
690 BD  
TRANSITION  
DETECTOR  
WDI  
pin FuncTions  
V : 5V Supply Input. The V pin should be bypassed  
GND: Ground pin.  
BATT ON: Battery On Logic Output from Comparator C2.  
CC  
CC  
with a 0.1µF capacitor.  
V
:VoltageOutputforBackedUpMemory. Bypasswith  
BATT ON goes low when V  
is internally connected to  
OUT  
OUT  
a capacitor of 0.1µF or greater. During normal operation,  
OUT  
V . The output typically sinks 35mA and can provide  
CC  
V
obtains power from V through an NMOS power  
base drive for an external PNP transistor to increase the  
CC  
switch,M1,whichcandeliverupto50mAandhasatypical  
on resistance of 5Ω. When V is lower than V , V  
output current above the 50mA rating of V . BATT ON  
OUT  
goes high when V  
is internally switched to V  
.
CC  
BATT OUT  
OUT  
BATT  
is internally switched to V  
. If V  
BATT  
and V  
are not  
OUT  
BATT  
PFI: Power Failure Input. PFI is the noninverting input  
to the power-fail comparator, C3. The inverting input is  
internallyconnectedtoa1.3Vreference. Thepowerfailure  
output remains high when PFI is above 1.3V and goes  
used, connect V  
to V .  
OUT  
CC  
V
: Back-Up Battery Input. When V falls below V  
,
BATT  
OUT  
BATT  
CC  
auxiliary power, connected to V  
, is delivered to V  
BATT  
through PMOS switch, M2. If back-up battery or auxiliary  
power is not used, V  
low when PFI is below 1.3V. Connect PFI to GND or V  
when C3 is not used.  
OUT  
should be connected to GND.  
BATT  
690ff  
6
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
pin FuncTions  
PFO: Power Failure Output from C3. PFO remains high  
WDO: Watchdog Logic Output. When the watchdog input  
remains either high or low for longer than the watchdog  
timeout period, WDO goes low. WDO is set high whenever  
there is a transition on the WDI pin, or LOWLINE goes  
low. The watchdog timer can be disabled by floating WDI  
(see Figure 11).  
when PFI is above 1.3V and goes low when PFI is below  
1.3V. When V is lower than V  
, C3 is shut down and  
CC  
BATT  
PFO is forced low.  
RESET: Logic Output for µP Reset Control. Whenever  
falls below either the reset voltage threshold (4.65V,  
V
CC  
typically)orV  
,RESETgoesactivelow.AfterV returns  
BATT  
CE IN: Logic input to the ChipEnable gating circuit. CE IN  
can be derived from microprocessor’s address line and/  
or decoder output. See Applications Information section  
and Figure 5 for additional information.  
CC  
to5V, resetpulsegeneratorforcesRESETtoremainactive  
lowforaminimumof35msfortheLTC690/LTC691(140ms  
for the LTC694/LTC695). When the watchdog timer is  
enabled but not serviced prior to a preset timeout period,  
reset pulse generator also forces RESET to active low for  
a minimum of 35ms for the LTC690/LTC691 (140ms for  
the LTC694/5) for every preset timeout period (see Figure  
11). The reset active time is adjustable on the LTC691/  
LTC695. An external pushbutton reset can be used in  
connection with the RESET output. See Pushbutton Reset  
in Applications Information section.  
CE OUT: Logic Output on the ChipEnable Gating Circuit.  
When V is above the reset voltage threshold, CE OUT is  
CC  
a buffered replica of CE IN. When V is below the reset  
CC  
voltage threshold CE OUT is forced high (see Figure 5).  
OSC SEL: Oscillator Selection Input. When OSC SEL is  
high or floating, the internal oscillator sets the reset active  
time and watchdog timeout period. Forcing OSC SEL low,  
allows OSC IN be driven from an external clock signal or  
externalcapacitorbeconnectedbetweenOSCINandGND.  
RESET: RESET is an active high logic output. It is the  
inverse of RESET.  
OSCIN:OscillatorInput.OSCINcanbedrivenbyanexternal  
clocksignalorexternalcapacitorcanbeconnectedbetween  
OSC IN and GND when OSC SEL is forced low. In this  
configuration the nominal reset active time and watchdog  
timeout period are determined by the number of clocks or  
set by the formula (see Applications Information section).  
When OSC SEL is high or floating, the internal oscillator is  
enabled and the reset active time is fixed at 50ms typical  
for the LTC691 and 200ms typical for the LTC695. OSC  
IN selects between the 1.6 seconds and 100ms typical  
watchdog timeout periods. In both cases, the timeout  
period immediately after a reset is 1.6 seconds typical.  
LOWLINE:LogicOutputfromComparatorC1.LOWLINE  
indicates a low line condition at the V input. When V  
CC  
CC  
falls below the reset voltage threshold (4.65V typically),  
LOWLINE goes low. As soon as V rises above the reset  
CC  
voltage threshold, LOWLINE returns high (see Figure 1).  
LOWLINE goes low when V drops below V  
(see  
CC  
BATT  
Table 1).  
WDI: Watchdog Input, WDI, is a three level input. Driving  
WDIeitherhighorlowforlongerthanthewatchdogtimeout  
period, forces both RESET and WDO low. Floating WDI  
disables the watchdog timer. The timer resets itself with  
each transition of the watchdog input (see Figure 11).  
690ff  
7
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
Typical perForMance characTerisTics  
Power Failure Input Threshold  
vs Temperature  
VOUT vs IOUT  
VOUT vs IOUT  
5.00  
2.80  
2.78  
2.76  
2.74  
2.72  
1.308  
1.306  
V
V
T
= 5V  
= 2.8V  
= 25°C  
V
V
T
= 0V  
= 2.8V  
= 25°C  
V
= 5V  
CC  
CC  
BATT  
A
CC  
BATT  
A
4.95  
4.90  
1.304  
1.302  
1.300  
1.298  
1.296  
1.294  
SLOPE = 125Ω  
SLOPE = 5Ω  
4.85  
4.80  
4.75  
0
10  
20  
30  
40  
50  
0
100  
300  
LOAD CURRENT (µA)  
400  
500  
–50 –25  
0
25  
50  
TEMPERATURE (°C)  
75  
100 125  
200  
LOAD CURRENT (mA)  
690 G01  
690 G02  
690 G03  
Reset Active Time  
Reset Active Time  
Reset Voltage Threshold  
vs Temperature  
vs Temperature LTC690-1  
vs Temperature LTC694-5  
232  
224  
216  
208  
4.66  
58  
56  
54  
52  
V
= 5V  
V
= 5V  
CC  
CC  
4.65  
4.64  
4.63  
4.62  
200  
192  
184  
50  
48  
46  
4.61  
4.60  
50  
TEMPERATURE (°C)  
100 125  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
–50 –25  
0
25  
75  
50  
TEMPERATURE (°C)  
100 125  
–50 –25  
0
25  
75  
690 G05  
690 G06  
690 G04  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator  
Response Time  
Power-Fail Comparator Response  
Time with Pull-Up Resistor  
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
V
T
= 5V  
V
T
= 5V  
V
T
= 5V  
CC  
A
CC  
A
CC  
A
= 25°C  
= 25˚C  
= 25°C  
V
+
PFI  
PFO  
V
+
30pF  
1.3V  
PFI  
PFO  
5V  
10k  
30pF  
30pF  
1.3V  
V
+
PFI  
PFO  
1.3V  
1.305V  
1.285V  
1.315V  
1.295V  
1.315V  
1.295V  
V
= 20mV STEP  
V
= 20mV STEP  
V
= 20mV STEP  
PFI  
2
PFI  
PFI  
4
0
1
3
4
5
7
8
0
60  
120 140 160 180  
0
6
12 14 16 18  
6
20 40  
80 100  
2
8
10  
TIME (µs)  
TIME (µs)  
TIME (µs)  
690 G07  
690 G08  
690 G09  
690ff  
8
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
Microprocessor Reset  
of the precision voltage comparator C1. When V falls  
CC  
below the reset voltage threshold, LOWLINE goes low.  
The LTC690 family uses a bandgap voltage reference  
and a precision voltage comparator C1 to monitor the  
LOWLINE returns high as soon as V rises above the  
CC  
reset voltage threshold.  
5V supply input on V (see Block Diagram). When V  
CC  
CC  
falls below the reset voltage threshold, the RESET output  
Battery Switchover  
is forced to active low state. The reset voltage threshold  
The battery switchover circuit compares V to the V  
accounts for a 5% variation on V , so the RESET output  
CC  
BATT  
CC  
input, and connects V  
to whichever is higher. When  
becomes active low when V falls below 4.75V (4.65V  
OUT  
CC  
V
rises to 70mV above V  
comparator, C2, connects V  
, the battery switchover  
typical). On power-up, the RESET signal is held active low  
for a minimum of 35ms for the LTC690/LTC691 (140ms  
for the LTC694/LTC695) after reset voltage threshold is  
reached to allow the power supply and microprocessor to  
stabilize.TheresetactivetimeisadjustableontheLTC691/  
LTC695.Onpower-down,theRESETsignalremainsactive  
CC  
BATT  
OUT  
to V through a charge  
CC  
pumped NMOS power switch, M1. When V falls to  
CC  
50mV above V  
, C2 connects V  
to V  
through a  
BATT  
OUT  
BATT  
PMOS switch, M2. C2 has typically 20mV of hysteresis to  
preventspuriousswitchingwhenV remainsnearlyequal  
CC  
to V  
. The response time of C2 is approximately 20µs.  
low even with V as low as 1V. This capability helps hold  
BATT  
CC  
the microprocessor in stable shutdown condition. Figure  
Duringnormaloperation,theLTC690familyusesacharge  
pumped NMOS power switch to achieve low dropout and  
low supply current. This power switch can deliver up to  
1 shows the timing diagram of the RESET signal.  
The precision voltage comparator, C1, typically has 40mV  
50mA to V  
from V and has a typical on resistance  
OUT  
of hysteresis which ensures that glitches at V pin do  
OUT  
of 5Ω. The V  
CC  
CC  
pin should be bypassed with a capaci-  
not activate the RESET output. Response time is typically  
tor of 0.1µF or greater to ensure stability. Use of a larger  
bypass capacitor is advantageous for supplying current  
to heavy transient loads.  
10µs.To helppreventmistriggeringduetotransientloads,  
V
pin should be bypassed with a 0.1µF capacitor with  
CC  
the leads trimmed as short as possible.  
When operating currents larger than 50mA are required  
fromV ,oralowerdropout(V -V voltagedifferential)  
The LTC691 and LTC695 have two additional outputs:  
RESET and LOWLINE. RESET is an active high output  
and is the inverse of RESET. LOWLINE is the output  
OUT  
CC OUT  
is desired, the LTC691 and LTC695 should be used.  
V2  
V2  
V1  
V1  
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
V
CC  
RESET  
t
1
t
1
t
1
= RESET ACTIVE TIME  
LOW LINE  
690 F01  
Figure 1. Reset Active Time  
690ff  
9
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
These products provide BATT ON output to drive the base  
of external PNP transistor (Figure 2). If higher currents  
are needed with the LTC690 and LTC694, a high current  
farad-size double layer capacitors, can be used for short  
term memory back-up instead of a battery. The charging  
resistor for both capacitors and rechargeable batteries  
Schottky diode can be connected from the V pin to the  
should be connected to V  
since this eliminates the  
CC  
OUT  
V
OUT  
pin to supply the extra current.  
discharge path that exists when the resistor is connected  
to V (Figure 3).  
CC  
ANY PNP POWER TRANSISTOR  
V
– V  
R
OUT  
BATT  
I =  
V
5
BATT ON  
3
1
2
R
5V  
0.1µF  
V
V
OUT  
CC  
5V  
V
CC  
OUT  
LTC691  
LTC695  
0.1µF  
0.1µF  
0.1µF  
LTC690  
LTC691  
LTC694  
LTC695  
V
BATT  
GND  
4
3V  
V
BATT  
690 F02  
GND  
3V  
Figure 2. Using BATT ON to Drive External PNP Transistor  
690 F03  
The LTC690 family is protected for safe area operation  
with short-circuit limit. Output current is limited to ap-  
proximately 200mA. If the device is overloaded for long  
period of time, thermal shutdown turns the power switch  
offuntilthedevicecoolsdown. Thethresholdtemperature  
for thermal shutdown is approximately 155°C with about  
10°C of hysteresis which prevents the device from oscil-  
lating in and out of shutdown.  
Figure 3. Charging External Battery Through VOUT  
Replacing the Back-Up Battery  
When changing the back-up battery with system power  
on, spurious resets can occur while battery is removed  
due to battery standby current. Although battery standby  
current is only a tiny leakage current, it can still charge  
up the stray capacitance on the V  
pin. The oscillation  
BATT  
ThePNPswitchusedincompetitivedeviceswasnotchosen  
for the internal power switch because it injects unwanted  
current into the substrate. This current is collected by the  
cycle is as follows: When V  
reaches within 50mV of  
BATT  
V , the LTC690 switches to battery back-up. V  
pulls  
CC  
OUT  
V
BATT  
low and the device goes back to normal operation.  
V
pin in competitive devices and adds to the charging  
BATT  
The leakage current then charges up the V  
and the cycle repeats.  
pin again  
BATT  
current of the battery which can damage lithium batteries.  
The LTC690 family uses a charge pumped NMOS power  
switch to eliminate unwanted charging current while  
achieving low dropout and low supply current. Since no  
current goes to the substrate, the current collected by  
If spurious resets during battery replacement pose no  
problems, thennoactionisrequired. Otherwise, aresistor  
from V  
to GND will hold the pin low while changing  
BATT  
the battery. For example, the battery standby current is  
1µA maximum over temperature and the external resistor  
V
BATT  
pin is strictly junction leakage.  
A 125Ω PMOS switch connects the V  
input to V  
OUT  
BATT  
required to hold V  
below V is:  
BATT  
CC  
in battery back-up mode. The switch is designed for very  
low dropout voltage (input-to-output differential). This  
feature is advantageous for low current applications such  
as battery back-up in CMOS RAM and other low power  
CMOS circuitry. The supply current in battery back-up  
mode is 1µA maximum.  
VCC 50mV  
R ≤  
1µA  
With V = 4.5V, a 4.3M resistor will work. With a 3V bat-  
CC  
tery, this resistor will draw only 0.7µA from the battery,  
which is negligible in most cases.  
The operating voltage at the V  
pin ranges from 2.0V  
BATT  
to 4.25V. High value capacitors, such as electrolytic or  
690ff  
10  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
If battery connections are made through long wires, a  
input of battery-backed up CMOS RAM. CE OUT can also  
be used to drive the Store or Write input of an EEPROM,  
EAROM or NOVRAM to achieve similar protection. Figure  
5 shows the timing diagram of CE IN and CE OUT.  
10Ω to 100Ω series resistor and a 0.1µF capacitor are  
recommended to prevent any overshoot beyond V due  
CC  
to the lead inductance (Figure 4).  
CE IN can be derived from the microprocessor’s address  
decoderoutput.Figure6showsatypicalnonvolatileCMOS  
RAM application.  
10Ω  
V
BATT  
LTC690  
0.1µF  
4.3M  
LTC691  
LTC694  
LTC695  
Memory protection can also be achieved with the LTC690  
and LTC694 by using RESET as shown in Figure 7.  
GND  
Table 1. Input and Output Status in Battery Back-Up Mode  
690 F04  
SIGNAL  
STATUS  
C2 monitors V for active switchover.  
Figure 4. 10Ω/0.1µF Combination Eliminates Inductive  
Overshoot and Prevents Spurious Resets During Battery  
Replacement  
V
V
V
CC  
CC  
V
OUT  
is connected to V  
through an internal PMOS switch.  
OUT  
BATT  
BATT  
The supply current is 1µA maximum.  
Logic high. The open-circuit output voltage is equal to V  
Power failure input is ignored.  
Logic low  
BATT ON  
PFI  
.
.
Table1showsthestateofeachpinduringbatteryback-up.  
When the battery switchover section is not used, connect  
OUT  
V
to GND and V  
to V .  
PFO  
BATT  
OUT  
CC  
RESET  
RESET  
Logic low  
Memory Protection  
Logic high. The open-circuit output voltage is equal to V  
OUT  
LOWLINE Logic low  
The LTC691 and LTC695 include memory protection cir-  
cuitry that ensures the integrity of the data in memory by  
WDI  
Watchdog input is ignored.  
preventing write operations when V is at invalid level.  
WDO  
Logic high. The open-circuit output voltage is equal to V  
.
OUT  
CC  
Two additional pins, CE IN and CE OUT, control the Chip  
CE IN  
ChipEnable Input is ignored.  
Enable or Write inputs of CMOS RAM. When V is 5V,  
CE OUT  
OSC IN  
OSC SEL  
Logic high. The open-circuit output voltage is equal to V  
.
OUT  
CC  
CE OUT follows CE IN with a typical propagation delay of  
OSC IN is ignored.  
20ns. When V falls below the reset voltage threshold or  
OSC SEL is ignored.  
CC  
V
, CE OUT is forced high, independent of CE IN. CE  
OUT is an alternative signal to drive the CE, CS, or Write  
BATT  
V2  
V
V1 = RESET VOLTAGE THRESHOLD  
V2 = RESET VOLTAGE THRESHOLD +  
RESET THRESHOLD HYSTERESIS  
CC  
V1  
CE IN  
V
= V  
BATT  
OUT  
CE OUT  
V
= V  
BATT  
OUT  
690 F05  
Figure 5. Timing Diagram for CE IN and CE OUT  
690ff  
11  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
Power-Fail Warning  
5V  
V
V
V
CC  
OUT  
CC  
+
0.1µF  
0.1µF  
LTC691  
LTC695  
62512  
RAM  
10µF  
TheLTC690familygeneratesaPowerFailureOutput(PFO)  
for early warning of failure in the microprocessor’s power  
supply. This is accomplished by comparing the Power  
Failure Input (PFI) with an internal 1.3V reference. PFO  
goes low when the voltage at the PFI pin is less than 1.3V.  
TypicallyPFIisdrivenbyanexternalvoltagedivider(R1and  
R2 in Figures 8 and 9) which senses either an unregulated  
DCinputoraregulated5Voutput. Thevoltagedividerratio  
can be chosen such that the voltage at the PFI pin falls  
below 1.3V several milliseconds before the 5V supply falls  
below the maximum reset voltage threshold 4.75V. PFO is  
normally used to interrupt the microprocessor to execute  
shutdown procedure between PFO and RESET or RESET.  
CE OUT  
CS  
20ns PROPAGATION DELAY  
FROM DECODER  
GND  
V
BATT  
GND  
CE IN  
RESET  
3V  
RESET  
TO µP  
690 F06  
Figure 6. A Typical Nonvolatile CMOS RAM Application  
5V  
0.1µF  
V
V
V
CC  
OUT  
CC  
+
0.1µF  
CS  
62128  
RAM  
10µF  
LTC690  
LTC694  
CS1  
V
RESET  
GND  
CS2  
BATT  
3V  
GND  
The power-fail comparator, C3, does not have hysteresis.  
Hysteresiscanbeaddedhowever,byconnectingaresistor  
between the PFO output and the noninverting PFI input  
pin as shown in Figures 8 and 9. The upper and lower  
trip points in the comparator are established as follows:  
690 F07  
Figure 7. Write Protect for RAM with LTC690 or LTC694  
When PFO output is low, R3 sinks current from the sum-  
LT1086-5  
V
≥ 7.5V  
ming junction at the PFI pin.  
IN  
5V  
V
V
IN  
OUT  
V
CC  
+
+
0.1µF  
R4  
10k  
ADJ  
10µF  
100µF  
R1 R1  
+
LTC690/LTC691  
LTC694/LTC695  
V = 1.3V 1+  
R3  
300k  
H
R1  
51k  
R2 R3  
PFO  
GND  
PFI  
When PFO output is high, the series combination of R3  
and R4 source current into the PFI summing junction.  
R2  
10k  
690 F08  
TO µP  
R1 (5V 1.3V)R1  
R2 1.3V (R3+ R4)  
Figure 8. Monitoring Unregulated DC Supply  
with the LTC690’s Power-Fail Comparator  
V = 1.3V 1+  
L
R1  
R3  
Assuming R4 << R3,VHYSTERESIS = 5V  
LT1086-5  
5V  
V
≥ 6.5V  
10µF  
IN  
V
V
V
OUT  
IN  
CC  
+
+
Example 1: The circuit in Figure 8 demonstrates the use  
of the power-fail comparator to monitor the unregulated  
power supply input. Assuming the the rate of decay of  
R4  
0.1µF  
R1  
27k  
ADJ  
10µF  
LTC690/LTC691  
LTC694/LTC695  
10k  
R3  
2.7M  
PFO  
PFI  
GND  
the supply input V is 100mV/ms and the total time to  
IN  
R2  
8.2k  
execute a shutdown procedure is 8ms. Also the noise of  
1690 F09  
TO µP  
V
is 200mV. With these assumptions in mind, we can  
R5  
3.3k  
IN  
reasonablysetV =7.5Vwhich1.25Vgreaterthanthesum  
L
of maximum reset voltage threshold and the dropout volt-  
ageofLT1086-5(4.75V+1.5V)andV  
=850mV.  
HYSTERESIS  
Figure 9. Monitoring Regulated DC Supply  
with the LTC690’s Power-Fail Comparator  
690ff  
12  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
5V  
R1  
R3  
VHYSTERESIS = 5V  
R3 5.88R1  
= 850mV  
V
CC  
V
BATT  
LOW-BATTERY SIGNAL  
TO µP I/O PIN  
PFO  
R1  
1M  
LTC691  
LTC695  
Choose R3 = 300k and R1 = 51k. Also select R4 = 10k  
which is much smaller than R3.  
PFI  
R2  
1M  
3V  
CE IN  
I/O PIN  
CE OUT  
GND  
51k (5V 1.3V)51k  
7.5V = 1.3V 1+  
R
690 F10  
R2  
1.3V (310k)  
L
20K  
R2 = 9.7kΩ, Choose nearest 5% resistor 10k and recalcu-  
late V ,  
OPTIONAL TEST LOAD  
L
Figure 10. Back-Up Battery Monitor with Optional Test Load  
51k (5V 1.3V)51k  
V = 1.3V 1+  
= 7.32V  
L
10k  
1.3V (310k)  
Watchdog Timer  
The LTC690 family provides a watchdog timer function  
to monitor the activity of the microprocessor. If the mi-  
croprocessor does not toggle the Watchdog Input (WDI)  
within a selected timeout period, RESET is forced to ac-  
tive low for a minimum of 35ms for the LTC690/LTC691  
(140ms for the LTC694/LTC695). The reset active time is  
adjustable on the LTC691/LTC695. Since many systems  
can not service the watchdog timer immediately after a  
reset, the LTC691 and LTC695 have longer timeout period  
(1.0 second minimum) right after a reset is issued. The  
normaltimeoutperiod(70msminimum)becomeseffective  
following the first transition of WDI after RESET is inac-  
tive. The watchdog timeout period is fixed at 1.0 second  
minimum on the LTC690 and LTC694. Figure 11 shows  
the timing diagram of watchdog timeout period and reset  
active time. The watchdog timeout period is restarted as  
soon as RESET is inactive. When either a high-to-low  
or low-to-high transition occurs at the WDI pin prior to  
timeout, the watchdog time is reset and begins to time  
out again. To ensure the watchdog time does not time  
out, either a high-to-low or low-to-high transition on the  
WDI pin must occur at or less than the minimum timeout  
period. If the input to the WDI pin remains either high or  
low,resetpulseswillbeissuedevery1.6secondstypically.  
The watchdog time can be deactivated by floating the WDI  
51k 51k  
VH = 1.3V 1+  
= 8.151V  
10k 300k  
(7.32V 6.25V)  
100mV /ms  
= 10.7ms  
VHYSTERESIS = 8.151V 7.32V = 831mV  
The 10.7ms allows enough time to execute shutdown  
procedure for microprocessor and 831mV of hysteresis  
would prevent PFO from going low due to the noise of V .  
IN  
Example 2: The circuit in Figure 9 can be used to measure  
the regulated 5V supply to provide early warning of power  
failure. Because of variations in the PFI threshold, this  
circuit requires adjustment to ensure the PFI compara-  
tor trips before the reset threshold is reached. Adjust R5  
such that the PFO output goes low when the V supply  
reaches the desired level (e.g., 4.85V).  
CC  
Monitoring the Status of the Battery  
C3 can also monitor the status of the memory back-up  
battery (Figure 10). If desired, the CE OUT can be used to  
applyatestloadtothebattery.SinceCEOUTisforcedhigh  
in battery back-up mode, the test load will not be applied  
to the battery while it is in use, even if the microprocessor  
is not powered.  
pin. The timer is also disabled when V falls below the  
CC  
reset voltage threshold or V  
.
BATT  
690ff  
13  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
The LTC691 and LTC695 provide an additional output  
(Watchdog Output, WDO) which goes low if the watchdog  
timer is allowed to time out and remains low until set high  
by the next transition on the WDI pin. WDO is also set high  
GND when OSC SEL is forced low. In these configura-  
tions, the nominal reset active time and watchdog timeout  
period are determined by the number of clocks or set by  
the formula in Table 2. When OSC SEL is high or floating,  
the internal oscillator is enabled and the reset active time  
is fixed at 35ms minimum for the LTC691 and 140ms  
minimum for the LTC695. OSC IN selects between the 1  
second and 70ms minimum normal watchdog timeout  
periods. In both cases, the timeout period immediately  
after a reset is at least 1 second.  
when V falls below the reset voltage threshold or V  
.
CC  
BATT  
TheLTC691andLTC695havetwoadditionalpinsOSCSEL  
and OSC IN, which allow reset active time and watchdog  
timeout period to be adjusted per Table 2. Several con-  
figurations are shown in Figure 12.  
OSC IN can be driven by an external clock signal or an  
external capacitor can be connected between OSC IN and  
V
= 5V  
CC  
WDI  
t
1
t
2
t
3
= RESET ACTIVE TIME  
= NORMAL WATCHDOG TIME-OUT PERIOD  
= WATCHDOG TIME-OUT PERIOD IMMEDIATELY  
AFTER A RESET  
WDO  
t
t
3
2
RESET  
t
t
1
1
690 F11  
Figure 11. Watchdog Timeout Period and Reset Active Time  
EXTERNAL OSCILLATOR  
EXTERNAL CLOCK  
3
8
7
8
3
4
V
OSC SEL  
5V  
5V  
V
OSC SEL  
CC  
CC  
LTC691  
LTC695  
LTC691  
LTC695  
7
4
GND  
OSC IN  
GND  
OSC IN  
INTERNAL OSCILLATOR  
1.6 SECOND WATCHDOG  
INTERNAL OSCILLATOR  
100ms WATCHDOG  
3
8
3
8
7
FLOATING  
OR HIGH  
FLOATING  
OR HIGH  
5V  
5V  
V
OSC SEL  
V
OSC SEL  
CC  
CC  
LTC691  
LTC695  
LTC691  
LTC695  
4
7
FLOATING  
OR HIGH  
4
GND  
OSC IN  
GND  
OSC IN  
690 F12  
Figure 12. Oscillator Configurations  
690ff  
14  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
applicaTions inForMaTion  
Table 2. LTC691 and LTC695 Reset Active Time and Watchdog Timeout Selections  
WATCHDOG TIME-OUT PERIOD  
RESET ACTIVE TIME  
IMMEDIATELY  
AFTER RESET  
(Long Period)  
NORMAL  
(Short Period)  
OSC SEL  
OSC IN  
LTC691  
LTC695  
Low  
External Clock Input  
1024 clks  
4096 clks  
512 clks  
2048 clks  
400ms  
C  
1.6sec  
C  
200ms  
70pF  
800ms  
C  
C  
Low  
External Capacitor*  
70pF  
70pF  
70pF  
Floating or High  
Floating or High  
Low  
Floating or High  
100ms  
1.6 sec  
1.6 sec  
1.6 sec  
50ms  
50ms  
200ms  
200ms  
184,000  
C(pF) 1025  
*The nominal internal frequency is 10.24kHz. The nominal oscillator frequency with external capacitor is f  
(Hz) =  
OSC  
Pushbutton Reset  
TheLTC690familydoesnotprovidealogicinputfordirect  
V
5V  
RESET  
RESET  
CC  
connection to a pushbutton. However, a pushbutton in  
serieswitha100ΩresistorconnectedtotheRESEToutput  
pin (Figure 13) provides an alternative for manual reset.  
Connecting a 0.1µF capacitor to the RESET pin debounces  
the pushbutton input.  
100Ω  
0.1µF  
MPU  
LTC690/LTC691  
LTC694/LTC695  
(e.g. 6805)  
690 F13  
GND  
The100Ωresistorinserieswiththepushbuttonisrequired  
to prevent the ringing, due to the capacitance and lead  
inductance, from pulling the RESET pins of the MPU and  
LTC69X below ground.  
Figure 13. The External Pushbutton Reset  
V
5V  
RESET  
LTC1235  
RESET  
CC  
MPU  
(e.g. 6805)  
If a dedicated pushbutton reset input is desired, the  
LTC1235 is a good choice (Figure 14). It has all the func-  
tions of the LTC695 and provides pushbutton reset as an  
extra feature. Its pushbutton is internally debounced and  
invokesthenormal200msresetsequence.Thiseliminates  
the need for the 100Ω resistor and 0.1µF capacitor. It also  
provides a more consistent reset pulse.  
PBRST  
GND  
690 F14  
Figure 14. The External Pushbutton Reset with the LTC1235  
690ff  
15  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
SW Package  
16-Lead Plastic Small Outline (Wide .300 Inch)  
(Reference LTC DWG # 05-08-1620)  
.050 BSC .045 .005  
.030 .005  
TYP  
.398 – .413  
(10.109 – 10.490)  
NOTE 4  
15 14  
12  
10  
9
N
16  
N
13  
11  
.325 .005  
.420  
MIN  
.394 – .419  
(10.007 – 10.643)  
NOTE 3  
N/2  
8
1
2
3
N/2  
RECOMMENDED SOLDER PAD LAYOUT  
2
3
5
7
1
4
6
.291 – .299  
(7.391 – 7.595)  
NOTE 4  
.037 – .045  
(0.940 – 1.143)  
.093 – .104  
(2.362 – 2.642)  
.010 – .029  
× 45°  
(0.254 – 0.737)  
.005  
(0.127)  
RAD MIN  
0° – 8° TYP  
.050  
(1.270)  
BSC  
.004 – .012  
.009 – .013  
(0.102 – 0.305)  
NOTE 3  
(0.229 – 0.330)  
.014 – .019  
.016 – .050  
(0.356 – 0.482)  
TYP  
(0.406 – 1.270)  
NOTE:  
1. DIMENSIONS IN  
INCHES  
(MILLIMETERS)  
S16 (WIDE) 0502  
2. DRAWING NOT TO SCALE  
3. PIN 1 IDENT, NOTCH ON TOP AND CAVITIES ON THE BOTTOM OF PACKAGES ARE THE MANUFACTURING OPTIONS.  
THE PART MAY BE SUPPLIED WITH OR WITHOUT ANY OF THE OPTIONS  
4. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
690ff  
16  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
8-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-08-1510 Rev I)  
.400*  
(10.160)  
MAX  
.130 ±.005  
(3.302 ±0.127)  
.300 – .325  
(7.620 – 8.255)  
.045 – .065  
(1.143 – 1.651)  
8
1
7
6
5
4
.065  
(1.651)  
TYP  
.255 ±.015*  
(6.477 ±0.381)  
.008 – .015  
(0.203 – 0.381)  
.120  
(3.048)  
MIN  
.020  
(0.508)  
MIN  
+.035  
–.015  
.325  
.018 ±.003  
(0.457 ±0.076)  
.100  
(2.54)  
BSC  
2
3
+0.889  
8.255  
N8 REV I 0711  
(
)
–0.381  
NOTE:  
INCHES  
1. DIMENSIONS ARE  
MILLIMETERS  
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mm)  
S8 Package  
8-Lead Plastic Small Outline (Narrow .150 Inch)  
(Reference LTC DWG # 05-08-1610 Rev G)  
.189 – .197  
(4.801 – 5.004)  
.045 ±.005  
NOTE 3  
.050 BSC  
7
5
8
6
.245  
MIN  
.160 ±.005  
.150 – .157  
(3.810 – 3.988)  
NOTE 3  
.228 – .244  
(5.791 – 6.197)  
.030 ±.005  
TYP  
1
3
4
2
RECOMMENDED SOLDER PAD LAYOUT  
.010 – .020  
(0.254 – 0.508)  
× 45°  
.053 – .069  
(1.346 – 1.752)  
.004 – .010  
(0.101 – 0.254)  
.008 – .010  
(0.203 – 0.254)  
0°– 8° TYP  
.016 – .050  
(0.406 – 1.270)  
.050  
(1.270)  
BSC  
.014 – .019  
(0.355 – 0.483)  
TYP  
NOTE:  
INCHES  
1. DIMENSIONS IN  
(MILLIMETERS)  
2. DRAWING NOT TO SCALE  
3. THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006" (0.15mm)  
4. PIN 1 CAN BE BEVEL EDGE OR A DIMPLE  
SO8 REV G 0212  
690ff  
17  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
package DescripTion  
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.  
N Package  
16-Lead PDIP (Narrow .300 Inch)  
(Reference LTC DWG # 05-03-1510 Rev Iꢂ  
.770ꢀ  
(19.553ꢂ  
MAX  
14  
12  
10  
9
3
15  
1ꢁ  
11  
16  
.255 .015ꢀ  
(6.477 0.ꢁ31ꢂ  
2
1
4
6
5
7
.ꢁ00 – .ꢁ25  
(7.620 – 3.255ꢂ  
.1ꢁ0 .005  
(ꢁ.ꢁ02 0.127ꢂ  
.045 – .065  
(1.14ꢁ – 1.651ꢂ  
.020  
(0.503ꢂ  
MIN  
.065  
(1.651ꢂ  
TYP  
.003 – .015  
(0.20ꢁ – 0.ꢁ31ꢂ  
+.0ꢁ5  
–.015  
.ꢁ25  
.120  
(ꢁ.043ꢂ  
MIN  
.013 .00ꢁ  
(0.457 0.076ꢂ  
.100  
(2.54ꢂ  
BSC  
+0.339  
3.255  
(
)
–0.ꢁ31  
N16 REV I 0711  
NOTE:  
INCHES  
MILLIMETERS  
1. DIMENSIONS ARE  
ꢀTHESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.  
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH (0.254mmꢂ  
690ff  
18  
For more information www.linear.com/690  
LTC690/LTC691  
LTC694/LTC695  
revision hisTory (Revision history begins at Rev D)  
REV  
DATE  
3/10  
4/10  
3/13  
DESCRIPTION  
PAGE NUMBER  
D
Removed “UL Recognized” and UL File Number From Features  
Removed LTC690MJ8  
1
3
3
E
F
Corrected top mark for LTC690CS8 and LTC690IS8  
690ff  
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.  
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-  
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.  
19  
LTC690/LTC691  
LTC694/LTC695  
Typical applicaTion  
Capacitor Back-Up with 74HC4016 Switch  
Write Protect for Additional RAMs  
5V  
5V  
V
V
V
V
OUT  
CC  
V
CC  
V
CC  
OUT  
+
0.1µF  
62512  
RAM A  
LTC691  
LTC695  
0.1µF  
10µF  
0.1µF  
0.1µF  
LTC691  
LTC695  
R1  
10k  
10 11 12 14  
CS  
CE OUT  
20ns PROPAGATION  
DELAY  
2
1
BATT  
LOWLINE  
V
74HC4016  
7
BATT  
CE IN  
CSA  
3V  
R2  
30k  
LOWLINE  
13  
100µF  
+
GND  
GND  
V
CC  
0.1µF  
0.1µF  
62128  
RAM B  
CS1  
LTC690 TA03  
CSB  
CSC  
CS2  
V
CC  
62128  
RAM C  
CS1  
CS2  
OPTIONAL CONNECTION FOR  
ADDITIONAL RAMs  
690 TA04  
relaTeD parTs  
PART NUMBER DESCRIPTION  
COMMENTS  
LTC699  
Microprocessor Supervisory Circuit  
Microprocessor Supervisory Circuit  
Microprocessor Supervisory Circuit  
4.65V Threshold, Watchdog Timer  
LTC1232  
LTC1235  
4.62V, 4.37V Thresholds, Watchdog Timer, Manual Reset  
4.65V Threshold, Watchdog Timer, Power-Fail Warning, Manual Reset,  
RAM Protect  
LTC1326  
LTC1536  
Micropower Precision Triple-Supply Monitor  
4.725V, 3.118V, 1V Thresholds ( 0.75%)  
Micropower Triple-Supply Monitor for PCI  
Applications  
Meets PCI t  
Timing Specifications  
FAIL  
LTC2912  
LTC2915  
LTC2916  
LTC2917  
Single UV/OV Voltage Monitor  
Resistor Programmable Thresholds, UV/OV Outputs, Shunt Regulator  
9 Pin-Selectable Thresholds, 3 Tolerances, 1.5V to 5.5V Supply  
9 Pin-Selectable Thresholds, 1.5V to 5.5V Supply, Manual Reset  
Voltage Supervisor with 27 Selectable Thresholds  
Voltage Supervisor with 9 Selectable Thresholds  
Voltage Supervisor with 27 Selectable Thresholds  
and Watchdog Timer  
9 Pin-Selectable Thresholds, 3 Tolerances, 1.5V to 5.5V Supply,  
Adjustable Watchdog Timer  
LTC2918  
LTC2934  
LTC2935  
Voltage Supervisor with 9 Selectable Thresholds and 9 Pin-Selectable Thresholds, 1.5V to 5.5V Supply, Manual Reset,  
Watchdog Timer  
Adjustable Watchdog Timer  
Ultralow Power Adjustable Supervisor with  
Power-Fail Output  
Resistor Programmable Thresholds, 500nA Quiescent Current, 1.6V to 5.5V  
Supply, Power-Fail Warning, Manual Reset  
Ultralow Power Adjustable Supervisor with  
Power-Fail Output  
8 Pin-Selectable Thresholds, 500nA Quiescent Current, Power-Fail Warning,  
Manual Reset  
690ff  
LT 0313 REV F • PRINTED IN USA  
LinearTechnology Corporation  
1630 McCarthy Blvd., Milpitas, CA 95035-7417  
20  
LINEAR TECHNOLOGY CORPORATION 1992  
(408)432-1900 FAX: (408) 434-0507 www.linear.com/690  

相关型号:

LTC694IS8#TR

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8#TRPBF

LTC694 - Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC694IS8-3.3#PBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3#TR

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-3.3#TRPBF

LTC694-3.3 - 3.3V Microprocessor Supervisory Circuits; Package: SO; Pins: 8; Temperature Range: -40&deg;C to 85&deg;C
Linear

LTC694IS8-PBF

Microprocessor Supervisory Circuits
Linear

LTC694IS8PBF

Microprocessor Supervisory Circuits
Linear

LTC694_15

Microprocessor Supervisory Circuits
Linear

LTC695

Microprocessor Supervisory Circuits
Linear

LTC695-3.3

3.3V Microprocessor Supervisory Circuits
Linear

LTC695-3.3CSW

IC 1-CHANNEL POWER SUPPLY MANAGEMENT CKT, PDSO16, 0.300 INCH, PLASTIC, SOP-16, Power Management Circuit
Linear